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Summary:

It has been proposed that the nervous system has the capacity to generate a wide variety of 

movements because it re-uses some invariant code. Previous work has identified that dynamics 

of neural population activity are similar during different movements, where dynamics refer to 

how the instantaneous spatial pattern of population activity changes in time. Here we test whether 

invariant dynamics of neural populations are actually used to issue the commands that direct 

movement. Using a brain-machine interface that transformed rhesus macaques’ motor cortex 
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activity into commands for a neuroprosthetic cursor, we discovered that the same command is 

issued with different neural activity patterns in different movements. However, these different 

patterns were predictable, as we found that the transitions between activity patterns are governed 

by the same dynamics across movements. These invariant dynamics are low-dimensional, and 

critically, they align with the brain-machine interface, so that they predict the specific component 

of neural activity that actually issues the next command. We introduce a model of optimal 

feedback control that shows that invariant dynamics can help transform movement feedback 

into commands, reducing the input that the neural population needs to control movement. 

Altogether our results demonstrate that invariant dynamics drive commands to control a variety 

of movements, and show how feedback can be integrated with invariant dynamics to issue 

generalizable commands.

eTOC blurb

The brain’s capacity to control diverse movement may rely on re-using an invariant neural code. 

Athalye and Khanna et al. show that animals control a brain-machine interface using dynamics 

of neural population activity that are invariant across movements. A model demonstrates that 

invariant dynamics can help transform feedback into motor commands.

Keywords

neural population dynamics; motor cortex; motor control; brain-machine interfaces; 
neuroprosthetics; optimal feedback control; motor commands; movement representations; 
dynamical systems

Introduction

Our brain can generate a vast variety of movements. It is believed that the brain would not 

have such capacity if it used separate populations of neurons to control each movement. 

Thus, it has been proposed that the brain’s capacity to produce different movements relies 

on re-using the dynamics of a specific neural population’s activity 1–3. While theoretical 

work shows how dynamics emerge from neural activity transmitted through recurrent 

connectivity1,4–6, it has been elusive to identify whether the brain re-uses dynamics to 

actually control movements.

Recent work on the motor cortex, a region that controls movement through direct projections 

to the spinal cord 7 and other motor centers 8–10, has found that population dynamics are 

similar across different movements. Specifically, the spatial pattern of population activity 

at a given time point (i.e. the instantaneous firing rate of each neuron in the population) 

systematically influences what spatial pattern occurs next. Models of dynamics ℎ that are 

invariant across movements3 can predict the transition from the current population activity 

pattern xt to the subsequent pattern xt + 1:

xt + 1 = ℎ xt + inputt + noiset (1)
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where external input inputt and noise noiset are typically unmeasured. Recent work11 has 

provided the intuition that invariant dynamics bias neural activity to avoid “tangling” 

– which is when the same activity pattern undergoes different transitions in different 

movements. These dynamics models have explained features of neural activity that were 

unexpected from behavior 11–14 such as oscillations12, and have predicted neural activity 

during different movements on single trials 15–18, for single neurons’ spiking 15, for local 

field potential features 19,20, and over many days 18,21. These models also help predict 

behavior 16,18,19,22.

While past work characterized the statistical relationship between invariant dynamics and 

behavior, it remains untested if invariant dynamics are actually used to issue commands for 

movement. This test requires identifying the causal transformation from neural activity to 

command, where the “command” is the instantaneous influence of the nervous system on 

movement. This is a long-standing challenge in motor control. While past work has modeled 

this transformation23–25, ongoing research reveals its complexity8–10,26–28.

We addressed this challenge with a brain-machine interface (BMI) 29–32 in which the 

transformation from neural activity to command was known exactly and determined by the 

experimenter. We trained rhesus monkeys to use motor cortex population activity to move a 

two-dimensional computer cursor on a screen through a BMI. The BMI transformed neural 

activity into a force-like command to update the cursor’s velocity, analogous to muscular 

force on the skeleton. Thus, an individual movement was produced by a series of commands, 

where each command acted on the cursor at an instant in time.

We discovered that the same command is issued with different neural activity patterns 

in different movements. Critically, these different patterns transition according to low-

dimensional, invariant dynamics to patterns that issue the next command, even when 

the next command differs across movements. Thus, our results demonstrate that invariant 

dynamics drive commands to control different movements.

While past work has presented a view of how dynamics operate in a feedforward manner, 

propagating an initial state of activity 23,33,34 to produce movement, it has been unclear 

how feedback24,35–37 integrates with invariant dynamics. Given that motor cortex is 

interconnected to larger motor control circuits including cortical38–41 and cortico-basal 

ganglia-thalamic circuits8,9,42,43, we introduce a hierarchical model44 of optimal feedback 

control (OFC) in which the brain (i.e. larger motor control circuitry) uses feedback to 

control the motor cortex population which controls movement45,46. Our model reveals that 

invariant dynamics can help transform feedback into commands, as they reduce the input 

that a population needs to issue commands. Altogether, our results demonstrate that invariant 

neural dynamics are both used and useful for issuing commands across different movements.

Results

BMI to study neural population control of movement

We used a BMI47–49 to study the dynamics of population activity as it issued commands 

for movement of a two-dimensional computer cursor (Figure 1A). Population activity (20–
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151 units) was recorded using chronically implanted microwire electrode arrays spanning 

bilateral dorsal premotor cortex and primary motor cortex. Each unit’s spiking rate at time 

t (computed as the number of spikes in a temporal bin) was stacked into a vector of 

population activity xt, and the BMI used a “decoder” given by matrix K to linearly transform 

population activity into a two-dimensional command:

commandt = Kxt (2)

The command linearly updated the two-dimensional velocity vector of the computer cursor:

velocityt = commandt + α*velocityt − 1 + offset (3)

We note that the BMI was not identical across the two subjects, as neural activity 

was modeled with different statistical distributions (Gaussian for Monkey G and a Point 

Processs47,48 for Monkey J, see STAR methods – “Neuroprosthetic decoding”).

The decoder was initialized as subjects passively watched cursor movement, calibrated as 

subjects used the BMI in closed-loop49 without performing trained overt movement, and 

then fixed for the experiment (Figure 1B). Critically, the decoder was not fit during trained 

overt movement, as was done previously16, so it did not demand neural dynamics associated 

with overt movement.

To study control of diverse movements, we trained monkeys to perform two different 

tasks (Figure 1CD). Monkeys performed a center-out task in which they moved the cursor 

from the center of the workspace to one of eight radial targets, and they performed an 

obstacle-avoidance task in which they avoided an obstacle blocking the straight path to 

the target. Our tasks elicited up to 24 conditions of movement (with an average of 16–17 

conditions per session), where each condition is defined as the task performed (“co” = 

center-out task, “cw” / “ccw” = clockwise/counterclockwise movement around the obstacle 

in the obstacle-avoidance task) and the target achieved (numbered 0 through 7).

Importantly, the BMI enabled us to identify when neural activity issued the same command 

in different conditions (Figures 1EF, S1). We considered two-dimensional, continuous-

valued commands as the same if they fell within the same discrete bin for analysis. We 

categorized commands into 32 bins (8 angular × 4 magnitude) based on percentiles of the 

continuous-valued distribution (Figure S1A; see STAR methods - “Command discretization 

for analysis”). On each session, a command (of the 32 discretized bins) was analyzed if 

it was used in a condition 15 or more times (Figure S1B), for more than one condition. 

Each individual command was used with regularity during multiple conditions (on average 

~7 conditions, Figure S1B), within distinct local “subtrajectories” (Figures 1F, S1, STAR 

methods – “Cursor and command trajectory visualization”).

Using the BMI to test whether invariant dynamics are used to control different movements

The BMI enabled us to test whether the pattern of neural activity systematically influences 

the subsequent pattern and command. We can visualize an activity pattern xt as a point 

in high-dimensional activity space, where each neuron’s activity is one dimension, and 
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visualize the transition between two patterns xt and xt + 1 as an arrow (Figure 2A). Then, 

dynamics can be visualized as a flow field in activity space. This flow field is invariant 

because the predicted transition for a given neural activity pattern (i.e. its arrow) does 

not change, regardless of the current command or condition. Because there are more 

neurons than dimensions of the command, different activity patterns can issue the same 

command24,50 (Figure 2B), as is believed to be true in the natural motor system23,24,50. The 

BMI decoder defined the “decoder space” as the dimensions of neural activity that determine 

the command and the “decoder null space” as the orthogonal dimensions which have no 

consequence on the decoder. The BMI allowed us to observe the precise temporal order of 

commands (Figure 2C) and test whether activity trajectories followed the flow of invariant 

dynamics to issue these commands for movements (Figure 2D).

The same command is issued by different neural activity patterns in different movements

First, we tested whether the same command is issued by different neural activity patterns in 

different movements, as would be expected if the current pattern influences the subsequent 

pattern and command (Figure 3A). The BMI enabled this analysis with its concrete 

definition of the command for movement. We calculated the distance between the average 

neural activity for a given command and condition and the average neural activity for 

the given command pooled over conditions. We then tested if this distance is larger than 

expected simply due to the variability of noisy neural activity. To emulate the scenario in 

which neural activity for a given command has the same distribution across conditions, we 

constructed shuffled datasets where we identified all observations of neural activity issuing 

a given command and shuffled their condition-labels, for all commands (see STAR methods 

– “Behavior-preserving shuffle of activity”). In this scenario, the distance is expected to be 

greater than zero simply because average activity is estimated from limited samples and thus 

is subject to variability.

Overall, neural activity issuing a given command significantly deviated across conditions 

relative to the shuffle distribution (Figure 3B–E). Distances averaged within-session ranged 

from 10% to 200% larger than shuffle distance (Figure 3D and see Figure S2 for additional 

distributions). Distances were significantly larger than shuffle distances for a large fraction 

of individual (command, condition) tuples (~30% for Monkey G, ~70% for Monkey J), 

individual commands (~65% for G, ~90% for J) when aggregating over conditions, and 

individual neurons (~40% for G, ~80% for J) when aggregating over all (command, 

condition) tuples (Figure 3E). Further, these deviations reflected the behavior; the distance 

between two patterns issuing the same command correlated with the distance between the 

command subtrajectories (Figure S6E–H).

Invariant dynamics predict the different neural activity patterns used to issue the same 
command

Given that a command was not issued with the same activity pattern across conditions, we 

next constructed a model of invariant dynamics. We used single-trial neural activity xt from 

all conditions to estimate dynamics with a linear model (Figure 4A):
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xt + 1 = Axt + b (4)

We found that the dynamics A were low-dimensional (~4 dimensions, Figures 5D and 

S3B) and decaying to a fixed point (Figure S3AC), contrasting with rotational dynamics 

observed during natural motor control 12,13,16,22,51. See Figure S3D for an illustration of 

how decaying invariant dynamics can control different movements. Notably, a non-linear 

dynamics model (a recurrent switching linear dynamical system52) did not out-perform these 

simple linear dynamics (Figure S5C–F).

We asked whether invariant dynamics predict the different activity patterns observed to issue 

the same command. Concretely, we predicted the activity pattern given the command it 

issued and its previous activity (Figure 4A, see STAR methods – “Invariant dynamics model 

predictions”), combining the dynamics model (Equation 4) with the decoder (Equation 2). 

This analyzed whether the model could predict the component of the activity pattern that 

can vary when a given command is issued, i.e. the component in the decoder null space. 

For comparison, we also computed the prediction of neural activity when only given the 

command it issued (in the absence of a dynamics model). Further, we tested whether the 

invariant dynamics model generalized to new commands and conditions. Dynamics models 

were fit on neural activity specifically excluding individual commands or conditions, and 

these models were used to predict the neural activity for the left-out commands or conditions 

(Figures 4B and S4, see STAR methods – “Invariant dynamics models”).

We tested whether the dynamics model’s accuracy exceeded a dynamics model fit on 

the shuffled datasets that preserved the temporal order of commands while shuffling the 

neural activity issuing the commands (see STAR methods – “Behavior-preserving shuffle of 

activity”). The shuffle dynamics model captured the expected predictability in neural activity 

due to the predictability of commands in the performed movements.

On the level of single time points in individual trials, we found that the dynamics 

model significantly exceeded shuffle dynamics in predicting the activity pattern issuing a 

given command based on the previous pattern. Importantly, it generalized across left-out 

commands and conditions (Figure 4C) and even when much larger subsets of commands 

and conditions were left-out (Figure S4). We confirmed that the result was not driven by 

neural activity simply representing behavioral variables (cursor kinematics, target location, 

and condition) in addition to the command (Figure S5AB), consistent with previous work 53.

The invariant dynamics model also predicted the different average activity patterns for 

each command and condition (Figure 4D–G) significantly better than shuffle dynamics. It 

predicted 20–40% of the condition-specific component of neural activity (i.e. the difference 

between average activity for a (command, condition) and the prediction of that activity 

based on the command alone) (Figure 4F, see STAR methods – “Invariant dynamics model 

predictions”). The model predicted neural activity for the vast majority of commands, 

conditions, and neurons (Figure 4G), revealing that dynamics were indeed invariant.

Finally, the dynamics model preserved structure of neural activity across pairs of conditions 

(Figure S6A–D) and predicted that the distance between two activity patterns issuing the 
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same command would be correlated with the distance between the corresponding command 

subtrajectories (Figure S6E–I). Altogether, these results show that invariant dynamics 

contribute to what activity pattern was used to issue a command, generalizing across 

commands and conditions.

