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ABSTRACT OF THE THESIS

Impact of temporal resolution on demand charge reduction using real-time model based
predictive control of a battery energy storage system (BESS)

by

Rahul Roy

Master of Science in Engineering Sciences (Mechanical Engineering)

University of California San Diego, 2022

Professor Jan Kleissl, Chair

Grid-connected battery energy storage systems (BESS) are a promising technology to

decrease peak load. In this paper, a linear programming (LP) optimization model of a BESS that

minimizes demand charge in real-time is developed. The model is employed to study the effect

of two temporal resolutions of load profiles, 15 min and 1 hour, on peak load shaving and optimal

sizing of BESS. In contrast to previous studies with perfect forecast, realistic forecast errors are

prescribed; a 24 hour persistence forecasts and a recurrent neural network (RNN) model are used

for short-term load forecasts. The LP routine was coupled with model predictive control (MPC)

to obtain optimal BESS dispatch schedules and to reduce the deviations due to load forecast

viii



errors in real time. The performance of the proposed algorithm is simulated for one month on a

grid-connected building. Compared to perfect load forecasts, the RNN forecast error causes a

monthly average of 1.3 kW higher optimized net load, and corresponding $27 higher optimal

demand charge (ODC). Correcting persistence forecast with more accurate RNN forecast yield

better peak shaving performance with a monthly average of 28.1% reduction in optimized net

load. The temporal load resolution has a significant influence on the ODC. The difference of

ODC for two temporal resolutions depend strongly on the load profile characteristics. When

the battery capacity is above a certain power and energy threshold limit, the 1 hour load profile

is found to be sufficient for determining ODC. However, when the power and/or energy is

constrained, the difference in the ODC between 15 min and 1 hour resolution ranges from $14.7

to $123.1 for 28 days.
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Chapter 1

INTRODUCTION

1.1 Literature Review

In recent years, there has been a significant research interest in using grid-connected

battery energy storage systems (BESS) for demand charge reduction. BESS can reduce electricity

costs in commercial buildings by discharging stored energy during peak loads [31]. Ehsan et

al. [35] implemented nonlinear programming to charge or discharge a BESS based on daily

load forecasts. Lavrova et al. [18] analyzed the cost effectiveness of BESS in terms of power

smoothing, peak load shaving, and other ancillary services. The economic feasibility of BESSs

depends on three parameters; the difference between high and low electricity prices, peak demand

charge, and investment cost for BESS [38]. Dejvises et al. [9] applied a mathematical model to

simulate BESS operation, reducing daily electrical peak power demand by 7.4% with a 9.9%

increase of daily load factor. Successful peak shaving strategy requires optimal operation of

the BESS. Some studies considered simple rule-based optimization to charge the battery at

low demand and discharge at peak demand [47, 24, 19, 35]. Chua et al. [7] used a rule-based

adaptive control algorithm to determine the optimum operation of BESSs. Rahimi et al. [34]

developed a controller for demand charge reduction that operated the battery based on short term

load forecasted load. Additional research on the optimum operation of BESSs for peak shaving

applications can be found in [6, 13, 40, 16].

BESS size was optimized by evaluating the energy capacity required to meet the peak
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load demand based on daily forecasted load[23] and historical load profiles[7]. Thongchart et

al. [15] used particle swam optimization to determine the optimal size of BESS at minimal

total BESS cost. Many research works have optimized the battery size to balance the BESS

installation cost and electricity bill savings [39, 30, 21, 2, 28, 41, 27, 14]. Hassan et al. [11]

analyzed the impact of BESS unit cost on its adoption using the Distributed Energy Resources

Customer Adoption Model (DER-CAM) software.

Many authors employed modeling approaches and forecast-based strategies for optimized

operation of photovoltaic-battery (PVB) systems, such as linear [8] and mixed integer-linear

programming [33], dynamic programming [36], neural networks [26] as well as model predictive

control [17] (MPC). [3, 44] considered a PV and load forecast-based control strategy to operate

the BESS. Researchers used MPC as a supervisory layer for optimal operation of the BESS [25].

Wu et al. [42] scheduled a grid-connected PVB system in real time using MPC. Zhang et al. [45]

showed that MPC performs better in minimizing operation costs of microgrids under different

forecast uncertainty levels of load demand, electricity cost, and renewable generation than other

scheduling and operation strategies. MPC was applied for energy management in microgrids by

[32, 46].

