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Abstract
Although there are numerous brief odor identification tests available for quantifying the ability to smell, none are available in 
multiple parallel forms that can be longitudinally administered without potential confounding from knowledge of prior test 
items. Moreover, empirical algorithms for establishing optimal test lengths have not been generally applied. In this study, 
we employed and compared eight machine learning algorithms to develop a set of four brief parallel smell tests employing 
items from the University of Pennsylvania Smell Identification Test that optimally differentiated 100 COVID-19 patients 
from 132 healthy controls. Among the algorithms, linear discriminant analysis (LDA) achieved the best overall performance. 
The minimum number of odorant test items needed to differentiate smell loss accurately was identified as eight. We validated 
the sensitivity of the four developed tests, whose means and variances did not differ from one another (Bradley–Blackwood 
test), by sequential testing an independent group of 32 subjects that included persons with smell dysfunction not due to 
COVID-19. These eight-item tests clearly differentiated the olfactory compromised subjects from normosmics, with areas 
under the ROC curve ranging from 0.79 to 0.83. Each test was correlated with the overall UPSIT scores from which they 
were derived. These brief smell tests can be used separately or sequentially over multiple days in a variety of contexts where 
longitudinal olfactory testing is needed.

Keywords  UPSIT · Olfactory test · Longitudinal testing · Hyposmia · Anosmia

Introduction

The sense of smell is largely underappreciated until it 
becomes dysfunctional. Unlike vision, hearing, balance, and 
touch, this sense is rarely quantitatively assessed clinically, 

even though hundreds of thousands of persons seek medical 
help annually for problems with this primary sense. This 
has been markedly accentuated by the COVID-19 pandemic 
(Gerkin et al., 2020). Loss or distortion of the ability to 
smell impacts quality of life, including the flavor of foods 
and beverages, and impacts patient safety by compromising 
the ability to detect fire, leaking natural gas, spoiled food, 
and other environmental dangers (Devanand et al., 2014). It 
is now well established that olfactory dysfunction can be a 
harbinger for Alzheimer's and other neurodegenerative dis-
eases and, in elderly populations, can triple the likelihood of 
mortality over the course of a half-decade (Liu et al., 2019; 
Devanand et al., 2014). Without quantitative testing, patients 
are often unaware of an olfactory deficit (Doty et al., 1987). 
Such testing is critical to accurately establish the veracity 
of a patient's complaint, the probability of malingering, the 
impact of treatments, and to what degree a patient’s function 
is normal for his or her age and sex.

Although there are numerous brief odor identification 
tests available for quantifying the ability to smell, in many 
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cases their efficacy has not been evaluated and they lack 
parallel forms to make longitudinal testing possible without 
potential confounding from knowledge of prior test items. 
Despite the fact that tests with larger numbers of items do 
not appear to meaningfully suffer from these problems 
(Doty et al., 2021), out of practicality many clinicians and 
researchers prefer to use briefer tests. Unfortunately, in addi-
tion to lacking parallel forms, the empirical rationale for 
establishing the length of such tests is lacking.

The present study employed state-of-the-art machine 
learning techniques to generate a series of parallel brief odor 
identification tests of lengths which optimize practicality 
and both sensitivity and specificity in differentiating per-
sons with abnormal smell function from those with normal 
smell function. Machine learning techniques take advantage 
of automated analytical algorithms and combinatorial search 
methods to maximize their predictive power. The training 
was focused on test items from tests administered to per-
sons with an intact sense of smell and those with smell loss 
secondary to SARS-CoV-2 infections, a surrogate for virus-
related smell loss.

Method

Experimental design

To achieve the goal of the study, we first determined the 
optimal number of odorant test items needed to accurately 
differentiate patients with a disorder known to have signifi-
cant smell loss from healthy controls. The data to which 
the machine learning algorithms were applied came from 
smell tests that had been administered to 100 confirmed 
COVID-19 patients (age, 45.4 ±11.8, 67 males) and to 132 
healthy subjects (age, 43.7 ±15.4, 48 males) tested prior 
to the outbreak of COVID-19 in Iran (Moein, Hashemian, 
Mansourafshar, et al., 2020a; Moein, Hashemian, Tabarsi, 
& Doty, 2020b).