Invariant dynamics align with the decoder, propagating neural activity to issue the next 
command

We next asked whether invariant dynamics were actually used to transition between 

commands. Concretely, we used the dynamics model (Equation 4) to predict the transition 

from the current activity pattern to the next pattern, and then we applied the BMI decoder 

to this prediction of next pattern in order to predict the next command (i.e. its continuous 

value) (Figure 5A). We used the same dynamics model fit in Figure 4, except here we 

did not combine the model with given information about the command. This tests whether 

invariant dynamics predict the component of neural activity in the decoder space, which 

actually drives the BMI. The BMI enabled this analysis as it defines the transformation from 

neural activity to command which has not been measurable during natural motor control.

We emphasize that one possibility is that invariant dynamics accompany commands without 

actually driving them, i.e. without predicting the component of neural activity in the 

decoder space (Figure 5B). Invariant dynamics that are low-dimensional might only occupy 

dimensions that are orthogonal to the decoder, such that they only predict the component 

of neural activity in the decoder null space. To assess this possibility, we fit an invariant 

dynamics model on the component of neural activity in the decoder null space (“decoder-

null dynamics”, see STAR methods – “Invariant dynamics models”). While this model was 

restricted to the decoder-null space, it maintained similar dimensionality and eigenvalues to 

the full dynamics model (Figure S3BC).

Both the full dynamics and the decoder-null dynamics model predicted next neural activity 

significantly better than shuffle dynamics (Figure 5C) on the level of single time points in 

individual trials. This reveals that invariant dynamics occupied decoder-null dimensions. 

Given that the full dynamics model was low-dimensional (Figure S3B) and predicted 

~4 dimensions more accurately than the rest of neural activity (Figure 5D), we next 

tested whether the dynamics aligned with the decoder. Critically, the full dynamics model 

predicted the next command (Figure 5E) better than shuffle dynamics, while decoder-

null dynamics provided absolutely no prediction for the next command, as expected by 

construction. The dynamics were invariant, as the full dynamics model generalized across 

commands and conditions that were left-out from model fitting (Figure 5E) and predicted 

the next command for the majority of (command, condition) tuples (Figure 5F). These 

predictions preserved structure across pairs of conditions, such that invariant dynamics 

indicated how similar the next command would be across pairs of conditions (Figure S6I–

K).

Notably, invariant dynamics could predict the turn that the next command would take 

following a given command in a specific condition relative to the average next command 

(averaged across conditions for the given current command) (Figure 5GH). Specifically, 

the dynamics model predicted whether the turn would be clockwise or counter clockwise 
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(Figure 5H left) and the angle of turn (Fig 5H right) better than shuffle dynamics. 

Altogether, these results show that invariant dynamics align with the decoder and are used to 

transition between commands.

An OFC model reveals that invariant dynamics reduce the input that a neural population 
needs to issue commands based on feedback

We observe that the invariant dynamics model did not perfectly predict transitions 

between commands. Throughout movement there were substantial residuals (Figure S3E–

G), consistent with ongoing movement feedback driving neural activity in addition to 

invariant dynamics. However, it has been unclear how the brain can integrate feedback with 

invariant dynamics to control movement. Thus, we constructed a model of optimal feedback 

control (OFC) that incorporates invariant neural dynamics.

We introduce a hierarchical model in which the brain (i.e. larger motor control circuitry) 

controls the neural population which controls movement of the BMI cursor (Figure 6A, 

Equation 5). Population activity xt issues commands for movement and is driven by 

three terms: invariant dynamics (which we hypothesize are intrinsic to some connectivity 

of the neural population), input, and noise. The brain transforms ongoing cursor state 

and population activity into the input to the population that is necessary to achieve 

successful movement. Concretely, the brain acts as an optimal linear feedback controller 

with knowledge of the neural population’s invariant dynamics, the BMI decoder, and the 

condition of movement. In this formulation, the brain’s objective was to achieve the target 

while using the smallest possible input to the population. This objective minimizes the 

communication from the brain to the population, which we can think of as minimizing the 

specific synaptic input to the neural population that would not be predicted based on the 

current state of the population’s firing rates. Importantly, this incentivized the OFC model to 

optimize input in order to use invariant dynamics to control movement, rather than relying 

solely on input to issue commands. Consistent with this formulation, experiments show that 

thalamic input into motor cortex is optimized during motor learning54.

xt + 1 = Axt + b + inputt + noiset

inputt = ft
LQR xt, cursort, condition

cursort + 1 = BMI cursort, xt

(5)

We used this model to address whether observed invariant dynamics could be used 

for feedback control; future work will be needed to compare actual synaptic input to 

predicted input from a feedback control model. For our question, the model needed to 

produce task movements, but these movements did not need to resemble experimentally-

observed movements. We simulated the model performing center-out and obstacle-avoidance 

movements with the decoders that were used in BMI experiments (see STAR methods 

– “Optimal feedback control model and simulation”). In the Full Dynamics Model, the 

brain computed the minimal input to a population that followed the invariant dynamics we 

observed experimentally. In the No Dynamics Model, the minimal input was computed to 

a neural population that had no invariant dynamics (i.e. the A matrix was set to zero). To 
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facilitate comparison, we designed the models to receive the same noise magnitude and to 

produce behavior with equal success and target acquisition time (Figure 6B).

These simulations revealed that the population required significantly less input in the Full 

Dynamics Model than in the No Dynamics Model (Figure 6C). This effect was erased in 

the Decoder-Null Dynamics Model (Fig 6D), in which the OFC model’s invariant dynamics 

were restricted to the decoder-null space. These results show that invariant dynamics that 

specifically align with the decoder, as experimentally-observed, can help the brain perform 

feedback control, reducing the input that the population needs to issue commands based on 

feedback.

Finally, we confirmed the principle that feedback control with invariant dynamics makes use 

of distinct activity patterns to issue a particular command. As in Figure 3, we compared 

the OFC models’ neural activity against shuffled activity that preserved the temporal order 

of commands. The population activity distances for (command, condition) tuples were 

significantly larger than shuffle in the Full Dynamics Model but not in the No Dynamics 

Model (Figure 6FG). Further, this effect depended on alignment between invariant dynamics 

and the decoder, as we detected no difference between the Decoder-Null Dynamics Model 

and shuffle (Figure 6H). Thus, the OFC model used different neural activity patterns to issue 

the same command only when the invariant dynamics were useful for feedback control.

Discussion

Theoretical work shows that recurrent connectivity can give rise to neural population 

dynamics for motor control1,4,5 and endow the brain with the capacity to generate diverse 

physical movement3. Experimental work has found that population activity in the motor 

cortex follows similar and predictable dynamics across different movements11,12,16. But it 

has been untested whether dynamics that are invariant across movements are used to actually 

control movement, as the transformation from neural activity to motor command has been 

challenging to measure26,27 and model23–25. Here, we use a BMI to perform that test.

We discovered that different neural activity patterns are used to issue the same command 

in different movements. The activity patterns issuing the same command vary systemically 

depending on the past pattern, and critically, they transition according to low-dimensional, 

invariant dynamics towards activity patterns that causally drive the subsequent command. 

Our results’ focus on the command provides a conceptual advance beyond previous work 

that characterized properties of dynamics during behavior 12,13,15,16, revealing that invariant 

dynamics are actually used to control movement.

Further, it has been unclear how the brain could integrate invariant dynamics with feedback 
24,35–37 to control movement. We introduce a hierarchical model44 of optimal feedback 

control, in which the brain uses feedback to control a neural population that controls 

movement. Optimal control theory reveals that invariant dynamics that are aligned to the 

decoder can help the brain perform feedback control of movement, reducing the input that a 

population needs to issue the appropriate commands. The model verified that when invariant 

dynamics are used for feedback control, the same command is issued with different neural 
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activity patterns across movements. Altogether, these findings form a basis for future studies 

on what connectivity and neural populations throughout the brain give rise to invariant 

dynamics, whether the brain sends inputs to a neural population to take advantage of 

invariant dynamics, and whether invariant dynamics actually drive muscles during physical 

movement.

These results provide strong evidence against one traditional view that the brain reuses the 

same neural population activity patterns to issue a particular command. This perspective is 

present in classic studies that describe neurons as representing movement parameters55,56. 

It is still debated what movement parameters are updated by motor cortex neurons 28,57–59, 

as population activity encodes movement position 60–62, distance 63, velocity 61,62, speed 
64, acceleration 65, and direction of movement 64,66–68, as well as muscle-related parameters 

such as force/torque 55,68–70, muscle synergies 71,72, muscle activation 73–75, and even 

activation of motor units27. Regardless of how commands from motor cortex update physical 

movement, our findings using a BMI strongly suggest that the motor cortex does not use the 

same neural activity pattern to issue a specific motor command. Our findings instead support 

the recent proposal that neural activity in motor cortex avoids “tangling”11 while issuing 

commands.

We found that invariant dynamics do not perfectly determine the neural population’s next 

command. We propose that as the brain sends input to the neural population, it performs 

feedback control on the state of the neural population’s invariant dynamics in order to 

produce movement. This proposal expands the number of behaviors for which invariant 

dynamics are useful. This is because invariant dynamics do not need to define the precise 

neural trajectories12,34 that produce movement; they only need to provide useful transitions 

of neural activity that inputs can harness to control movement. In our data, simple dynamics 

(decaying dynamics with different time constants) in a low-dimensional activity space (~4 

dimensions) were used to control many conditions of movement (~20 conditions). We find 

that invariant dynamics constrain neural activity in dimensions which do not directly matter 

for issuing current commands50, so that inputs in these dimensions can produce future 

commands (Figure 6C). This mechanism refutes a simplistic interpretation of the minimal 

intervention principle76 in which neural activity should only be controlled in the few 

dimensions which directly drive commands. This also accords with the finding that motor 

cortex responses to feedback are initially in the decoder null space before transitioning to 

neural activity that issues corrective commands 24.

There is almost surely a limitation to the behaviors that particular invariant dynamics are 

useful for. Motor cortex activity occupies orthogonal dimensions and shows a different 

influence on muscle activation during walking and trained forelimb movement 26, and 

follows different dynamics for reach and grasp movements 77. Notably, our finding of 

decaying dynamics for BMI control contrasts with rotational dynamics observed during 

natural arm movement 12,13,16,22. We speculate this could be because controlling the BMI 

relied more on feedback control than a well-trained physical movement, because controlling 

the BMI did not require the temporal structure of commands needed to control muscles for 

movement2, and/or because controlling the BMI did not involve proprioceptive feedback 

of physical movement35. Recent theoretical work shows that cortico-basal ganglia-thalamic 
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loops can switch between different cortical dynamics useful for different temporal patterns 

of commands 46.

The use of invariant dynamics to issue commands has implications for how the brain learns 

new behavior 78,79, enabling the brain to leverage pre-existing dynamics for initial learning 
25,80,81 and to develop new dynamics through gradual reinforcement 82,83. This learning 

that modifies dynamics relies on plasticity in cortico-basal ganglia circuits 83–85 and permits 

the brain to reliably access a particular neural activity pattern for a given command and 

movement 32, even if the same neural activity pattern is not used to issue the same command 

across different movements.

Modeling invariant dynamics can inform the design of new neuroprosthetics that can 

generalize commands to new behaviors 16 and classify entire movement trajectories 86. 

We expect that as new behaviors are performed, distinct neural activity patterns will be used 

to issue the same command, but that invariant dynamics can predict and thus recognize 

these distinct neural patterns as signal for the BMI rather than noise. In addition, our results 

inform the design of rehabilitative therapies to restore dynamics following brain injury or 

stroke to recover movement 87,88.

Overall, this study put the output of a neural population into focus, revealing how rules 

for neural dynamics are used to issue commands and produce different movements. This 

was achieved by studying the brain as it controlled the very neural activity we recorded. 

BMI 78,89–92, especially combined with technical advances in measuring, modeling, and 

manipulating activity from defined populations, provides a powerful technique to test 

emerging hypotheses about how neural circuits generate activity to control behavior.

STAR Methods

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Vivek R. Athalye 

(va237@columbia.edu).

Materials availability—This study did not generate new unique reagents.

Data and code availability

• Monkey BMI data (binned spike counts, cursor trajectories, condition 

parameters, decoder parameters, and task parameters) has been deposited in the 

DANDI Archive (DOI: https://doi.org/10.48324/dandi.000404/0.230605.2024) 

and is publicly available as of the date of publication.

• All original code has been deposited at Zenodo (DOI: https://doi.org/

10.5281/zenodo.8006653) and at GitHub (https://github.com/pkhanna104/

bmi_dynamics_code) and is publicly available as of the date of publication.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

All training, surgery, and experimental procedures were conducted in accordance with 

the NIH Guide for the Care and Use of Laboratory Animals and were approved by the 

University of California, Berkeley Institutional Animal Care and Use Committee (IACUC). 

Two adult male rhesus macaque monkeys (7 years old, monkey G and 10 years old, monkey 

J) (Macaca mulatta, RRID: NCBITaxon:9544) were used as subjects in this study. Prior 

to this study, Monkeys G and J were trained at arm reaching tasks and spike-based 2D 

neuroprosthetic cursor tasks for 1.5 years. All animals were housed in pairs.

METHOD DETAILS

Electrophysiology and experimental setup—Two male rhesus macaques were 

bilaterally, chronically implanted with 16 × 8 arrays of Teflon-coated tungsten microwire 

electrodes (35 mm in diameter, 500 mm separation between microwires, 6.5 mm length, 

Innovative Neurophysiology, Durham, NC) in the upper arm area of primary motor 

cortex (M1) and posterior dorsal premotor cortex (PMd). Localization of target areas was 

performed using stereotactic coordinates from a neuroanatomical atlas of the rhesus brain 93. 