The operation of BESS for peak load shaving is sensitive to the temporal resolution

of the load profiles. Most publicly available databases for weather data and load profiles are

based on a 1 hour resolution [12]. Cao and Siren [5] showed that a 1 hour time resolution can

cause significant errors in the matching of photovoltaic (PV) generation and household electric

demand. Beck et al. [1] concluded that load resolution has a significant impact on optimal sizing

of PVB systems when maximizing the revenue from feed-in tariffs. A similar conclusion was

drawn by Wyrsch et al. [43] who considered 6 s measured load resolution data and averaged it

to 1 hour to match it with PV generation data. Longer time averaging of supply and demand

profiles leads to significant overestimation of direct self-consumption, degree of autarky and

battery lifetime [37]. Burgio at al. [4] showed that for a PVB system, the peak load of one day

decreased 39.4% from 52 kW to 32 kW as the time resolution changed from 3 min to 1 hour.
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Liu et al. [22] studied the impact of temporal load resolution on demand charge reduction for

perfect forecasts for a large range of BESS energy and power capacities. Hourly load profiles

significantly underestimated the optimal demand charge (compared to 15 min load profiles) when

the power or energy capacity of the BESS is constrained below certain critical limits.

1.2 Objectives and Contribution

Following Liu et al.[22], the goal of our research is to study demand charge reduction for

high (15 min) and low (1 hour) temporal load resolutions in real-time. Rather than using perfect

load forecasts [22], we adopt a MPC-based linear program (LP) optimal BESS dispatch strategy

using two short-term load forecasts with different levels of realistic forecast errors: 24 hour

persistence forecast and 24 hour load forecast based on a recurrent neural network (RNN) model.

This corrective optimization framework replicates the real-world feature of better prediction

accuracy with a reduced forecast horizon. This allows us to study the effect of different load

forecasting models on the optimum demand charge.

MPC optimizes the operation of the BESS by solving an LP problem at every time step.

In real-time the BESS dispatch is adjusted for disparities between the prediction and demand

load measurement. As a case study, we tested our model with real load data from a police

building.The impact of temporal resolution on peak shaving is quantified as the deviation of

optimized demand charge at 1 hour versus 15 min load resolution for different BESS power and

energy ratings. The main novelties are:

1. Quantifying the impact of temporal load resolution on demand charge reduction using

BESS operation considering real-time load data.

2. Quantifying how characteristics of short-term load forecasts affect the demand charge

reduction.
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1.3 Paper Organisation

The remainder of this paper is divided into four sections. The proposed LP optimization

model for minimizing demand charge along with the BESS constraints is described in Section 2.1.

We introduce the load forecasts, model predictive control algorithm and the battery parameters

in Sections 2.2, 2.3 and 2.4 respectively. The data is described in Section 2.5. Section 3.1 and

Section 3.2 presents the demand charge simulation results on a sample day, as well one month of

operations respectively. The effect of temporal resolution on demand charges is compared across

a ratings space defined by BESS power and energy capacity in Section 3.3. Lastly, Section 4

completes the paper with concluding remarks and recommendations for future work.
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Chapter 2

SYSTEM MODELING

2.1 Linear optimization model

A linear programming model is written in MATLAB CVX with MOSEK as a solver

for the convex optimization problem, which is designed in discrete time intervals, ∆t, based on

the temporal resolution of the electrical load profile. The setup and equation in this section are

identical to Liu et al. [22]. The optimization model calculates the optimal power flows between

the BESS, electrical grid, and the building load (Fig. 2.1). The electricity imported by the grid

(Pg) is offset by the charging/discharging (Pb) of the BESS to meet the load (l) in real time. The

present work is also applicable to PVB systems, where the load is replaced by the summation of

actual load and PV generation.

Figure 2.1. Schematic diagram of the grid-connected battery energy storage system, the load,
and the utility grid.
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The target of the optimization is the minimization of the peak demand charge. The

objective function is

min(obj) = d×max(Pg)+ ε ×
T

∑
t=0

|Pt
b| (2.1)

where t is the time index and T is the total number of time intervals. The objective function

consists of the optimal demand charge (ODC) and a penalty term

ODC = d×max(Pg) = d×OP, (2.2)

where d is the demand charge rate, set at a constant value of $20.62, obtained from the AL-TOU

rate schedule by San Diego Gas & Electric (SDG&E) utility company. The optimal peak (OP) is

the maximum net load during the day. The second term in Eq. 2.1 ensures the optimal demand

charge solution with the least battery activity by multiplying a small penalty factor ε = 10−6 into

the battery charging/discharging oscillations.