The Persian version of the 40-item University of Penn-
sylvania Smell Identification Test (UPSIT®; Sensonics® 
International, Haddon Heights, NJ) was administered to 
all subjects. This version includes 40 odors out of a library 
of 51 odors that are used in different cultural versions of 
UPSIT®. The UPSIT® focuses on the comparative ability 
of subjects to identify odorants at the suprathreshold level 
(Doty et al., 1984). The subject releases each odorant by 
scraping an odorized strip with a pencil tip. He or she then 
indicates which of four written response alternatives cor-
responds to the perceived smell. A response must be made 
even if no smell is experienced or the smell seems different 
from those listed as the response alternatives (i.e., the test 
is forced-choice).

The dataset contained the UPSIT® test items that were 
correctly identified, along with subject demographic infor-
mation, i.e., their age, gender, and educational level. The 
summary of the subjects’ responses to the UPSIT® items is 
shown in Table 1. Note that while the names of the odors 
are indicated, there are response alternatives associated with 
each odorant. Thus, in this table, as well as elsewhere in the 
text, the name of an odorant actually reflects an UPSIT® 
item, which includes the odorant and associated response 
alternatives. All attributes, except for age, coconut, and pizza 
were significantly different between COVID-19-positive and 
healthy subjects (p value < 0.01) based on Student's t test 
for continuous attributes and Fisher's exact test for binary-
valued attributes.

To examine the generalizability of the test scores beyond 
the initial COVID-19 cohort, an independent group of 32 
validation subjects [mean (SD) age: 55.56 (16.52), 12 males] 
with or without smell loss, as determined from previous 

Table 1   Odorants detection rate

Correct response rates to odorant items are given separately for 
patients who tested positive for COVID-19, and for healthy subjects. 
For each odorant item, the percentage of the subjects that correctly 
identified it is shown. Odorant items are sorted by the difference in 
these percentages between positive and negative groups. All attrib-
utes, except for age, coconut, and pizza were significantly different 
between COVID-19-positive and healthy subjects (p value < 0.01)

Odorant COVID-19 Healthy Odorant COVID-19 Healthy

Grass 26.0% 82.6% Popcorn 27.0% 57.6%
Lemon 28.0% 84.1% Daffodil 59.0% 88.6%
Apple 43.0% 93.9% Rubber tire 55.0% 84.1%
Cheese 35.0% 77.3% Peach 63.0% 91.7%
Winter-

green
54.0% 95.5% Peanut 62.0% 90.2%

Motor oil 27.0% 68.2% Raspberry 59.0% 87.1%
Turpentine 48.0% 88.6% Cinnamon 65.0% 91.7%
Pineapple 49.0% 89.4% Clove 63.0% 89.4%
Garlic 56.0% 95.5% Fish 38.0% 62.9%
Smoke 54.0% 93.2% Ginger-

bread
69.0% 92.4%

Grape 20.0% 58.3% Chocolate 69.0% 92.4%
Mint 58.0% 95.5% Bubble 

gum
66.0% 88.6%

Water-
melon

58.0% 95.5% Indian 
spice

64.0% 85.6%

Strawberry 50.0% 87.1% Rose 54.0% 74.2%
Magnolia 54.0% 89.4% Lilac 67.0% 87.1%
Natural gas 62.0% 97.0% Onion 82.0% 100.0%
Menthol 48.0% 82.6% Coconut 76.0% 90.2%
Paint thin-

ner
53.0% 87.1% Baby 

powder
86.0% 97.7%

Jasmine 50.0% 84.1% Soap 86.0% 96.2%
Leather 55.0% 88.6% Pizza 50.0% 58.3%
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UPSIT scores (Doty, 1995), were administered the brief 
tests that we developed (see Table S2). Sixty-seven subjects 
for whom such scores were available were contacted for the 
testing through phone calls or email messages; 45 agreed 
to participate and received the test kit via mail. Thirty-two 
completed test kits were returned to the researchers within 
the study time frame and their data were included in the 
analysis. Those with compromised smell function (i.e., 
UPSIT® scores < 35 for women and < 34 for men) had eti-
ologies due to traumatic brain injury (two subjects), upper 
respiratory viral infection (one subject), nasal surgeries (two 
subjects), and unknown causes (21 subjects). Each subject 
was paid $20 for participating in the validation study.

