
UC Berkeley
UC Berkeley Previously Published Works

Title
Invariant neural dynamics drive commands to control different movements.

Permalink
https://escholarship.org/uc/item/0zb9z99b

Journal
Current Biology, 33(14)

Authors
Athalye, Vivek
Khanna, Preeya
Gowda, Suraj
et al.

Publication Date
2023-07-24

DOI
10.1016/j.cub.2023.06.027

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0zb9z99b
https://escholarship.org/uc/item/0zb9z99b#author
https://escholarship.org
http://www.cdlib.org/

Invariant neural dynamics drive commands to control different
movements

Vivek R. Athalye1,7,9,*, Preeya Khanna2,7,*, Suraj Gowda4, Amy L. Orsborn3, Rui M.
Costa1,8,*, Jose M. Carmena4,5,6,8,*

1Zuckerman Mind Brain Behavior Institute, Departments of Neuroscience and Neurology;
Columbia University; New York, NY, 10027; USA

2Department of Neurology; University of California, San Francisco; San Francisco, CA, 94158;
USA

3Departments of Bioengineering, Electrical and Computer Engineering; University of Washington,
Seattle; Seattle, WA, 98195; USA

4Department of Electrical Engineering and Computer Sciences; University of California, Berkeley;
Berkeley, CA, 94720; USA

5Helen Wills Neuroscience Institute; University of California, Berkeley; Berkeley, CA, 94720; USA

6UC Berkeley-UCSF Joint Graduate Program in Bioengineering; University of California, Berkeley;
Berkeley, CA, 94720; USA

7These authors contributed equally to this work.

8Senior author

9Lead contact

Summary:

It has been proposed that the nervous system has the capacity to generate a wide variety of

movements because it re-uses some invariant code. Previous work has identified that dynamics

of neural population activity are similar during different movements, where dynamics refer to

how the instantaneous spatial pattern of population activity changes in time. Here we test whether

invariant dynamics of neural populations are actually used to issue the commands that direct

movement. Using a brain-machine interface that transformed rhesus macaques’ motor cortex

*Corresponding authors. va2371@columbia.edu (VRA); pkhanna@berkeley.edu (PK); rc3031@columbia.edu (RMC);
jcarmena@berkeley.edu (JMC).
Author contributions
V.R.A., P.K., R.M.C., and J.M.C. conceived and designed this study. P.K., S.G., and A.L.O. performed the experiments. P.K. and
V.R.A. analyzed the data. All authors contributed materials and analysis tools. V.R.A., P.K., R.M.C, and J.M.C. wrote the manuscript.
All authors reviewed the manuscript.
Twitter handles: @vr_athalye (VRA), @prekhanna (PK), @neuroamyo (ALO), @ruimcosta (RMC), @blancinegre1972 (JMC)

Declaration of interests
Authors declare that they have no competing interests. We disclose that we have filed for a patent based on this work.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Curr Biol. Author manuscript; available in PMC 2024 July 24.

Published in final edited form as:
Curr Biol. 2023 July 24; 33(14): 2962–2976.e15. doi:10.1016/j.cub.2023.06.027.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

activity into commands for a neuroprosthetic cursor, we discovered that the same command is

issued with different neural activity patterns in different movements. However, these different

patterns were predictable, as we found that the transitions between activity patterns are governed

by the same dynamics across movements. These invariant dynamics are low-dimensional, and

critically, they align with the brain-machine interface, so that they predict the specific component

of neural activity that actually issues the next command. We introduce a model of optimal

feedback control that shows that invariant dynamics can help transform movement feedback

into commands, reducing the input that the neural population needs to control movement.

Altogether our results demonstrate that invariant dynamics drive commands to control a variety

of movements, and show how feedback can be integrated with invariant dynamics to issue

generalizable commands.

eTOC blurb

The brain’s capacity to control diverse movement may rely on re-using an invariant neural code.

Athalye and Khanna et al. show that animals control a brain-machine interface using dynamics

of neural population activity that are invariant across movements. A model demonstrates that

invariant dynamics can help transform feedback into motor commands.

Keywords

neural population dynamics; motor cortex; motor control; brain-machine interfaces;
neuroprosthetics; optimal feedback control; motor commands; movement representations;
dynamical systems

Introduction

Our brain can generate a vast variety of movements. It is believed that the brain would not

have such capacity if it used separate populations of neurons to control each movement.

Thus, it has been proposed that the brain’s capacity to produce different movements relies

on re-using the dynamics of a specific neural population’s activity 1–3. While theoretical

work shows how dynamics emerge from neural activity transmitted through recurrent

connectivity1,4–6, it has been elusive to identify whether the brain re-uses dynamics to

actually control movements.

Recent work on the motor cortex, a region that controls movement through direct projections

to the spinal cord 7 and other motor centers 8–10, has found that population dynamics are

similar across different movements. Specifically, the spatial pattern of population activity

at a given time point (i.e. the instantaneous firing rate of each neuron in the population)

systematically influences what spatial pattern occurs next. Models of dynamics ℎ that are

invariant across movements3 can predict the transition from the current population activity

pattern xt to the subsequent pattern xt + 1:

xt + 1 = ℎ xt + inputt + noiset (1)

Athalye et al. Page 2

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

where external input inputt and noise noiset are typically unmeasured. Recent work11 has

provided the intuition that invariant dynamics bias neural activity to avoid “tangling”

– which is when the same activity pattern undergoes different transitions in different

movements. These dynamics models have explained features of neural activity that were

unexpected from behavior 11–14 such as oscillations12, and have predicted neural activity

during different movements on single trials 15–18, for single neurons’ spiking 15, for local

field potential features 19,20, and over many days 18,21. These models also help predict

behavior 16,18,19,22.

While past work characterized the statistical relationship between invariant dynamics and

behavior, it remains untested if invariant dynamics are actually used to issue commands for

movement. This test requires identifying the causal transformation from neural activity to

command, where the “command” is the instantaneous influence of the nervous system on

movement. This is a long-standing challenge in motor control. While past work has modeled

this transformation23–25, ongoing research reveals its complexity8–10,26–28.

We addressed this challenge with a brain-machine interface (BMI) 29–32 in which the

transformation from neural activity to command was known exactly and determined by the

experimenter. We trained rhesus monkeys to use motor cortex population activity to move a

two-dimensional computer cursor on a screen through a BMI. The BMI transformed neural

activity into a force-like command to update the cursor’s velocity, analogous to muscular

force on the skeleton. Thus, an individual movement was produced by a series of commands,

where each command acted on the cursor at an instant in time.

We discovered that the same command is issued with different neural activity patterns

in different movements. Critically, these different patterns transition according to low-

dimensional, invariant dynamics to patterns that issue the next command, even when

the next command differs across movements. Thus, our results demonstrate that invariant

dynamics drive commands to control different movements.

While past work has presented a view of how dynamics operate in a feedforward manner,

propagating an initial state of activity 23,33,34 to produce movement, it has been unclear

how feedback24,35–37 integrates with invariant dynamics. Given that motor cortex is

interconnected to larger motor control circuits including cortical38–41 and cortico-basal

ganglia-thalamic circuits8,9,42,43, we introduce a hierarchical model44 of optimal feedback

control (OFC) in which the brain (i.e. larger motor control circuitry) uses feedback to

control the motor cortex population which controls movement45,46. Our model reveals that

invariant dynamics can help transform feedback into commands, as they reduce the input

that a population needs to issue commands. Altogether, our results demonstrate that invariant

neural dynamics are both used and useful for issuing commands across different movements.

Results

BMI to study neural population control of movement

We used a BMI47–49 to study the dynamics of population activity as it issued commands

for movement of a two-dimensional computer cursor (Figure 1A). Population activity (20–

Athalye et al. Page 3

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

151 units) was recorded using chronically implanted microwire electrode arrays spanning

bilateral dorsal premotor cortex and primary motor cortex. Each unit’s spiking rate at time

t (computed as the number of spikes in a temporal bin) was stacked into a vector of

population activity xt, and the BMI used a “decoder” given by matrix K to linearly transform

population activity into a two-dimensional command:

commandt = Kxt (2)

The command linearly updated the two-dimensional velocity vector of the computer cursor:

velocityt = commandt + α*velocityt − 1 + offset (3)

We note that the BMI was not identical across the two subjects, as neural activity

was modeled with different statistical distributions (Gaussian for Monkey G and a Point

Processs47,48 for Monkey J, see STAR methods – “Neuroprosthetic decoding”).

The decoder was initialized as subjects passively watched cursor movement, calibrated as

subjects used the BMI in closed-loop49 without performing trained overt movement, and

then fixed for the experiment (Figure 1B). Critically, the decoder was not fit during trained

overt movement, as was done previously16, so it did not demand neural dynamics associated

with overt movement.

To study control of diverse movements, we trained monkeys to perform two different

tasks (Figure 1CD). Monkeys performed a center-out task in which they moved the cursor

from the center of the workspace to one of eight radial targets, and they performed an

obstacle-avoidance task in which they avoided an obstacle blocking the straight path to

the target. Our tasks elicited up to 24 conditions of movement (with an average of 16–17

conditions per session), where each condition is defined as the task performed (“co” =

center-out task, “cw” / “ccw” = clockwise/counterclockwise movement around the obstacle

in the obstacle-avoidance task) and the target achieved (numbered 0 through 7).

Importantly, the BMI enabled us to identify when neural activity issued the same command

in different conditions (Figures 1EF, S1). We considered two-dimensional, continuous-

valued commands as the same if they fell within the same discrete bin for analysis. We

categorized commands into 32 bins (8 angular × 4 magnitude) based on percentiles of the

continuous-valued distribution (Figure S1A; see STAR methods - “Command discretization

for analysis”). On each session, a command (of the 32 discretized bins) was analyzed if

it was used in a condition 15 or more times (Figure S1B), for more than one condition.

Each individual command was used with regularity during multiple conditions (on average

~7 conditions, Figure S1B), within distinct local “subtrajectories” (Figures 1F, S1, STAR

methods – “Cursor and command trajectory visualization”).

Using the BMI to test whether invariant dynamics are used to control different movements

The BMI enabled us to test whether the pattern of neural activity systematically influences

the subsequent pattern and command. We can visualize an activity pattern xt as a point

in high-dimensional activity space, where each neuron’s activity is one dimension, and

Athalye et al. Page 4

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

visualize the transition between two patterns xt and xt + 1 as an arrow (Figure 2A). Then,

dynamics can be visualized as a flow field in activity space. This flow field is invariant

because the predicted transition for a given neural activity pattern (i.e. its arrow) does

not change, regardless of the current command or condition. Because there are more

neurons than dimensions of the command, different activity patterns can issue the same

command24,50 (Figure 2B), as is believed to be true in the natural motor system23,24,50. The

BMI decoder defined the “decoder space” as the dimensions of neural activity that determine

the command and the “decoder null space” as the orthogonal dimensions which have no

consequence on the decoder. The BMI allowed us to observe the precise temporal order of

commands (Figure 2C) and test whether activity trajectories followed the flow of invariant

dynamics to issue these commands for movements (Figure 2D).

The same command is issued by different neural activity patterns in different movements

First, we tested whether the same command is issued by different neural activity patterns in

different movements, as would be expected if the current pattern influences the subsequent

pattern and command (Figure 3A). The BMI enabled this analysis with its concrete

definition of the command for movement. We calculated the distance between the average

neural activity for a given command and condition and the average neural activity for

the given command pooled over conditions. We then tested if this distance is larger than

expected simply due to the variability of noisy neural activity. To emulate the scenario in

which neural activity for a given command has the same distribution across conditions, we

constructed shuffled datasets where we identified all observations of neural activity issuing

a given command and shuffled their condition-labels, for all commands (see STAR methods

– “Behavior-preserving shuffle of activity”). In this scenario, the distance is expected to be

greater than zero simply because average activity is estimated from limited samples and thus

is subject to variability.

Overall, neural activity issuing a given command significantly deviated across conditions

relative to the shuffle distribution (Figure 3B–E). Distances averaged within-session ranged

from 10% to 200% larger than shuffle distance (Figure 3D and see Figure S2 for additional

distributions). Distances were significantly larger than shuffle distances for a large fraction

of individual (command, condition) tuples (~30% for Monkey G, ~70% for Monkey J),

individual commands (~65% for G, ~90% for J) when aggregating over conditions, and

individual neurons (~40% for G, ~80% for J) when aggregating over all (command,

condition) tuples (Figure 3E). Further, these deviations reflected the behavior; the distance

between two patterns issuing the same command correlated with the distance between the

command subtrajectories (Figure S6E–H).

Invariant dynamics predict the different neural activity patterns used to issue the same
command

Given that a command was not issued with the same activity pattern across conditions, we

next constructed a model of invariant dynamics. We used single-trial neural activity xt from

all conditions to estimate dynamics with a linear model (Figure 4A):

Athalye et al. Page 5

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

xt + 1 = Axt + b (4)

We found that the dynamics A were low-dimensional (~4 dimensions, Figures 5D and

S3B) and decaying to a fixed point (Figure S3AC), contrasting with rotational dynamics

observed during natural motor control 12,13,16,22,51. See Figure S3D for an illustration of

how decaying invariant dynamics can control different movements. Notably, a non-linear

dynamics model (a recurrent switching linear dynamical system52) did not out-perform these

simple linear dynamics (Figure S5C–F).

We asked whether invariant dynamics predict the different activity patterns observed to issue

the same command. Concretely, we predicted the activity pattern given the command it

issued and its previous activity (Figure 4A, see STAR methods – “Invariant dynamics model

predictions”), combining the dynamics model (Equation 4) with the decoder (Equation 2).

This analyzed whether the model could predict the component of the activity pattern that

can vary when a given command is issued, i.e. the component in the decoder null space.

For comparison, we also computed the prediction of neural activity when only given the

command it issued (in the absence of a dynamics model). Further, we tested whether the

invariant dynamics model generalized to new commands and conditions. Dynamics models

were fit on neural activity specifically excluding individual commands or conditions, and

these models were used to predict the neural activity for the left-out commands or conditions

(Figures 4B and S4, see STAR methods – “Invariant dynamics models”).

We tested whether the dynamics model’s accuracy exceeded a dynamics model fit on

the shuffled datasets that preserved the temporal order of commands while shuffling the

neural activity issuing the commands (see STAR methods – “Behavior-preserving shuffle of

activity”). The shuffle dynamics model captured the expected predictability in neural activity

due to the predictability of commands in the performed movements.

On the level of single time points in individual trials, we found that the dynamics

model significantly exceeded shuffle dynamics in predicting the activity pattern issuing a

given command based on the previous pattern. Importantly, it generalized across left-out

commands and conditions (Figure 4C) and even when much larger subsets of commands

and conditions were left-out (Figure S4). We confirmed that the result was not driven by

neural activity simply representing behavioral variables (cursor kinematics, target location,

and condition) in addition to the command (Figure S5AB), consistent with previous work 53.

The invariant dynamics model also predicted the different average activity patterns for

each command and condition (Figure 4D–G) significantly better than shuffle dynamics. It

predicted 20–40% of the condition-specific component of neural activity (i.e. the difference

between average activity for a (command, condition) and the prediction of that activity

based on the command alone) (Figure 4F, see STAR methods – “Invariant dynamics model

predictions”). The model predicted neural activity for the vast majority of commands,

conditions, and neurons (Figure 4G), revealing that dynamics were indeed invariant.

Finally, the dynamics model preserved structure of neural activity across pairs of conditions

(Figure S6A–D) and predicted that the distance between two activity patterns issuing the

Athalye et al. Page 6

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

same command would be correlated with the distance between the corresponding command

subtrajectories (Figure S6E–I). Altogether, these results show that invariant dynamics

contribute to what activity pattern was used to issue a command, generalizing across

commands and conditions.

Invariant dynamics align with the decoder, propagating neural activity to issue the next
command

We next asked whether invariant dynamics were actually used to transition between

commands. Concretely, we used the dynamics model (Equation 4) to predict the transition

from the current activity pattern to the next pattern, and then we applied the BMI decoder

to this prediction of next pattern in order to predict the next command (i.e. its continuous

value) (Figure 5A). We used the same dynamics model fit in Figure 4, except here we

did not combine the model with given information about the command. This tests whether

invariant dynamics predict the component of neural activity in the decoder space, which

actually drives the BMI. The BMI enabled this analysis as it defines the transformation from

neural activity to command which has not been measurable during natural motor control.

We emphasize that one possibility is that invariant dynamics accompany commands without

actually driving them, i.e. without predicting the component of neural activity in the

decoder space (Figure 5B). Invariant dynamics that are low-dimensional might only occupy

dimensions that are orthogonal to the decoder, such that they only predict the component

of neural activity in the decoder null space. To assess this possibility, we fit an invariant

dynamics model on the component of neural activity in the decoder null space (“decoder-

null dynamics”, see STAR methods – “Invariant dynamics models”). While this model was

restricted to the decoder-null space, it maintained similar dimensionality and eigenvalues to

the full dynamics model (Figure S3BC).