The following assumptions are considered:

1. All the electronic interfaces of the utility grid, load and BESS are assumed to be 100%

efficient.

2. The charging and discharging of the battery are assumed to be 100% efficient.

3. The system energy conversion and transmission are perfectly efficient.

4. As Lithium-ion batteries have a response time on the order of milliseconds, the BESS

charging/discharging dispatch is assumed to be instantaneous [29].

5. The loss of stored electricity due to the self-discharge rate of the battery is neglected as it

is small (0.1%/day) [20]

The main constraint of the optimization model is the load balance equation, which ensures
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that the load lt of the building is satisfied by the grid Pt
g and battery Pt

b at all times.

Pt
g +Pt

b = lt, ∀t∈T (2.3)

The BESS is modeled according to Eq. 2.4. The energy conservation at every time

interval of the battery is accounted for in Eq. 2.4a, where the state of charge (SOC) is defined

as the ratio between stored electrical energy and the rated battery capacity ce. The power

flows entering and exiting the battery are constrained by the power capacity cp as shown in

Eq. 2.4b. The discharging or charging of the battery is denoted by positive or negative values

of Pb, respectively. According to Eq. 2.4c, the SOC is retained at 0.5 during the beginning and

end of the simulation period. Therefore, savings through energy sales are avoided as the net

charging/discharging energy of the battery is zero. The SOC is always kept within the minimum

and maximum limits of the battery (Eq. 2.4e).

SOCt+1 = SOCt −
Pt

b × (∆t)
ce

, ∀t∈T (2.4a)

−cp ≤ Pt
b ≤ cp, ∀t∈T (2.4b)

SOCstart = SOCend = 0.5 (2.4c)

SOCmin ≤ SOCt ≤ SOCmax (2.4d)

SOCmin = 0;SOCmax = 1 (2.4e)

2.2 Load forecasting

We consider three different 24 hour ahead load forecasts representing different forecast

accuracies.
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1. Perfect Forecast: The entire 24 hour horizon consists of the actual load profile, yielding

zero forecast error. Therefore Steps 4 through 6 in Fig. 2.2 are not needed. The per-

fect forecast represents the maximum peak load shaving achievable by the BESS. With

sufficient battery capacity, the perfect forecast would yield a flat net load curve [22].

2. Base or Persistence Forecast: As a standard benchmark for load forecasting, the 24 hour

persistence forecast is characterized as the load at the same 15 min time step of the previous

day[10]. Persistence forecast are separated into weekdays and weekends. For example,

persistence from the preceding Fridays is assumed for Mondays and for Saturdays, we

consider load from the preceding Sunday. The 24-hour persistence forecast has the largest

forecast error.

3. Operational or RNN Forecast: Trained on the previous year of load, we use a recurrent

neural network (RNN) model to predict the 24 hour load. The RNN forecast is typically

more accurate than the persistence forecast.

2.3 Model Predictive Control (MPC)

MPC is a receding horizon optimization-based control method. The basic concept of

MPC is that at each time step, a look-ahead finite-horizon optimal control problem is solved but

only the first step of the control sequences is implemented. The time-domain trajectory of state

variables over the prediction horizon is described by a predictive model, with the initial state

being the measured state of the actual system. After the implementation of the first step, the

system waits until the next step. At the next step, with a new measurement, the optimal control

routine is computed again. The optimal control problem is formulated for peak demand shaving

based on MPC as follows (Fig. 2.2):

1. Set the time step t at the beginning of the simulation period equal to zero i.e. t = 0.

8



Figure 2.2. Flow chart illustrating the model predictive control algorithm in the battery dispatch
schedule for peak load shaving

2. Select a moving horizon of 24 hours discretized into either 15 min or 1 hour step sizes, i.e.

∆T = 0.25 for 15 min and ∆T = 1 for 1 hour. Load the forecasted load data for the entire

receding horizon.

3. Solve the convex optimization problem that minimizes the objective function (Eq. 2.1)

from the t-th interval for the entire 24 hour horizon to find the forecasted grid import (Pg)
t
f,

battery output (Pb)
t
f and SOC at the end of the t-th time interval (SOC)t+1

f .