Implant depth was chosen to target layer 5 pyramidal tract neurons and was typically 2.5 – 3 

mm, guided by stereotactic coordinates.

During behavioral sessions, neural activity was recorded, filtered, and thresholded using 

the 128-channel Multichannel Acquisition Processor (Plexon, Inc., Dallas, TX) (Monkey 

J) or the 256-channel Omniplex D Neural Acquisition System (Plexon, Inc.) (Monkey 

G). Channel thresholds were manually set at the beginning of each session based on 1–2 

min of neural activity recorded as the animal sat quietly (i.e. not performing a behavioral 

task). Single-unit and multi-unit activity were sorted online after setting channel thresholds. 

Decoder units were manually selected based on a combination of waveform amplitude, 

variance, and stability over time.

Neuroprosthetic decoding—Subjects’ neural activity controlled a two-dimensional (2D) 

neuroprosthetic cursor in real-time to perform center-out and obstacle-avoidance tasks. The 

neuroprosthetic decoder consists of two models:

1. A cursor dynamics model capturing the physics of the cursor’s position and 

velocity.

2. A neural observation model capturing the statistical relationship between neural 

activity and the cursor.

The neuroprosthetic decoder combines the models optimally to estimate the subjects’ intent 

for the cursor and to correspondingly update the cursor.

Decoder algorithm and calibration -- Monkey G: Monkey G used a velocity Kalman filter 

(KF) 94,95 that uses the following models for cursor state ct and observed neural activity xt :

ct = Act − 1 + wt, wt ∼ N 0, W
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xt = Cct + qt, qt ∼ N 0, Q

In the cursor dynamics model, the cursor state ct ∈ R5 was a 5-by-1 vector 

posx, poxyvelx, vely, 1 T , A ∈ R5 × 5 captures the physics of cursor position and velocity, and wt

is additive Gaussian noise with covariance W ∈ R5 × 5 capturing cursor state variance that is 

not explained by A.

In the neural observation model, neural observation xt ∈ RN was a vector corresponding to 

spike counts from N units binned at 10 Hz, or 100ms bins. C models a linear relationship 

between the subjects’ neural activity and intended cursor state. The decoder only modeled 

the statistical relationship between neural activity and intended cursor velocity, so only the 

columns corresponding to cursor state velocity and the offset (columns 3–5) in C were 

non-zero. Q is additive Gaussian noise capturing variation in neural activity that is not 

explained by Cct. For Monkey G, 35–151 units were used in the decoder (median 48 units).

In summary, the KF is parameterized by matrices 

A ∈ R5 × 5, W ∈ R5 × 5, C ∈ RN × 5, Q ∈ RN × N . The KF equations used to update the 

cursor based on observations of neural activity are defined as in 95.

The KF parameters were defined as follows. For the cursor dynamics model, the A and W
matrices were fixed as in previous studies 96. Specifically, they were:

A =

1 0 0.1 0 0
0 1 0 0.1 0
0 0 0.8 0 0
0 0 0 0.8 0
0 0 0 0 1

, W =

0 0 0 0 0
0 0 0 0 0
0 0 7 0 0
0 0 0 7 0
0 0 0 0 0

where units of cursor position were in cm and cursor velocity in cm/sec.

For the neural observation model, the C and Q matrices were initialized from neural and 

cursor kinematic data collected at the beginning of each experimental session while Monkey 

G observed 2D cursor movements that moved through either a center-out task or obstacle 

avoidance task. Maximum likelihood methods were used to fit C and Q.

Next, Monkey G performed a “calibration block” where he performed the center-out 

or obstacle-avoidance task movements as the newly initialized decoder parameters were 

continuously calibrated/adapted online (“closed-loop decoder adaptation”, or CLDA). This 

calibration block was performed in order to arrive at parameters that would enable excellent 

neuroprosthetic performance. Every 100ms, decoder matrices C and Q were adapted using 

the recursive maximum likelihood CLDA algorithm 49. Half-life values, defining how 

quickly C and Q could adapt, were typically 300 sec, and adaptation blocks were performed 

with a weak, linearly decreasing “assist” (re-defining ct as a weighted linear combination 

of user-generated ct and optimal ct to drive the cursor to the target). Typical assist values 
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at the start of the block were 90% user-generated, 10% optimal and decayed to 100% user-

generated, 0% optimal over the course of the block. Following CLDA, decoder parameters 

were fixed. Then the experiment proceeded with Monkey G performing the center-out and 

obstacle-avoidance tasks.

Decoder algorithm and calibration -- Monkey J: Monkey J used a velocity Point Process 

Filter (PPF) 47,48. The PPF uses the same cursor dynamics model for cursor state ct as the KF 

above, but uses a different neural observations model (a Point Process model rather than a 

Gaussian model) for the spiking St
1:N of each of N neurons:

ct = Act − 1 + wt, wt ∼ N(0, W )

p St
1:N ∣ vt =

j = 1

N
λj t ∣ vt, ϕj Δ st

j
exp −λj t ∣ vt, ϕj Δ

In the neural observations model, neural observation St
j is the jth neuron’s spiking activity, 

equal to 1 or 0 depending on whether the jth neuron spikes in the interval t, t + Δ . We 

used Δt = 5ms bins since consecutive spikes rarely occurred within 5ms of each other. For 

Monkey J, 20 or 21 units were used in the decoder (median 20 units). The probability 

distribution over spiking p St
1:N ∣ vt  was a point process with λj t ∣ vt, ϕj  as the jth neuron’s 

instantaneous firing rate at time t . λj t ∣ vt, ϕj  depended on the intended cursor velocity 

vt ∈ R2 in the two dimensional workspace and the parameters ϕj for how neuron j encodes 

velocity. λj t ∣ vt, ϕj  was modeled as a log-linear function of velocity:

λj t ∣ vt, ϕj = exp(βj + αj
Tvt)

where ϕj parameters consist of αj ∈ R2, βj ∈ R1.

In summary, the PPF is parameterized by A ∈ R5 × 5, W ∈ R5 × 5, ϕ1:N . The PPF equations 

used to update the cursor based on observations of neural activity are defined as in 48.

The PPF parameters were defined as follows. For the cursor dynamics model, the A and W
matrices are defined as:

A =

1 0 0.005 0 0
0 1 0 0.005 0
0 0 0.989 0 0
0 0 0 0.989 0
0 0 0 0 1

, W =

0 0 0 0 0
0 0 0 0 0

0 0 3.7 × 10−5 0 0

0 0 0 3.7 × 10−5 0
0 0 0 0 0

where units of cursor position were in m and cursor velocity in m/sec.

For the neural observations model, parameters ϕ1:N were initialized from neural and cursor 

kinematic data collected at the beginning of each experimental session while Monkey J 
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observed 2D cursor movements that moved through a center-out task. Decoder parameters 

were adapted using CLDA and optimal feedback control intention estimation as outlined in 
47. Following CLDA, decoder parameters were fixed. Then the experiment proceeded with 

Monkey J performing the center-out and obstacle-avoidance tasks.

Definition of the command for the BMI—We defined the “command” for the BMI 

as the direct influence of subjects’ neural activity xt (binned at 100ms) on the cursor. 

Concretely, in both decoders, the command was a linear transformation of neural activity 

that we write as Kxt which updated the cursor velocity.

Command definition -- Monkey G: For Monkey G, the update to the cursor state ct due to 

cursor dynamics and neural observation xt can be written as:

ct = F tct − 1 + Ktxt

where F tct − 1 is the update in cursor state due to the cursor dynamics process and Ktxt

is what we have defined as the command: the update in cursor state due to the current 

neural observation. Kt ∈ R5 × n is the Kalman Gain matrix and F t = I − KtC A. In practice Kt

converges to its steady-state form K within a matter of seconds 97, and thus F t converges to 

F = I − KC A, so we can write the above expression in its steady state form:

ct = Fct − 1 + Kxt

In our implementation, the structure of K is such that neural activity xt directly updates 

cursor velocity, and velocity integrates to update position. The following technical note 

explains the structure of K. Due to the form of the A, W  matrices, Rank K = 2. In addition, 

decoder adaptation imposed the constraint that the intermediate matrix CTQ−1C was of the 

form aI, where a = mean diag CTQ−1C . Due to this constraint, the rows of K that update 

the position of the cursor are equal to the rows of K that update the velocity multiplied by 

the update timestep: K 1: 2, : = K 3: 4, : * dt 98 (see independent velocity control in the 

reference). Given this structure of K, neural activity’s contribution to cursor position is the 

simple integration of neural activity’s contribution to velocity over one timestep.

In summary, since Kxt reflects the direct effect of the motor cortex units on the velocity 

of the cursor, we term the velocity components of Kxt the “command”. We analyzed the 

neural spike counts binned at 100ms that were used online to drive cursor movements with 

no additional pre-processing.

Command definition -- Monkey J: For Monkey J the cursor state updates in time as:

ct = ft ct − 1 + Ktxt

where
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ft ct − 1 = Act − 1 − KteCAct − 1Δ , Kt = P tC

Here ft ct − 1  is the cursor dynamics process and Ktxt is the neural command. P t ∈ R5 × 5 is 

the estimate of cursor state covariance, and C ∈ R5 × N captures how neural activity encodes 

velocity as a matrix where each column is composed of 0, 0, αj
xvel, αj

yvel, βj
T  for the jth unit.

We define the command for analysis in this study as Kestxt, where Kest is a time-invariant 

matrix that almost perfectly approximates Kt. While the PPF’s Kt does not necessarily 

converge in the same way it does in the KF, for all four analyzed sessions, neural activity 

mapped through Kest ∈ R2 × N could account for 99.6, 99.6, 99.5, and 99.8 percent of the 

variance of the command respectively Ktxt ≅ Kestxt . In addition, due to the accuracy of this 

linear approximation, we also match Monkey J’s timescale of neural activity and commands 

to that of Monkey G. In order to match timescales across the two animals (Monkey G: 100 

ms updates, Monkey J: 5ms updates), Monkey J’s commands were aggregated into 100 ms 

bins by summing Kestxt over 20 consecutive 5ms bins to yield the aggregated command over 

100ms. Correspondingly, Monkey J’s neural activity was also summed into 100ms bins by 

summing xt over 20 consecutive 5ms bins.

Neuroprosthetic tasks—Subjects performed movements in a two-dimensional 

workspace (Monkey J: 24cm × 24cm, Monkey G: 50cm × 28cm) for two neuroprosthetic 

tasks: a center-out task and an obstacle-avoidance task. We define the movement “condition” 

as the task performed (“co” = center-out task, “cw” / “ccw” = clockwise/counterclockwise 

movement around the obstacle in the obstacle-avoidance task) and the target achieved 

(numbered 0 through 7). Thus, there were up to 24 different conditions possible (8 center-

out conditions, 8 clockwise obstacle-avoidance conditions, 8 counterclockwise obstacle-

avoidance conditions). In practice, subjects mostly circumvented the obstacles for a given 

target location consistently in a clockwise or counterclockwise manner (as illustrated in 

Figure 1C right) resulting in an average of 16–17 conditions per session.

Center-out task:  The center-out task required subjects to hold their cursor within a center 

target (Monkey J: radius = 1.2 cm, Monkey G: radius = 1.7 cm) for a specified period of 

time (Monkey J: hold = 0.25 sec, Monkey G: hold = 0.2 sec) before a go cue signaled the 

subjects to move their cursor to one of eight peripheral targets uniformly spaced around 

a circle. Each target was equidistant from the center starting target (Monkey J: distance = 

6.5cm, Monkey G: distance = 10cm). Subjects then had to position their cursor within the 

peripheral target (Monkey J: target radius = 1.2cm, Monkey G: target radius = 1.7cm) for 

a specified period to time (Monkey J: hold = 0.25, Monkey G: hold = 0.2sec). Failure to 

acquire the target within a specified window (Monkey J: 3–10 sec, Monkey G: 10 sec) or 

to hold the cursor within the target for the duration of the hold period resulted in an error. 

Following successful completion of a target, a juice reward was delivered. Monkey J was 

required to move his cursor back to the center target to initiate a new trial, and Monkey G’s 

cursor was automatically reset to the center target to initiate a new trial.
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Obstacle-avoidance task:  Monkey G performed an obstacle-avoidance task with a very 

similar structure to the center-out task. The only difference was that a square obstacle (side 

length 2 or 3 cm) would appear in the workspace centered exactly in the middle of the 

straight line connecting the center target position and peripheral target position. If the cursor 

entered the obstacle, the trial would end in an error, and the trial was repeated.

Monkey J’s obstacle-avoidance task required a point-to-point movement between an initial 

(not necessarily center) target and another target. On arrival at the initial target, an ellipsoid 

obstacle appeared on the screen. If the cursor entered the obstacle at any time during the 

movement to the peripheral target, an error resulted, and the trial was repeated. Target 

positions and obstacle sizes and positions were selected to vary the amount of obstruction, 

radius of curvature around the obstacles, and spatial locations of targets. Trials were 

constructed to include the following conditions: no obstruction, partial obstruction with 

low-curvature, full obstruction with a long distance between targets, and full obstruction 

with a short distance between targets thus requiring a high curvature. See 48 for further 

details. In this study, only trials that included partial obstruction or full obstruction were 

analyzed as “obstacle-avoidance” trials.