Both the full dynamics and the decoder-null dynamics model predicted next neural activity

significantly better than shuffle dynamics (Figure 5C) on the level of single time points in

individual trials. This reveals that invariant dynamics occupied decoder-null dimensions.

Given that the full dynamics model was low-dimensional (Figure S3B) and predicted

~4 dimensions more accurately than the rest of neural activity (Figure 5D), we next

tested whether the dynamics aligned with the decoder. Critically, the full dynamics model

predicted the next command (Figure 5E) better than shuffle dynamics, while decoder-

null dynamics provided absolutely no prediction for the next command, as expected by

construction. The dynamics were invariant, as the full dynamics model generalized across

commands and conditions that were left-out from model fitting (Figure 5E) and predicted

the next command for the majority of (command, condition) tuples (Figure 5F). These

predictions preserved structure across pairs of conditions, such that invariant dynamics

indicated how similar the next command would be across pairs of conditions (Figure S6I–

K).

Notably, invariant dynamics could predict the turn that the next command would take

following a given command in a specific condition relative to the average next command

(averaged across conditions for the given current command) (Figure 5GH). Specifically,

the dynamics model predicted whether the turn would be clockwise or counter clockwise

Athalye et al. Page 7

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(Figure 5H left) and the angle of turn (Fig 5H right) better than shuffle dynamics.

Altogether, these results show that invariant dynamics align with the decoder and are used to

transition between commands.

An OFC model reveals that invariant dynamics reduce the input that a neural population
needs to issue commands based on feedback

We observe that the invariant dynamics model did not perfectly predict transitions

between commands. Throughout movement there were substantial residuals (Figure S3E–

G), consistent with ongoing movement feedback driving neural activity in addition to

invariant dynamics. However, it has been unclear how the brain can integrate feedback with

invariant dynamics to control movement. Thus, we constructed a model of optimal feedback

control (OFC) that incorporates invariant neural dynamics.

We introduce a hierarchical model in which the brain (i.e. larger motor control circuitry)

controls the neural population which controls movement of the BMI cursor (Figure 6A,

Equation 5). Population activity xt issues commands for movement and is driven by

three terms: invariant dynamics (which we hypothesize are intrinsic to some connectivity

of the neural population), input, and noise. The brain transforms ongoing cursor state

and population activity into the input to the population that is necessary to achieve

successful movement. Concretely, the brain acts as an optimal linear feedback controller

with knowledge of the neural population’s invariant dynamics, the BMI decoder, and the

condition of movement. In this formulation, the brain’s objective was to achieve the target

while using the smallest possible input to the population. This objective minimizes the

communication from the brain to the population, which we can think of as minimizing the

specific synaptic input to the neural population that would not be predicted based on the

current state of the population’s firing rates. Importantly, this incentivized the OFC model to

optimize input in order to use invariant dynamics to control movement, rather than relying

solely on input to issue commands. Consistent with this formulation, experiments show that

thalamic input into motor cortex is optimized during motor learning54.

xt + 1 = Axt + b + inputt + noiset

inputt = ft
LQR xt, cursort, condition

cursort + 1 = BMI cursort, xt

(5)

We used this model to address whether observed invariant dynamics could be used

for feedback control; future work will be needed to compare actual synaptic input to

predicted input from a feedback control model. For our question, the model needed to

produce task movements, but these movements did not need to resemble experimentally-

observed movements. We simulated the model performing center-out and obstacle-avoidance

movements with the decoders that were used in BMI experiments (see STAR methods

– “Optimal feedback control model and simulation”). In the Full Dynamics Model, the

brain computed the minimal input to a population that followed the invariant dynamics we

observed experimentally. In the No Dynamics Model, the minimal input was computed to

a neural population that had no invariant dynamics (i.e. the A matrix was set to zero). To

Athalye et al. Page 8

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

facilitate comparison, we designed the models to receive the same noise magnitude and to

produce behavior with equal success and target acquisition time (Figure 6B).

These simulations revealed that the population required significantly less input in the Full

Dynamics Model than in the No Dynamics Model (Figure 6C). This effect was erased in

the Decoder-Null Dynamics Model (Fig 6D), in which the OFC model’s invariant dynamics

were restricted to the decoder-null space. These results show that invariant dynamics that

specifically align with the decoder, as experimentally-observed, can help the brain perform

feedback control, reducing the input that the population needs to issue commands based on

feedback.

Finally, we confirmed the principle that feedback control with invariant dynamics makes use

of distinct activity patterns to issue a particular command. As in Figure 3, we compared

the OFC models’ neural activity against shuffled activity that preserved the temporal order

of commands. The population activity distances for (command, condition) tuples were

significantly larger than shuffle in the Full Dynamics Model but not in the No Dynamics

Model (Figure 6FG). Further, this effect depended on alignment between invariant dynamics

and the decoder, as we detected no difference between the Decoder-Null Dynamics Model

and shuffle (Figure 6H). Thus, the OFC model used different neural activity patterns to issue

the same command only when the invariant dynamics were useful for feedback control.

Discussion

Theoretical work shows that recurrent connectivity can give rise to neural population

dynamics for motor control1,4,5 and endow the brain with the capacity to generate diverse

physical movement3. Experimental work has found that population activity in the motor

cortex follows similar and predictable dynamics across different movements11,12,16. But it

has been untested whether dynamics that are invariant across movements are used to actually

control movement, as the transformation from neural activity to motor command has been

challenging to measure26,27 and model23–25. Here, we use a BMI to perform that test.

We discovered that different neural activity patterns are used to issue the same command

in different movements. The activity patterns issuing the same command vary systemically

depending on the past pattern, and critically, they transition according to low-dimensional,

invariant dynamics towards activity patterns that causally drive the subsequent command.

Our results’ focus on the command provides a conceptual advance beyond previous work

that characterized properties of dynamics during behavior 12,13,15,16, revealing that invariant

dynamics are actually used to control movement.

Further, it has been unclear how the brain could integrate invariant dynamics with feedback
24,35–37 to control movement. We introduce a hierarchical model44 of optimal feedback

control, in which the brain uses feedback to control a neural population that controls

movement. Optimal control theory reveals that invariant dynamics that are aligned to the

decoder can help the brain perform feedback control of movement, reducing the input that a

population needs to issue the appropriate commands. The model verified that when invariant

dynamics are used for feedback control, the same command is issued with different neural

Athalye et al. Page 9

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

activity patterns across movements. Altogether, these findings form a basis for future studies

on what connectivity and neural populations throughout the brain give rise to invariant

dynamics, whether the brain sends inputs to a neural population to take advantage of

invariant dynamics, and whether invariant dynamics actually drive muscles during physical

movement.

These results provide strong evidence against one traditional view that the brain reuses the

same neural population activity patterns to issue a particular command. This perspective is

present in classic studies that describe neurons as representing movement parameters55,56.

It is still debated what movement parameters are updated by motor cortex neurons 28,57–59,

as population activity encodes movement position 60–62, distance 63, velocity 61,62, speed
64, acceleration 65, and direction of movement 64,66–68, as well as muscle-related parameters

such as force/torque 55,68–70, muscle synergies 71,72, muscle activation 73–75, and even

activation of motor units27. Regardless of how commands from motor cortex update physical

movement, our findings using a BMI strongly suggest that the motor cortex does not use the

same neural activity pattern to issue a specific motor command. Our findings instead support

the recent proposal that neural activity in motor cortex avoids “tangling”11 while issuing

commands.

We found that invariant dynamics do not perfectly determine the neural population’s next

command. We propose that as the brain sends input to the neural population, it performs

feedback control on the state of the neural population’s invariant dynamics in order to

produce movement. This proposal expands the number of behaviors for which invariant

dynamics are useful. This is because invariant dynamics do not need to define the precise

neural trajectories12,34 that produce movement; they only need to provide useful transitions

of neural activity that inputs can harness to control movement. In our data, simple dynamics

(decaying dynamics with different time constants) in a low-dimensional activity space (~4

dimensions) were used to control many conditions of movement (~20 conditions). We find

that invariant dynamics constrain neural activity in dimensions which do not directly matter

for issuing current commands50, so that inputs in these dimensions can produce future

commands (Figure 6C). This mechanism refutes a simplistic interpretation of the minimal

intervention principle76 in which neural activity should only be controlled in the few

dimensions which directly drive commands. This also accords with the finding that motor

cortex responses to feedback are initially in the decoder null space before transitioning to

neural activity that issues corrective commands 24.

There is almost surely a limitation to the behaviors that particular invariant dynamics are

useful for. Motor cortex activity occupies orthogonal dimensions and shows a different

influence on muscle activation during walking and trained forelimb movement 26, and

follows different dynamics for reach and grasp movements 77. Notably, our finding of

decaying dynamics for BMI control contrasts with rotational dynamics observed during

natural arm movement 12,13,16,22. We speculate this could be because controlling the BMI

relied more on feedback control than a well-trained physical movement, because controlling

the BMI did not require the temporal structure of commands needed to control muscles for

movement2, and/or because controlling the BMI did not involve proprioceptive feedback

of physical movement35. Recent theoretical work shows that cortico-basal ganglia-thalamic

Athalye et al. Page 10

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

loops can switch between different cortical dynamics useful for different temporal patterns

of commands 46.

The use of invariant dynamics to issue commands has implications for how the brain learns

new behavior 78,79, enabling the brain to leverage pre-existing dynamics for initial learning
25,80,81 and to develop new dynamics through gradual reinforcement 82,83. This learning

that modifies dynamics relies on plasticity in cortico-basal ganglia circuits 83–85 and permits

the brain to reliably access a particular neural activity pattern for a given command and

movement 32, even if the same neural activity pattern is not used to issue the same command

across different movements.

Modeling invariant dynamics can inform the design of new neuroprosthetics that can

generalize commands to new behaviors 16 and classify entire movement trajectories 86.

We expect that as new behaviors are performed, distinct neural activity patterns will be used

to issue the same command, but that invariant dynamics can predict and thus recognize

these distinct neural patterns as signal for the BMI rather than noise. In addition, our results

inform the design of rehabilitative therapies to restore dynamics following brain injury or

stroke to recover movement 87,88.

Overall, this study put the output of a neural population into focus, revealing how rules

for neural dynamics are used to issue commands and produce different movements. This

was achieved by studying the brain as it controlled the very neural activity we recorded.

BMI 78,89–92, especially combined with technical advances in measuring, modeling, and

manipulating activity from defined populations, provides a powerful technique to test

emerging hypotheses about how neural circuits generate activity to control behavior.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should

be directed to and will be fulfilled by the lead contact, Vivek R. Athalye

(va237@columbia.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Monkey BMI data (binned spike counts, cursor trajectories, condition

parameters, decoder parameters, and task parameters) has been deposited in the

DANDI Archive (DOI: https://doi.org/10.48324/dandi.000404/0.230605.2024)

and is publicly available as of the date of publication.

• All original code has been deposited at Zenodo (DOI: https://doi.org/

10.5281/zenodo.8006653) and at GitHub (https://github.com/pkhanna104/

bmi_dynamics_code) and is publicly available as of the date of publication.

• Any additional information required to reanalyze the data reported in this paper

is available from the lead contact upon request.

Athalye et al. Page 11

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/pkhanna104/bmi_dynamics_code
https://github.com/pkhanna104/bmi_dynamics_code

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All training, surgery, and experimental procedures were conducted in accordance with

the NIH Guide for the Care and Use of Laboratory Animals and were approved by the

University of California, Berkeley Institutional Animal Care and Use Committee (IACUC).

Two adult male rhesus macaque monkeys (7 years old, monkey G and 10 years old, monkey

J) (Macaca mulatta, RRID: NCBITaxon:9544) were used as subjects in this study. Prior

to this study, Monkeys G and J were trained at arm reaching tasks and spike-based 2D

neuroprosthetic cursor tasks for 1.5 years. All animals were housed in pairs.

METHOD DETAILS

Electrophysiology and experimental setup—Two male rhesus macaques were

bilaterally, chronically implanted with 16 × 8 arrays of Teflon-coated tungsten microwire

electrodes (35 mm in diameter, 500 mm separation between microwires, 6.5 mm length,

Innovative Neurophysiology, Durham, NC) in the upper arm area of primary motor

cortex (M1) and posterior dorsal premotor cortex (PMd). Localization of target areas was

performed using stereotactic coordinates from a neuroanatomical atlas of the rhesus brain 93.

Implant depth was chosen to target layer 5 pyramidal tract neurons and was typically 2.5 – 3

mm, guided by stereotactic coordinates.

During behavioral sessions, neural activity was recorded, filtered, and thresholded using

the 128-channel Multichannel Acquisition Processor (Plexon, Inc., Dallas, TX) (Monkey

J) or the 256-channel Omniplex D Neural Acquisition System (Plexon, Inc.) (Monkey

G). Channel thresholds were manually set at the beginning of each session based on 1–2

min of neural activity recorded as the animal sat quietly (i.e. not performing a behavioral

task). Single-unit and multi-unit activity were sorted online after setting channel thresholds.

Decoder units were manually selected based on a combination of waveform amplitude,

variance, and stability over time.

Neuroprosthetic decoding—Subjects’ neural activity controlled a two-dimensional (2D)

neuroprosthetic cursor in real-time to perform center-out and obstacle-avoidance tasks. The

neuroprosthetic decoder consists of two models:

1. A cursor dynamics model capturing the physics of the cursor’s position and

velocity.

2. A neural observation model capturing the statistical relationship between neural

activity and the cursor.

The neuroprosthetic decoder combines the models optimally to estimate the subjects’ intent

for the cursor and to correspondingly update the cursor.

Decoder algorithm and calibration -- Monkey G: Monkey G used a velocity Kalman filter

(KF) 94,95 that uses the following models for cursor state ct and observed neural activity xt :

ct = Act − 1 + wt, wt ∼ N 0, W

Athalye et al. Page 12

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

xt = Cct + qt, qt ∼ N 0, Q

In the cursor dynamics model, the cursor state ct ∈ R5 was a 5-by-1 vector

posx, poxyvelx, vely, 1 T , A ∈ R5 × 5 captures the physics of cursor position and velocity, and wt

is additive Gaussian noise with covariance W ∈ R5 × 5 capturing cursor state variance that is

not explained by A.

In the neural observation model, neural observation xt ∈ RN was a vector corresponding to

spike counts from N units binned at 10 Hz, or 100ms bins. C models a linear relationship

between the subjects’ neural activity and intended cursor state. The decoder only modeled

the statistical relationship between neural activity and intended cursor velocity, so only the

columns corresponding to cursor state velocity and the offset (columns 3–5) in C were

non-zero. Q is additive Gaussian noise capturing variation in neural activity that is not

explained by Cct. For Monkey G, 35–151 units were used in the decoder (median 48 units).

In summary, the KF is parameterized by matrices

A ∈ R5 × 5, W ∈ R5 × 5, C ∈ RN × 5, Q ∈ RN × N . The KF equations used to update the

cursor based on observations of neural activity are defined as in 95.

The KF parameters were defined as follows. For the cursor dynamics model, the A and W
matrices were fixed as in previous studies 96. Specifically, they were:

A =

1 0 0.1 0 0
0 1 0 0.1 0
0 0 0.8 0 0
0 0 0 0.8 0
0 0 0 0 1

, W =

0 0 0 0 0
0 0 0 0 0
0 0 7 0 0
0 0 0 7 0
0 0 0 0 0

where units of cursor position were in cm and cursor velocity in cm/sec.

For the neural observation model, the C and Q matrices were initialized from neural and

cursor kinematic data collected at the beginning of each experimental session while Monkey

G observed 2D cursor movements that moved through either a center-out task or obstacle

avoidance task. Maximum likelihood methods were used to fit C and Q.

Next, Monkey G performed a “calibration block” where he performed the center-out

or obstacle-avoidance task movements as the newly initialized decoder parameters were

continuously calibrated/adapted online (“closed-loop decoder adaptation”, or CLDA). This

calibration block was performed in order to arrive at parameters that would enable excellent

neuroprosthetic performance. Every 100ms, decoder matrices C and Q were adapted using

the recursive maximum likelihood CLDA algorithm 49. Half-life values, defining how

quickly C and Q could adapt, were typically 300 sec, and adaptation blocks were performed

with a weak, linearly decreasing “assist” (re-defining ct as a weighted linear combination

of user-generated ct and optimal ct to drive the cursor to the target). Typical assist values

Athalye et al. Page 13

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

at the start of the block were 90% user-generated, 10% optimal and decayed to 100% user-

generated, 0% optimal over the course of the block. Following CLDA, decoder parameters

were fixed. Then the experiment proceeded with Monkey G performing the center-out and

obstacle-avoidance tasks.