4. The actual grid import (Pg)
t
a is determined by choosing the forecasted grid import from the

previous step i.e. (Pg)
t
a = (Pg)

t
f. The battery output (Pb)

t
a and SOC (SOC)t+1

a is adjusted

9



considering the actual load at the beginning of the t-th interval.

5. If SOC of the battery at time step t exceeds the allowed threshold limit, set the SOC to the

boundary value (Eq. 2.4e).

6. First, adjust the actual battery output to compensate for real time forecast errors and then

adjust the grid import accordingly. Set t = t+ 1 and update the load data for the next

control iteration. Go to step 2.

2.4 Battery space analysis

We consider two temporal resolutions of load data: 15 min and 1 hour, similar to Liu et

al. [22]. The load is metered at 15 min intervals and is referred to as the reference load data. The

coarse resolution (hourly) profile is derived by taking the average of four time steps. The hourly

resolution is chosen as many data sets and optimization models for peak shaving are based on

1 hour resolution. The 15 min resolution optimization requires more computation time as it has 4

times the number of battery dispatch decisions compared to the 1 hour resolution. The 1 hour

average load can result in different objective function values compared to the reference load,

which can result in a different optimal demand charge. Following [22], the difference of demand

charge (DODC) is defined as

DODC = ODC15−min −ODC1−hour (2.5)

where ODC15−min and ODC1−hour are the optimal demand charge achieved with the load profiles

at 15 min and 1 hour time resolution, respectively. DODC quantifies the peak shaving error that

occurs when optimizing dispatch using loads at coarse temporal resolution. For a specific load

profile, the DODC mainly depends on the BESS capacities, i.e. power capacity, cp, and energy

capacity, ce. The optimum peak (OP) is defined as the maximum net load. For perfect forecasts,

there exists an ideal cp (critical power, CP) and ce (critical energy, CE) that reduce the peak load
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to the perfect peak (PP) i.e. average power of the daily load; further increase in battery capacities

will not lower the maximum net load [22].

CP = max|lt −PP| (2.6a)

CE = 2×max|
T

∑
t=1

[(lt −PP)×∆t]| (2.6b)

CP measures the maximum distance from the time-varying load to the PP, whereas the CE is

the maximum absolute value of the cumulative sum of the distance from the 15 min load to the

PP for all time steps. We denote the critical power for 15 min and 1 hour load resolutions as

CP15−min and CP1−hour, respectively. The critical BESS capacities determine the critical point in

the battery ratings space above which the DODC is exactly zero for perfect forecast.

2.5 Data

The input load data for this study was obtained from the Police building at the University

of California, San Diego (UCSD). The Police building is a single story, 14,566 square foot

building that was constructed in 1991. The electrical load profile was measured during September

2018 to February 2020 at a temporal resolution of 15 min and was quality controlled in [?]. In

this paper only data for February 2020 is used. The load profile shows typical load variations for

a commercial building.

11



Chapter 3

RESULTS AND DISCUSSION

3.1 Case study for a single day

The results are first shown for a single day, i.e. February 1, with the RNN forecast.

According to Liu et al. [22], there is a significant difference in ODC when the power and/or

energy capacity of the BESS are constrained below its critical capacities (Eq. 2.6b). Therefore,

we have selected a BESS with a power capacity cp = 8 kW and energy capacity ce = 100 kWh.

Per the BESS classification presented later in Section 3.3, this BESS is power constrained as the

CP of Feb 1 is 10.4 kW. Fig. 3.1a shows the optimization results of the BESS. The net load is

almost flat over the day but varies due to RNN load forecast errors and the power-constrained

BESS. From the middle plot in Fig. 3.1a, we observe that the battery is charged to approximately

80% until 09:45 h before the peak load period starting at 11:45 h. The battery discharges until the

evening at 18:00 to shave the grid profile towards the perfect peak. The BESS does not discharge

completely as we have constrained the battery SOC at 50% at the end of the day. The maximum

power imported from the grid is 34.37 kW (11:45 - 12:00) and 33.61 kW (00:00 - 01:00) for

15 min and 1 hour resolution respectively, which is close to the perfect peak (PP) value of 32.44

kW. The net loads are larger than the PP for two reasons: a) the power capacity of the battery

is less than CP and b) the RNN forecasted load is higher than the actual load by 0.51 kW and

0.25 kW for 15 min and 1 hour load respectively.