Number of sessions: We analyzed 9 sessions of data from Monkey G and 4 sessions of 

data from Monkey J where on each session, monkeys performed both the center-out and 

obstacle-avoidance tasks with the same decoder. Only successful trials were analyzed.

Optimal feedback control model and simulation—We introduce a model based on 

optimal feedback control (OFC) for how the brain can use invariant neural population 

dynamics to control movement based on feedback. From the perspective of the brain trying 

to control the BMI, we used the model to ask how invariant neural population dynamics 

affect the brain’s control of movement.

Thus, we performed and analyzed simulations of a model in which the brain acts as an 

optimal linear feedback controller (finite horizon linear quadratic regulator), sending inputs 

to a neural population so that it performs the center-out and obstacle-avoidance tasks (Figure 

6). The feedback controller computed optimal inputs to the neural population based on 

the current cursor state and current neural population activity. Specifically, the inputs were 

computed as the solution of an optimization problem that used knowledge of the target and 

task, decoder, and the neural population’s invariant dynamics. We simulated 20 trials for 

each of 24 conditions: 8 center-out conditions, 8 clockwise obstacle-avoidance conditions, 

and 8 counterclockwise obstacle-avoidance conditions. The neural and cursor dynamics 

processes in the simulation are summarized below:

Neural population dynamics with input: In our simulation, the neural activity of N
neurons xt ∈ RN is driven by invariant dynamics A ∈ RN × N that act on previous activity 

xt − 1, an activity offset b ∈ RN, inputs from the feedback controller ut − 1 ∈ RN that are 

transformed by input matrix B ∈ RN × N, and noise σt − 1 ∈ RN:

xt = Axt − 1 + b + But − 1 + σt − 1
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The input matrix B was set to be the identity matrix such that each neuron has its own 

independent input. Each neuron also had its own independent, time-invariant noise (see 

Noise section below for how the noise level was set).

For notational convenience, an offset term was appended to xt:
xt

1 ∈ RN + 1. This enabled 

incorporating the offset b into the neural dynamics matrix:

xt

1
= A b

0 1
xt − 1

1
+ B

0 ut − 1 +
σt − 1

0

BMI cursor dynamics: The cursor update equations for the simulation matched the steady 

state cursor update equations in the online BMI experiment (see “Definition of the command 

for the BMI” above):

ct = Fct − 1 + Kxt − 1

As in the experiment, cursor state ct ∈ RNc where Nc = 5 was a vector consisting of two-

dimensional position, velocity, and an offset: posx, poxyvelx, vely, 1 T . K ∈ RNc × N was the 

decoder’s steady-state Kalman gain (Monkey G) or estimated equivalent Kest (Monkey 

J). F ∈ RNc × Nc was set to the decoder’s steady-state cursor dynamics matrix (Monkey 

G). For Monkey J, F  was estimated using the expression for calculating the steady-state 

cursor dynamics matrix: Fest = I − KestCest * A100ms, where I ∈ RNc × Nc, Cest ∈ RN × Nc was 

set using the α, β velocity encoding parameters from the point process filter (see above): 

Cest j, : = 0 0 0.01 * αj 1 0.01 * αj 2 0.01 * βj . Values in Cest were multiplied by 0.01 to 

adjust for velocities expressed in units of cm/sec (in the simulation) instead of m/sec (as in 

PPF). A100ms was set to the same A used by Monkey G so that the cursor dynamics would be 

appropriate for 100ms timesteps:

A100ms =

1 0 0.1 0 0
0 1 0 0.1 0
0 0 0.8 0 0
0 0 0 0.8 0
0 0 0 0 1

Joint dynamics of neural activity and cursor: The feedback controller sent inputs to the 

neural population which were optimal considering the task goal, the cursor’s current state, 

the neural population’s invariant dynamics, and the neural population’s current activity. To 

solve for the optimal input given all the listed quantities, first, the neural and cursor states 

are jointly defined. We append the cursor state ct to the neural activity state 
xt

1  to form 

zt ∈ RN + 1 + Nc:
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zt =
xt

1
ct

=
A b 0
0 1 0
K 0 F

xt − 1

1
ct − 1

+
B
0
0

ut − 1 +
σt − 1

0
0

In words, this expression defines a linear dynamical system where input ut − 1 influences only 

the neural activity xt, xt evolves by invariant dynamics A with offset vector b, and xt drives 

cursor ct through the BMI decoder K. Finally, noise σt − 1 only influences neural activity xt

(see Noise section below for how the noise level was set).

OFC to reach a target: Our OFC model computes input ut to the neural population such 

that the activity of the neural population xt drives the cursor to achieve the desired final 

cursor state (i.e. the target) with minimal magnitude of input ut. Concretely, in the finite 

horizon LQR model, the optimal control sequence ut, t = 0, 1, …T − 1  is computed by 

minimizing the following cost function:

J u0:T − 1 = (
t = 0

T − 1
((zt − ztarg)TQ zt − ztarg + ut

TRut)) + zT − ztarg
TQT zT − ztarg

In our model, Q = 0 ∈ R N + 1 + Nc × N + 1 + Nc , R = I ∈ RN × N, and 

QT =
0 ∈ RN × N 0 0

0 0 ∈ R1 0
0 0 I * 102 ∈ RNc × NC

∈ R N + 1 + Nc × N + 1 + Nc . Thus, the final 

cursor state error is penalized, and the magnitude of the input to the neural population ut is 

penalized (with setting R as non-zero). Because the magnitude of the input to neural activity 

is penalized, the controller sends the minimal input to the neural population to produce task 

behavior. We defined our cost function so that the cursor state during movement before the 

final cursor state is not penalized, and the neural state is never penalized.

The optimal control sequence ut, t = 0, 1, …T − 1  is given by ut = Kt
lqr zt − ztarg  where 

feedback gain matrices (Kt
lqr, t = 0, 1, …T − 1) are computed iteratively solving the dynamic 

Ricatti equation backwards in time. We note that we computed the LQR solution for ut using 

the dynamics of state error zt − ztarg, and that the dynamics of state error for non-zero target 

states are affine rather than strictly linear.

OFC for center-out task: Center-out task simulations were run with the initial cursor 

position in the center of the workspace at c0 = 0, 0, 0, 0, 1  and the target cursor state at 

targetx, targety, velx = 0, vely = 0, 1 T . Targets were positioned 10cm away from the origin 

(same target arrangement as Monkey G). Target cursor velocity was set to zero to enforce 

that the cursor should stop at the desired target location.

Exact decoder parameters from Monkey G and linearized decoder parameters from Monkey 

J were used F , K  in simulations. The invariant neural dynamics model parameters A, b
were varied depending on the simulated experiment (see below). The horizon for each trial 
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to hit its target state was set to be T = 40 (corresponding to 4 seconds based on the BMI’s 

timebin of 100ms). Constraining each trial to be equal length facilitated comparison of 

performance across different simulation experiments. We verified that all of our simulated 

trials completed their tasks successfully.

OFC for obstacle-avoidance using a heuristic: Obstacle-avoidance task simulations were 

performed with the same initial and target cursor states as the center-out task, except that the 

cursor circumvented the obstacle to reach the target in both clockwise and counterclockwise 

movements. We used a heuristic strategy to direct cursor movements around the obstacle; we 

defined a waypoint as an intermediate state the cursor had to reach enroute to the final target. 

The heuristic solution performs optimal control from the start position to the waypoint, 

and then optimal control from the waypoint to the final target. Importantly, this solution 

minimizes the amount of input needed to accomplish these goals. We used a heuristic 

solution because the linear control problem of going from the initial cursor state to the final 

target cursor state with the constraint of avoiding an obstacle is not a convex optimization 

problem.

Concretely, for the first segment of the movement, a controller with a horizon T=20 directed 

the cursor to the waypoint, and then a controller with horizon T=20 directed the cursor from 

the waypoint to the final target (such that the trial length was matched to the center-out task 

simulation with T=40).

The waypoint was defined relative to the obstacle position as follows. First the vector 

between the center target and the obstacle position was determined vobs, center . The vobs, center

was then rotated either +90 degrees or −90 degrees corresponding to clockwise and 

counterclockwise movements. The waypoint position was a 6cm distance in the direction 

of the rotated vector, from the obstacle center. Finally, the desired velocity vector of the 

intermediate target was set to be in the direction of vobs, center, with a magnitude of 10 cm/s, so 

that the cursor would be moving in a direction consistent with reaching its final target in the 

second segment of the movement after the waypoint was reached.

To compute the input ut to execute these movements, we defined the state error at each time t
as zerror = ztarg − zt, where ztarg was the waypoint for the first half of the movement, and ztarg was 

the final target for the second half of the movement. The linear quadratic regulator feedback 

gain Kt
lqr matrices were computed on the appropriate state error dynamics with the shortened 

horizon T = 20.

“Full Dynamics Model” Simulation: Simulations of the “Full Dynamics Model” consisted 

of OFC with the invariant dynamics parameters A, b  that were fit on experimentally-

recorded neural activity from each subject and session (see “Invariant dynamics models” 

below, under “Quantification and Statistical Analysis”). Kt
lqr was computed using these 

experimentally-observed A, b  parameters. The initial state of neural activity (i.e. xt at t = 0) 

was set to the fixed point of the dynamics.

“No Dynamics Model” Simulation: Simulations of the “No Dynamics Model” consisted of 

OFC with invariant dynamics parameter A set to zero A = 0 . The experimentally-observed 
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offset b was still used from each subject and session. Kt
lqr was computed using A = 0 and the 

experimentally-observed b, and thus it was different than in the “Full Dynamics Model.” The 

initial state of neural activity (i.e. xt at t = 0) was set to offset b, the fixed point of dynamics 

with A = 0.

“Decoder-null Dynamics Model” Simulation: Simulations of the “Decoder-null Dynamics 

Model” consisted of OFC with the experimentally-observed invariant dynamics parameters 

A, b  that were restricted to the decoder-null space, i.e. each invariant dynamics model 

was fit only on the projection of neural activity into the decoder-null space (see “Invariant 

dynamics models” under “Quantification and Statistical Analysis”). Kt
lqr was computed using 

these experimentally-observed decoder-null A, b  parameters, and thus it was different than 

in the “Full Dynamics Model.” The initial state of neural activity (i.e. xt at t = 0) was set to 

the fixed point of the decoder-null invariant dynamics.

The “Decoder-null Dynamics Model” was compared to its own “No Dynamics Model”, 

which consisted of OFC with Kt
lqr computed using A = 0 and the experimentally-observed 

decoder-null offset b for each subject and session, and thus it was different than in the 

previously defined models. The initial state of neural activity (i.e. xt at t = 0) was set to the 

decoder-null offset b, the fixed point of dynamics with A = 0.

Noise: In our OFC model, movement errors arise due to noise in the neural activity, and 

subsequent neural activity issues commands based on feedback to correct these errors. We 

used two considerations to choose the noise level for neural activity. First, we sought to 

add a level of neural noise that was comparable to the neural “signal” needed to perform 

control in the absence of noise. Second, we wanted to add the same level of noise to the 

dynamics model (either “Full Dynamics Model” or “Decoder-null Dynamics Model”) and 

the corresponding “No Dynamics Model,” in order to facilitate comparison.

Thus, we first simulated the “No Dynamics Model” without noise for a single trial for each 

of 24 conditions, and we calculated a, the average variance of a neuron across time and 

trials.

Then for our noisy simulations of the “No Dynamics Model” and the corresponding 

dynamics models, Gaussian noise with zero mean and fixed variance a was added to each 

neuron at each timestep: xt = Axt − 1 + But − 1 + σt − 1, where σt ∼ N 0, aI . Thus, the overall level 

of added noise (the sum of noise variance over neurons) matched the overall level of signal 

in the noiseless No Dynamics Model simulation (sum of activity variance over neurons).

We note that our main findings (Figure 6CD, 6GH) held even with different noise levels.

QUANTIFICATION AND STATISTICAL ANALYSIS

Command discretization for analysis—We sought to analyze the occurrence of the 

same command across different movements. Commands on individual time points were 

analyzed as the same command if they fell within the same discretized bin of continuous-

valued, two-dimensional command space. All commands from rewarded trials in a given 
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experimental session (including both tasks) were aggregated and discretized into 32 bins. 

Individual commands were assigned to one of 8 angular bins (bin edges were 22.5, 67.5, 

112.5, 157.5, 202.5, 247.5, 292.5, and 337.5 degrees) and one of four magnitude bins. 

Angular bins were selected such that the straight line from the center to each of the center-

out targets bisected each of the angular bins as has been done in previous work50 (Figure 

S1A). Magnitude bin edges were selected as the 23.75th, 47.5th, 71.25th, and 95th percentile 

of the distribution of command magnitudes for that experimental session. Commands falling 

between the 95th and 100th percentile of magnitude were not analyzed to prevent very 

infrequent noisy observations from skewing the bin edges for command magnitude.

Conditions that used a command regularly: For each session, the number of times each 

of the 32 (discretized) commands was used in a given condition was tabulated. If the 

command was used >= 15 times for that condition within a given session pooling across 

trials, that condition was counted as using the command regularly and was used in all 

analyses involving (command, condition) tuples. Commands that were used < 15 times were 

not used in analysis involving (command, condition) tuples. We note that the main results of 

the study were not affected by this particular selection. Typically, an individual command is 

used regularly in 5–10 conditions (distribution shown in Figure S1A).

