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Properties of Quantum 2 x 2 Matrices t 

S. VOKOS (*) - B. ZUMINO (*) - 1. WESS (**) 

1. - Introduction 

The theory of quantum groups has attracted great interest recently. In 
mathematics quantum groups are related to Hopf algebras, non commutative 
geometry and the theory of knots and links. In physics they are relevant for 
the 'theory of integrable systems, certain problems in statistical physics and the 
study of conformal field theories in two dimensions. 

One approach to the study of quantum groups, followed especially by 
Faddeev and collaborators, defines them in terms of their basic representation 
by matrices. Thus the quantum version of 8£(2, C), denoted by 8Lq(2, C), is 
defined by giving quantization relations for the elements of the 2 x 2 8 L (2, C) 
matrix, as described briefly in Section 2. Similarly, for other Lie groups. one 
starts from the basic representation and quantizes the matrix elements of the 
classical matrix. Higher representations of the same quantum group ,"an be 
obtained by mUltiplying and reducing quantum representations. 

It can happen that the basic representation of a quantum group possesses 
special interesting properties. In this paper we describe the special properties we 
have found for the 2 x 2 representation of 8 Lq (2, C). Although the results can 
be stated very simply. the proofs are usually somewhat lengthy and involved. 
We shall only sketch the basic ideas of the proofs here and will describe the 
details in a longer paper. 

The literature on quantum groups is very extensive. At the end we list 
only a few papers where numerous other mathematical and physical references 
can be found. 

We are deeply indebted to Ludwig Faddeev and to Vaughan Jones for 
introducing us to the theory of 4uantum groups. 

This work was supportt:d in part by DOE contract DE-ACU3-7()SF()()()l)X and in pan by 

NSF grant PHY-X5/15857. 

(*) Univc=rsity of California. Bt:rdt:lcy. CA. USA. 

Present address. LAPP. BP.II O. 74941 Annecy-Ie-Vieux Cedc=x. France. 
(**) Karlsruhe University. Karlsruhc=. Gennany. 
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It is a pleasure to dedicate this paper to Luigi Radicati on the occasion 
of his 70th birthday. 

2. - Quantum S L(2, C) 

We review the usual definition of quantum S L (2, C), i.e. S Lq (2, C), in 
tenns of its two dimensional representation. We consider first the general linear 
group in two dimensions. A matrix 

(2.1) A = (; !) 
is said to belong to the quantum linear group G Lq (2, C) if its matrix elements, 
instead of being complex numbers, are non commuting quantities (which can 
be realized as operators in a Hilbert space) satisfying the commutation relations 

(2.2) 

ab = qba 

ae = qea, be = eb 

bd = qdb, ad - da = (q - ~) be 

cd = qde 

Here q is a complex number, the quantum parameter. Matrices like A have 
the following remarkable property which can be taken as the definition of a 
quantum group. Let 

(2.3) A' = ( ;: b
l

) 

d' 

be a matrix of the same type, i.e. let its elements satisfy commutation relations 
similar to (2.2) 

(2.4) 

a'b' = qb'a' } 
I I I I a c = qe a . 

etc. 

Let also ai, b' , c' , d' commute with a, b, e, d. Then the matrix A" = AA' 

(2.5) A" _ a ( " - e" 
b") = ( aa' + be' 
d" ca' + de' 

ab' + bd
l

) 

eb' + dd' 

('. 

• ( 
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is also of the same type, i.e. 

(2.6) 

a" btl = qb" a" I 
"e" - e"a" a - q . 

etc. 

With reference to matrices like A, A' and A" one talks of a quantum group, 
the corresponding classical group being obtained in the limit q - 1, when the 
matrix elements commute. A quantum group is not a group; a better epression 
would be quantized group. 

The quantum detenninant of the matrix A is defined as 

(2.7) 
1 

Dq = detq A = ad - qbe = da - - be. 
q 

It reduces to the usual detenninant for q = 1. Using (2.2) it is easy to verify 
that pq is central, i.e. it commutes with a, b, e, and d. Using the quantum 
detenninant one obtains the (both right and left). inverse matrix 

(2.8) A-I - _ q 1 (d _1 b) 
- Dq -qe a . 

Notice that A -I is a quantum matrix which corresponds to the quantum 
parameter q-I. Indeed, from (2.2), 

(2.9) 

Similarly the matrix 

(2.10) 2 ( a
2 + be 

A = 
ea + de 

ab + bd) 
eb + d2 

corresponds to the quantum parameter q2,' a fact which can also be easily 
verified using the commutation relations (2.2). In general one can show that the 
matrix An is a quantum matrix corresponding to the quantum parameter qn, 
as we discuss in Sections 3 and 4. This fact was also noticed and proven by 
Corrigan and Tunstall [7]. 

One can impose the condition 

(2.11 ) 

which restricts L'l (2, C) to S Lq (2, C). In addition one can Impose reality 
conditions on the matrix A. One choice is that it be unitary 

(2.12) 
_ 1 

a = d Ii = -qe e = -- b. 
q 
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These relations restrict SLq(2, C) to SUq(2). They require for consistency that 
q be reaL Another choice is that A be real 

(2.13) a = a Ii = b c = c d = d. 