Fig. 3.1a (bottom) shows that the power capacity of the BESS is fully utilized during

12



Figure 3.1. 15 min and 1 hour optimized net load (top), battery SOC (middle) and battery
charging/discharging decision (bottom) on Feb 1, 2020 based on RNN forecast with BESSs of a)
cp = 8 kW and ce = 100 kWh (power-constrained); b) cp = 16 kW and ce = 100 kWh ().

the 15 min time interval with peak demand (11:45 - 12:00). The demand charge is reduced by

$175.55, or 19.85% and $125.78, or 15.36% of the maximum load profile value for 15 min

and 1 hour resolution respectively. This significant reduction supports the potential of BESS

for demand charge management. The 15 min net load is higher during the time interval 11:00 -

12:00 as the power capacity of the BESS is constrained at 8 kW. As the BESS power capacity is

increased to 16 kW in Fig. 3.1b, we observe that the net load is completely flattened near the PP.

The difference of demand charge (DODC) is $15.6, i.e. the demand charge is underestimated

by 2.2% compared to the 15 min temporal resolution. The results confirm that the 1 hour load

profile will overestimate BESS peak load shaving.

As the predicted load is higher than the actual load during 00:00 to 09:00 (Fig. 3.2), the

optimized net load is higher than PP during that interval in both plots. The additional power is

used to further charge the BESS. Therefore, the load forecast error due to RNN model contributes

significantly towards demand charge reduction.
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Figure 3.2. Monthly comparison of optimized net load for a) 15-min and b) 1-hour load profile;
and c) nRMSD for RNN and persistence forecast scenarios with BESS cp = 15 kW and ce =
100 kWh.

3.2 Monthly results and statistics of load forecast error

We consider the three load forecasting scenarios (Section 2.2) for the month of February

2020. A sufficiently large battery capacity (cp = 15 kW and ce = 100 kWh) was selected to

reduce the peak load to PP for perfect forecasts. While in practice demand charges are only

assessed for the maximum load in the month, here we apply the optimization daily to test

the ability to reduce peak loads for different load shapes and forecast errors. The day-by-day

peak shaving performance comparison for both 15-min and 1-hour temporal load resolution is

presented in Fig. 3.2a and Fig. 3.2b respectively. The optimized net load for perfect forecast is

flat for most days. When the load is high (e.g. Feb 25 - 27), the battery capacity is insufficient to

completely flatten the load.

When 24 hour persistence forecast errors are large and the forecast is too small (e.g. Feb
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11 and Feb 25), the energy capacity of the battery is insufficient to flatten the load, resulting

in large optimized net load. The optimized net load for Feb 11 is very large for persistence

forecasts due to huge load variability compared to Feb 10. This verifies that the forecast error is a

significant barrier to reducing peak load. The higher the forecast error, the larger is the deviation

in optimized net load, resulting in higher optimal demand charge.

The RNN optimized net load is much higher than perfect forecasts due to load forecast

error between the actual and predicted load, resulting in higher ODC. During days with small

load (e.g., Feb 13 to 16), the battery capacity is sufficiently large to reduce the peak load to near

the PP, yielding an almost flat net load for RNN forecast.

The normalized root mean square difference (nRMSD) for optimized net load for dif-

ferent forecast scenarios compared to the optimized net load with perfect forecast is shown in

Fig. 3.2c. As persistence forecasts have the largest average load forecast error (nRMSD= 10.2%),

the average 15 min and 1 hour nRMSD is found to be 5.64% and 2.94% respectively. The RNN

forecasts outperform the 24 hour persistence forecasts on all days except Feb 19. RNN forecasts

deliver a monthly nRMSD net load average of 3.49% and 1.58% for 15 min and 1 hour load res-

olution respectively, placing it approximately halfway between persistence and perfect forecasts.

In general, this result confirms that the optimized net load can be reduced by RNN forecasts.

The RNN optimized net load is not flat as the MPC algorithm is based on the forecasted load.

For example, if RNN forecast is much higher compared to the actual load during the morning,

the MPC will import more power from the grid and charge the BESS, causing higher ODC.

The average nRMSD for the 1 hour optimized net load is smaller compared to the 15 min

load resolution. This result verifies that the ODC is underestimated by the low resolution load

profile, due to load averaging of the 15 min load profile.