Decoder algorithm and calibration -- Monkey J: Monkey J used a velocity Point Process

Filter (PPF) 47,48. The PPF uses the same cursor dynamics model for cursor state ct as the KF

above, but uses a different neural observations model (a Point Process model rather than a

Gaussian model) for the spiking St
1:N of each of N neurons:

ct = Act − 1 + wt, wt ∼ N(0, W)

p St
1:N ∣ vt =

j = 1

N
λj t ∣ vt, ϕj Δ st

j
exp −λj t ∣ vt, ϕj Δ

In the neural observations model, neural observation St
j is the jth neuron’s spiking activity,

equal to 1 or 0 depending on whether the jth neuron spikes in the interval t, t + Δ . We

used Δt = 5ms bins since consecutive spikes rarely occurred within 5ms of each other. For

Monkey J, 20 or 21 units were used in the decoder (median 20 units). The probability

distribution over spiking p St
1:N ∣ vt was a point process with λj t ∣ vt, ϕj as the jth neuron’s

instantaneous firing rate at time t . λj t ∣ vt, ϕj depended on the intended cursor velocity

vt ∈ R2 in the two dimensional workspace and the parameters ϕj for how neuron j encodes

velocity. λj t ∣ vt, ϕj was modeled as a log-linear function of velocity:

λj t ∣ vt, ϕj = exp(βj + αj
Tvt)

where ϕj parameters consist of αj ∈ R2, βj ∈ R1.

In summary, the PPF is parameterized by A ∈ R5 × 5, W ∈ R5 × 5, ϕ1:N . The PPF equations

used to update the cursor based on observations of neural activity are defined as in 48.

The PPF parameters were defined as follows. For the cursor dynamics model, the A and W
matrices are defined as:

A =

1 0 0.005 0 0
0 1 0 0.005 0
0 0 0.989 0 0
0 0 0 0.989 0
0 0 0 0 1

, W =

0 0 0 0 0
0 0 0 0 0

0 0 3.7 × 10−5 0 0

0 0 0 3.7 × 10−5 0
0 0 0 0 0

where units of cursor position were in m and cursor velocity in m/sec.

For the neural observations model, parameters ϕ1:N were initialized from neural and cursor

kinematic data collected at the beginning of each experimental session while Monkey J

Athalye et al. Page 14

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

observed 2D cursor movements that moved through a center-out task. Decoder parameters

were adapted using CLDA and optimal feedback control intention estimation as outlined in
47. Following CLDA, decoder parameters were fixed. Then the experiment proceeded with

Monkey J performing the center-out and obstacle-avoidance tasks.

Definition of the command for the BMI—We defined the “command” for the BMI

as the direct influence of subjects’ neural activity xt (binned at 100ms) on the cursor.

Concretely, in both decoders, the command was a linear transformation of neural activity

that we write as Kxt which updated the cursor velocity.

Command definition -- Monkey G: For Monkey G, the update to the cursor state ct due to

cursor dynamics and neural observation xt can be written as:

ct = F tct − 1 + Ktxt

where F tct − 1 is the update in cursor state due to the cursor dynamics process and Ktxt

is what we have defined as the command: the update in cursor state due to the current

neural observation. Kt ∈ R5 × n is the Kalman Gain matrix and F t = I − KtC A. In practice Kt

converges to its steady-state form K within a matter of seconds 97, and thus F t converges to

F = I − KC A, so we can write the above expression in its steady state form:

ct = Fct − 1 + Kxt

In our implementation, the structure of K is such that neural activity xt directly updates

cursor velocity, and velocity integrates to update position. The following technical note

explains the structure of K. Due to the form of the A, W matrices, Rank K = 2. In addition,

decoder adaptation imposed the constraint that the intermediate matrix CTQ−1C was of the

form aI, where a = mean diag CTQ−1C . Due to this constraint, the rows of K that update

the position of the cursor are equal to the rows of K that update the velocity multiplied by

the update timestep: K 1: 2, : = K 3: 4, : * dt 98 (see independent velocity control in the

reference). Given this structure of K, neural activity’s contribution to cursor position is the

simple integration of neural activity’s contribution to velocity over one timestep.

In summary, since Kxt reflects the direct effect of the motor cortex units on the velocity

of the cursor, we term the velocity components of Kxt the “command”. We analyzed the

neural spike counts binned at 100ms that were used online to drive cursor movements with

no additional pre-processing.

Command definition -- Monkey J: For Monkey J the cursor state updates in time as:

ct = ft ct − 1 + Ktxt

where

Athalye et al. Page 15

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ft ct − 1 = Act − 1 − KteCAct − 1Δ , Kt = P tC

Here ft ct − 1 is the cursor dynamics process and Ktxt is the neural command. P t ∈ R5 × 5 is

the estimate of cursor state covariance, and C ∈ R5 × N captures how neural activity encodes

velocity as a matrix where each column is composed of 0, 0, αj
xvel, αj

yvel, βj
T for the jth unit.

We define the command for analysis in this study as Kestxt, where Kest is a time-invariant

matrix that almost perfectly approximates Kt. While the PPF’s Kt does not necessarily

converge in the same way it does in the KF, for all four analyzed sessions, neural activity

mapped through Kest ∈ R2 × N could account for 99.6, 99.6, 99.5, and 99.8 percent of the

variance of the command respectively Ktxt ≅ Kestxt . In addition, due to the accuracy of this

linear approximation, we also match Monkey J’s timescale of neural activity and commands

to that of Monkey G. In order to match timescales across the two animals (Monkey G: 100

ms updates, Monkey J: 5ms updates), Monkey J’s commands were aggregated into 100 ms

bins by summing Kestxt over 20 consecutive 5ms bins to yield the aggregated command over

100ms. Correspondingly, Monkey J’s neural activity was also summed into 100ms bins by

summing xt over 20 consecutive 5ms bins.

Neuroprosthetic tasks—Subjects performed movements in a two-dimensional

workspace (Monkey J: 24cm × 24cm, Monkey G: 50cm × 28cm) for two neuroprosthetic

tasks: a center-out task and an obstacle-avoidance task. We define the movement “condition”

as the task performed (“co” = center-out task, “cw” / “ccw” = clockwise/counterclockwise

movement around the obstacle in the obstacle-avoidance task) and the target achieved

(numbered 0 through 7). Thus, there were up to 24 different conditions possible (8 center-

out conditions, 8 clockwise obstacle-avoidance conditions, 8 counterclockwise obstacle-

avoidance conditions). In practice, subjects mostly circumvented the obstacles for a given

target location consistently in a clockwise or counterclockwise manner (as illustrated in

Figure 1C right) resulting in an average of 16–17 conditions per session.

Center-out task: The center-out task required subjects to hold their cursor within a center

target (Monkey J: radius = 1.2 cm, Monkey G: radius = 1.7 cm) for a specified period of

time (Monkey J: hold = 0.25 sec, Monkey G: hold = 0.2 sec) before a go cue signaled the

subjects to move their cursor to one of eight peripheral targets uniformly spaced around

a circle. Each target was equidistant from the center starting target (Monkey J: distance =

6.5cm, Monkey G: distance = 10cm). Subjects then had to position their cursor within the

peripheral target (Monkey J: target radius = 1.2cm, Monkey G: target radius = 1.7cm) for

a specified period to time (Monkey J: hold = 0.25, Monkey G: hold = 0.2sec). Failure to

acquire the target within a specified window (Monkey J: 3–10 sec, Monkey G: 10 sec) or

to hold the cursor within the target for the duration of the hold period resulted in an error.

Following successful completion of a target, a juice reward was delivered. Monkey J was

required to move his cursor back to the center target to initiate a new trial, and Monkey G’s

cursor was automatically reset to the center target to initiate a new trial.

Athalye et al. Page 16

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Obstacle-avoidance task: Monkey G performed an obstacle-avoidance task with a very

similar structure to the center-out task. The only difference was that a square obstacle (side

length 2 or 3 cm) would appear in the workspace centered exactly in the middle of the

straight line connecting the center target position and peripheral target position. If the cursor

entered the obstacle, the trial would end in an error, and the trial was repeated.

Monkey J’s obstacle-avoidance task required a point-to-point movement between an initial

(not necessarily center) target and another target. On arrival at the initial target, an ellipsoid

obstacle appeared on the screen. If the cursor entered the obstacle at any time during the

movement to the peripheral target, an error resulted, and the trial was repeated. Target

positions and obstacle sizes and positions were selected to vary the amount of obstruction,

radius of curvature around the obstacles, and spatial locations of targets. Trials were

constructed to include the following conditions: no obstruction, partial obstruction with

low-curvature, full obstruction with a long distance between targets, and full obstruction

with a short distance between targets thus requiring a high curvature. See 48 for further

details. In this study, only trials that included partial obstruction or full obstruction were

analyzed as “obstacle-avoidance” trials.

Number of sessions: We analyzed 9 sessions of data from Monkey G and 4 sessions of

data from Monkey J where on each session, monkeys performed both the center-out and

obstacle-avoidance tasks with the same decoder. Only successful trials were analyzed.

Optimal feedback control model and simulation—We introduce a model based on

optimal feedback control (OFC) for how the brain can use invariant neural population

dynamics to control movement based on feedback. From the perspective of the brain trying

to control the BMI, we used the model to ask how invariant neural population dynamics

affect the brain’s control of movement.

Thus, we performed and analyzed simulations of a model in which the brain acts as an

optimal linear feedback controller (finite horizon linear quadratic regulator), sending inputs

to a neural population so that it performs the center-out and obstacle-avoidance tasks (Figure

6). The feedback controller computed optimal inputs to the neural population based on

the current cursor state and current neural population activity. Specifically, the inputs were

computed as the solution of an optimization problem that used knowledge of the target and

task, decoder, and the neural population’s invariant dynamics. We simulated 20 trials for

each of 24 conditions: 8 center-out conditions, 8 clockwise obstacle-avoidance conditions,

and 8 counterclockwise obstacle-avoidance conditions. The neural and cursor dynamics

processes in the simulation are summarized below:

Neural population dynamics with input: In our simulation, the neural activity of N
neurons xt ∈ RN is driven by invariant dynamics A ∈ RN × N that act on previous activity

xt − 1, an activity offset b ∈ RN, inputs from the feedback controller ut − 1 ∈ RN that are

transformed by input matrix B ∈ RN × N, and noise σt − 1 ∈ RN:

xt = Axt − 1 + b + But − 1 + σt − 1

Athalye et al. Page 17

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

The input matrix B was set to be the identity matrix such that each neuron has its own

independent input. Each neuron also had its own independent, time-invariant noise (see

Noise section below for how the noise level was set).

For notational convenience, an offset term was appended to xt:
xt

1 ∈ RN + 1. This enabled

incorporating the offset b into the neural dynamics matrix:

xt

1
= A b

0 1
xt − 1

1
+ B

0 ut − 1 +
σt − 1

0

BMI cursor dynamics: The cursor update equations for the simulation matched the steady

state cursor update equations in the online BMI experiment (see “Definition of the command

for the BMI” above):

ct = Fct − 1 + Kxt − 1

As in the experiment, cursor state ct ∈ RNc where Nc = 5 was a vector consisting of two-

dimensional position, velocity, and an offset: posx, poxyvelx, vely, 1 T . K ∈ RNc × N was the

decoder’s steady-state Kalman gain (Monkey G) or estimated equivalent Kest (Monkey

J). F ∈ RNc × Nc was set to the decoder’s steady-state cursor dynamics matrix (Monkey

G). For Monkey J, F was estimated using the expression for calculating the steady-state

cursor dynamics matrix: Fest = I − KestCest * A100ms, where I ∈ RNc × Nc, Cest ∈ RN × Nc was

set using the α, β velocity encoding parameters from the point process filter (see above):

Cest j, : = 0 0 0.01 * αj 1 0.01 * αj 2 0.01 * βj . Values in Cest were multiplied by 0.01 to

adjust for velocities expressed in units of cm/sec (in the simulation) instead of m/sec (as in

PPF). A100ms was set to the same A used by Monkey G so that the cursor dynamics would be

appropriate for 100ms timesteps:

A100ms =

1 0 0.1 0 0
0 1 0 0.1 0
0 0 0.8 0 0
0 0 0 0.8 0
0 0 0 0 1

Joint dynamics of neural activity and cursor: The feedback controller sent inputs to the

neural population which were optimal considering the task goal, the cursor’s current state,

the neural population’s invariant dynamics, and the neural population’s current activity. To

solve for the optimal input given all the listed quantities, first, the neural and cursor states

are jointly defined. We append the cursor state ct to the neural activity state
xt

1 to form

zt ∈ RN + 1 + Nc:

Athalye et al. Page 18

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

zt =
xt

1
ct

=
A b 0
0 1 0
K 0 F

xt − 1

1
ct − 1

+
B
0
0

ut − 1 +
σt − 1

0
0

In words, this expression defines a linear dynamical system where input ut − 1 influences only

the neural activity xt, xt evolves by invariant dynamics A with offset vector b, and xt drives

cursor ct through the BMI decoder K. Finally, noise σt − 1 only influences neural activity xt

(see Noise section below for how the noise level was set).

OFC to reach a target: Our OFC model computes input ut to the neural population such

that the activity of the neural population xt drives the cursor to achieve the desired final

cursor state (i.e. the target) with minimal magnitude of input ut. Concretely, in the finite

horizon LQR model, the optimal control sequence ut, t = 0, 1, …T − 1 is computed by

minimizing the following cost function:

J u0:T − 1 = (
t = 0

T − 1
((zt − ztarg)TQ zt − ztarg + ut

TRut)) + zT − ztarg
TQT zT − ztarg

In our model, Q = 0 ∈ R N + 1 + Nc × N + 1 + Nc , R = I ∈ RN × N, and

QT =
0 ∈ RN × N 0 0

0 0 ∈ R1 0
0 0 I * 102 ∈ RNc × NC

∈ R N + 1 + Nc × N + 1 + Nc . Thus, the final

cursor state error is penalized, and the magnitude of the input to the neural population ut is

penalized (with setting R as non-zero). Because the magnitude of the input to neural activity

is penalized, the controller sends the minimal input to the neural population to produce task

behavior. We defined our cost function so that the cursor state during movement before the

final cursor state is not penalized, and the neural state is never penalized.

The optimal control sequence ut, t = 0, 1, …T − 1 is given by ut = Kt
lqr zt − ztarg where

feedback gain matrices (Kt
lqr, t = 0, 1, …T − 1) are computed iteratively solving the dynamic

Ricatti equation backwards in time. We note that we computed the LQR solution for ut using

the dynamics of state error zt − ztarg, and that the dynamics of state error for non-zero target

states are affine rather than strictly linear.

OFC for center-out task: Center-out task simulations were run with the initial cursor

position in the center of the workspace at c0 = 0, 0, 0, 0, 1 and the target cursor state at

targetx, targety, velx = 0, vely = 0, 1 T . Targets were positioned 10cm away from the origin

(same target arrangement as Monkey G). Target cursor velocity was set to zero to enforce

that the cursor should stop at the desired target location.

Exact decoder parameters from Monkey G and linearized decoder parameters from Monkey

J were used F , K in simulations. The invariant neural dynamics model parameters A, b
were varied depending on the simulated experiment (see below). The horizon for each trial

Athalye et al. Page 19

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to hit its target state was set to be T = 40 (corresponding to 4 seconds based on the BMI’s

timebin of 100ms). Constraining each trial to be equal length facilitated comparison of

performance across different simulation experiments. We verified that all of our simulated

trials completed their tasks successfully.

OFC for obstacle-avoidance using a heuristic: Obstacle-avoidance task simulations were

performed with the same initial and target cursor states as the center-out task, except that the

cursor circumvented the obstacle to reach the target in both clockwise and counterclockwise

movements. We used a heuristic strategy to direct cursor movements around the obstacle; we

defined a waypoint as an intermediate state the cursor had to reach enroute to the final target.

The heuristic solution performs optimal control from the start position to the waypoint,

and then optimal control from the waypoint to the final target. Importantly, this solution

minimizes the amount of input needed to accomplish these goals. We used a heuristic

solution because the linear control problem of going from the initial cursor state to the final

target cursor state with the constraint of avoiding an obstacle is not a convex optimization

problem.

Concretely, for the first segment of the movement, a controller with a horizon T=20 directed

the cursor to the waypoint, and then a controller with horizon T=20 directed the cursor from

the waypoint to the final target (such that the trial length was matched to the center-out task

simulation with T=40).

The waypoint was defined relative to the obstacle position as follows. First the vector

between the center target and the obstacle position was determined vobs, center . The vobs, center

was then rotated either +90 degrees or −90 degrees corresponding to clockwise and

counterclockwise movements. The waypoint position was a 6cm distance in the direction

of the rotated vector, from the obstacle center. Finally, the desired velocity vector of the

intermediate target was set to be in the direction of vobs, center, with a magnitude of 10 cm/s, so

that the cursor would be moving in a direction consistent with reaching its final target in the

second segment of the movement after the waypoint was reached.