Cursor and command trajectory visualization

Cursor position subtrajectories: To visualize the cursor position trajectories locally around 

the occurrence of a given command for each condition, we computed the average position 

“subtrajectory,” which we define as the average trajectory in a window locked to the 

occurrence of the given command. For each condition, cursor positions from successful 

trials were aggregated. Cursor position subtrajectories shown in Figure 1F are from 

representative session 0 from Monkey G. A matrix of x-axis and y-axis position trajectories 

was formed by extracting a window of −500ms to 500ms (5 previous samples plus 5 

proceeding samples) around each occurrence of the given command in a given condition 

(total of Ncom-cond occurrences, yielding a 2 × 11 × Ncom-cond matrix). Averaging over 

the Ncom-cond observations yielded a condition-specific command-locked average position 

subtrajectory (size: 2 × 11) for each condition. If a command fell in the first 500ms or 

last 500ms of a trial, its occurrence was not included in the subtrajectory calculation. The 

position subtrajectories were translated such that the occurrence of the given command was 

set to (0, 0) in the 2D workspace (Figure 1F right, Figure S1C middle).

Command subtrajectories: To visualize trajectories of commands around the occurrence of 

a given command for each condition (Figure 1G, right), we followed the same procedure as 

described above for cursor position subtrajectories to tabulate a 2 × 11 × Ncom-cond matrix 

but with x-axis and y-axis commands instead of positions. We note that this matrix consisted 

of the continuous, two-dimensional velocity values of the commands. Averaging over the 

Ncom-cond observations yielded the average condition-specific command subtrajectory (size: 

2 × 11 array), as shown in Figure 1F left for example conditions.

Matching the condition-pooled distribution—In many analyses, data (e.g. neural 

activity or a command-locked cursor trajectory) associated with a command and a specific 
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condition is compared to data that pools across conditions for that same command 

(Figs. 3–5). The distribution of the precise continuous value of the command within 

the command’s bin may systematically differ between condition-specific and condition-

pooled datasets, which we refer to as ‘within-command-bin differences.’ To ensure within-

command-bin differences are not the source of significant differences between condition-

specific and condition-pooled data associated with a command, we developed a procedure 

to subselect observations of condition-pooled commands so that the mean of the condition-

pooled command distribution is matched to the mean of the condition-specific command 

distribution. This procedure ensures that any differences between the condition-specific 

quantity and condition-pooled quantity are not due to ‘within-command-bin differences’. 

This procedure is performed on all analyses comparing condition-specific data to a 

condition-pooled distribution of data. The matching procedure is as follows:

1. From the condition-specific distribution, compute the command mean μcom − cond

(size: 2×1) and standard deviation σcom − cond (size: 2×1).

2. Compute the deviation of each continuous-valued command observation in the 

condition-pooled distribution from the condition-specific distribution.

a. Use the condition-specific distribution’s parameters to z-score 

the condition-pooled distribution’s continuous-valued command 

observations by subtracting μcom − cond and dividing by σcom − cond.

b. Compute the deviation of condition-pooled observations from the 

condition-specific distribution as the L2-norm of the z-scored value

c. For indices in the condition-pooled distribution that correspond to data 

in the condition-specific distribution, over-write the L2-norm of the 

z-scored values with zeros. This step prevents the condition-pooled 

distribution from dropping datapoints that are in the condition-specific 

data, thereby ensuring the condition-pooled distribution contains the 

condition-specific data.

3. Remove the 5% of condition-pooled observations with the largest deviations

4. Use a Student’s t-test to assess if the remaining observations in the condition-

pooled distribution are significantly different than the condition-specific 

distribution for the first and second dimension of the command (two p-values)

5. If both p-values are > 0.05, then the procedure is complete and the remaining 

observations in the condition-pooled distribution are considered the “command-

matched condition-pooled distribution” for a specific command and condition.

6. If either or both p-values are < 0.05, return to step 3 and repeat.

If the condition-pooled distribution cannot be matched to the condition-specific distribution 

such that the size of the condition-pooled distribution is larger than the condition-specific 

distribution, the particular (command, condition) will not be included in the analysis.

Comparing command subtrajectories—To assess whether a command is used within 

significantly different command subtrajectories in different conditions (Figure S1DE), the 
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following analysis is performed for conditions that have sufficient occurrences of the 

command (>=15):

1. The condition-specific average command subtrajectory is computed by averaging 

over Ncom-cond single-trial command subtrajectories for the condition, as defined 

above in “Visualization of command subtrajectories”.

2. The condition-pooled average command subtrajectory is computed: all the 

single-trial command subtrajectories (Ncom) are pooled across trials from all 

conditions that use the given command regularly (command occurs >= 15 times 

in a session) to create a condition-pooled distribution of single-trial command 

subtrajectories (a 2 × 11 × Ncom matrix), which is then averaged to yield the 

condition-pooled average command subtrajectory (a 2 × 11 matrix).

3. In order to test whether condition-specific average command subtrajectories were 

significantly different from the condition-pooled average command subtrajectory, 

a distribution of subtrajectories was created by subsampling the condition-pooled 

distribution to assess expected variation in subtrajectories due to limited data. 

Specifically, Ncom-cond single-trial command subtrajectories were sampled from 

a condition-pooled distribution of command subtrajectories that was command-

matched to the specific condition (see above, “Matching the condition-pooled 

distribution”). These Ncom-cond samples were then averaged to create a single 

subtrajectory, representing a plausible condition-specific average subtrajectory 

under the view that the condition-specific subtrajectories are just subsamples 

of the condition-pooled subtrajectories. This procedure was repeated 1000 

times and used to construct a bootstrapped distribution of 1000 command 

subtrajectories.

4. This distribution was then used to test whether condition-specific subtrajectories 

deviated from the condition-pooled subtrajectory more than would be expected 

by subsampling and averaging the condition-pooled subtrajectory distribution. 

Specifically, the true condition-specific command subtrajectory distance from 

the condition-pooled command subtrajectory was computed (L2-norm between 

condition-specific 2×11 subtrajectory and condition-pooled 2×11 subtrajectory) 

and compared to the bootstrapped distribution of distances: (L2-norm between 

each of the 1000 subsampled averaged 2×11 command subtrajectories and the 

condition-pooled 2×11 command subtrajectory). A p-value for each condition-

specific command subtrajectory distance was then derived.

The same analysis is also performed using only the next command following a given 

command (Figure S1E).

Behavior-preserving shuffle of activity—We shuffled neural activity in a manner that 

preserved behavior as a control for comparison against the hypothesis that neural activity 

follows invariant dynamics beyond the structure of behavior. Shuffled datasets preserved 

the timeseries of discretized commands but shuffled the neural activity that issues these 

commands. In order to create a shuffle for each animal on each session, all timebins from 

all trials from all conditions were collated. The continuous-valued command at each timebin 
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was labeled with its discretized command bin. For each of the 32 discretized command 

bins, all timebins corresponding to a particular discretized command bin were identified. 

The neural activity in these identified timebins was then randomly permuted. A complete 

shuffled dataset was constructed by performing this random permutation for all discretized 

command bins. This full procedure was repeated 1000 times to yield 1000 shuffled datasets.

Analysis of activity issuing a given command

Condition-specific neural activity distances: For each session, (command, condition) 

tuples with >= 15 observations were analyzed. For each of these (command, condition) 

tuples, we analyzed the distance between condition-specific average activity and condition-

pooled average activity, both for individual neurons and for the population’s activity vector 

(Figure 3B–E). Analysis of individual neurons for a given (command, condition) tuple, given 

N neurons:

1. Compute the condition-specific average neural activity μcom − cond ∈ RN  as the 

average neural activity over all observations of the command in the condition.

2. Compute the condition-pooled average activity μcom − pool ∈ RN  as the average 

neural activity over observations of the command pooling across conditions. 

The command-matching procedure is used to form the condition-pooled dataset 

to account for within-command-bin differences (see “Matching the condition-

pooled distribution” above).

3. Compute the absolute value of the difference between the condition-specific and 

condition-pooled averages: dμcom − cond = abs μcom − cond − μcom − pool ∈ RN.

4. Repeat steps 1–3 for each shuffled dataset i, yielding dμsℎuff − i − com − cond for 

i = 1:1000.

5. For each neuron j, compare dμcom − cond j  to the distribution of μsℎuff − i − com − cond j  for 

i = 1:1000. Distances greater than the 95th percentile of the shuffled distribution 

are deemed to have significantly different neuron j activity for a command-

condition. Analysis of population activity for a given (command, condition) 

tuple:

To compute population distances, one extra step was performed. We sought to ensure 

that the distances we calculated were not trivially due to “within-bin differences” between 

the condition-specific and condition-pooled distributions. The first step to ensure this was 

described above in “Matching the condition-pooled distribution”. The second step was to 

only compute distances in the dimensions of neural activity that are null to the decoder and 

do not affect the composition of the command. Thus, any subtle remaining differences in the 

distribution of commands would not influence population distances.

To compute distances in the dimensions of neural activity null to the decoder, we 

computed an orthonormal basis of the null space of decoder matrix K ∈ R2 × N using 

scipy.linalg.null_space, yielding V null ∈ RN × N − 2. The columns of V  correspond to 

basis vectors spanning the N − 2 dimensional null space. Using V null we computed: 
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μcom − cond − null = V null′ * μcom − cond and μcom − pool − null = V null′ * μcom − pool. We then calculated the 

population distance metric (L2-norm), normalized by the square-root of the number of 

neurons: dμpop − com − cond = / N2 , dμpop − com − cond ∈ R1. In step 5, the single value dμpop − com − cond is 

compared to the distribution of dμsℎuff − i − pop − com − cond for i = 1:1000 to derive a p-value for each 

(command, condition) tuple. The fraction of (command, condition) tuples with population 

activity distances greater than the 95th percentile of the shuffle data (i.e. significant) is 

reported in Figure 3E.

For visualization of distances relative to the shuffle distribution (Figure 3B–D), we divided 

the observed population distance for each (command, condition) tuple by the mean of the 

corresponding shuffle distribution. With this normalization, we can visualize the spread of 

the shuffle distribution (Figure 3B, right) and we can interpret a normalized distance of 1 as 

the expected distance according to the shuffle distribution.

Activity distances pooling over conditions: To test whether condition-specific neural 

activity for a given command significantly deviated from condition-pooled neural activity 

for the given command (Figure 3E, middle), we aggregated the distance between condition-

specific and condition-pooled average activity over all Ncond conditions in which the 

command was used ( >= 15 occurrences of the command in a condition). An aggregate 

command distance is computed: dμpop − com = 1
Ncond ∑j = 1

Ncond dμpop − com − j, and an aggregate shuffle 

distribution is computed: dμsℎuff − i − pop − com = 1
Ncond ∑j = 1

Ncond dμsℎuff − i − pop − com − j. Then, dμpop − com is 

compared to the distribution of dμsℎuff − i − pop − com for i = 1:1000 to derive a p-value for each 

command. The fraction of commands with significant population activity distances is 

reported in Figure 3E, middle.

Single neuron distances: To test whether an individual neuron’s condition-specific activity 

deviated from condition-pooled activity (Figure 3E right), we aggregated the distances 

between condition-specific and condition-pooled average activity over the C (command, 

condition) tuples with at least 15 observations. The aggregated distance for neuron n was 

computed: dμ(n) = 1
c ∑c = 1

C dμc(n) where dμc(n) is the condition-specific absolute difference 

for the nth neuron and cth (command, condition) tuple. Then dμ(n) was compared to the 

distribution of the aggregated shuffle: dμsℎuff − i n = 1
c ∑c = 1

C dμsℎuff − i − c(n) for i = 1:1000 to 

derive a p-value for each neuron. The fraction of neurons with significant activity distances 

(p-value<0.05) is reported in Figure 3E right.

Neural activity distances summary: Single neuron activity distances reported in 

Figure S2B (left) are for all (command, condition, neuron) tuples that had at 

least 15 observations. We report distances as a z-score of shuffle distribution: 

zcom − cond(n) = dμcom − cond(n) − mean dμsℎuff − i, (n) i = 1:1000
std dμsℎuff − i(n), i = 1:1000 .

Single neuron activity distances reported in (Figure S2B center, right) are for (command, 

condition, neuron) tuples that significantly deviated from shuffle. We report raw distances 
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in neuron activity as dμcom − cond(n) (Figure S2B, center), and fraction distances as 
dμcom − cond(n)
μcom − pool(n)

(Figure S2B, right).

Population activity distances reported in Figure 3BCD and Figure S2C left are for all 

(command, condition) tuples. We report distances in population activity as a fraction of 

shuffle mean: dμpop − com − cond/mean(dμsℎuff − i, i = 1:1000) (Figure 3BCD), and as a z-score of 

shuffle distribution: zpop − com − cond = μpop − com − cond − mean dμsℎuff − i, i = 1:1000
std dμsℎuff − i, i = 1:1000  (Figure S2C left).

Population activity distances reported in Figure S2C (center, right) are for (command, 

condition) tuples that significantly deviated from shuffle. We report distances in population 

activity as a fraction of shuffle mean dμpop − com − cond/mean dμsℎuff − i, i = 1:1000  (Figure S2C, 

center) and fraction of condition-pooled activity as dμpop − out − cond
∥ μcom − pool ∥2

 (Figure S2C, right).