15



Figure 3.3. Demand charge metrics ($, color) for Feb 12 as a function of power and energy
capacity: (a) DODC, (b) ODC15−min, and (c) ODC1−hour

Figure 3.4. Comparison of demand charge metrics ($, color) when BESS is operated without
MPC algorithm and with MPC algorithm for RNN forecast: (a) DODC, (b) ODC15−min, and (c)
ODC1−hour as a function of power and energy capacity for Feb 12
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3.3 Battery rating space analysis

3.3.1 Overview

The ODC depends on the BESS energy and power capacities. The ODC for 15 min

(ODC15−min) and 1 hour (ODC1−hour) temporal resolution is plotted in Fig. 3.3b and Fig. 3.3c

respectively across the battery rating space based on the RNN forecasts on Feb 11. We observe

that the ODC is inversely proportional to BESS power and energy capacities. The difference

between the two corresponding ODCs (DODC) is plotted in Fig. 3.3a. The battery rating space is

divided into three regions based on the distribution of DODC in Fig. 3.3a. In the optimal region,

the demand charges for both temporal resolutions are the same (i.e. $711.7), resulting in zero

DODC values. Any additional BESS capacity is unable to reduce the optimized peak load below

PP i.e. 32.77 kW or $675.7 demand charge, for both load resolutions. In Fig. 3.3b and c, we

observed that the net load optimized by the BESS in the optimal region are identical for both

load profiles resulting in zero DODC. But the ODC is higher compared to perfect forecast. This

is due to the difference between the RNN forecasted load and the actual load during the initial

time period of the day. As the BESS charging/discharging decision is based on load forecasts,

the grid import is slightly higher than PP. This phenomenon is analyzed in more detail in 3.3.2.

The rest of the battery space is split into the power-constrained and energy-constrained regions.

The MPC algorithm optimizes BESS dispatch in Step 4 to mitigate net load deviations

caused due to forecast errors. The optimal demand charge for 15 min and 1 hour resolution has

been compared with a BESS charged/discharged without and with MPC, as shown in Fig. 3.4b

and Fig. 3.4c. In the optimal region, both (ODC15−min) and (ODC1−hour) is $17.15 less when the

battery is charged/discharged based on MPC. Similar results have been confirmed for both power

and energy constrained regions. The short-term load forecast error reduces as it gets updated at

every time interval when using MPC resulting in reduced optimized net load. Therefore, we can

conclude that the MPC controller optimizes BESS dispatch scheduling and can reduce peak load

with lesser BESS capacity.
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3.3.2 Power-constrained region

Figure 3.5. DODC, ODC15−min, and ODC1−hour on Feb 13 at a fixed BESS energy capacity of
150 kWh for a) perfect b) persistence and c) RNN forecast. O represents the optimal region and
P represents the power-constrained region. The vertical grey lines represent critical power (CP).

Figure 3.6. 15-min and 1-hour optimized net load by the following BESS: a) cp = 5.0 kW,
ce = 150 kWh; b) cp = 7.7 kW, ce = 150 kWh on Feb 13.

To analyse the power-constrained region, the energy capacity of the battery is fixed at

150 kWh, which is higher than the critical energy (CE) of the load profile for February 13

(68.07 kWh). Fig. 3.5a shows that the ODC for both 15 min and 1 hour resolutions decrease

linearly starting from $712.22 and $668.92 respectively and in parallel with a fixed DODC of

$43.30 for perfect forecast, until they reach the same value ($635.59) after reaching the CP of

the load. A similar trend is observed for both persistence and RNN forecasts in Fig. 3.5b and

Fig. 3.5c respectively. Compared to the perfect forecast, the RNN forecast has a higher ODC
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for both 15 min ($780.22) and 1 hour ($730.96) temporal resolutions in the power constrained

region (P in Fig. 3.5c) due to the significant error (nRMSD= 4.77%) in predicted load and actual

load during the day. The ODC is even higher for the persistence forecast than the perfect and

RNN forecasts due to higher average load error (nRMSD= 9.58%).