To compute the input ut to execute these movements, we defined the state error at each time t
as zerror = ztarg − zt, where ztarg was the waypoint for the first half of the movement, and ztarg was

the final target for the second half of the movement. The linear quadratic regulator feedback

gain Kt
lqr matrices were computed on the appropriate state error dynamics with the shortened

horizon T = 20.

“Full Dynamics Model” Simulation: Simulations of the “Full Dynamics Model” consisted

of OFC with the invariant dynamics parameters A, b that were fit on experimentally-

recorded neural activity from each subject and session (see “Invariant dynamics models”

below, under “Quantification and Statistical Analysis”). Kt
lqr was computed using these

experimentally-observed A, b parameters. The initial state of neural activity (i.e. xt at t = 0)

was set to the fixed point of the dynamics.

“No Dynamics Model” Simulation: Simulations of the “No Dynamics Model” consisted of

OFC with invariant dynamics parameter A set to zero A = 0 . The experimentally-observed

Athalye et al. Page 20

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

offset b was still used from each subject and session. Kt
lqr was computed using A = 0 and the

experimentally-observed b, and thus it was different than in the “Full Dynamics Model.” The

initial state of neural activity (i.e. xt at t = 0) was set to offset b, the fixed point of dynamics

with A = 0.

“Decoder-null Dynamics Model” Simulation: Simulations of the “Decoder-null Dynamics

Model” consisted of OFC with the experimentally-observed invariant dynamics parameters

A, b that were restricted to the decoder-null space, i.e. each invariant dynamics model

was fit only on the projection of neural activity into the decoder-null space (see “Invariant

dynamics models” under “Quantification and Statistical Analysis”). Kt
lqr was computed using

these experimentally-observed decoder-null A, b parameters, and thus it was different than

in the “Full Dynamics Model.” The initial state of neural activity (i.e. xt at t = 0) was set to

the fixed point of the decoder-null invariant dynamics.

The “Decoder-null Dynamics Model” was compared to its own “No Dynamics Model”,

which consisted of OFC with Kt
lqr computed using A = 0 and the experimentally-observed

decoder-null offset b for each subject and session, and thus it was different than in the

previously defined models. The initial state of neural activity (i.e. xt at t = 0) was set to the

decoder-null offset b, the fixed point of dynamics with A = 0.

Noise: In our OFC model, movement errors arise due to noise in the neural activity, and

subsequent neural activity issues commands based on feedback to correct these errors. We

used two considerations to choose the noise level for neural activity. First, we sought to

add a level of neural noise that was comparable to the neural “signal” needed to perform

control in the absence of noise. Second, we wanted to add the same level of noise to the

dynamics model (either “Full Dynamics Model” or “Decoder-null Dynamics Model”) and

the corresponding “No Dynamics Model,” in order to facilitate comparison.

Thus, we first simulated the “No Dynamics Model” without noise for a single trial for each

of 24 conditions, and we calculated a, the average variance of a neuron across time and

trials.

Then for our noisy simulations of the “No Dynamics Model” and the corresponding

dynamics models, Gaussian noise with zero mean and fixed variance a was added to each

neuron at each timestep: xt = Axt − 1 + But − 1 + σt − 1, where σt ∼ N 0, aI . Thus, the overall level

of added noise (the sum of noise variance over neurons) matched the overall level of signal

in the noiseless No Dynamics Model simulation (sum of activity variance over neurons).

We note that our main findings (Figure 6CD, 6GH) held even with different noise levels.

QUANTIFICATION AND STATISTICAL ANALYSIS

Command discretization for analysis—We sought to analyze the occurrence of the

same command across different movements. Commands on individual time points were

analyzed as the same command if they fell within the same discretized bin of continuous-

valued, two-dimensional command space. All commands from rewarded trials in a given

Athalye et al. Page 21

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

experimental session (including both tasks) were aggregated and discretized into 32 bins.

Individual commands were assigned to one of 8 angular bins (bin edges were 22.5, 67.5,

112.5, 157.5, 202.5, 247.5, 292.5, and 337.5 degrees) and one of four magnitude bins.

Angular bins were selected such that the straight line from the center to each of the center-

out targets bisected each of the angular bins as has been done in previous work50 (Figure

S1A). Magnitude bin edges were selected as the 23.75th, 47.5th, 71.25th, and 95th percentile

of the distribution of command magnitudes for that experimental session. Commands falling

between the 95th and 100th percentile of magnitude were not analyzed to prevent very

infrequent noisy observations from skewing the bin edges for command magnitude.

Conditions that used a command regularly: For each session, the number of times each

of the 32 (discretized) commands was used in a given condition was tabulated. If the

command was used >= 15 times for that condition within a given session pooling across

trials, that condition was counted as using the command regularly and was used in all

analyses involving (command, condition) tuples. Commands that were used < 15 times were

not used in analysis involving (command, condition) tuples. We note that the main results of

the study were not affected by this particular selection. Typically, an individual command is

used regularly in 5–10 conditions (distribution shown in Figure S1A).

Cursor and command trajectory visualization

Cursor position subtrajectories: To visualize the cursor position trajectories locally around

the occurrence of a given command for each condition, we computed the average position

“subtrajectory,” which we define as the average trajectory in a window locked to the

occurrence of the given command. For each condition, cursor positions from successful

trials were aggregated. Cursor position subtrajectories shown in Figure 1F are from

representative session 0 from Monkey G. A matrix of x-axis and y-axis position trajectories

was formed by extracting a window of −500ms to 500ms (5 previous samples plus 5

proceeding samples) around each occurrence of the given command in a given condition

(total of Ncom-cond occurrences, yielding a 2 × 11 × Ncom-cond matrix). Averaging over

the Ncom-cond observations yielded a condition-specific command-locked average position

subtrajectory (size: 2 × 11) for each condition. If a command fell in the first 500ms or

last 500ms of a trial, its occurrence was not included in the subtrajectory calculation. The

position subtrajectories were translated such that the occurrence of the given command was

set to (0, 0) in the 2D workspace (Figure 1F right, Figure S1C middle).

Command subtrajectories: To visualize trajectories of commands around the occurrence of

a given command for each condition (Figure 1G, right), we followed the same procedure as

described above for cursor position subtrajectories to tabulate a 2 × 11 × Ncom-cond matrix

but with x-axis and y-axis commands instead of positions. We note that this matrix consisted

of the continuous, two-dimensional velocity values of the commands. Averaging over the

Ncom-cond observations yielded the average condition-specific command subtrajectory (size:

2 × 11 array), as shown in Figure 1F left for example conditions.

Matching the condition-pooled distribution—In many analyses, data (e.g. neural

activity or a command-locked cursor trajectory) associated with a command and a specific

Athalye et al. Page 22

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

condition is compared to data that pools across conditions for that same command

(Figs. 3–5). The distribution of the precise continuous value of the command within

the command’s bin may systematically differ between condition-specific and condition-

pooled datasets, which we refer to as ‘within-command-bin differences.’ To ensure within-

command-bin differences are not the source of significant differences between condition-

specific and condition-pooled data associated with a command, we developed a procedure

to subselect observations of condition-pooled commands so that the mean of the condition-

pooled command distribution is matched to the mean of the condition-specific command

distribution. This procedure ensures that any differences between the condition-specific

quantity and condition-pooled quantity are not due to ‘within-command-bin differences’.

This procedure is performed on all analyses comparing condition-specific data to a

condition-pooled distribution of data. The matching procedure is as follows:

1. From the condition-specific distribution, compute the command mean μcom − cond

(size: 2×1) and standard deviation σcom − cond (size: 2×1).

2. Compute the deviation of each continuous-valued command observation in the

condition-pooled distribution from the condition-specific distribution.

a. Use the condition-specific distribution’s parameters to z-score

the condition-pooled distribution’s continuous-valued command

observations by subtracting μcom − cond and dividing by σcom − cond.

b. Compute the deviation of condition-pooled observations from the

condition-specific distribution as the L2-norm of the z-scored value

c. For indices in the condition-pooled distribution that correspond to data

in the condition-specific distribution, over-write the L2-norm of the

z-scored values with zeros. This step prevents the condition-pooled

distribution from dropping datapoints that are in the condition-specific

data, thereby ensuring the condition-pooled distribution contains the

condition-specific data.

3. Remove the 5% of condition-pooled observations with the largest deviations

4. Use a Student’s t-test to assess if the remaining observations in the condition-

pooled distribution are significantly different than the condition-specific

distribution for the first and second dimension of the command (two p-values)

5. If both p-values are > 0.05, then the procedure is complete and the remaining

observations in the condition-pooled distribution are considered the “command-

matched condition-pooled distribution” for a specific command and condition.

6. If either or both p-values are < 0.05, return to step 3 and repeat.

If the condition-pooled distribution cannot be matched to the condition-specific distribution

such that the size of the condition-pooled distribution is larger than the condition-specific

distribution, the particular (command, condition) will not be included in the analysis.

Comparing command subtrajectories—To assess whether a command is used within

significantly different command subtrajectories in different conditions (Figure S1DE), the

Athalye et al. Page 23

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

following analysis is performed for conditions that have sufficient occurrences of the

command (>=15):

1. The condition-specific average command subtrajectory is computed by averaging

over Ncom-cond single-trial command subtrajectories for the condition, as defined

above in “Visualization of command subtrajectories”.

2. The condition-pooled average command subtrajectory is computed: all the

single-trial command subtrajectories (Ncom) are pooled across trials from all

conditions that use the given command regularly (command occurs >= 15 times

in a session) to create a condition-pooled distribution of single-trial command

subtrajectories (a 2 × 11 × Ncom matrix), which is then averaged to yield the

condition-pooled average command subtrajectory (a 2 × 11 matrix).

3. In order to test whether condition-specific average command subtrajectories were

significantly different from the condition-pooled average command subtrajectory,

a distribution of subtrajectories was created by subsampling the condition-pooled

distribution to assess expected variation in subtrajectories due to limited data.

Specifically, Ncom-cond single-trial command subtrajectories were sampled from

a condition-pooled distribution of command subtrajectories that was command-

matched to the specific condition (see above, “Matching the condition-pooled

distribution”). These Ncom-cond samples were then averaged to create a single

subtrajectory, representing a plausible condition-specific average subtrajectory

under the view that the condition-specific subtrajectories are just subsamples

of the condition-pooled subtrajectories. This procedure was repeated 1000

times and used to construct a bootstrapped distribution of 1000 command

subtrajectories.

4. This distribution was then used to test whether condition-specific subtrajectories

deviated from the condition-pooled subtrajectory more than would be expected

by subsampling and averaging the condition-pooled subtrajectory distribution.

Specifically, the true condition-specific command subtrajectory distance from

the condition-pooled command subtrajectory was computed (L2-norm between

condition-specific 2×11 subtrajectory and condition-pooled 2×11 subtrajectory)

and compared to the bootstrapped distribution of distances: (L2-norm between

each of the 1000 subsampled averaged 2×11 command subtrajectories and the

condition-pooled 2×11 command subtrajectory). A p-value for each condition-

specific command subtrajectory distance was then derived.

The same analysis is also performed using only the next command following a given

command (Figure S1E).

Behavior-preserving shuffle of activity—We shuffled neural activity in a manner that

preserved behavior as a control for comparison against the hypothesis that neural activity

follows invariant dynamics beyond the structure of behavior. Shuffled datasets preserved

the timeseries of discretized commands but shuffled the neural activity that issues these

commands. In order to create a shuffle for each animal on each session, all timebins from

all trials from all conditions were collated. The continuous-valued command at each timebin

Athalye et al. Page 24

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

was labeled with its discretized command bin. For each of the 32 discretized command

bins, all timebins corresponding to a particular discretized command bin were identified.

The neural activity in these identified timebins was then randomly permuted. A complete

shuffled dataset was constructed by performing this random permutation for all discretized

command bins. This full procedure was repeated 1000 times to yield 1000 shuffled datasets.

Analysis of activity issuing a given command

Condition-specific neural activity distances: For each session, (command, condition)

tuples with >= 15 observations were analyzed. For each of these (command, condition)

tuples, we analyzed the distance between condition-specific average activity and condition-

pooled average activity, both for individual neurons and for the population’s activity vector

(Figure 3B–E). Analysis of individual neurons for a given (command, condition) tuple, given

N neurons:

1. Compute the condition-specific average neural activity μcom − cond ∈ RN as the

average neural activity over all observations of the command in the condition.

2. Compute the condition-pooled average activity μcom − pool ∈ RN as the average

neural activity over observations of the command pooling across conditions.

The command-matching procedure is used to form the condition-pooled dataset

to account for within-command-bin differences (see “Matching the condition-

pooled distribution” above).

3. Compute the absolute value of the difference between the condition-specific and

condition-pooled averages: dμcom − cond = abs μcom − cond − μcom − pool ∈ RN.

4. Repeat steps 1–3 for each shuffled dataset i, yielding dμsℎuff − i − com − cond for

i = 1:1000.

5. For each neuron j, compare dμcom − cond j to the distribution of μsℎuff − i − com − cond j for

i = 1:1000. Distances greater than the 95th percentile of the shuffled distribution

are deemed to have significantly different neuron j activity for a command-

condition. Analysis of population activity for a given (command, condition)

tuple:

To compute population distances, one extra step was performed. We sought to ensure

that the distances we calculated were not trivially due to “within-bin differences” between

the condition-specific and condition-pooled distributions. The first step to ensure this was

described above in “Matching the condition-pooled distribution”. The second step was to

only compute distances in the dimensions of neural activity that are null to the decoder and

do not affect the composition of the command. Thus, any subtle remaining differences in the

distribution of commands would not influence population distances.

To compute distances in the dimensions of neural activity null to the decoder, we

computed an orthonormal basis of the null space of decoder matrix K ∈ R2 × N using

scipy.linalg.null_space, yielding V null ∈ RN × N − 2. The columns of V correspond to

basis vectors spanning the N − 2 dimensional null space. Using V null we computed:

Athalye et al. Page 25

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

μcom − cond − null = V null′ * μcom − cond and μcom − pool − null = V null′ * μcom − pool. We then calculated the

population distance metric (L2-norm), normalized by the square-root of the number of

neurons: dμpop − com − cond = / N2 , dμpop − com − cond ∈ R1. In step 5, the single value dμpop − com − cond is

compared to the distribution of dμsℎuff − i − pop − com − cond for i = 1:1000 to derive a p-value for each

(command, condition) tuple. The fraction of (command, condition) tuples with population

activity distances greater than the 95th percentile of the shuffle data (i.e. significant) is

reported in Figure 3E.

For visualization of distances relative to the shuffle distribution (Figure 3B–D), we divided

the observed population distance for each (command, condition) tuple by the mean of the

corresponding shuffle distribution. With this normalization, we can visualize the spread of

the shuffle distribution (Figure 3B, right) and we can interpret a normalized distance of 1 as

the expected distance according to the shuffle distribution.

Activity distances pooling over conditions: To test whether condition-specific neural

activity for a given command significantly deviated from condition-pooled neural activity

for the given command (Figure 3E, middle), we aggregated the distance between condition-

specific and condition-pooled average activity over all Ncond conditions in which the

command was used (>= 15 occurrences of the command in a condition). An aggregate

command distance is computed: dμpop − com = 1
Ncond ∑j = 1

Ncond dμpop − com − j, and an aggregate shuffle

distribution is computed: dμsℎuff − i − pop − com = 1
Ncond ∑j = 1

Ncond dμsℎuff − i − pop − com − j. Then, dμpop − com is

compared to the distribution of dμsℎuff − i − pop − com for i = 1:1000 to derive a p-value for each

command. The fraction of commands with significant population activity distances is

reported in Figure 3E, middle.

Single neuron distances: To test whether an individual neuron’s condition-specific activity

deviated from condition-pooled activity (Figure 3E right), we aggregated the distances

between condition-specific and condition-pooled average activity over the C (command,

condition) tuples with at least 15 observations. The aggregated distance for neuron n was

computed: dμ(n) = 1
c ∑c = 1

C dμc(n) where dμc(n) is the condition-specific absolute difference

for the nth neuron and cth (command, condition) tuple. Then dμ(n) was compared to the

distribution of the aggregated shuffle: dμsℎuff − i n = 1
c ∑c = 1

C dμsℎuff − i − c(n) for i = 1:1000 to

derive a p-value for each neuron. The fraction of neurons with significant activity distances

(p-value<0.05) is reported in Figure 3E right.

Neural activity distances summary: Single neuron activity distances reported in

Figure S2B (left) are for all (command, condition, neuron) tuples that had at

least 15 observations. We report distances as a z-score of shuffle distribution:

zcom − cond(n) = dμcom − cond(n) − mean dμsℎuff − i, (n) i = 1:1000
std dμsℎuff − i(n), i = 1:1000 .