Statistical analysis

The binary UPSIT® item response data were used to train 
and test popular machine learning algorithms available in 
MATLAB® version 2020a (MATLAB®, 2020), including 
logistic regression (Grimm & Yarnold, 1995), artificial neu-
ral networks (using ten hidden elements) (Haykin, 1998), 
decision trees (Breiman et al., 1984), k-nearest neighbor 
(kNN, k = 3 with city block distance metric), and the ensem-
ble learning methods of random forests (Breiman, 2001), 
AdaBoost (short for adaptive boosting) (Freund & Schapire, 
1999), and support vector machines (SVM) (Hearst et al., 
1998). Parameter sweep analysis for number of hidden ele-
ments in neural networks and the number of nearest neigh-
bors in the kNN method are provided in the supplementary 
Figs. S1 and S2. To compare the results with common smell 
test scoring approaches, a simple linear discriminant analy-
sis (LDA) classifier, based on the total number of correctly 
identified odorant items, was also used.

Machine learning and feature selection

To reduce the data dimensionality, remove noise, and opti-
mize the predictive performance of each method, feature 
selection was performed to select an optimal subset of 
odorant items. We used a sequential forward feature selec-
tion strategy where the selected odorant set was repeatedly 
extended so long as the inclusion of a new odorant into the 
selected set improved the cross-validation performance. As 
a trade-off between computing time and completeness of 
the search space, a modified sequential selection strategy 
was implemented such that at each selection iteration all 
combinations of 2–3 odorants were considered for inclusion. 
The performance of a combination of odorants was assessed 
until the optimized model was reached for each machine 
learning method.

A leave-one-out cross-validation procedure was applied 
to the data to assess the performance of each machine learn-
ing method. At each iteration, one subject was left out as a 

test sample; the machine learning model was trained on the 
remaining samples, which was then used to make a predic-
tion for the left-out subject. This procedure was executed for 
each subject in the dataset at each feature selection iteration. 
The performance metrics we assessed included accuracy 
(ratio of correct predictions over all predictions), sensitivity 
(true-positive rate), specificity (true-negative rate), and the 
area under the curve (AUC) of the receiver operating char-
acteristic (ROC) curve, a graph displaying the true-positive 
rate against the false-positive rate. For some machine learn-
ing methods (e.g., SVM, random forest, and AdaBoost), sev-
eral different combinations of sensitivity and specificities are 
possible depending on where the threshold for categorization 
is set. Therefore, in addition to the combination of optimized 
sensitivity and specificity, the threshold-independent AUC 
was also reported. The optimization of feature selection con-
tinued until no further improvement in performance could 
be achieved.

To provide tests useful for practical serial testing of smell 
function, an optimization search strategy for multiple sets 
was performed. The number of odorant items for these sets 
was decided by considering both practicality and having 
sufficient predictive performance based on the item selec-
tion results. The rationale was that, for example, four rela-
tively brief tests could be administered sequentially, with a 
repeated administration of one of these tests for assessment 
of temporal reproducibility. Such tests could also be admin-
istered in different orders and at varied intervals, such as 
every day or every other day over the course of a week. In 
order to ensure heterogeneity among the tests, we made cer-
tain that any given odorant item was not present in more than 
three tests and no two tests shared more than half of odorant 
items. The sequential forward feature selection algorithm 
was employed for the items of the four tests simultaneously 
under these constraints. Here, optimization criterion was the 
arithmetic mean of the accuracy, sensitivity, specificity, and 
AUC, assessed from leave-one-out cross-validation of the 
sum-based LDA model.

Measurement of agreement

To investigate the level of agreement of the scores of the 
four final smell tests, the equality of mean and variance was 
simultaneously tested using the Bradley–Blackwood test 
(Bradley & Blackwood, 1989). This test provided an F sta-
tistic calculated from the regression of each pair of smell 
tests. For this test, considering the two scores provided by a 
pair of tests (i.e., T1 and T2), the difference and the sum of 
paired scores (D = T1 − T2 and S = T1 + T2) are used for test-
ing the null slope and intercept in the regression of D on S. 
This simultaneous testing was achieved through the equation 
for the Bradley–Blackwood test
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where n is the number of paired observations, 
∑

D
2

i
 is the 

sum of the squares of the n observed differences and SSE is 
the residual sum of squares from the regression of D on S. 
The null hypothesis is the equality of the two measurements. 
The alpha level for the critical F statistic was set at 0.001. 
When F is greater than Fcritical (2, n -2), the null hypothesis of 
the equality of the two measurements is rejected (in the cur-
rent context the acceptance of the null hypothesis is desired).