The battery rating space is divided into two regions based on DODC, i.e. the power-

constrained region (P) and the optimal region (O). CP15−min and CP1−hour of the predicted load

describes the transient zone between the power-constrained and optimal region. The transient

zone based on the RNN forecast (Fig. 3.5c) is smaller than for the persistence forecast as the

CP for predicted load is lesser compared to CP for persistence load. So the optimal region

starts at CP15−min = 7.71kW and CP15−min = 11.10kW for the RNN and persistence forecasts,

respectively.

To further analyze the effect of RNN load forecast error on the two battery space regions,

the optimization results of BESS with power capacity of 5 kW (power-constrained region) and

7.71 kW = CP15−min (optimal region) are shown in Fig. 3.6a and Fig. 3.6b respectively for a

constant battery energy capacity ce = 150 kWh. The optimized net load by the BESS is affected

by time averaging of the load profile from high resolution (15 min) to low resolution (1 hour).

In Fig. 3.6a, the peak net load occurs during the time interval of 12:30-12:45 h (34.83 kW)

and 15:00-16:00 h (32.44 kW) respectively. This results in DODC = $49.26 due to a constant

net load difference of 2.39 kW throughout the power-constrained region. When the power

capacity increases to 7.71 kW i.e. CP of the predicted load, the DODC becomes zero, i.e. the

net optimized load for both temporal resolutions are identical (Fig. 3.6b). However the net

load imported from the grid is much higher compared to PP (blue line in Fig. 3.6b) resulting

in higher ODC even with sufficient battery power capacity. As the predicted load (red line)

during 00:15-09:30 h is much higher than the actual load (black line), the grid import during

this time interval is higher than PP due to charging of the battery. Due to excess charging of

the battery during the day, the battery gets discharged during the evening (18:00-23:45 h) to

maintain the battery SOC at 0.5 even though there are no ODC benefits. Therefore, the ODC
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depends significantly on the accuracy of the load forecasting model. As the persistence forecast

has lower accuracy, it results in higher ODC15−min, and ODC1−hour than RNN forecast.

3.3.3 Energy-constrained Region

Figure 3.7. DODC, ODC15−min, and ODC1−hour at CP on a) Feb 13, b) Feb 21, and c) Feb
26 for perfect (first column), persistence (second column) and RNN (third column) forecasts,
respectively. O represents the optimal region and E represents the energy-constrained region.

In this section, we investigate the energy-constrained region by setting the BESS power

capacity to CP such that the power capacity has no significant impact on peak shaving. The

variation of DODC, ODC15−min, and ODC1−hour at CP on three different days (Feb 13, 21, and

26) is presented in Fig. 3.7a, Fig. 3.7b and Fig. 3.7c respectively for perfect, persistence, and

RNN forecasts. The left part in each figure represents the energy-constrained region (E) whereas

the right part is the optimal region (O), separated by the critical energy (CE) line. Even if the

energy capacity is constrained, i.e. ceCE, the ODC for both load profiles are closer to each
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other than in the power-constrained region, resulting in a lower magnitude of DODC. Although

the variation in DODC is irregular, it shows a decreasing trend until it reaches zero below CE.

Similar to the results observed in the power-constrained region, the ODC for both 15 min and

1 hour resolution for RNN forecast are higher than for the perfect forecast, but lower than for

the persistence forecast. The results in Fig. 3.7a further show that the BESS is unable to reach

PP in the optimal region due to load forecasting errors in real-time. We also notice that the

DODC becomes zero for ce > CE for all three forecasts. The same phenomenon is observed in

Fig. 3.7b and Fig. 3.7c for Feb 21 and Feb 26, respectively but the distribution of zero DODC

differs greatly. This is due to the change in peak period duration of some load profiles after

time-averaging, as explained by Liu et al. [22].

3.3.4 Discussion

Figure 3.8. Average demand charge metrics ($, color) for the month of February as a function of
power and energy capacity: (a) DODC, (b) ODC15−min, and (c) ODC1−hour

Load forecast errors cause a significant deviation between realistic peak shaving and ideal

peak shaving. For perfect forecast, Liu et al. [22] concluded that the optimal demand charge for

15 min temporal resolution is higher compared to 1 hour resolution in both power and energy

constrained regions. A similar result was observed for RNN load forecasting, but the ODC for

both temporal resolution is higher compared to perfect forecast (refer Sec. 3.3). The monthly net
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Figure 3.9. Maximum DODC ($) for perfect and RNN forecast during the month of February

load results in Section 3.2 verify that the forecast error plays a significant role in the optimized

net load variability. For example, in Fig. 3.6b, the optimized net load with RNN forecast is much

higher than PP even with sufficient BESS capacity, due to load forecast errors. Although the

DODC is zero in the optimal region, the ODC for RNN forecast is higher than perfect forecasts.