Single neuron activity distances reported in (Figure S2B center, right) are for (command,

condition, neuron) tuples that significantly deviated from shuffle. We report raw distances

Athalye et al. Page 26

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

in neuron activity as dμcom − cond(n) (Figure S2B, center), and fraction distances as
dμcom − cond(n)
μcom − pool(n)

(Figure S2B, right).

Population activity distances reported in Figure 3BCD and Figure S2C left are for all

(command, condition) tuples. We report distances in population activity as a fraction of

shuffle mean: dμpop − com − cond/mean(dμsℎuff − i, i = 1:1000) (Figure 3BCD), and as a z-score of

shuffle distribution: zpop − com − cond = μpop − com − cond − mean dμsℎuff − i, i = 1:1000
std dμsℎuff − i, i = 1:1000 (Figure S2C left).

Population activity distances reported in Figure S2C (center, right) are for (command,

condition) tuples that significantly deviated from shuffle. We report distances in population

activity as a fraction of shuffle mean dμpop − com − cond/mean dμsℎuff − i, i = 1:1000 (Figure S2C,

center) and fraction of condition-pooled activity as dμpop − out − cond
∥ μcom − pool ∥2

 (Figure S2C, right).

Invariant dynamics models—In order to test whether invariant dynamics predicts the

different neural activity patterns issuing the same command for different conditions, a linear

model was fit for each experimental session on training data of neural activity from all

conditions and assessed on held-out test data. Neural activity at time t, xt, was modeled as a

linear function of xt − 1:

xt = Axt − 1 + b

Here A ∈ RN × N modeled invariant dynamics and b ∈ RN was an offset vector that allowed

the model to identify non-zero fixed points of neural dynamics. Ridge regression was used to

estimate the A and b parameters. Prior to any training or testing, data was collated such that

all neural activity in bins from t = 2:Ttrl in all rewarded trials were paired with neural activity

from t = 1: Ttrl − 1 , where Ttrl is the number of time samples in a trial.

Estimation of Ridge Parameter: For each experimental session, data collated

from all conditions was randomly split into 5 sections, and a Ridge model

(sklearn.linear_model.Ridge) with a ridge parameter varying from 2.5×10−5 to 106 was

trained using 4 of the 5 sections and tested on the remaining test section. Test sections

were rotated, yielding five estimates of the coefficient of determination (R2) for each ridge

parameter. The ridge parameter yielding the highest cross-validated mean R2 was selected

for each experimental session. Ridge regression was used primarily due to a subset of

sessions with a very high number of units (148 and 151 units), thus a high number of

parameters needed to be estimated for the A matrix. Without regularization, these parameters

tended to extreme values, and the model generalized poorly.

Invariant dynamics model: fitting and testing: Once a ridge parameter for a given

experimental session was identified, A, b were again trained using 4/5 of the data. The

remaining test data was predicted using the fit A, b. This procedure was repeated, rotating

the training and testing data such that after five iterations, all data points in the experimental

session had been in the test data section for one iteration of model-fitting. The predictions

Athalye et al. Page 27

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

made on the held-out test data were collated together into a full dataset. Predictions were

then analyzed in subsequent analyses.

Generalization of invariant dynamics: We assessed how well invariant dynamics

generalized when certain categories of neural activity were not included in the training data.

Invariant dynamics models were estimated after excluding neural activity in the following

categories (Figures 4C, S4, and 5CE):

1. Left-out Command: For each command (total of 32 command bins), training

data sets were constructed leaving out neural activity that issued the command

(Figures 4C, S4, and 5CE).

2. Left-out Condition: For each condition (consisting of target, task, and clockwise

or counterclockwise movement for obstacle avoidance), training data sets were

constructed leaving out neural activity for the given condition (Figures 4C, S4,

and 5CE).

3. Left-out Command Angle: For each command angular bin (total of 8 angular

bins), training data sets were constructed leaving out neural activity that issued

commands in the given angular bin. This corresponds to leaving out neural

activity for the 4 command bins that have the given angular bin but different

magnitude bins (Figure S4B, middle).

4. Left-out Command Magnitude: For each command magnitude bin (total of 4

magnitude bins), training data sets were constructed leaving out neural activity

that issued commands of the given command magnitude. This corresponds to

leaving out neural activity for the 8 command bins that have the given magnitude

bin but different angle bins (Figure S4B, right).

5. Left-out Classes of Conditions (Figure S4G):

a. vertical condition class consisting of conditions with targets located at

90 and 270 degrees for both tasks,

b. horizontal condition class consisting of conditions with targets located

at 0 and 180 degrees for both tasks,

c. diagonal 1 condition class consisting of conditions with targets located

at 45 and 215 degrees for both tasks, and

d. diagonal 2 condition class consisting of conditions with targets located

at 135 and 315 degrees for both tasks.

For each of the listed categories above, many dynamics models were computed – each one

corresponding to the exclusion of one element of the category (i.e. one model per: command

left-out, condition left-out, command angle left-out, command magnitude left-out, and class

of conditions left-out). Each of the trained models was then used to predict the left-out

data. Predictions were aggregated across all dynamics models resulting in a full dataset of

predictions. The coefficient of determination (R2) of this predicted dataset reflected how

well dynamics models could generalize to types of neural activity that were not observed

Athalye et al. Page 28

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

during training. We note that Monkey J did not perform all conditions in the “diagonal 2”

class, and so was not used in the analysis predicting excluded “diagonal 2” conditions.

Decoder-null dynamics model: As an additional comparison, we modeled invariant

dynamics that lie only within the decoder-null space (the neural activity subspace that was

orthogonal to the decoder such that variation of neural activity in this space has no effect on

the decoder’s output, i.e. commands for movement).

Our approach was to project spiking activity into the decoder null space, and

then fit invariant dynamics on the projected, decoder-null spiking activity. We first

computed an orthonormal basis of the null space of decoder matrix K ∈ R2 × N using

scipy.linalg.null_space, yielding V null ∈ RN × N − 2. The columns of V correspond to basis

vectors spanning the N − 2 dimensional null space. We then computed the projection matrix

Pnull ∈ RN × N where Pnull = V nullV null
T . Spiking activity was then projected into the null space

xt
null = Pnullxt, where xt

null ∈ RN × 1.

Following the above procedure (see “Estimation of Ridge Parameter”), a ridge regression

parameter was selected using projected data xt
null. Decoder-null dynamics model parameters

Anull, bnull were then fit on 4/5 of the dataset and then tested on the remaining 1/5 of

the xt
null dataset. As before, the training/testing procedure was repeated 5 times such

that all data points fell into the test dataset once. Predictions of test data from all five

repetitions were collated into one full dataset of predictions. We note that the average of

the decoder-space activity across the entire session x̂decoder = 1
T ∑t = 1

T xt
decoder, where T is the

number of bins in an entire session, was added to all predictions of decoder-null dynamics

xt + 1 = Anullxt + bnull + x̂decoder .

Shuffle dynamics model: The invariant dynamics model was compared to a shuffle

dynamics model fit on shuffled data (see “Behavior-preserving shuffle of activity” above).

Following the above procedure (see “Estimation of Ridge Parameter”), a ridge parameter

was selected using shuffled data. Shuffle dynamics model parameters Asℎuffle, bsℎuffle were

then fit on 4/5 of the dataset using shuffled data and then tested on the remaining 1/5 of the

dataset using original, unshuffled data.

Invariant dynamics model characterization

Dimensionality and eigenvalues: Once the linear invariant dynamics model’s parameters

A, b were estimated, A was analyzed to assess which modes of dynamics16 were present

(Figure S3). The eigenvalues of A were computed. From each eigenvalue, an oscillation

frequency and time decay value were computed using the following equations:

Frequency = ∠λ/ 2πΔt Hz if λ is complex, else frequency =0 Hz

Time Decay = −1
ln λ Δt sec

Athalye et al. Page 29

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Modes of dynamics contributing substantially to predicting future neural variance will have

time decays greater than the BMI decoder’s binsize (here, 100ms). 2–4 such dimensions of

dynamics were found across sessions and subjects (Figure S3).

Invariant dynamics model predictions

Predicting next neural activity: xt + 1 ∣ xt, A, b: In Figure 5C, we predict next activity

xt + 1 based on current activity xt by taking the expected value according to our model:

E xt + 1 ∣ xt, A, b = Axt + b.

In Figure 5D, we evaluated this prediction for individual dimensions of neural activity. We

projected the prediction of xt + 1 onto each eigenvector of the dynamics model A matrix and

evaluated how well that dimension was predicted (via coefficient of determination).

In Figure S3E, G, we evaluated this prediction across time from the start of trial. The

magnitude (i.e. L2 norm) of the model residual ∥ xt + 1 − Axt + b ∥2 (Figure S3E) and the

coefficient of determination (R2) (Figure S3G) are plotted for each time point from trial start,

evaluated on held-out test data pooling across trials.

Predicting next command: commandt + 1 ∣ xt, A, b, K: In Figure 5E–H, we predict

the next command commandtt + 1 based on current neural activity xt by taking its expected

value according to our model: E commandt + 1 ∣ xt, A, b, K = K(Axt + b)), where the decoder

matrix K maps between neural activity and the command. This amounts to first predicting

next activity based on current activity as above E xt + 1 ∣ xt, A, b = Axt + b and then applying

decoder K.

Predicting activity issuing a given command: In Figure 4C–G, we predict current

activity xt not only with knowledge of previous activity xt − 1, but also with knowledge

of the current command commandt xt ∣ xt − 1, A, b, K, commandt . We modeled xt and xt − 1

as jointly Gaussian with our dynamics model, and commandt is jointly Gaussian with

them since commandt = Kxt. We modify our prediction of xt based on knowledge of

commandt: E xt ∣ xt − 1, A, b, K, commandt . Explicitly we conditioned on commandt, thereby

ensuring that K * E xt ∣ xt − 1, A, b, K, commandt = commandt. To do this we wrote the joint

distribution of xt and commandt:

Kxt

xt
∼ N(μ

Kμ , Σ (KΣ)T

KΣ KΣKT)

where μ = E xt ∣ xt − 1, A, b = Axt − 1 + b, and Σ = cov xt − Axt − 1 + b is the covariance of the

noise in the dynamics model. Then, the multivariate Gaussian conditional distribution

provides the solution to conditioning on commandt:

E xt ∣ xt − 1, A, b, K, commandt = Axt − 1 + b + ΣTKT KΣKT −1 commandt − K Axt − 1 + b

Athalye et al. Page 30

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

This prediction constrains the prediction of xt to produce the given command commandt.

For these predictions, Σ is estimated following dynamics model fitting and set to the

empirical error covariance between estimates of E xt = Axt − 1 + b and true xt in the training

data.

Predicting current activity only with command: In Figure 4C–E, as a comparison to

the dynamics prediction xt ∣ xt − 1, A, b, K, commandt , we predict xt as its expected value

xt ∣ K, commandt) based only on the command commandt = Kxt it issues and the decoder

matrix K. The same approach was used as above, except with empirical estimates of μ, Σ
corresponding to the mean and covariance of the neural data instead of using the neural

dynamics model and xt − 1 to compute μ, Σ.

Kxt

xt
∼ N(μ

Kμ , Σ (KΣ)T

KΣ KΣKT)

This formulation makes the prediction:

E xt ∣ K, commandt = μ + ΣTKT KΣKT −1 commandt − Kμ

Comparing invariant dynamics to shuffle: For the above predictions, we evaluated if

invariant dynamics models were more accurate than shuffle dynamics. A distribution of

shuffle dynamics R2 values (coefficient of determination) was generated by computing one

R2 value per shuffled dataset (see “Behavior-preserving shuffle of activity” above), where

Rsℎuffle, i, j
2 corresponds to the R2 for shuffle dataset i on session j. For each session j, each

invariant dynamics model was considered significant if its R2 was greater than 95% of

shuffle R2 values. To aggregate over S sessions, the R2 values for all S sessions were

averaged yielding one Ravg
2 value. This averaged value was compared to a distribution of

averaged shuffle R2 values. Specifically, for each shuffle i (i = 1:1000 shuffled dataset) an

averaged R2 value was computed across all S sessions: Ravg, sℎuffle, i
2 = 1

S ∑j = 1
S Rsℎuffle, i, j

2 , yielding

a distribution of averaged shuffle R2 values.

Predicting condition-specific activity: The invariant dynamics model was used to predict

the condition-specific average activity for a given command (μcom − cond, i.e. the average neural

activity over all observations of the command in the condition, see “Analysis of activity

issuing a given command” above) (Figure 4D–G). The invariant dynamics model prediction

μcom − cond was computed as E xt ∣ xt − 1, A, b, K, commandt (see “Predicting activity issuing

a given command” above) averaged over all observations of neural activity for the given

command and condition.

To test if the invariant dynamics prediction was significantly more accurate than the

shuffle dynamics model (i.e. the dynamics model fit on shuffled data, see “Shuffle

Athalye et al. Page 31

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

dynamics model” above) prediction, we computed the error as the distance between true

μcom − cond and predicted μcom − cond condition-specific average activity (single neuron error and

population distance). Note that population distances for true and predicted activity were

taken only in the dimensions null to the decoder (see “Condition-specific neural activity

deviation”). The invariant dynamics model was deemed significantly more accurate than

shuffle dynamics if the error was less than the 5th percentile of the distribution of the

errors from shuffle dynamics models. We reported the fraction of (command, condition)

tuples that were individually significant relative to shuffle (Figure 4G, left). We determined

whether commands were individually significant relative to shuffle by analyzing the average

population activity error across conditions (Fig 4G, middle). We determined whether

neurons were individually significant relative to shuffle by analyzing the average single-

neuron error over (command, condition) tuples (Fig 4G, right).

Predicting condition-specific component: The component of neural activity

for a given command that was specific to a condition was calculated as

μcom − cond − E xcom − cond
t ∣ K, commandt , where μcom − cond is neural activity averaged over

observations for the given command and condition, and E xcom − cond
t ∣ K, commandt is the

prediction of neural activity only given the command it issued, averaged over observations

for the (command, condition) tuple (see “Predicting current activity only with command”

above). Thus, μcom − cond − E xcom − cond
t ∣ K, commandt estimates the portion of neural activity that

cannot be explained by just knowing the command issued.

We analyzed how well this condition-specific component could be predicted with invariant

dynamics as: μcom − cond − E xcom − cond
t ∣ K, commandt (see “Predicting condition-specific activity”

above for calculation of μcom − cond). The variance of μcom − cond − E xcom − cond
t ∣ K, commandt

explained by μcom − cond − E xcom − cond
t ∣ K, commandt is reported in Figure 4F.

Predicting condition-specific next command: For each (command, condition) tuple, the

average “next command” commandcom − cond was calculated. For every observation of the given

command in the given condition, we took the command at the time step immediately

following the given command and averaged over observations. We then analyzed how well

invariant dynamics predicted this average “next command” commandcom − cond, calculated as

E commandt + 1 ∣ xt, A, b, K averaged over all observations of neural activity xt for the given

command and condition. The L2-norm of the difference commandcom − cond − commandcom − cond was

computed and compared to the errors obtained from the shuffled-dynamics predictions. For

each (command, condition) tuple, the dynamics-predicted “next command” was deemed

significantly more accurate than shuffle dynamics if the error was less than the 5th

percentile of the distribution of the errors of the shuffled-dynamics predictions (Figure 5F,

left). Commands were determined to be individually significant if the error averaged over

conditions was significantly less than the shuffled-dynamics error averaged over conditions

(Figure 5F, right).

Analysis of predicted command angle: We sought to further analyze whether invariant

dynamics predicted the transition from a given command to different “next commands” in

different movements. Thus, we calculated two additional metrics on the direction of the

Athalye et al. Page 32

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

predicted “next command”, i.e. the angle of the predicted “next command” commandcom − cond

with respect to the condition-pooled “next command” commandcom − pool (the average “next

command” following a given command when pooling over conditions).

First, we predicted whether a condition’s “next command” would rotate clockwise

or counterclockwise relative to the condition-pooled “next command.” Specifically, we

calculated whether the sign of the cross-product between commandcom − cond and commandcom − pool

matched the sign of the cross-product between commandcom − cond and commandcom − pool.

The fraction of (command, conditions) that were correctly predicted (clockwise vs

counterclockwise) was compared to the fraction of (command, condition) tuples correctly

predicted in the shuffle distribution (Figure 5H, left).

Second, we calculated the absolute error of the angle between the predicted “next command”

and the condition-pooled “next command” for each (command, condition) tuple:

abs(∠ (commandcom − cond, commandcom − pool)
−∠ (commandcom − cond, commandcom − pool))

Explicitly, for each (command, condition) tuple, we calculated the absolute difference

between two angles: 1) the angle between the predicted “next command” and the

condition-pooled “next command” and 2) the angle between the true “next command”

and the condition-pooled “next command”. These errors were then compared to the shuffle

distribution (Figure 5H, right).