Test validation using the independent subject group

The 32 subjects self-administered each of the parallel tests 
on five consecutive days. The first smell test was performed 
for a second time on the fifth day (with a different order of 
the same odorants as Test 1). Each test provided a score 
between 0 and 8. A subject’s overall score was also com-
puted as the sum of the scores of the parallel tests (maxi-
mum possible: 40). The UPSIT® score and clinical category 
for smell function for each subject was compared with the 

F =

�∑

D
2

i
−SSE

2

�

�

SSE

n−2

� ,

parallel test scores. Spearman’s rho was used to determine 
the correlation coefficient between the UPSIT scores and 
total scores. The AUC of the receiver operating character-
istic curve was used to evaluate the strength of the parallel 
smell tests for clinical evaluation of the subjects’ smell func-
tion category.

Results

Different machine learning algorithms resulted 
in different odorant sets

The classification performances achieved by each machine 
learning method throughout the feature selection process are 
summarized in Fig. 1. The number of odorants where each 
method achieved its highest performance varied between 7 
and 29. As Fig. 1 indicates for all applied machine learn-
ing algorithms, after reaching the highest classification 
performance, the addition of more odorants either was 
inconsequential or even detrimental to the performance. 
The LDA, logistic regression, and Adaboost methods were 
more robust to the addition of more odorants and had only 
a slight decline in performance, whereas the other methods 
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Fig. 1   Optimization criteria for different machine learning methods. 
Note. Optimization criteria (arithmetic mean of the accuracy, sen-
sitivity, specificity, and AUC metrics) achieved during the feature 

selection strategy with increasing odorant counts for each machine 
learning method. Leave-one-out cross-validation was used to calcu-
late the classification performance metrics
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performed less well when more than the optimal number of 
odorants was used.

The optimal UPSIT® odorant sets for each of the machine 
learning methods and their corresponding cross-validation 
performance metrics are shown in Table 2. Our feature selec-
tion strategy was designed to optimize the arithmetic mean 
of the accuracy, sensitivity, specificity, and AUC metrics. 
The simple sum based linear LDA method using 29 odor-
ants had the best overall performance, with an accuracy of 
95.7%, sensitivity of 94.0% (true-positive rate), specificity 
of 97.0% (true-negative rate), and AUC of 0.97. Logistic 
regression using 23 odorants achieved equivalent specificity 
with slightly lower performance in other metrics. Compared 
to LDA, support vector machines (SVM) with 15 odorants 
achieved better sensitivity (97.0%) but had lower specificity 
(89.4%). k-Nearest neighbor (kNN, k = 3 with city block 
distance metric) with 23 features achieved 99.2% specificity 
at the cost of lower sensitivity (85.0%). AdaBoost and ran-
dom forest methods performed similarly and had balanced 
sensitivity and specificity. Neural network (using ten hid-
den elements) and decision tree methods performed poorly 
with inferior sensitivity performance. The LDA decision 
threshold was 20 odorants, meaning a subject is predicted 

to have smell loss (i.e., being COVID-19-positive) if they 
correctly identified 20 or fewer of the 29 selected odorants. 
Interestingly, LDA using all 40 UPSIT® odorants (decision 
threshold of 27) where no feature selection is performed 
had slightly lower accuracy and sensitivity but had the same 
specificity as the LDA method with 29 optimized features.

For each method, using the odorant sets from other meth-
ods did not produce a better performance than the optimized 
odorant set selected for that specific method. Thus, the dif-
ferences in the odor sets selected by different methods were 
not due to the non-exhaustive nature of our feature selection 
strategy. While each method had a separate set of odors that 
optimized its performance, there were some odorants com-
mon to all methods. For instance, grass and lemon were 
selected by all eight machine learning models, while men-
thol was selected by all methods except SVM. Inclusion of 
the available demographic information, namely age and sex, 
did not result in any improvement beyond what was achiev-
able with the odorant test data alone (see supplementary 
Table S1).