This gives S Lq (2, R). For consistency with (2.2) it must now be Iql = 1. 
The commutation relations (2.2) can be interpreted as quantum symplectic 

conditions on A. Define the quantum epsilon matrix 

(2.14) -,= C~ ~) 
which satisfies 

(2.15) 

One has 

(2.16) _,AT -;' = (-:c -}) = D,A-', 

where AT is the transposed of the matrix A. (2.16) can be written as 

(2.17) 

For Dq = 1 this the quantum analogue of the usual conditions for a matrix to 
be symplectic. The two conditions (2.17) are equivalent to (2.2) plus (2.7). 

3. - Properties of 2 x 2 quantum matrices 

As we mentioned in Section 2, the n - th power An of the matrix A is 
a quantum matrix corresponding to the quantum parameter qn. In this section 
we sketch a proof of this fact in the case when n%O is an integer, n E Z. 
As we shall see in the next section the result is valid for continuous values of 
n. We are dealing here with special properties of 2 x 2 quantum matrices. It 
would be interesting to see if and how they generalize to higher dimensional 
representations of GLq {2, C) or to other quantum groups. 

Let us call an I bn I Cn I dn the matrix elements of the n - th power of 
(he matrix A in (1) 

(3.1 ) 

and let 

(3.2) 

t 

'. 
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The following relations are valid 

(3.3) bncm - qn-mcnbm = 0 

bndm - qndnbm = qm Dmbn-m 

Notice that (3.3) are not commutation relations except for n = m, in which 
case they imply that An is a quantum matrix of quantum parameter qn (see 
beloW). We have proven (3.3) by double induction. First for m = 1 by induction 
in n, then for fixed n, by induction in m. This induction proof shows that (3.3) 
are valid for n, m E Z. In the course of the induction proof we also show that 

(3.4) 

Using (3.3), (3.4) can be rewritten as 

(3.5) 

or as 

(3.6) 

We shall not reproduce here the induction proof which is rather lengthy and 
tedious, although relatively straightforward. As mentioned in the introduction. 
we intend to give it in a longer paper together with the detailed proof of the 
statements of the next section. 

(3.7) 

Set n = m in (3.3). Since ao = do = 1, bo = Co = 0, we find 

andn - q2n dn an = (1 - q2n)Dn 

bncn - cnbn = 0 

bndn - qndnbn = 0 

cndn - qndncn = 0 

On the other hand, setting n = m in (3.4), (3.5) and (3.6) we have 

(3.8) 
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and 

(3.9) 

The third equation in (3.7) is a consequence of (3.8) and (3.9). Subtracting (3.9) 
from (3.8) we obtain • 

(3.10) 

We have now all relations stating that An is a quantum matrix corresponding 
to qn. 

4. - Exponential description 

The fact that An corresponds to the quantum parameter qn suggest the 
ansatz 

(4.1) 

where the matrix elements of the 2 x 2 matrix M should satisfy commutation 
relations independent of h. The commutation relations (2.2) for the elements of 
A should be a consequence of those for the elements of M. If this is the case, 
the matrix Al = ehlM would have quantum parameter qi = e h1 and the matrix 
AAI = e(h+hIlM would have quantum parameter qql = eh + h1 . In particular this 
would imply that An has quantum parameter qn = enh , not only for integer 
n but also for continuous values of n, as long as enhM has a meaning. All 
this is actually true, at least formally, and furthermore the properties of M are 
extremely simple. It turns out that for our quantum matrices the usual relation 
between determinant and trace is valid for the quantum determinant 

(4.2) Dq = detqA = exp tr (hM), 

where tr denotes the ordinary trace. Therefore we can limit ourselves at first to 
the case Dq = 1 when M is traceless 

(4.3) 

and introduce later a non trivial central trace to account for a determinant 
different from one. The correct commutation relations are simply 

(4.4) 
).p. - p.). = p., ).v - v). = v } . 

p.v - vp. = 0 ' 

~, 

( 
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For the matrix elements of A, given by (4.1), the commutation relations (4.4), 
together with (4.3), imply (2.2). More precisely they imply that 

(4.5) AT -1 A-I eq eq = . 

Comparing with (2.16) we see that also Dq = 1. We sketch now the proof of 
these statements. 

The condition (4.5), or 

(4.6) 

can be written more explicitly, using (4.1). Since 

(4.7) -~) 
.A ' 

(4.6) becomes 

We have verified that this equation is correct to all orders in h by expanding 
the exponentials. In spite of the great simplicity of the commutation relations 
(4.4) the proof is not trivial. The crucial point for the validity of (4.8) is of 
course that, for quantum matrices like M, it is not true that (Mn) T = (MT) n • 

Instead, left and right hand side are related exactly in such a way as to account 
for the extra factors eh and e- h occuring in the right hand side of (4.8). 