Estimation of behavior-encoding models—To compare invariant dynamics models

to models in which neural activity encodes behavioral variables in addition to the

command, we fit a series of behavior-encoding models (Figure S5). Regressors included

cursor state (position, velocity), target position (x,y postion in cursor workspace), and

a categorical variable encoding target number (0–7) and task (“center-out”, “clockwise

obstacle-avoidance”, or “counter-clockwise obstacle-avoidance”).

Models were fit using Ridge regression following the same procedure described above (see

“Estimation of Ridge Parameter”) was followed with one additional step: prior to estimating

the ridge parameter or fitting the regression, variables were z-scored. Without z-scoring,

ridge regression may favor giving explanatory power to the variables with larger variances,

since they would require smaller weights which ridge regression prefers. Then, as above,

models were fit using 4/5 of the data and then used to predict the held-out 1/5 of data. After

5 rotations of training and testing data, a full predicted dataset was collated.

We then tested whether invariant neural dynamics improved the prediction of neural activity

beyond behavior-encoding. The coefficient of determination (R2) of the model containing all

regressors except previous neural activity was compared to the R2 of the model containing

all regressors plus previous neural activity (Figure S5B) using a paired Student’s t-test where

session was paired. One test was done for each monkey.

Athalye et al. Page 33

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Analysis between pairs of conditions—We sought to assess whether the invariant

dynamics model predicted the relationship between pairs of conditions for neural activity

and behavior (Figure S6).

Average neural activity for a given command: The invariant dynamics model was used to

predict the distance between average neural activity patterns for the same command across

pairs of conditions. Concretely, the predicted distance was simply the distance between

the predicted neural activity pattern for condition 1 and for condition 2. The correlation

between the true distance and the predicted distance was reported for individual neurons

(Figure S6AC) and population activity (Figure S6BD). The Wald test (implemented in

scipy.stats.linregress) was used to assess the significance of the correlations on single

sessions. To assess significance pooled over sessions, data points (true distances vs.

dynamics model predicted distances) were aggregated across sessions and assessed for

significance.

Average next command: The invariant dynamics model was used to predict the distance

between “next commands” for the same given command across pairs of conditions.

Concretely, the predicted distance was simply the distance between the predicted “next

command” for condition 1 and for condition 2. The correlation between the true distance

and the predicted distance was reported (Figure S6JK). As above, the Wald test was used to

assess significance of correlations on single sessions and over pooled sessions.

Correlating neural distance with behavior: We asked whether neural activity for a given

command was more similar across conditions with more similar command subtrajectories

(see “Command subtrajectories”) (Figure S6E), and whether invariant dynamics predict this.

Specifically, we analyzed whether the distance between average neural activity across two

conditions for a given command correlated to the distance between command subtrajectories

for the same two conditions (Figure S6, F top, GH left). Further, we analyzed whether

invariant dynamics predicted this correlation (Figure S6, F bottom, GH right). For every

command (that was used in more than five conditions) and pair of conditions that used

the command (>=15 observations in each condition in the pair), 1) the distances between

condition-specific average activity were computed and 2) distances between command

subtrajectories were computed. The neural activity distances were correlated with the

command subtrajectory distances (Figure S6, F top, GH left). To assess whether invariant

dynamics made predictions that maintained this structure, we performed that same analysis

with distances between dynamics-predicted condition-specific average activity across pairs

of conditions (Figure S6, F bottom, GH right).

We assessed the significance of the relationship using a linear mixed effects (LME)

model (statsmodels.formula.api.mixedlm). The LME modeled command as a random effect

because the exact parameters of the increasing linear relationship between command

subtrajectories and population activity may vary depending on command. Individual

sessions were assessed for significance. To assess significance across sessions, data points

were aggregated over sessions, and the LME model used command and session ID as

random effects.

Athalye et al. Page 34

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Analysis of Optimal Feedback Control Models

Input magnitude: For each simulated trial, we computed the magnitude of input to the

neural population as the L2 norm of the input matrix ut ∈ RN × T (where N is the number

of neurons and T = 40 was the horizon and thus movement length). For each of the 24

conditions, we calculated the average input magnitude over the 20 trials. We compared the

magnitude of input used by the Invariant Dynamics Model and the No Dynamics Model,

where the Invariant Dynamics Model was either the Full Dynamics Model (Figure 6C)

or the Decoder-Null Dynamics Model (Figure 6D). We analyzed each individual session

with a paired Wilcoxon signed-rank test, where each pair within a session consisted of

one condition (24 conditions total). We aggregated across sessions for each subject using a

linear mixed effect (LME) model between input magnitude and model category (Invariant

Dynamics Model or No Dynamics Model), with session modeled as a random effect.

Simulated activity issuing a given command: In the OFC simulations, we sought to

verify if different neural activity patterns were used to issue the same command across

different conditions, applying analyses that we used on experimental neural data to the OFC

simulations. As above, we defined discretized command bins (see “Command discretization

for analysis”) and calculated the average neural activity for each (command, condition)

tuple. For (command, condition) tuples with >=15 observations (example shown in Figure

6E), we computed the distance between condition-specific average activity and condition-

pooled average activity by subtracting the activity, projecting into the decoder-null space,

taking the L2 norm, and normalizing by the square root of the number of neurons, as in the

experimental data analysis (see “Analysis of activity issuing a given command”).

We analyzed the distance between condition-specific average activity and condition-pooled

average activity for a given command, comparing each model to its own shuffle distribution

(see “Behavior-preserving shuffle of activity”) (Figure 6GH). Concretely, for each simulated

session, we calculated the mean of the shuffle distribution of distances for each (command,

condition) tuple and compared these shuffle means (one per (command, condition) tuple) to

the observed distances from the simulations. We analyzed individual sessions with a Mann-

Whitney U test. We aggregated across sessions for each subject with a LME model between

activity distance and data source (OFC Simulation vs shuffle), with session modeled as

a random effect. For visualization of distances relative to the shuffle distribution (Figure

6F–H), we divided the observed distance for each (command, condition) tuple by the mean

of the corresponding shuffle distribution (same as in Figure 3B–D).

Statistics Summary—In many analyses, we assessed whether a quantity calculated for

a specific condition was significantly larger than expected from the distribution of the

quantity due to subsampling the condition-pooled distribution. A p-value was computed by

comparing the condition-specific quantity to the distribution of the quantity computed from

subsampling the condition-pooled distribution. The “behavior-preserving shuffle of activity”

and “matching the condition-pooled distribution” (see above) were used to construct the

condition-pooled distribution.

The following is a summary of these analyses:

Athalye et al. Page 35

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

• Figure S1D, Quantity: distance between condition-specific average command

subtrajectory and condition-pooled average command subtrajectory, P-value:

computed using behavior-preserving shuffle.

• Figure S1E, Quantity: distance between condition-specific average next

command and the condition-pooled average next command, P-value: computed

using behavior-preserving shuffle.

• Figure 3B left, 3E right: Quantity: for a given command, distance between

condition-specific average activity for a neuron and condition-pooled average

activity for a neuron, P-value: behavior-preserving shuffle.

• Figure 3B right, 3D, 3E left, middle: Quantity: for a given command, distance

between condition-specific average population activity and condition-pooled

average population activity, P-value: behavior-preserving shuffle.

• Figure 4G right: Quantity: for a given command, error between the invariant

dynamics’ prediction of condition-specific average activity for a neuron and

the true condition-specific average activity for the neuron. P-value: distribution

of prediction errors from shuffle dynamics (models fit on behavior-preserving

shuffle and that made predictions using unshuffled data).

• Figure 4G left, middle: Quantity: for a given command, error between the

invariant dynamics’ prediction of condition-specific average population activity

and the true condition-specific average population activity. P-value: distribution

of prediction errors from shuffle dynamics (models fit on behavior-preserving

shuffle and that made predictions using unshuffled data).

• Figure 5F: Quantity: for a given command, error between the invariant

dynamics’ prediction of condition-specific average next command and true

condition-specific average next command. P-value: distribution of prediction

errors from shuffle dynamics (models fit on behavior-preserving shuffle and that

made predictions using unshuffled data).

In the above analyses, we also assessed the fraction of condition-specific quantities that

were significantly different from the condition-pooled quantities or significantly predicted

compared to a shuffled distribution (Figures S1DE, 3E, 4G, 5F, S4DI, and S6G). In order to

aggregate over all data to determine whether condition-specific quantities were significantly

different from shuffle or significantly predicted within a session relative to shuffle dynamics,

we averaged the condition-specific quantity over the relevant dimensions (command,

condition, and/or neuron) to yield a single aggregated value for a session. For example

in Figure 3E right, we take the distance between average activity for a (command, condition,

neuron) tuple and condition-pooled average activity for a (command, neuron) tuple, and

we average this distance over (command, condition) tuples to yield an aggregated value

that is used to assess if individual neurons are significant. We correspondingly averaged

the shuffle distribution across all relevant dimensions (command, condition, and/or neuron).

Together this procedure yielded a single aggregated value that could be compared to a

single aggregated distribution to determine session significance. Finally, when we sought to

aggregate over sessions, we took the condition-specific quantity that was aggregated within a

Athalye et al. Page 36

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

session and averaged it across sessions and again compared it to a shuffle distribution of this

value aggregated over sessions.

When R2 was the metric assessed (Figures 4CF, 5C–E, and S4BFG), a single R2 metric was

computed for each session and compared to the R2 distribution from shuffle models. This R2

metric is known as the “coefficient of determination,” and we note that it assesses how well

the dynamics-predicted values (e.g. spike counts) account for the variance of the true values.

In some cases, a linear regression was fit between two quantities (Figure S6CDGJK) on

both individual sessions and on data pooled over all sessions, and the significance of the

fit and correlation coefficient were both reported. In other cases where random effects such

as session or analyzed command may have influenced the linear regression parameters

(Figure S6FG), a Linear Mixed Effect (LME) model was used with session and/or command

modeled as random effects on intercept.

In Figure S5, a paired Student’s t-test was used to compare two models’ R2 metric across

sessions. Figure 6 analyzed simulations of OFC models, not experimentally-recorded data.

Figure 6CD used a paired Wilcoxon test and a LME to compare input magnitude between

a pair of OFC models. Figure 6GH used a Mann-Whitney U test and a LME to compare

population distance between an OFC model and its shuffle distribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank I. Rodrigues-Vaz, D. Peterka, the Theory Center at the Zuckerman Institute, and I. Papusha for helpful
discussions, and the Costa and Carmena labs for their support. This work was supported by NIH NINDS Pathway to
Independence Award 1K99NS128250-01 (VRA), BRAIN Initiative National Institute of Mental Health postdoctoral
fellowship 1F32MH118714-01 (VRA), NIH Pathway to Independence Award 1K99NS124748-01 (PK), BRAIN
Initiative National Institute of Mental Health postdoctoral fellowship 1F32MH120891-01 (PK), NINDS/NIH
BRAIN Initiative U19 NS104649 (RMC), Simons-Emory International Consortium on Motor Control #717104
(RMC), and NINDS/NIH R01 NS106094 (JMC).

Inclusion and Diversity

We support inclusive, diverse, and equitable conduct of research.

References

1. Rokni U, and Sompolinsky H (2012). How the brain generates movement. Neural Comput. 24,
289–331. [PubMed: 22023199]

2. Churchland MM, and Cunningham JP (2014). A Dynamical Basis Set for Generating Reaches. Cold
Spring Harb. Symp. Quant. Biol. 79, 67–80. [PubMed: 25851506]

3. Shenoy KV, Sahani M, and Churchland MM (2013). Cortical Control of Arm Movements: A
Dynamical Systems Perspective. Annu. Rev. Neurosci. 36, 337–359. [PubMed: 23725001]

4. Hennequin G, Vogels TP, and Gerstner W (2014). Optimal control of transient dynamics in balanced
networks supports generation of complex movements. Neuron 82, 1394–1406. [PubMed: 24945778]

Athalye et al. Page 37

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

5. Sussillo D, Churchland MM, Kaufman MT, and Shenoy KV (2015). A neural network that finds a
naturalistic solution for the production of muscle activity. Nat. Neurosci. 18, 1025–33. [PubMed:
26075643]

6. Mastrogiuseppe F, and Ostojic S (2018). Linking Connectivity, Dynamics, and Computations in
Low-Rank Recurrent Neural Networks. Neuron 99, 609–623.e29. [PubMed: 30057201]

7. Porter R, and Lemon R (1995). Corticospinal Function and Voluntary Movement (Oxford University
Press).

8. Nelson A, Abdelmesih B, and Costa RM (2021). Corticospinal populations broadcast complex
motor signals to coordinated spinal and striatal circuits. Nat. Neurosci. 24, 1721–1732. [PubMed:
34737448]

9. Arber S, and Costa RM (2018). Connecting neuronal circuits for movement. Science (80-.). 360,
1403–1404.

10. Arber S, and Costa RM (2022). Networking brainstem and basal ganglia circuits for movement.
Nat. Rev. Neurosci.

11. Russo AA, Bittner SR, Perkins SM, Seely JS, London BM, Lara AH, Miri A, Marshall NJ, Kohn
A, Jessell TM, et al. (2018). Motor Cortex Embeds Muscle-like Commands in an Untangled
Population Response. Neuron 97, 953–966.e8. [PubMed: 29398358]

12. Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI, and Shenoy KV
(2012). Neural population dynamics during reaching. Nature 487, 51–56. [PubMed: 22722855]

13. Michaels JA, Dann B, and Scherberger H (2016). Neural Population Dynamics during Reaching
Are Better Explained by a Dynamical System than Representational Tuning. PLoS Comput. Biol.
12.

14. Liang K-F, and Kao JC (2020). Deep Learning Neural Encoders for Motor Cortex. IEEE Trans.
Biomed. Eng. 67, 2145–2158. [PubMed: 31765302]

15. Truccolo W, Hochberg LR, and Donoghue JP (2010). Collective dynamics in human and monkey
sensorimotor cortex: Predicting single neuron spikes. Nat. Neurosci. 13, 105–111. [PubMed:
19966837]

16. Kao JC, Nuyujukian P, Ryu SI, Churchland MM, Cunningham JP, and Shenoy KV (2015). Single-
trial dynamics of motor cortex and their applications to brain-machine interfaces. Nat. Commun. 6,
7759. [PubMed: 26220660]

17. Kao JC, Ryu SI, and Shenoy KV (2017). Leveraging neural dynamics to extend functional lifetime
of brain-machine interfaces. Sci. Rep. 7, 7395. [PubMed: 28784984]

18. Pandarinath C, O’Shea DJ, Collins J, Jozefowicz R, Stavisky SD, Kao JC, Trautmann EM,
Kaufman MT, Ryu SI, Hochberg LR, et al. (2018). Inferring single-trial neural population
dynamics using sequential auto-encoders. Nat. Methods 15, 805–815. [PubMed: 30224673]

19. Abbaspourazad H, Choudhury M, Wong YT, Pesaran B, and Shanechi MM (2021). Multiscale
low-dimensional motor cortical state dynamics predict naturalistic reach-and-grasp behavior. Nat.
Commun. 12, 607. [PubMed: 33504797]

20. Gallego-Carracedo C, Perich MG, Chowdhury RH, Miller LE, and Gallego JÁ (2022). Local
field potentials reflect cortical population dynamics in a region-specific and frequency-dependent
manner. Elife 11, e73155. [PubMed: 35968845]

21. Gallego JA, Perich MG, Chowdhury RH, Solla SA, and Miller LE (2020). Long-term stability
of cortical population dynamics underlying consistent behavior. Nat. Neurosci. 23, 260–270.
[PubMed: 31907438]

22. Sani OG, Abbaspourazad H, Wong YT, Pesaran B, and Shanechi MM (2021). Modeling
behaviorally relevant neural dynamics enabled by preferential subspace identification. Nat.
Neurosci. 24, 140–149. [PubMed: 33169030]

23. Kaufman MT, Churchland MM, Ryu SI, and Shenoy KV (2014). Cortical activity in the null space:
permitting preparation without movement. Nat. Neurosci. 17, 440–8. [PubMed: 24487233]

24. Stavisky SD, Kao JC, Ryu SI, and Shenoy KV (2017). Motor Cortical Visuomotor Feedback
Activity Is Initially Isolated from Downstream Targets in Output-Null Neural State Space
Dimensions. Neuron, 1–14.