The results from Sec.3.3 are expanded for demand charge analysis of a month. The

average DODC, ODC15−min and ODC1−hour for the whole battery space during the month of

February is plotted in Fig. 3.8. Furthermore, the maximum DODC for each day during the month

of February for perfect and RNN forecasts are shown in Fig. 3.9. We observe that the DODC is

higher for days when there is a large variation in the load profile. When the 15 min load profile

is averaged to 1 hour temporal resolution, the peak load during the day reduces significantly

resulting in higher DODC. The results for RNN forecasts suggest that DODC is higher compared

to perfect forecasts as 15 min load forecast errors are higher compared to 1 hour loads.

The demand charge reduction by the BESS over a month depends on the daily load profile

of the month with the largest CP or CE. The load profiles for a particular month can be classified

into two types: (a) ”spiky” peak load profile due to high CP and low CE (e.g. Feb 12); (b)

”broad” peak load profile caused due to low CP and high CE (e.g. Feb 26). A power-constrained
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BESS will significantly overestimate ODC for a ”spiky” load profile. Similarly, the DODC for

energy-constrained BESS will be higher for ”broad” peak load profiles (refer 3.7c for RNN

forecast). As the demand charges are calculated based on the peak load for a whole month, the

BESS capacity must be selected based on the days having largest CP and CE.
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Chapter 4

CONCLUSIONS

In this paper, we developed a linear programming routine to optimize the battery energy

storage system (BESS) dispatch schedule based on a model predictive control (MPC) algorithm,

that leverages load predictions to reduce building peak demand. The MPC controller optimizes

the BESS charging decisions based on more accurate short-term forecast inputs at every time

interval, which further reduces the net load variability and corresponding optimal demand

charge. The linear optimization framework that integrates load forecasts and MPC allows a more

realistic study of the effect of temporal resolution in peak shaving and its relationship with BESS

capacities. We demonstrated the optimized dispatch for operational demand charge management

using one month of real data. This study differs from the literature regarding the forecast error

modeling as we use actual load forecasts instead of perfect forecasts. We generated load forecasts

using a recurrent neural network (RNN) forecasting model with one year of historical data. A

simple corrective deterministic strategy is applied to reduce negative consequences (load peaks)

of forecast errors. The optimized net load for RNN forecast is compared with results from

persistence and perfect forecasts. We conclude that the optimal demand charge for RNN forecast

is much higher compared to perfect forecast for a fixed BESS capacity. However, it is much

lower than persistence forecast due to lower deviations in predicted load than persistence load.

We have also studied the effect of temporal load resolution on peak shaving to understand

the intrinsic properties of load profiles and their relationships with BESS ratings. Our results
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show that the low resolution load underestimates the optimal demand charge (ODC) by 6.31%

or $49.26 for RNN forecasted loads when the BESS power capacity is constrained. We have

partitioned the BESS ratings space into different regions based on the battery power and energy

capacity to study BESS demand charge management at different temporal resolution. The 15 min

and 1 hour ODC is 8.71% and 8.48% higher respectively for RNN forecasts than perfect forecasts

in the power. Large forecast errors (4.77%) results in higher charging of the battery during the

day that increases the peak demand. As a result the optimized net load for RNN forecast is higher

than perfect peak resulting in higher ODC even though the DODC is equal to zero in the optimal

region for all load forecasts. The forecast errors tend to increase the 15 min load variability more

than 1 hour load time-series. Therefore, it is critical to oversize BESS capacities determined

from 1 hour resolution modeling to mitigate the errors in demand charge savings estimation

caused due to load resolution conversion. Conversely, high-resolution load profiles are required

to capture actual peak demand for a BESS having limited capacities. A given BESS may behave

as power-constrained during months with broad daily load peaks and energy-constrained during

months with spiky load characteristics.

The thesis is currently being prepared for submission for publication of the material. Roy,

Rahul; Silwal, Sushil; Kleissl, Jan. The thesis author was the primary investigator and author

of this material. I would like to acknowledge Dr. Sushil Silwal and Prof. Jan Kleissl for their

valuable support of the research work.
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