If the matrix M is not traceless 

(4.9) 

the commutation relations (4.4) must be replaced by the slightly more general 
relations 

(4.10) 

0.1J. - 1J.0. = p., 0.11 - 110. = II 

IJ.II - liP. = 0 

f31J. - 1J.f3 = -p., f311 - 1If3 = -II 

0.f3 - f30. = 0 

It is clear from these relations that 

(4. I I) trM=o.+f3 

is central, i.e. it commutes with 0., f3, IJ. and II. From (4.2) we see that 

,(4.12) Dq = detqA = exp [h(o. + (3)]. 
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It is now also obvious that 

(4.13) 

s. - Concluding remarks 

We restrict ourselves to the case Dq = 1. Since A, given by (4.1), (4.3) 
and (4.4), is an SLq(2, C) matrix, it behaves as described in Section 2 under 
multiplication. This means that, if 

(5.1) A' = ehM', M' =' ( ~' Vi 

is a matrix of the same type as A 

(5.2) 
)/p,' - JJ')'" = JJ', ~/V' - V/~' = Vi} 

JJ'v' - v' JJ' = a 

and furthermore ~,JJ, v commute with ~', JJ / , Vi, then 

(5.3) A" = AA' = ehM" , Mil = ( ~" v" 
JJ" ) 
_~" 

is also an S Lq (2, C) matrix, i.e. 

(5.4) 
~"JJ" - JJ"~II = JJ", ~"V" - V"~" = VII}. 

JJ" v" - v" JJ" = a 

One can find explicit expressions for ~II, JJ" and v" by means of the Baker
Campbell-Hausdorff formula, which gives 

(5.5) hM" = hM + hM' + !h21M M'] + .2.. h3 1M 1M M/]l 
2 ' 12 " J 

-1~h31MI, 1M, M/]] + ... 

i 

.. 
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To the order indicated one finds 

(5.6) 

h
2 I I I I I I I I I I' +"6 VIP. v + 2p.v>. - P.V >. - V>.p. - Vp. >. - p.>.V J + ... 

p." = p. + p.' + h (>.p.' - p.>./) + 
-h2 

+ - 1Jl.p.IV' + p.Vp.' - Vp./2 - p.2V' + 2p.>.'2 + 2>.2Jl.' 
6 

- >.p.' >.' - p.>.>.' - >.>.' Jl.' - >.p.>"] + ... 
v" = v + Vi + h (V>.' - >.v/)+ 

h2 

+"6 Ivp.'v' + p.vv' - p.v'2 - V2Jl.' + 2v>.,2 + 2>.2v' 

- >.v' >.' - V>.>.' - >.>.'V' - >'V>./] + ... 

807 

Notice that, when the matrix elements of two matrices don't commute, the 
trace of the commutator does not vanish in general. However Mil is traceless, 
because the traces of tenns of a given order in h cancel. For instance in (5.5) 
the two tenns in h3 separately have non zero trace, but the sum of the traces 
is zero. 

In (5.6) the ordering of non commuting quantities is important. Fonnulas 
(5.6) give a realization of the quantum group in tenns of exponentiai quantum 
group parameters. However, in spite of the great simplicity of the commutation 
relations (4.4) the group composition laws (5.6) are relatively complicated 
because of the ordering. We emphasize that, to obtain (5.6), we have used 
explicitly the 2 x 2 representation. The reason is that we are dealing here with 
linear combinations with non commuting coefficients of the generators of a Lie 
algebra: in general the commutator of two such quantities is not an object of 
the same kind unless additional algebraic relations (such as nil potency, square 
equal to the unit matrix, etc.) are imposed on the Lie algebra generators. 

Finally, we consider the limit q - 1, h - O. In this limit the quantities 
a, b, c, d of Section 2 commute. With the usual relation between Poisson brackets 
(for which we use round brackets) and commutators we find 

(5.7) 

and similarly 

(5.8) 

( b) 1· la, b] -_ ab 
a, = 1m h 

h-O 

(a, c) = ac, (b, c) = 0 } 

(b, d) = bd, (a, d) = 2bc . 

(c,d) = cd 
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If a' h' e' d' have similar Poisson brackets , , , 

(5.9) 

(a', h') = a' h' ) 

( ' ') , , a,e =ae , 

etc. 

then a", b", e", d" given by (2.5) also do, i.e. 

(5.10) 

(a",b") = allhll) 
(a", e") = a" e" . 

etc. 

In this case one speaks of a Poisson group. 
For the exponential description we must first rescale the variables and 

introduce new quantities j, jJ., D 

(5.11) j = h)", jJ. = hp., D = hll, 

so that 

(5.12) A = exp 
( 

)..11 ...... 

In the Poisson limit j, jJ. and D commute and their Poisson brackets are 

(5.13) 
(j, jJ.) = jJ., (j, D) = D } . 

(jJ.,D) = a 

In the limit the composition laws (5.6) become the usual composition laws for 
the (commuting) exponential parameters of the Lie group and depend now only 
on the Lie algebra, not on additional properties of the particular representation. 
In terms of the rescaled variables the composition laws do not contain h. They 
have, of course, the usual non linear structure typical of exponential parameters 
but preserve exactly the very simple Poisson relations (5.13). 

r 

\' 
( 
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