25. Perich MG, Gallego JA, and Miller LE (2018). A Neural Population Mechanism for Rapid
Learning. Neuron 100, 964–976.e7. [PubMed: 30344047]

Athalye et al. Page 38

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

26. Miri A, Warriner CL, Seely JS, Elsayed GF, Cunningham JP, Churchland MM, and Jessell TM
(2017). Behaviorally Selective Engagement of Short-Latency Effector Pathways by Motor Cortex.
Neuron 95, 683–696.e11. [PubMed: 28735748]

27. Marshall NJ, Glaser JI, Trautmann EM, Amematsro EA, Perkins SM, Shadlen MN, Abbott
LF, Cunningham JP, and Churchland MM (2022). Flexible neural control of motor units. Nat.
Neurosci. 25, 1492–1504. [PubMed: 36216998]

28. Schieber MH (2004). Motor Control: Basic Units of Cortical Output? Curr. Biol. 14, R353–R354.
[PubMed: 15120090]

29. Taylor DM, Tillery SIH, and Schwartz AB (2002). Direct cortical control of 3D neuroprosthetic
devices. Science (80-.). 296, 1829–1832.

30. Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, and Donoghue JP (2002). Instant neural
control of a movement signal. Nature 416, 141–2. [PubMed: 11894084]

31. Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, Dimitrov DF, Patil PG,
Henriquez CS, and Nicolelis MAL (2003). Learning to control a brain-machine interface for
reaching and grasping by primates. PLoS Biol. 1, 193–208.

32. Ganguly K, and Carmena JM (2009). Emergence of a stable cortical map for neuroprosthetic
control. PLoS Biol. 7.

33. Elsayed GF, Lara AH, Kaufman MT, Churchland MM, and Cunningham JP (2016). Reorganization
between preparatory and movement population responses in motor cortex. Nat. Commun, 13239.
[PubMed: 27807345]

34. Churchland MM, Cunningham JP, Kaufman MT, Ryu SI, and Shenoy KV (2010). Cortical
Preparatory Activity: Representation of Movement or First Cog in a Dynamical Machine? Neuron
68, 387–400. [PubMed: 21040842]

35. Kalidindi HT, Cross KP, Lillicrap TP, Omrani M, Falotico E, Sabes PN, and Scott SH (2021).
Rotational dynamics in motor cortex are consistent with a feedback controller. Elife 10, e67256.
[PubMed: 34730516]

36. Pruszynski JA, Kurtzer I, Nashed JY, Omrani M, Brouwer B, and Scott SH (2011). Primary motor
cortex underlies multi-joint integration for fast feedback control. Nature 478, 387–390. [PubMed:
21964335]

37. Bollu T, Ito BS, Whitehead SC, Kardon B, Redd J, Liu MH, and Goldberg JH (2021). Cortex-
dependent corrections as the tongue reaches for and misses targets. Nature 594, 82–87. [PubMed:
34012117]

38. Veuthey TL, Derosier K, Kondapavulur S, and Ganguly K (2020). Single-trial cross-area
neural population dynamics during long-term skill learning. Nat. Commun. 11, 4057. [PubMed:
32792523]

39. Rizzolatti G, and Luppino G (2001). The cortical motor system. Neuron 31, 889–901. [PubMed:
11580891]

40. Dum RP, and Strick PL (2005). Frontal Lobe Inputs to the Digit Representations of the Motor
Areas on the Lateral Surface of the Hemisphere. J. Neurosci. 25, 1375–1386. [PubMed: 15703391]

41. Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H, Bernard A, Bohn P, Caldejon S, Casal
L, Cho A, et al. (2019). Hierarchical organization of cortical and thalamic connectivity. Nature
575, 195–202. [PubMed: 31666704]

42. Athalye VR, Carmena JM, and Costa RM (2020). Neural reinforcement: re-entering and refining
neural dynamics leading to desirable outcomes. Curr. Opin. Neurobiol. 60.

43. Sauerbrei BA, Guo J-Z, Cohen JD, Mischiati M, Guo W, Kabra M, Verma N, Mensh B, Branson K,
and Hantman AW (2020). Cortical pattern generation during dexterous movement is input-driven.
Nature 577, 386–391. [PubMed: 31875851]

44. Merel J, Botvinick M, and Wayne G (2019). Hierarchical motor control in mammals and machines.
Nat. Commun. 10, 5489. [PubMed: 31792198]

45. Kao T-C, Sadabadi MS, and Hennequin G (2021). Optimal anticipatory control as a theory
of motor preparation: A thalamo-cortical circuit model. Neuron 109, 1567–1581.e12. [PubMed:
33789082]

46. Logiaco L, Abbott LF, and Escola S (2021). Thalamic control of cortical dynamics in a model of
flexible motor sequencing. Cell Rep. 35, 109090. [PubMed: 34077721]

Athalye et al. Page 39

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

47. Shanechi MM, Orsborn AL, and Carmena JM (2016). Robust Brain-Machine Interface Design
Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering. PLoS Comput.
Biol. 12, e1004730. [PubMed: 27035820]

48. Shanechi MM, Orsborn AL, Moorman HG, Gowda S, Dangi S, Carmena JM, Chapin JK, Moxon
KA, Markowitz RS, Nicolelis MAL, et al. (2017). Rapid control and feedback rates enhance
neuroprosthetic control. Nat. Commun. 8, 13825. [PubMed: 28059065]

49. Dangi S, Gowda S, Moorman HG, Orsborn AL, So K, Shanechi MM, and Carmena JM (2014).
Continuous closed-loop decoder adaptation with a recursive maximum likelihood algorithm allows
for rapid performance acquisition in brain-machine interfaces. Neural Comput. 26, 1811–1839.
[PubMed: 24922501]

50. Hennig JA, Golub MD, Lund PJ, Sadtler PT, Oby ER, Quick KM, Ryu SI, Tyler-Kabara EC,
Batista AP, Yu BM, et al. (2018). Constraints on neural redundancy. Elife 7, 1–34.

51. Elsayed GF, and Cunningham JP (2017). Structure in neural population recordings: An expected
byproduct of simpler phenomena? Nat. Neurosci. 20, 1310–1318. [PubMed: 28783140]

52. Linderman S, Johnson M, Miller A, Adams R, Blei D, and Paninski L (2017). Bayesian Learning
and Inference in Recurrent Switching Linear Dynamical Systems. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics Proceedings of Machine Learning
Research., Singh A and Zhu J, eds. (PMLR), pp. 914–922.

53. Stavisky SD, Kao JC, Nuyujukian P, Pandarinath C, Blabe C, Ryu SI, Hochberg LR, Henderson
JM, and Shenoy KV (2018). Brain-machine interface cursor position only weakly affects monkey
and human motor cortical activity in the absence of arm movements. Sci. Rep. 8, 1–19. [PubMed:
29311619]

54. Biane JS, Takashima Y, Scanziani M, Conner JM, and Tuszynski MH (2016). Thalamocortical
Projections onto Behaviorally Relevant Neurons Exhibit Plasticity during Adult Motor Learning.
Neuron 89, 1173–1179. [PubMed: 26948893]

55. Evarts EV (1968). Relation of pyramidal tract activity to force exerted during voluntary movement.
J. Neurophysiol. 31, 14–27. [PubMed: 4966614]

56. Kalaska JF (2009). From intention to action: motor cortex and the control of reaching movements.
Adv. Exp. Med. Biol. 629, 139–178. [PubMed: 19227499]

57. Fetz EE (1992). Are movement parameters recognizably coded in the activity of single neurons?
Behav. Brain Sci. 15, 679–690.

58. Reimer J, and Hatsopoulos NG (2009). The problem of parametric neural coding in the motor
system. Adv. Exp. Med. Biol. 629, 243–259. [PubMed: 19227503]

59. Omrani M, Kaufman MT, Hatsopoulos NG, and Cheney PD (2017). Perspectives on classical
controversies about the motor cortex. J. Neurophysiol. 118, 1828–1848. [PubMed: 28615340]

60. Georgopoulos AP, Caminiti R, and Kalaska JF (1984). Static spatial effects in motor cortex and
area 5: Quantitative relations in a two-dimensional space. Exp. Brain Res. 54, 446–454. [PubMed:
6723864]

61. Wang W, Chan SS, Heldman DA, and Moran DW (2007). Motor cortical representation of position
and velocity during reaching. J. Neurophysiol. 97, 4258–4270. [PubMed: 17392416]

62. Paninski L, Fellows MR, Hatsopoulos NG, and Donoghue JP (2004). Spatiotemporal Tuning of
Motor Cortical Neurons for Hand Position and Velocity. J. Neurophysiol. 91, 515–532. [PubMed:
13679402]

63. Fu Q-G, Suarez JI, and Ebner TJ (1993). Neuronal Specification of Direction and Distance During
Reaching Movements in the Superior Precentral Premotor Area and Primary Motor Cortex of
Monkeys. J. Neurophysiol. 70.

64. Moran DW, and Schwartz AB (1999). Motor cortical representation of speed and direction during
reaching. J. Neurophysiol. 82, 2676–2692. [PubMed: 10561437]

65. Flament D, and Hore J (1988). Relations of motor cortex neural discharge to kinematics of passive
and active elbow movements in the monkey. J. Neurophysiol. 60, 1268–1284. [PubMed: 3193157]

66. Georgopoulos AP, Kalaska JF, Caminiti R, and Massey JT (1982). On the relations between
the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J.
Neurosci. 2, 1527–1537. [PubMed: 7143039]

Athalye et al. Page 40

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

67. Georgopoulos AP, Schwartz AB, and Kettner RE (1986). Neuronal population coding of movement
direction. Science (80-.). 233, 1416–9.

68. Sergio LE, Hamel-pâquet C, and Kalaska JF (2005). Motor Cortex Neural Correlates of Output
Kinematics and Kinetics During Isometric-Force and Arm-Reaching Tasks Motor Cortex Neural
Correlates of Output Kinematics and Kinetics During Isometric-Force and Arm-Reaching Tasks. J.
Neurophysiol. 94, 2353–2378. [PubMed: 15888522]

69. Cheney PD, and Fetz EE (1980). Functional classes of primate corticomotoneuronal cells and their
relation to active force. J. Neurophysiol. 44, 773–791. [PubMed: 6253605]

70. Ajemian R, Green A, Bullock D, Sergio L, Kalaska J, and Grossberg S (2008). Assessing the
Function of Motor Cortex: Single-Neuron Models of How Neural Response Is Modulated by Limb
Biomechanics. Neuron 58, 414–428. [PubMed: 18466751]

71. Overduin SA, d’Avella A, Roh J, Carmena JM, and Bizzi E (2015). Representation of muscle
synergies in the primate brain. J. Neurosci. 35, 12615–12624. [PubMed: 26377453]

72. Holdefer RN, and Miller LE (2002). Primary motor cortical neurons encode functional muscle
synergies. Exp. Brain Res. 146, 233–243. [PubMed: 12195525]

73. Fetz EE, and Cheney PD (1980). Postspike facilitation of forelimb muscle activity by primate
corticomotoneuronal cells. J. Neurophysiol. 44, 751–772. [PubMed: 6253604]

74. Schieber MH, and Rivlis G (2007). Partial reconstruction of muscle activity from a pruned network
of diverse motor cortex neurons. J. Neurophysiol. 97, 70–82. [PubMed: 17035361]

75. Morrow MM, and Miller LE (2003). Prediction of muscle activity by populations of sequentially
recorded primary motor cortex neurons. J. Neurophysiol. 89, 2279–2288. [PubMed: 12612022]

76. Todorov E, and Jordan MI (2002). Optimal feedback control as a theory of motor coordination. Nat
Neurosci 5, 1226–35. [PubMed: 12404008]

77. Suresh AK, Goodman JM, Okorokova EV, Kaufman M, Hatsopoulos NG, and Bensmaia SJ (2020).
Neural population dynamics in motor cortex are different for reach and grasp. Elife 9.

78. Athalye VR, Carmena JM, and Costa RM (2020). Neural reinforcement: re-entering and refining
neural dynamics leading to desirable outcomes. Curr. Opin. Neurobiol. 60, 145–154. [PubMed:
31877493]

79. Mannella F, and Baldassarre G (2015). Selection of cortical dynamics for motor behaviour by the
basal ganglia. Biol. Cybern. 109, 575–595. [PubMed: 26537483]

80. Vyas S, Even-Chen N, Stavisky SD, Ryu SI, Nuyujukian P, and Shenoy KV (2018). Neural
Population Dynamics Underlying Motor Learning Transfer. Neuron 97, 1177–1186.e3. [PubMed:
29456026]

81. Sadtler PT, Quick KM, Golub MD, Chase SM, Ryu SI, Tyler-Kabara EC, Yu BM, and Batista AP
(2014). Neural constraints on learning. Nature 512, 423–426. [PubMed: 25164754]

82. Athalye VR, Ganguly K, Costa RM, and Carmena JM (2017). Emergence of Coordinated
Neural Dynamics Underlies Neuroprosthetic Learning and Skillful Control. Neuron 93, 955–970.
[PubMed: 28190641]

83. Athalye VR, Santos FJ, Carmena JM, and Costa RM (2018). Evidence for a neural law of effect.
Science (80-.). 359, 1024–1029.

84. Koralek AC, Jin X, Long II JD, Costa RM, and Carmena JM (2012). Corticostriatal plasticity
is necessary for learning intentional neuroprosthetic skills. Nature 483, 331–335. [PubMed:
22388818]

85. Neely RM, Koralek AC, Athalye VR, Costa RM, and Carmena JM (2018). Volitional Modulation
of Primary Visual Cortex Activity Requires the Basal Ganglia. Neuron 97, 1356–1368. [PubMed:
29503189]

86. Willett FR, Avansino DT, Hochberg LR, Henderson JM, and Shenoy KV (2021). High-
performance brain-to-text communication via handwriting. Nature 593, 249–254. [PubMed:
33981047]

87. Khanna P, Totten D, Novik L, Roberts J, Morecraft RJ, and Ganguly K (2021). Low-frequency
stimulation enhances ensemble co-firing and dexterity after stroke. Cell 184, 912–930.e20.
[PubMed: 33571430]

Athalye et al. Page 41

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

88. Ramanathan DS, Guo L, Gulati T, Davidson G, Hishinuma AK, Won S-J, Knight RT, Chang EF,
Swanson RA, and Ganguly K (2018). Low-frequency cortical activity is a neuromodulatory target
that tracks recovery after stroke. Nat. Med. 24, 1257–1267. [PubMed: 29915259]

89. Shenoy K, and Carmena J (2014). Combining decoder design and neural adaptation in brain-
machine interfaces. Neuron 84, 665–680. [PubMed: 25459407]

90. Golub MD, Chase SM, Batista AP, and Yu BM (2016). Brain-computer interfaces for dissecting
cognitive processes underlying sensorimotor control. Curr. Opin. Neurobiol. 37, 53–58. [PubMed:
26796293]

91. Orsborn AL, and Pesaran B (2017). Parsing learning in networks using brain-machine interfaces.
Curr. Opin. Neurobiol. 46, 76–83. [PubMed: 28843838]

92. Moxon KA, and Foffani G (2015). Brain-Machine Interfaces beyond Neuroprosthetics. Neuron 86,
55–67. [PubMed: 25856486]

93. Paxinos G, Huang X-F, and Toga AW (2013). The Rhesus Monkey Brain in Stereotaxic
Coordinates.

94. Gilja V, Nuyujukian P, Chestek CA, Cunningham JP, Yu BM, Fan JM, Churchland MM, Kaufman
MT, Kao JC, Ryu SI, et al. (2012). A high-performance neural prosthesis enabled by control
algorithm design. Nat. Neurosci. 15, 1752–1757. [PubMed: 23160043]

95. Wu W, Gao Y, Bienenstock E, Donoghue JP, and Black MJ (2006). Bayesian Population Decoding
of Motor Cortical Activity Using a Kalman Filter. Neural Comput. 18, 80–118. [PubMed:
16354382]

96. Dangi S, Orsborn AL, Moorman HG, and Carmena JM (2013). Design and Analysis of Closed-
Loop Decoder Adaptation Algorithms for Brain-Machine Interfaces. Neural Comput. 25, 1693–
1731. [PubMed: 23607558]

97. Malik WQ, Truccolo W, Brown EN, and Hochberg LR (2011). Efficient decoding with steady-state
kalman filter in neural interface systems. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 25–34.
[PubMed: 21078582]

98. Gowda S, Orsborn AL, Overduin SA, Moorman HG, and Carmena JM (2014). Designing
dynamical properties of brain-machine interfaces to optimize task-specific performance. IEEE
Trans. Neural Syst. Rehabil. Eng. 22, 911–920. [PubMed: 24760941]

Athalye et al. Page 42

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Highlights

• The same motor command is issued with different neural activity across

movements

• A single model of neural dynamics predicts the different activity issuing a

command

• These invariant dynamics propagate neural activity to issue the next command

• These dynamics reduce the input that neurons need to issue commands based

on feedback

Athalye et al. Page 43

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1. BMI to study neural population control of movement.
(A) Schematic of the BMI system.

(B) Schematic of decoder calibration.