Invariant dynamics models—In order to test whether invariant dynamics predicts the 

different neural activity patterns issuing the same command for different conditions, a linear 

model was fit for each experimental session on training data of neural activity from all 

conditions and assessed on held-out test data. Neural activity at time t, xt, was modeled as a 

linear function of xt − 1:

xt = Axt − 1 + b

Here A ∈ RN × N modeled invariant dynamics and b ∈ RN was an offset vector that allowed 

the model to identify non-zero fixed points of neural dynamics. Ridge regression was used to 

estimate the A and b parameters. Prior to any training or testing, data was collated such that 

all neural activity in bins from t = 2:Ttrl in all rewarded trials were paired with neural activity 

from t = 1: Ttrl − 1 , where Ttrl is the number of time samples in a trial.

Estimation of Ridge Parameter: For each experimental session, data collated 

from all conditions was randomly split into 5 sections, and a Ridge model 

(sklearn.linear_model.Ridge) with a ridge parameter varying from 2.5×10−5 to 106 was 

trained using 4 of the 5 sections and tested on the remaining test section. Test sections 

were rotated, yielding five estimates of the coefficient of determination (R2) for each ridge 

parameter. The ridge parameter yielding the highest cross-validated mean R2 was selected 

for each experimental session. Ridge regression was used primarily due to a subset of 

sessions with a very high number of units (148 and 151 units), thus a high number of 

parameters needed to be estimated for the A matrix. Without regularization, these parameters 

tended to extreme values, and the model generalized poorly.

Invariant dynamics model: fitting and testing: Once a ridge parameter for a given 

experimental session was identified, A, b were again trained using 4/5 of the data. The 

remaining test data was predicted using the fit A, b. This procedure was repeated, rotating 

the training and testing data such that after five iterations, all data points in the experimental 

session had been in the test data section for one iteration of model-fitting. The predictions 
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made on the held-out test data were collated together into a full dataset. Predictions were 

then analyzed in subsequent analyses.

Generalization of invariant dynamics: We assessed how well invariant dynamics 

generalized when certain categories of neural activity were not included in the training data. 

Invariant dynamics models were estimated after excluding neural activity in the following 

categories (Figures 4C, S4, and 5CE):

1. Left-out Command: For each command (total of 32 command bins), training 

data sets were constructed leaving out neural activity that issued the command 

(Figures 4C, S4, and 5CE).

2. Left-out Condition: For each condition (consisting of target, task, and clockwise 

or counterclockwise movement for obstacle avoidance), training data sets were 

constructed leaving out neural activity for the given condition (Figures 4C, S4, 

and 5CE).

3. Left-out Command Angle: For each command angular bin (total of 8 angular 

bins), training data sets were constructed leaving out neural activity that issued 

commands in the given angular bin. This corresponds to leaving out neural 

activity for the 4 command bins that have the given angular bin but different 

magnitude bins (Figure S4B, middle).

4. Left-out Command Magnitude: For each command magnitude bin (total of 4 

magnitude bins), training data sets were constructed leaving out neural activity 

that issued commands of the given command magnitude. This corresponds to 

leaving out neural activity for the 8 command bins that have the given magnitude 

bin but different angle bins (Figure S4B, right).

5. Left-out Classes of Conditions (Figure S4G):

a. vertical condition class consisting of conditions with targets located at 

90 and 270 degrees for both tasks,

b. horizontal condition class consisting of conditions with targets located 

at 0 and 180 degrees for both tasks,

c. diagonal 1 condition class consisting of conditions with targets located 

at 45 and 215 degrees for both tasks, and

d. diagonal 2 condition class consisting of conditions with targets located 

at 135 and 315 degrees for both tasks.

For each of the listed categories above, many dynamics models were computed – each one 

corresponding to the exclusion of one element of the category (i.e. one model per: command 

left-out, condition left-out, command angle left-out, command magnitude left-out, and class 

of conditions left-out). Each of the trained models was then used to predict the left-out 

data. Predictions were aggregated across all dynamics models resulting in a full dataset of 

predictions. The coefficient of determination (R2) of this predicted dataset reflected how 

well dynamics models could generalize to types of neural activity that were not observed 
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during training. We note that Monkey J did not perform all conditions in the “diagonal 2” 

class, and so was not used in the analysis predicting excluded “diagonal 2” conditions.

Decoder-null dynamics model: As an additional comparison, we modeled invariant 

dynamics that lie only within the decoder-null space (the neural activity subspace that was 

orthogonal to the decoder such that variation of neural activity in this space has no effect on 

the decoder’s output, i.e. commands for movement).

Our approach was to project spiking activity into the decoder null space, and 

then fit invariant dynamics on the projected, decoder-null spiking activity. We first 

computed an orthonormal basis of the null space of decoder matrix K ∈ R2 × N using 

scipy.linalg.null_space, yielding V null ∈ RN × N − 2. The columns of V  correspond to basis 

vectors spanning the N − 2 dimensional null space. We then computed the projection matrix 

Pnull ∈ RN × N where Pnull = V nullV null
T . Spiking activity was then projected into the null space 

xt
null = Pnullxt, where xt

null ∈ RN × 1.

Following the above procedure (see “Estimation of Ridge Parameter”), a ridge regression 

parameter was selected using projected data xt
null. Decoder-null dynamics model parameters 

Anull, bnull were then fit on 4/5 of the dataset and then tested on the remaining 1/5 of 

the xt
null dataset. As before, the training/testing procedure was repeated 5 times such 

that all data points fell into the test dataset once. Predictions of test data from all five 

repetitions were collated into one full dataset of predictions. We note that the average of 

the decoder-space activity across the entire session x̂decoder = 1
T ∑t = 1

T xt
decoder, where T  is the 

number of bins in an entire session, was added to all predictions of decoder-null dynamics 

xt + 1 = Anullxt + bnull + x̂decoder .

Shuffle dynamics model: The invariant dynamics model was compared to a shuffle 

dynamics model fit on shuffled data (see “Behavior-preserving shuffle of activity” above). 

Following the above procedure (see “Estimation of Ridge Parameter”), a ridge parameter 

was selected using shuffled data. Shuffle dynamics model parameters Asℎuffle, bsℎuffle were 

then fit on 4/5 of the dataset using shuffled data and then tested on the remaining 1/5 of the 

dataset using original, unshuffled data.

Invariant dynamics model characterization

Dimensionality and eigenvalues: Once the linear invariant dynamics model’s parameters 

A, b were estimated, A was analyzed to assess which modes of dynamics16 were present 

(Figure S3). The eigenvalues of A were computed. From each eigenvalue, an oscillation 

frequency and time decay value were computed using the following equations:

Frequency = ∠λ/ 2πΔt Hz if λ is complex, else frequency =0 Hz

Time Decay = −1
ln λ Δt  sec
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Modes of dynamics contributing substantially to predicting future neural variance will have 

time decays greater than the BMI decoder’s binsize (here, 100ms). 2–4 such dimensions of 

dynamics were found across sessions and subjects (Figure S3).

Invariant dynamics model predictions

Predicting next neural activity: xt + 1 ∣ xt, A, b: In Figure 5C, we predict next activity 

xt + 1 based on current activity xt by taking the expected value according to our model: 

E xt + 1 ∣ xt, A, b = Axt + b.

In Figure 5D, we evaluated this prediction for individual dimensions of neural activity. We 

projected the prediction of xt + 1 onto each eigenvector of the dynamics model A matrix and 

evaluated how well that dimension was predicted (via coefficient of determination).

In Figure S3E, G, we evaluated this prediction across time from the start of trial. The 

magnitude (i.e. L2 norm) of the model residual ∥ xt + 1 − Axt + b ∥2 (Figure S3E) and the 

coefficient of determination (R2) (Figure S3G) are plotted for each time point from trial start, 

evaluated on held-out test data pooling across trials.

Predicting next command: commandt + 1 ∣ xt, A, b, K: In Figure 5E–H, we predict 

the next command commandtt + 1 based on current neural activity xt by taking its expected 

value according to our model: E commandt + 1 ∣ xt, A, b, K = K(Axt + b)), where the decoder 

matrix K maps between neural activity and the command. This amounts to first predicting 

next activity based on current activity as above E xt + 1 ∣ xt, A, b = Axt + b and then applying 

decoder K.

Predicting activity issuing a given command: In Figure 4C–G, we predict current 

activity xt not only with knowledge of previous activity xt − 1, but also with knowledge 

of the current command commandt xt ∣ xt − 1, A, b, K, commandt . We modeled xt and xt − 1

as jointly Gaussian with our dynamics model, and commandt is jointly Gaussian with 

them since commandt = Kxt. We modify our prediction of xt based on knowledge of 

commandt: E xt ∣ xt − 1, A, b, K, commandt . Explicitly we conditioned on commandt, thereby 

ensuring that K * E xt ∣ xt − 1, A, b, K, commandt = commandt. To do this we wrote the joint 

distribution of xt and commandt:

Kxt

xt
∼ N( μ

Kμ , Σ (KΣ)T

KΣ KΣKT )

where μ = E xt ∣ xt − 1, A, b = Axt − 1 + b, and Σ = cov xt − Axt − 1 + b  is the covariance of the 

noise in the dynamics model. Then, the multivariate Gaussian conditional distribution 

provides the solution to conditioning on commandt:

E xt ∣ xt − 1, A, b, K, commandt = Axt − 1 + b + ΣTKT KΣKT −1 commandt − K Axt − 1 + b
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This prediction constrains the prediction of xt to produce the given command commandt.

For these predictions, Σ is estimated following dynamics model fitting and set to the 

empirical error covariance between estimates of E xt = Axt − 1 + b and true xt in the training 

data.

Predicting current activity only with command: In Figure 4C–E, as a comparison to 

the dynamics prediction xt ∣ xt − 1, A, b, K, commandt , we predict xt as its expected value 

xt ∣ K, commandt) based only on the command commandt = Kxt it issues and the decoder 

matrix K. The same approach was used as above, except with empirical estimates of μ, Σ
corresponding to the mean and covariance of the neural data instead of using the neural 

dynamics model and xt − 1 to compute μ, Σ.

Kxt

xt
∼ N( μ

Kμ , Σ (KΣ)T

KΣ KΣKT )

This formulation makes the prediction:

E xt ∣ K, commandt = μ + ΣTKT KΣKT −1 commandt − Kμ

Comparing invariant dynamics to shuffle: For the above predictions, we evaluated if 

invariant dynamics models were more accurate than shuffle dynamics. A distribution of 

shuffle dynamics R2 values (coefficient of determination) was generated by computing one 

R2 value per shuffled dataset (see “Behavior-preserving shuffle of activity” above), where 

Rsℎuffle, i, j
2  corresponds to the R2 for shuffle dataset i on session j. For each session j, each 

invariant dynamics model was considered significant if its R2 was greater than 95% of 

shuffle R2 values. To aggregate over S sessions, the R2 values for all S sessions were 

averaged yielding one Ravg
2  value. This averaged value was compared to a distribution of 

averaged shuffle R2 values. Specifically, for each shuffle i (i = 1:1000 shuffled dataset) an 

averaged R2 value was computed across all S sessions: Ravg, sℎuffle, i
2 = 1

S ∑j = 1
S Rsℎuffle, i, j

2 , yielding 

a distribution of averaged shuffle R2 values.

Predicting condition-specific activity: The invariant dynamics model was used to predict 

the condition-specific average activity for a given command (μcom − cond, i.e. the average neural 

activity over all observations of the command in the condition, see “Analysis of activity 

issuing a given command” above) (Figure 4D–G). The invariant dynamics model prediction 

μcom − cond  was computed as E xt ∣ xt − 1, A, b, K, commandt  (see “Predicting activity issuing 

a given command” above) averaged over all observations of neural activity for the given 

command and condition.

To test if the invariant dynamics prediction was significantly more accurate than the 

shuffle dynamics model (i.e. the dynamics model fit on shuffled data, see “Shuffle 
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dynamics model” above) prediction, we computed the error as the distance between true 

μcom − cond  and predicted μcom − cond  condition-specific average activity (single neuron error and 

population distance). Note that population distances for true and predicted activity were 

taken only in the dimensions null to the decoder (see “Condition-specific neural activity 

deviation”). The invariant dynamics model was deemed significantly more accurate than 

shuffle dynamics if the error was less than the 5th percentile of the distribution of the 

errors from shuffle dynamics models. We reported the fraction of (command, condition) 

tuples that were individually significant relative to shuffle (Figure 4G, left). We determined 

whether commands were individually significant relative to shuffle by analyzing the average 

population activity error across conditions (Fig 4G, middle). We determined whether 

neurons were individually significant relative to shuffle by analyzing the average single-

neuron error over (command, condition) tuples (Fig 4G, right).

Predicting condition-specific component: The component of neural activity 

for a given command that was specific to a condition was calculated as 

μcom − cond − E xcom − cond
t ∣ K, commandt , where μcom − cond is neural activity averaged over 

observations for the given command and condition, and E xcom − cond
t ∣ K, commandt  is the 

prediction of neural activity only given the command it issued, averaged over observations 

for the (command, condition) tuple (see “Predicting current activity only with command” 

above). Thus, μcom − cond − E xcom − cond
t ∣ K, commandt  estimates the portion of neural activity that 

cannot be explained by just knowing the command issued.

We analyzed how well this condition-specific component could be predicted with invariant 

dynamics as: μcom − cond − E xcom − cond
t ∣ K, commandt  (see “Predicting condition-specific activity” 

above for calculation of μcom − cond). The variance of μcom − cond − E xcom − cond
t ∣ K, commandt

explained by μcom − cond − E xcom − cond
t ∣ K, commandt  is reported in Figure 4F.