The order and incremental contributions of the selected 
odorants to the classification performance of the LDA model 
are shown in Fig. 2. The performance metrics were robust to 

Table 2   Leave-one-out cross-validation performance of machine learning methods using features selected for optimized classification perfor-
mance

Optimization criteria (Crit), accuracy (Acc), sensitivity (Sens), and specificity (Spec) are shown as percentages and area under the receiver 
operating curve (AUC) is from 0 to 1. The number of features selected for each method is shown, followed by the list of features ordered by their 
contribution to the performance. Odorant names indicate which of the UPSIT® odorant/response sets were employed. LDA - UPSIT® score 
method using all 40 odorants where no feature selection is employed is also included for comparison. The best performance for each metric 
among tested machine learning methods is highlighted in bold

Methods Crit Acc Sens Spec AUC​ Number of odors (selected odors)

LDA (sum-based) 96.0 95.7 94.0 97.0 0.97 29 (grass, apple, lemon, menthol, mint, baby powder, motor oil, natural gas, peach, grape, 
wintergreen, onion, popcorn, magnolia, soap, garlic, turpentine, gingerbread, peanut, 
bubble gum, indian spice, cinnamon, smoke, jasmine, rubber tire, chocolate, strawberry, 
daffodil, cheese)

Logistic regression 94.7 94.4 91.0 97.0 0.96 23 (grass, apple, lemon, menthol, natural gas, baby powder, onion, soap, motor oil, mint, 
leather, peanut, wintergreen, watermelon, pizza, jasmine, popcorn, magnolia, ginger-
bread, chocolate, indian spice, turpentine, rubber tire)

SVM 93.8 92.7 97.0 89.4 0.96 15 (grass, garlic, gingerbread, lemon, mint, menthol, fish, strawberry, pineapple, natural 
gas, indian spice, soap, rubber tire, chocolate, rose)

k-nearest neighbor 93.2 93.1 85.0 99.2 0.95 23 (grass, apple, motor oil, wintergreen, leather, gingerbread, clove, chocolate, pineapple, 
peanut, coconut, soap, baby powder, rubber tire, garlic, grape, mint, magnolia, cheese, 
lemon, daffodil, rose, onion)

Adaboost 92.4 91.4 90.0 92.4 0.95 19 (apple, grass, menthol, lemon, mint, smoke, onion, turpentine, popcorn, garlic, water-
melon, magnolia, pizza, cheese, pineapple, bubble gum, wintergreen, peanut, motor oil)

LDA – UPSIT score 92.3 91.4 84.0 97.0 0.97 40 (grass, apple, lemon, menthol, mint, baby powder, motor oil, natural gas, peach, grape, 
wintergreen, onion, popcorn, magnolia, soap, garlic, turpentine, gingerbread, peanut, 
bubble gum, indian spice, cinnamon, smoke, jasmine, rubber tire, chocolate, strawberry, 
daffodil, cheese, leather, coconut, fish, pizza, pineapple, rose, lilac, watermelon, paint 
thinner, clove, raspberry)

Random forest 92.1 90.9 92.0 90.2 0.93 6 (grass, garlic, gingerbread, lemon, mint, menthol)
Neural network 91.1 89.2 83.0 93.9 0.91 7 (lemon, apple, popcorn, menthol, grass, natural gas, paint thinner
Decision tree 89.3 89.2 85.0 92.4 0.90 10 (apple, grass, menthol, lemon, grape, soap, cheese, rose, coconut, peach)
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cross-validation iterations, with little variability in all met-
rics, except for sensitivity, which had up to 5% variability 
within the ten-fold cross-validation iterations.

The largest contributions to the performance occurred 
for up to eight odorants and in certain machine learn-
ing methods (i.e., decision tree and random forest); brief 
tests with as few as 3–5 odorant items could not achieve 

90% accuracy (Fig. 1). There were diminishing or negative 
returns for including additional odorants after the sweet spot 
of eight odorants. The classification performances of the 
machine learning methods were then restricted to the use 
of an optimized set with eight odorants (Table 3). The sum-
based LDA method, which is the most practical of these 
machine learning methods, achieved 92.7% accuracy, 90.0% 
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Fig. 2   Sequential feature selection performance metrics for the LDA 
model. Note. Odorants appear in the order of their inclusion to the 
selected feature set during the sequential feature selection algo-
rithm. Ten-fold cross validation was used to quantify the variability. 