(C) Single trials of BMI control.

(D) Average target acquisition time per session.

(E) Example of the same command (black arrow) being issued during single trials of

different conditions. The example command was in the −45 degree direction and the

smallest magnitude bin of analysis.

(F) Left: The average command subtrajectory from −500ms to 500ms. Right: The average

position subtrajectory from −500ms to 500ms. See Figure S1 for analysis of subtrajectories.

Athalye et al. Page 44

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2. Using the BMI to test whether invariant dynamics are used to control different
movements.
(A) Illustration of invariant dynamics.

(B) Multiple neural activity patterns (e.g. white and black square) issue the same command.

An illustrative decoder defines the command at time t as the difference between two

neurons’ instantaneous activity x2 t − x1 t , symbolized with orange arrows (top right)

indicating the command’s magnitude and sign.

(C) A trajectory of commands (orange arrows) produces one whole movement. Movement 1

(blue) and 2 (green) are driven by the same commands in different temporal orders.

(D) Neural activity that follows invariant dynamics ℎ in order to issue the commands for

movement. See Figure S3D for another example of invariant dynamics (decaying dynamics).

Athalye et al. Page 45

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3. The same command is issued by different neural activity patterns in different
movements.
(A) The same command (orange upward arrow) is issued in different conditions with

different activity patterns (blue, green dots). These patterns deviate from the condition-

pooled average activity pattern for the command (black dot).

(B) Left: An example neuron’s average firing rate (colored dots) for the example command

and conditions from Figure 1F (position subtrajectories plotted at right legend), as well

as the condition-pooled average activity (dashed black line labeled “condition-pool”). The

condition-shuffled distributions of average activity are shown with gray boxplots indicating

the 2.5th, 25th, 50th, 75th, and 97.5th percentiles. Asterisk indicates the distance for the

(command, condition, neuron) exceeded the shuffle distance (p<0.05). 5/9 or 62.5% of

the examples were significant. Distance was significantly greater than shuffle distance

aggregating over all (command, condition, neuron) tuples: Monkey G [J]: p-value < 0.001

for 9/9 [4/4] sessions, p-value < 0.001 pooled over sessions. Right: Population distance

normalized to the shuffle mean (colored dots). 7/9 or 78% of examples were significant.

Figure S2A shows population distances for all (command, condition) tuples in this session.

(C) The distribution of normalized population distances across (command, condition) tuples.

Colored ticks indicate distances in (B) right. See Figure S2BC for additional distance

distributions.

Athalye et al. Page 46

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(D) Normalized population distance averaged across (command, condition) tuples (Monkey

G [J]: n=9 [4] sessions). Bars indicate the average across sessions. Population distance

was significantly greater than shuffle distances, aggregating over all (command, condition)

tuples: Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled over

sessions.

(E) Left: Fraction of (command, condition) tuples with distance significantly greater than

shuffle distance. Middle: Fraction of commands with distance significantly greater than

shuffle distance, aggregating over conditions. Right: Fraction of neurons with distance

significantly greater than shuffle distance, calculated for each (command, condition)

separately and aggregating over all (command, condition) tuples for statistics. Throughout

(E): dashed line indicates chance level (fraction equal to 0.05 significantly deviating from

shuffle distance) and datapoints are each of 9 [4] sessions for monkey G [J]. See Figure

S6E–H for the relationship between population distance and command subtrajectories across

pairs of conditions. See Table S1 for statistics details.

Athalye et al. Page 47

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4. Invariant dynamics predict the different neural activity patterns used to issue the same
command.
(A) A linear dynamics model predicts the different activity patterns (cyan-outlined dots)

that issue a given command (orange arrow) based on previous activity. See Figure S6 for

predictions of the relationship between activity patterns across pairs of conditions.

(B) Models were tested on neural activity for a command (Left, magenta) or condition

(Right, purple) left-out of training the model. See Figure S4 for elaboration on invariant

dynamics generalization.

Athalye et al. Page 48

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(C) The coefficient of determination (R2) of models predicting neural activity given the

command it issues and previous activity, evaluated on test data not used for model fitting

(Monkey G [J]: n=9 [4] sessions). See Figure S3 for properties of the models. Inset shows

raw R2, where “shuffle” is the 95th percentile of the shuffle distribution of R2. Main panel

shows R2 normalized to shuffle. Full dynamics, command left-out dynamics, and condition

left-out dynamics all predicted neural activity significantly better than shuffle dynamics.

For each model: Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for

sessions pooled. Figure S5 shows models with behavior variables and non-linear dynamics.

(D) Left. Average activity for the example neuron, command, and conditions from Figure

3B, left.

Right. Prediction of the activity in Left by the full dynamics model (stars), the shuffle

dynamics model (black boxplot distribution), and the model predicting neural activity

only using the command (gray triangle). 8/9 or 88.9% of these examples were predicted

significantly better than shuffle dynamics. The full dynamics model predicted individual

neuron activity better than shuffle dynamics, aggregating over all (command, condition,

neuron) tuples (Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for

pooled sessions).

(E) Left. Average population activity for the example command and conditions from Figure

3B right, visualized along the activity dimension that captured the most variance (the

first principal component, labeled “PC1”, of condition-specific average population activity).

Right. Prediction of activity in Left by the full dynamics model (stars), the shuffle dynamics

model (black boxplot distribution), and the model predicting neural activity only using the

command (gray triangle). 9/9 or 100.0% of these examples were predicted with significantly

lower error than shuffle dynamics (prediction was calculated using full population activity,

not just PC1). The full dynamics model predicted population activity with lower error than

shuffle dynamics, aggregating over all (command, condition, neuron) tuples (Monkey G [J]:

p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled sessions).

(F) Model R2 from predicting the component of average neural activity for a given command

that is specific to a condition, comparing the full dynamics model (dark gray bar and filled

dots) with the mean of the shuffle dynamics model (light bar and empty dots) (Monkey G

[J]: n=9 [4] sessions). The full dynamics model predicted significantly more variance than

shuffle dynamics (Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for

pooled sessions).

(G) Left. Fraction of (command, condition) tuples where full dynamics predicts average

population activity significantly better than shuffle dynamics. Center. Fraction of commands

where full dynamics predicts average population activity significantly better than shuffle

dynamics, calculated for each condition separately and then aggregated over all conditions

for statistics. Right. Fraction of neurons where full dynamics predicts the neuron’s

average activity significantly better than shuffle dynamics, calculated for each (command,

condition) separately and then aggregated over all (command, condition) tuples for statistics.

Throughout E: datapoints are each of 9[4] sessions for Monkey G[J].

See Table S1 for statistics details.

Athalye et al. Page 49

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5. Invariant dynamics align with the decoder, propagating neural activity to issue the next
command.
(A) A linear dynamics model predicts the transition from current neural activity (colored

rings) to next neural activity (cyan-outlined dots) and next commands (orange symbols) (i.e.

the component of neural activity in the decoder space).

(B) If invariant dynamics are low-dimensional and only occupy the decoder null space (pink

plane), then they do not predict the next command (i.e. the component of neural activity in

the decoder space).

Athalye et al. Page 50

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

(C) The coefficient of determination (R2) of models predicting next neural activity given

current neural activity, evaluated on test data not used for model fitting (Monkey G [J]:

n=9 [4] sessions). Inset shows raw R2, where “shuffle” is the 95th percentile of the shuffle

distribution of R2. Main panel shows R2 normalized to shuffle. All models predicted next

neural activity significantly better than shuffle dynamics. For each model, Monkey G [J]:

p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for sessions pooled.

(D) R2 of full model for each neural activity dimension (dynamics eigenvector), sorted by

R2.

(E) Same as (C), except prediction of next command given current neural activity (Monkey

G [J]: n=9 [4] sessions). All models except decoder-null dynamics predicted next command

significantly better than shuffle dynamics. For condition left-out dynamics (purple), Monkey

G[J]: p-value < 0.001 for 9/9 [2/4] session, p-value < 0.05 for 9/9 [3/4] session, p-value n.s.

for 0/0 [1/4] sessions, p-value < 0.001 for sessions pooled. For full dynamics and command

left-out dynamics, Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for

sessions pooled.

(F) Analyses of how well the next command is predicted for individual (command,

condition) tuples. The full dynamics model predicted condition-specific next command

better than shuffle dynamics, aggregating over all (command, condition) tuples (Monkey

G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled sessions). Left.
Fraction of (command, condition) tuples where full dynamics predicts the next command

significantly better than shuffle dynamics (Monkey G [J]: n=9 [4] sessions). Right. Fraction

of commands where full dynamics predicts the next command significantly better than

shuffle dynamics, calculated for each condition separately and then aggregated over all

conditions for statistics (Monkey G [J]: n=9 [4] sessions).

(G) Visualization of the command angle (left) (i.e. the direction that the command points)

for the example command and conditions (right) from Figure 3B. For each condition (each

row), visualization shows the average current command angle (first column), the average

next command angle (second column), and the prediction of the average next command

angle by the full dynamics model (third column).

(H) For each (command, condition) tuple, prediction of the angle between the next

command and the condition-pooled average next command. Left. Fraction of (command,

condition) tuples for which the sign of the angle is accurately predicted (positive=turn

counterclockwise, negative=turn clockwise). Full dynamics predictions are significantly

more accurate than shuffle dynamics (Monkey G [J]: p-value < 0.001 for 9/9 [4/4]

sessions, p-value < 0.001 for pooled sessions. Right. Error in predicted angle. Full dynamics

predictions are significantly more accurate than shuffle dynamics (Monkey G [J]: p-value <

0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled sessions).

See Table S1 for statistics details. See also Figure S5 for models with behavior variables and

non-linear dynamics.

Athalye et al. Page 51

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6. An OFC model reveals that invariant dynamics reduce the input that a neural
population needs to issue commands based on feedback.
(A) A model of optimal feedback control for movement that incorporates invariant neural

dynamics.

(B) Three simulated trials for each condition (center-out (co), counter-clockwise (ccw), and

clockwise (cw) movements to 8 targets resulting in 24 conditions). Top: Full Dynamics

Model that uses invariant dynamics fit on experimental data. Bottom: No Dynamics Model

that uses dynamics matrix A set to 0.

(C) Input magnitude as a percentage of the No Dynamics Model (Monkey G [J]: n=9

[4] sessions). The population required significantly less input to control movement under

the Full Dynamics Model (cyan ‘D’) as compared to the No Dynamics Model (black

‘ND’). Un-normalized data were pooled across sessions and compared with a linear mixed

effect (LME) model between input magnitude and model category with session modeled

as random effect (Monkey G [J]: p-value < 0.001). Individual sessions were analyzed

with a Wilcoxon signed-rank test that paired condition across the models (Monkey G [J]:

p-value<0.05 for 9/9 [4/4] sessions).

(D) Same as (C) but for Decoder-null Dynamics. There was no significant difference in

input magnitude between Decoder-null Dynamics (pink ‘D’) and No Dynamics (black ‘ND’)

when pooling across sessions (Monkey G [J] p-value > 0.05) and on individual sessions

(Monkey G [J]: p-value<0.05 for 0/9 [0/4] sessions).

(E) The same command is issued across conditions in both the Full Dynamics Model and

No Dynamics Model. Average position subtrajectories are shown locked to an example

command across conditions.

(F) Distance between average population activity for a (command, condition) and the

average activity for the command pooling across conditions, normalized by the mean

distance of the shuffle distribution (gray boxplots showing mean, 0th percentile, 25th,

Athalye et al. Page 52

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

75th, and 95th percentile). Left: data from Full Dynamics Model. Right: data from the No

Dynamics Model. Asterisk indicates distance is greater than shuffle (p-value<0.05).

(G) Same as (F), but each point is an individual session pooling over (command, condition)

tuples (Monkey G [J]: n=9 [4] sessions). Population distances for the Full Dynamics Model

were greater than shuffle. Data was pooled over sessions using a LME with session modeled

as random effect (Monkey G [J]: p-value < 0.001), and individual sessions were analyzed

with a Mann-Whitney U test (p-value<0.05 for Monkey G [J] on 9/9 [4/4] sessions). No

difference was detected in population distances between the No Dynamics Model and

shuffle when pooling across sessions (Monkey G [J]: p-value > 0.05) and on individual

sessions (p-value<0.05 for Monkey G (J) on 0/9 (0/4) sessions).

(H) Same as (G), but for the Decoder-null Dynamics Model (pink ‘D’). No difference was

detected in population distances between the Decoder-null Dynamics Model and shuffle

when pooling across sessions (Monkey G [J]: p-value > 0.05) and on individual sessions

(p-value<0.05 for Monkey G (J) on 0/9 (0/4) sessions). Also, no difference was detected

in population distances between the No Dynamics Model and shuffle when pooling across

sessions (Monkey G [J]: p-value > 0.05) and on individual sessions (p-value<0.05 for

Monkey G(J) on 0/9 (0/4) sessions).

See Table S2 for statistics details. See also Figure S3E–G for experimental data consistent

with the model’s view that invariant dynamics interact with ongoing input to control

movement.

Athalye et al. Page 53

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Athalye et al. Page 54

Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Neural and behavioral datasets This paper DOI: https://doi.org/10.48324/
dandi.000404/0.230605.2024

Experimental models: Organisms/strains

Rhesus macaque (macaca mulatta) California National Primate Center,
Davis, CA

Software and algorithms

Python 2.7, 3.6 Python Software Foundation https://www.python.org

ssm – for fitting switching LDS model Linderman 2017 citation https://github.com/lindermanlab/ssm

Analysis code This paper DOI: https://doi.org/10.5281/zenodo.8006653
github: https://github.com/pkhanna104/
bmi_dynamics_code

Other

128-channel microwire electrode arrays Innovative Neurophysiology https://inphysiology.com/

Curr Biol. Author manuscript; available in PMC 2024 July 24.

https://www.python.org
https://github.com/lindermanlab/ssm
https://github.com/pkhanna104/bmi_dynamics_code
https://github.com/pkhanna104/bmi_dynamics_code
https://inphysiology.com/

	Summary:
	eTOC blurb
	Introduction
	Results
	BMI to study neural population control of movement
	Using the BMI to test whether invariant dynamics are used to control different movements
	The same command is issued by different neural activity patterns in different movements
	Invariant dynamics predict the different neural activity patterns used to issue the same command
	Invariant dynamics align with the decoder, propagating neural activity to issue the next command
	An OFC model reveals that invariant dynamics reduce the input that a neural population needs to issue commands based on feedback

	Discussion
	STAR Methods
	RESOURCE AVAILABILITY
	Lead contact
	Materials availability
	Data and code availability

	EXPERIMENTAL MODEL AND SUBJECT DETAILS
	METHOD DETAILS
	Electrophysiology and experimental setup
	Neuroprosthetic decoding
	Decoder algorithm and calibration -- Monkey G
	Decoder algorithm and calibration -- Monkey J

	Definition of the command for the BMI
	Command definition -- Monkey G
	Command definition -- Monkey J

	Neuroprosthetic tasks
	Center-out task:
	Obstacle-avoidance task:
	Number of sessions

	Optimal feedback control model and simulation
	Neural population dynamics with input
	BMI cursor dynamics
	Joint dynamics of neural activity and cursor
	OFC to reach a target
	OFC for center-out task
	OFC for obstacle-avoidance using a heuristic
	“Full Dynamics Model” Simulation
	“No Dynamics Model” Simulation
	“Decoder-null Dynamics Model” Simulation
	Noise

	QUANTIFICATION AND STATISTICAL ANALYSIS
	Command discretization for analysis
	Conditions that used a command regularly

	Cursor and command trajectory visualization
	Cursor position subtrajectories
	Command subtrajectories

	Matching the condition-pooled distribution
	Comparing command subtrajectories
	Behavior-preserving shuffle of activity
	Analysis of activity issuing a given command
	Condition-specific neural activity distances
	Activity distances pooling over conditions
	Single neuron distances
	Neural activity distances summary

	Invariant dynamics models
	Estimation of Ridge Parameter
	Invariant dynamics model: fitting and testing
	Generalization of invariant dynamics
	Decoder-null dynamics model
	Shuffle dynamics model

	Invariant dynamics model characterization
	Dimensionality and eigenvalues

	Invariant dynamics model predictions
	Predicting next neural activity: xt+1∣xt,A,b
	Predicting next command: commandt+1∣xt,A,b,K
	Predicting activity issuing a given command
	Predicting current activity only with command
	Comparing invariant dynamics to shuffle
	Predicting condition-specific activity
	Predicting condition-specific component
	Predicting condition-specific next command
	Analysis of predicted command angle

	Estimation of behavior-encoding models
	Analysis between pairs of conditions
	Average neural activity for a given command
	Average next command
	Correlating neural distance with behavior

	Analysis of Optimal Feedback Control Models
	Input magnitude
	Simulated activity issuing a given command

	Statistics Summary

	Inclusion and Diversity
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Key resources table