Predicting condition-specific next command: For each (command, condition) tuple, the 

average “next command” commandcom − cond was calculated. For every observation of the given 

command in the given condition, we took the command at the time step immediately 

following the given command and averaged over observations. We then analyzed how well 

invariant dynamics predicted this average “next command” commandcom − cond, calculated as 

E commandt + 1 ∣ xt, A, b, K  averaged over all observations of neural activity xt for the given 

command and condition. The L2-norm of the difference commandcom − cond − commandcom − cond was 

computed and compared to the errors obtained from the shuffled-dynamics predictions. For 

each (command, condition) tuple, the dynamics-predicted “next command” was deemed 

significantly more accurate than shuffle dynamics if the error was less than the 5th 

percentile of the distribution of the errors of the shuffled-dynamics predictions (Figure 5F, 

left). Commands were determined to be individually significant if the error averaged over 

conditions was significantly less than the shuffled-dynamics error averaged over conditions 

(Figure 5F, right).

Analysis of predicted command angle: We sought to further analyze whether invariant 

dynamics predicted the transition from a given command to different “next commands” in 

different movements. Thus, we calculated two additional metrics on the direction of the 
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predicted “next command”, i.e. the angle of the predicted “next command” commandcom − cond

with respect to the condition-pooled “next command” commandcom − pool (the average “next 

command” following a given command when pooling over conditions).

First, we predicted whether a condition’s “next command” would rotate clockwise 

or counterclockwise relative to the condition-pooled “next command.” Specifically, we 

calculated whether the sign of the cross-product between commandcom − cond and commandcom − pool

matched the sign of the cross-product between commandcom − cond and commandcom − pool. 

The fraction of (command, conditions) that were correctly predicted (clockwise vs 

counterclockwise) was compared to the fraction of (command, condition) tuples correctly 

predicted in the shuffle distribution (Figure 5H, left).

Second, we calculated the absolute error of the angle between the predicted “next command” 

and the condition-pooled “next command” for each (command, condition) tuple:

abs(∠ (commandcom − cond, commandcom − pool)
−∠ (commandcom − cond, commandcom − pool))

Explicitly, for each (command, condition) tuple, we calculated the absolute difference 

between two angles: 1) the angle between the predicted “next command” and the 

condition-pooled “next command” and 2) the angle between the true “next command” 

and the condition-pooled “next command”. These errors were then compared to the shuffle 

distribution (Figure 5H, right).

Estimation of behavior-encoding models—To compare invariant dynamics models 

to models in which neural activity encodes behavioral variables in addition to the 

command, we fit a series of behavior-encoding models (Figure S5). Regressors included 

cursor state (position, velocity), target position (x,y postion in cursor workspace), and 

a categorical variable encoding target number (0–7) and task (“center-out”, “clockwise 

obstacle-avoidance”, or “counter-clockwise obstacle-avoidance”).

Models were fit using Ridge regression following the same procedure described above (see 

“Estimation of Ridge Parameter”) was followed with one additional step: prior to estimating 

the ridge parameter or fitting the regression, variables were z-scored. Without z-scoring, 

ridge regression may favor giving explanatory power to the variables with larger variances, 

since they would require smaller weights which ridge regression prefers. Then, as above, 

models were fit using 4/5 of the data and then used to predict the held-out 1/5 of data. After 

5 rotations of training and testing data, a full predicted dataset was collated.

We then tested whether invariant neural dynamics improved the prediction of neural activity 

beyond behavior-encoding. The coefficient of determination (R2) of the model containing all 

regressors except previous neural activity was compared to the R2 of the model containing 

all regressors plus previous neural activity (Figure S5B) using a paired Student’s t-test where 

session was paired. One test was done for each monkey.
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Analysis between pairs of conditions—We sought to assess whether the invariant 

dynamics model predicted the relationship between pairs of conditions for neural activity 

and behavior (Figure S6).

Average neural activity for a given command: The invariant dynamics model was used to 

predict the distance between average neural activity patterns for the same command across 

pairs of conditions. Concretely, the predicted distance was simply the distance between 

the predicted neural activity pattern for condition 1 and for condition 2. The correlation 

between the true distance and the predicted distance was reported for individual neurons 

(Figure S6AC) and population activity (Figure S6BD). The Wald test (implemented in 

scipy.stats.linregress) was used to assess the significance of the correlations on single 

sessions. To assess significance pooled over sessions, data points (true distances vs. 

dynamics model predicted distances) were aggregated across sessions and assessed for 

significance.

Average next command: The invariant dynamics model was used to predict the distance 

between “next commands” for the same given command across pairs of conditions. 

Concretely, the predicted distance was simply the distance between the predicted “next 

command” for condition 1 and for condition 2. The correlation between the true distance 

and the predicted distance was reported (Figure S6JK). As above, the Wald test was used to 

assess significance of correlations on single sessions and over pooled sessions.

Correlating neural distance with behavior: We asked whether neural activity for a given 

command was more similar across conditions with more similar command subtrajectories 

(see “Command subtrajectories”) (Figure S6E), and whether invariant dynamics predict this. 

Specifically, we analyzed whether the distance between average neural activity across two 

conditions for a given command correlated to the distance between command subtrajectories 

for the same two conditions (Figure S6, F top, GH left). Further, we analyzed whether 

invariant dynamics predicted this correlation (Figure S6, F bottom, GH right). For every 

command (that was used in more than five conditions) and pair of conditions that used 

the command (>=15 observations in each condition in the pair), 1) the distances between 

condition-specific average activity were computed and 2) distances between command 

subtrajectories were computed. The neural activity distances were correlated with the 

command subtrajectory distances (Figure S6, F top, GH left). To assess whether invariant 

dynamics made predictions that maintained this structure, we performed that same analysis 

with distances between dynamics-predicted condition-specific average activity across pairs 

of conditions (Figure S6, F bottom, GH right).

We assessed the significance of the relationship using a linear mixed effects (LME) 

model (statsmodels.formula.api.mixedlm). The LME modeled command as a random effect 

because the exact parameters of the increasing linear relationship between command 

subtrajectories and population activity may vary depending on command. Individual 

sessions were assessed for significance. To assess significance across sessions, data points 

were aggregated over sessions, and the LME model used command and session ID as 

random effects.
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Analysis of Optimal Feedback Control Models

Input magnitude: For each simulated trial, we computed the magnitude of input to the 

neural population as the L2 norm of the input matrix ut ∈ RN × T  (where N is the number 

of neurons and T = 40 was the horizon and thus movement length). For each of the 24 

conditions, we calculated the average input magnitude over the 20 trials. We compared the 

magnitude of input used by the Invariant Dynamics Model and the No Dynamics Model, 

where the Invariant Dynamics Model was either the Full Dynamics Model (Figure 6C) 

or the Decoder-Null Dynamics Model (Figure 6D). We analyzed each individual session 

with a paired Wilcoxon signed-rank test, where each pair within a session consisted of 

one condition (24 conditions total). We aggregated across sessions for each subject using a 

linear mixed effect (LME) model between input magnitude and model category (Invariant 

Dynamics Model or No Dynamics Model), with session modeled as a random effect.

Simulated activity issuing a given command: In the OFC simulations, we sought to 

verify if different neural activity patterns were used to issue the same command across 

different conditions, applying analyses that we used on experimental neural data to the OFC 

simulations. As above, we defined discretized command bins (see “Command discretization 

for analysis”) and calculated the average neural activity for each (command, condition) 

tuple. For (command, condition) tuples with >=15 observations (example shown in Figure 

6E), we computed the distance between condition-specific average activity and condition-

pooled average activity by subtracting the activity, projecting into the decoder-null space, 

taking the L2 norm, and normalizing by the square root of the number of neurons, as in the 

experimental data analysis (see “Analysis of activity issuing a given command”).

We analyzed the distance between condition-specific average activity and condition-pooled 

average activity for a given command, comparing each model to its own shuffle distribution 

(see “Behavior-preserving shuffle of activity”) (Figure 6GH). Concretely, for each simulated 

session, we calculated the mean of the shuffle distribution of distances for each (command, 

condition) tuple and compared these shuffle means (one per (command, condition) tuple) to 

the observed distances from the simulations. We analyzed individual sessions with a Mann-

Whitney U test. We aggregated across sessions for each subject with a LME model between 

activity distance and data source (OFC Simulation vs shuffle), with session modeled as 

a random effect. For visualization of distances relative to the shuffle distribution (Figure 

6F–H), we divided the observed distance for each (command, condition) tuple by the mean 

of the corresponding shuffle distribution (same as in Figure 3B–D).

Statistics Summary—In many analyses, we assessed whether a quantity calculated for 

a specific condition was significantly larger than expected from the distribution of the 

quantity due to subsampling the condition-pooled distribution. A p-value was computed by 

comparing the condition-specific quantity to the distribution of the quantity computed from 

subsampling the condition-pooled distribution. The “behavior-preserving shuffle of activity” 

and “matching the condition-pooled distribution” (see above) were used to construct the 

condition-pooled distribution.

The following is a summary of these analyses:
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• Figure S1D, Quantity: distance between condition-specific average command 

subtrajectory and condition-pooled average command subtrajectory, P-value: 

computed using behavior-preserving shuffle.

• Figure S1E, Quantity: distance between condition-specific average next 

command and the condition-pooled average next command, P-value: computed 

using behavior-preserving shuffle.

• Figure 3B left, 3E right: Quantity: for a given command, distance between 

condition-specific average activity for a neuron and condition-pooled average 

activity for a neuron, P-value: behavior-preserving shuffle.

• Figure 3B right, 3D, 3E left, middle: Quantity: for a given command, distance 

between condition-specific average population activity and condition-pooled 

average population activity, P-value: behavior-preserving shuffle.

• Figure 4G right: Quantity: for a given command, error between the invariant 

dynamics’ prediction of condition-specific average activity for a neuron and 

the true condition-specific average activity for the neuron. P-value: distribution 

of prediction errors from shuffle dynamics (models fit on behavior-preserving 

shuffle and that made predictions using unshuffled data).

• Figure 4G left, middle: Quantity: for a given command, error between the 

invariant dynamics’ prediction of condition-specific average population activity 

and the true condition-specific average population activity. P-value: distribution 

of prediction errors from shuffle dynamics (models fit on behavior-preserving 

shuffle and that made predictions using unshuffled data).

• Figure 5F: Quantity: for a given command, error between the invariant 

dynamics’ prediction of condition-specific average next command and true 

condition-specific average next command. P-value: distribution of prediction 

errors from shuffle dynamics (models fit on behavior-preserving shuffle and that 

made predictions using unshuffled data).

In the above analyses, we also assessed the fraction of condition-specific quantities that 

were significantly different from the condition-pooled quantities or significantly predicted 

compared to a shuffled distribution (Figures S1DE, 3E, 4G, 5F, S4DI, and S6G). In order to 

aggregate over all data to determine whether condition-specific quantities were significantly 

different from shuffle or significantly predicted within a session relative to shuffle dynamics, 

we averaged the condition-specific quantity over the relevant dimensions (command, 

condition, and/or neuron) to yield a single aggregated value for a session. For example 

in Figure 3E right, we take the distance between average activity for a (command, condition, 

neuron) tuple and condition-pooled average activity for a (command, neuron) tuple, and 

we average this distance over (command, condition) tuples to yield an aggregated value 

that is used to assess if individual neurons are significant. We correspondingly averaged 

the shuffle distribution across all relevant dimensions (command, condition, and/or neuron). 

Together this procedure yielded a single aggregated value that could be compared to a 

single aggregated distribution to determine session significance. Finally, when we sought to 

aggregate over sessions, we took the condition-specific quantity that was aggregated within a 
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session and averaged it across sessions and again compared it to a shuffle distribution of this 

value aggregated over sessions.

When R2 was the metric assessed (Figures 4CF, 5C–E, and S4BFG), a single R2 metric was 

computed for each session and compared to the R2 distribution from shuffle models. This R2

metric is known as the “coefficient of determination,” and we note that it assesses how well 

the dynamics-predicted values (e.g. spike counts) account for the variance of the true values.

In some cases, a linear regression was fit between two quantities (Figure S6CDGJK) on 

both individual sessions and on data pooled over all sessions, and the significance of the 

fit and correlation coefficient were both reported. In other cases where random effects such 

as session or analyzed command may have influenced the linear regression parameters 

(Figure S6FG), a Linear Mixed Effect (LME) model was used with session and/or command 

modeled as random effects on intercept.

In Figure S5, a paired Student’s t-test was used to compare two models’ R2 metric across 

sessions. Figure 6 analyzed simulations of OFC models, not experimentally-recorded data. 

Figure 6CD used a paired Wilcoxon test and a LME to compare input magnitude between 

a pair of OFC models. Figure 6GH used a Mann-Whitney U test and a LME to compare 

population distance between an OFC model and its shuffle distribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• The same motor command is issued with different neural activity across 

movements

• A single model of neural dynamics predicts the different activity issuing a 

command

• These invariant dynamics propagate neural activity to issue the next command

• These dynamics reduce the input that neurons need to issue commands based 

on feedback
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Figure 1. BMI to study neural population control of movement.
(A) Schematic of the BMI system.

(B) Schematic of decoder calibration.

(C) Single trials of BMI control.

(D) Average target acquisition time per session.

(E) Example of the same command (black arrow) being issued during single trials of 

different conditions. The example command was in the −45 degree direction and the 

smallest magnitude bin of analysis.

(F) Left: The average command subtrajectory from −500ms to 500ms. Right: The average 

position subtrajectory from −500ms to 500ms. See Figure S1 for analysis of subtrajectories.
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Figure 2. Using the BMI to test whether invariant dynamics are used to control different 
movements.
(A) Illustration of invariant dynamics.

(B) Multiple neural activity patterns (e.g. white and black square) issue the same command. 

An illustrative decoder defines the command at time t as the difference between two 

neurons’ instantaneous activity x2 t − x1 t , symbolized with orange arrows (top right) 

indicating the command’s magnitude and sign.

(C) A trajectory of commands (orange arrows) produces one whole movement. Movement 1 

(blue) and 2 (green) are driven by the same commands in different temporal orders.

(D) Neural activity that follows invariant dynamics ℎ in order to issue the commands for 

movement. See Figure S3D for another example of invariant dynamics (decaying dynamics).
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Figure 3. The same command is issued by different neural activity patterns in different 
movements.
(A) The same command (orange upward arrow) is issued in different conditions with 

different activity patterns (blue, green dots). These patterns deviate from the condition-

pooled average activity pattern for the command (black dot).

(B) Left: An example neuron’s average firing rate (colored dots) for the example command 

and conditions from Figure 1F (position subtrajectories plotted at right legend), as well 

as the condition-pooled average activity (dashed black line labeled “condition-pool”). The 

condition-shuffled distributions of average activity are shown with gray boxplots indicating 

the 2.5th, 25th, 50th, 75th, and 97.5th percentiles. Asterisk indicates the distance for the 

(command, condition, neuron) exceeded the shuffle distance (p<0.05). 5/9 or 62.5% of 

the examples were significant. Distance was significantly greater than shuffle distance 

aggregating over all (command, condition, neuron) tuples: Monkey G [J]: p-value < 0.001 

for 9/9 [4/4] sessions, p-value < 0.001 pooled over sessions. Right: Population distance 

normalized to the shuffle mean (colored dots). 7/9 or 78% of examples were significant. 

Figure S2A shows population distances for all (command, condition) tuples in this session.

(C) The distribution of normalized population distances across (command, condition) tuples. 

Colored ticks indicate distances in (B) right. See Figure S2BC for additional distance 

distributions.

Athalye et al. Page 46

Curr Biol. Author manuscript; available in PMC 2024 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(D) Normalized population distance averaged across (command, condition) tuples (Monkey 

G [J]: n=9 [4] sessions). Bars indicate the average across sessions. Population distance 

was significantly greater than shuffle distances, aggregating over all (command, condition) 

tuples: Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled over 

sessions.

(E) Left: Fraction of (command, condition) tuples with distance significantly greater than 

shuffle distance. Middle: Fraction of commands with distance significantly greater than 

shuffle distance, aggregating over conditions. Right: Fraction of neurons with distance 

significantly greater than shuffle distance, calculated for each (command, condition) 

separately and aggregating over all (command, condition) tuples for statistics. Throughout 

(E): dashed line indicates chance level (fraction equal to 0.05 significantly deviating from 

shuffle distance) and datapoints are each of 9 [4] sessions for monkey G [J]. See Figure 

S6E–H for the relationship between population distance and command subtrajectories across 

pairs of conditions. See Table S1 for statistics details.
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Figure 4. Invariant dynamics predict the different neural activity patterns used to issue the same 
command.
(A) A linear dynamics model predicts the different activity patterns (cyan-outlined dots) 

that issue a given command (orange arrow) based on previous activity. See Figure S6 for 

predictions of the relationship between activity patterns across pairs of conditions.

(B) Models were tested on neural activity for a command (Left, magenta) or condition 

(Right, purple) left-out of training the model. See Figure S4 for elaboration on invariant 

dynamics generalization.
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(C) The coefficient of determination (R2) of models predicting neural activity given the 

command it issues and previous activity, evaluated on test data not used for model fitting 

(Monkey G [J]: n=9 [4] sessions). See Figure S3 for properties of the models. Inset shows 

raw R2, where “shuffle” is the 95th percentile of the shuffle distribution of R2. Main panel 

shows R2 normalized to shuffle. Full dynamics, command left-out dynamics, and condition 

left-out dynamics all predicted neural activity significantly better than shuffle dynamics. 

For each model: Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for 

sessions pooled. Figure S5 shows models with behavior variables and non-linear dynamics.

(D) Left. Average activity for the example neuron, command, and conditions from Figure 

3B, left.

Right. Prediction of the activity in Left by the full dynamics model (stars), the shuffle 

dynamics model (black boxplot distribution), and the model predicting neural activity 

only using the command (gray triangle). 8/9 or 88.9% of these examples were predicted 

significantly better than shuffle dynamics. The full dynamics model predicted individual 

neuron activity better than shuffle dynamics, aggregating over all (command, condition, 

neuron) tuples (Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for 

pooled sessions).

(E) Left. Average population activity for the example command and conditions from Figure 

3B right, visualized along the activity dimension that captured the most variance (the 

first principal component, labeled “PC1”, of condition-specific average population activity). 

Right. Prediction of activity in Left by the full dynamics model (stars), the shuffle dynamics 

model (black boxplot distribution), and the model predicting neural activity only using the 

command (gray triangle). 9/9 or 100.0% of these examples were predicted with significantly 

lower error than shuffle dynamics (prediction was calculated using full population activity, 

not just PC1). The full dynamics model predicted population activity with lower error than 

shuffle dynamics, aggregating over all (command, condition, neuron) tuples (Monkey G [J]: 

p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled sessions).

(F) Model R2 from predicting the component of average neural activity for a given command 

that is specific to a condition, comparing the full dynamics model (dark gray bar and filled 

dots) with the mean of the shuffle dynamics model (light bar and empty dots) (Monkey G 

[J]: n=9 [4] sessions). The full dynamics model predicted significantly more variance than 

shuffle dynamics (Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for 

pooled sessions).

(G) Left. Fraction of (command, condition) tuples where full dynamics predicts average 

population activity significantly better than shuffle dynamics. Center. Fraction of commands 

where full dynamics predicts average population activity significantly better than shuffle 

dynamics, calculated for each condition separately and then aggregated over all conditions 

for statistics. Right. Fraction of neurons where full dynamics predicts the neuron’s 

average activity significantly better than shuffle dynamics, calculated for each (command, 

condition) separately and then aggregated over all (command, condition) tuples for statistics. 

Throughout E: datapoints are each of 9[4] sessions for Monkey G[J].

See Table S1 for statistics details.
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Figure 5. Invariant dynamics align with the decoder, propagating neural activity to issue the next 
command.
(A) A linear dynamics model predicts the transition from current neural activity (colored 

rings) to next neural activity (cyan-outlined dots) and next commands (orange symbols) (i.e. 

the component of neural activity in the decoder space).

(B) If invariant dynamics are low-dimensional and only occupy the decoder null space (pink 

plane), then they do not predict the next command (i.e. the component of neural activity in 

the decoder space).
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(C) The coefficient of determination (R2) of models predicting next neural activity given 

current neural activity, evaluated on test data not used for model fitting (Monkey G [J]: 

n=9 [4] sessions). Inset shows raw R2, where “shuffle” is the 95th percentile of the shuffle 

distribution of R2. Main panel shows R2 normalized to shuffle. All models predicted next 

neural activity significantly better than shuffle dynamics. For each model, Monkey G [J]: 

p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for sessions pooled.

(D) R2 of full model for each neural activity dimension (dynamics eigenvector), sorted by 

R2.

(E) Same as (C), except prediction of next command given current neural activity (Monkey 

G [J]: n=9 [4] sessions). All models except decoder-null dynamics predicted next command 

significantly better than shuffle dynamics. For condition left-out dynamics (purple), Monkey 

G[J]: p-value < 0.001 for 9/9 [2/4] session, p-value < 0.05 for 9/9 [3/4] session, p-value n.s. 

for 0/0 [1/4] sessions, p-value < 0.001 for sessions pooled. For full dynamics and command 

left-out dynamics, Monkey G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for 

sessions pooled.

(F) Analyses of how well the next command is predicted for individual (command, 

condition) tuples. The full dynamics model predicted condition-specific next command 

better than shuffle dynamics, aggregating over all (command, condition) tuples (Monkey 

G [J]: p-value < 0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled sessions). Left. 
Fraction of (command, condition) tuples where full dynamics predicts the next command 

significantly better than shuffle dynamics (Monkey G [J]: n=9 [4] sessions). Right. Fraction 

of commands where full dynamics predicts the next command significantly better than 

shuffle dynamics, calculated for each condition separately and then aggregated over all 

conditions for statistics (Monkey G [J]: n=9 [4] sessions).

(G) Visualization of the command angle (left) (i.e. the direction that the command points) 

for the example command and conditions (right) from Figure 3B. For each condition (each 

row), visualization shows the average current command angle (first column), the average 

next command angle (second column), and the prediction of the average next command 

angle by the full dynamics model (third column).

(H) For each (command, condition) tuple, prediction of the angle between the next 

command and the condition-pooled average next command. Left. Fraction of (command, 

condition) tuples for which the sign of the angle is accurately predicted (positive=turn 

counterclockwise, negative=turn clockwise). Full dynamics predictions are significantly 

more accurate than shuffle dynamics (Monkey G [J]: p-value < 0.001 for 9/9 [4/4] 

sessions, p-value < 0.001 for pooled sessions. Right. Error in predicted angle. Full dynamics 

predictions are significantly more accurate than shuffle dynamics (Monkey G [J]: p-value < 

0.001 for 9/9 [4/4] sessions, p-value < 0.001 for pooled sessions).

See Table S1 for statistics details. See also Figure S5 for models with behavior variables and 

non-linear dynamics.
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Figure 6. An OFC model reveals that invariant dynamics reduce the input that a neural 
population needs to issue commands based on feedback.
(A) A model of optimal feedback control for movement that incorporates invariant neural 

dynamics.

(B) Three simulated trials for each condition (center-out (co), counter-clockwise (ccw), and 

clockwise (cw) movements to 8 targets resulting in 24 conditions). Top: Full Dynamics 

Model that uses invariant dynamics fit on experimental data. Bottom: No Dynamics Model 

that uses dynamics matrix A set to 0.

(C) Input magnitude as a percentage of the No Dynamics Model (Monkey G [J]: n=9 

[4] sessions). The population required significantly less input to control movement under 

the Full Dynamics Model (cyan ‘D’) as compared to the No Dynamics Model (black 

‘ND’). Un-normalized data were pooled across sessions and compared with a linear mixed 

effect (LME) model between input magnitude and model category with session modeled 

as random effect (Monkey G [J]: p-value < 0.001). Individual sessions were analyzed 

with a Wilcoxon signed-rank test that paired condition across the models (Monkey G [J]: 

p-value<0.05 for 9/9 [4/4] sessions).

(D) Same as (C) but for Decoder-null Dynamics. There was no significant difference in 

input magnitude between Decoder-null Dynamics (pink ‘D’) and No Dynamics (black ‘ND’) 

when pooling across sessions (Monkey G [J] p-value > 0.05) and on individual sessions 

(Monkey G [J]: p-value<0.05 for 0/9 [0/4] sessions).

(E) The same command is issued across conditions in both the Full Dynamics Model and 

No Dynamics Model. Average position subtrajectories are shown locked to an example 

command across conditions.

(F) Distance between average population activity for a (command, condition) and the 

average activity for the command pooling across conditions, normalized by the mean 

distance of the shuffle distribution (gray boxplots showing mean, 0th percentile, 25th, 
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75th, and 95th percentile). Left: data from Full Dynamics Model. Right: data from the No 

Dynamics Model. Asterisk indicates distance is greater than shuffle (p-value<0.05).

(G) Same as (F), but each point is an individual session pooling over (command, condition) 

tuples (Monkey G [J]: n=9 [4] sessions). Population distances for the Full Dynamics Model 

were greater than shuffle. Data was pooled over sessions using a LME with session modeled 

as random effect (Monkey G [J]: p-value < 0.001), and individual sessions were analyzed 

with a Mann-Whitney U test (p-value<0.05 for Monkey G [J] on 9/9 [4/4] sessions). No 

difference was detected in population distances between the No Dynamics Model and 

shuffle when pooling across sessions (Monkey G [J]: p-value > 0.05) and on individual 

sessions (p-value<0.05 for Monkey G (J) on 0/9 (0/4) sessions).

(H) Same as (G), but for the Decoder-null Dynamics Model (pink ‘D’). No difference was 

detected in population distances between the Decoder-null Dynamics Model and shuffle 

when pooling across sessions (Monkey G [J]: p-value > 0.05) and on individual sessions 

(p-value<0.05 for Monkey G (J) on 0/9 (0/4) sessions). Also, no difference was detected 

in population distances between the No Dynamics Model and shuffle when pooling across 

sessions (Monkey G [J]: p-value > 0.05) and on individual sessions (p-value<0.05 for 

Monkey G(J) on 0/9 (0/4) sessions).

See Table S2 for statistics details. See also Figure S3E–G for experimental data consistent 

with the model’s view that invariant dynamics interact with ongoing input to control 

movement.
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Key resources table

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Neural and behavioral datasets This paper DOI: https://doi.org/10.48324/
dandi.000404/0.230605.2024

Experimental models: Organisms/strains

Rhesus macaque (macaca mulatta) California National Primate Center, 
Davis, CA

Software and algorithms

Python 2.7, 3.6 Python Software Foundation https://www.python.org

ssm – for fitting switching LDS model Linderman 2017 citation https://github.com/lindermanlab/ssm

Analysis code This paper DOI: https://doi.org/10.5281/zenodo.8006653
github: https://github.com/pkhanna104/
bmi_dynamics_code

Other

128-channel microwire electrode arrays Innovative Neurophysiology https://inphysiology.com/
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