Shaded areas show the range of performance values observed in ten-
fold cross validations. Odorant names indicate which of the UPSIT® 
odorant/response sets were employed

Table 3   Leave-one-out cross-validation performance using only eight features

Optimization criteria (Crit), accuracy (Acc), sensitivity (Sens), and specificity (Spec) are shown as percentages and area under the receiver 
operating curve (AUC) is from 0 to 1. Odorant names indicate which of the UPSIT® odorant sets were employed. The best performance for each 
metric is highlighted in bold

Method Crit Acc Sens Spec AUC​ Odors

SVM 93.3 93.1 94.0 92.4 0.93 Grass, garlic, gingerbread, lemon, mint, menthol, fish, strawberry
LDA (sum-based) 92.8 92.7 90.0 94.7 0.93 Apple, grass, menthol, lemon, natural gas, mint, baby powder, motor oil
Logistic regression 92.7 92.2 89.0 94.7 0.95 Apple, grass, menthol, lemon, natural gas, mint, baby powder, motor oil
Decision tree 91.3 91.4 89.0 93.2 0.91 Apple, lemon, menthol, grass, smoke, peanut, baby powder, chocolate
Random forest 91.0 89.7 86.0 92.4 0.93 Grass, apple, lemon, turpentine, peanut, fish, menthol, mint
k-nearest neighbor 91.0 90.5 87.0 93.2 0.93 Grass, garlic, strawberry, lemon, mint, menthol, apple, cheese
Adaboost 90.8 89.7 88.0 90.9 0.94 Grass, garlic, gingerbread, lemon, mint, menthol, fish, strawberry
Neural network 90.3 88.8 85.0 91.7 0.93 Grass, apple, lemon, menthol, mint, baby powder, motor oil, natural gas



Behavior Research Methods	

1 3

sensitivity, and 94.7% specificity. The LDA decision thresh-
old was correct identification of six odorants, meaning a 
subject was predicted to be normosmic (i.e., not belonging 
to the COVID-19 group) if he or she correctly identified six 
or more of the eight odorants.

Brief smell tests optimized for sequential testing

In order to provide brief practical smell tests that could be 
administered for serial testing (screening) in a short period 
of time, we identified four eight-item sets of odorants. Sum-
based LDA was the candidate for the extraction of such 
serial tests because of its high performance (Tables 2 and 3) 
and simple implementation without the use of overly com-
plicated computer modeling. A constrained optimization 
procedure was used to select the odorants for each set to 
maximize the diversity among them. Specifically, an itera-
tive feature selection strategy simultaneously added odorants 
to each of the four sets, limiting the overlap of odorants to 
less than 50% between any pair of the final sets. The choice 
of limiting each set to eight odorants was based on the sweet 
spot observed in Fig. 1 and Table 3 for the trade-off between 
practicality and classification performance.

The four optimized eight-odorant sets that were most use-
ful for differentiating smell loss (COVID-19 patients) from 
normosmia (healthy controls) are shown in Table 4. These 
sets achieved an accuracy of 91–93% with 88–92% sensitiv-
ity, and 90–95% specificity. The LDA decision threshold for 
each set was six odorants, meaning a subject is predicted to 
be normosmic (i.e.., not belonging to the COVID-19 group) 
if he or she correctly identifies six or more of the eight odor-
ants. These odorant sets could be successively employed in 
the same subjects on multiple days to minimize the likeli-
hood of recalling previous sets of stimuli. This should make 
these specific odorant sets extremely useful in longitudinal 
tracking of the smell function of individuals when rapid 
screen is needed.

Finally, for an optimal sequential test, one expects to have 
low differences between parallel test scores for a given sub-
ject and large between-subject variability to assure that the 
full range of the scale is being used. For all subjects, the test 

scores for the sequential tests were computed. The level of 
agreement of each pair of tests was then measured using the 
Bradley–Blackwood test with FCritical (2,139) = 7.26. The 
computed F statistic for pair combinations of the optimized 
smell tests were 0.07, 2.19, 3.36, 2.02, 1.48, and 6.29, which 
were all less than the FCritical, making them pass the simulta-
neous test of equality of t means and variances.

Test performance of the independent validation 
group

Each of the 32 subjects performed parallel tests on five con-
secutive days (four tests in Table 4 and the repetition of 
test 1 on the fifth day). The mean (SD) scores of the five 
consecutive tests were 5.06 (1.78), 5.03 (1.58), 5.53 (2.17), 
5.25 (1.60), and 5.53 (2.13), and the mean total score of 
the of the five tests was 26.40 (7.33). A repeated measure 
analysis of variance indicated that the five test scores were 
not significantly different [F(4,124) = 1.11, p = 0.35]. The 
AUCs of ROCs for parallel tests were between 0.79 to 0.83 
in detecting olfactory dysfunction and the AUC increased 
to 0.91 when the parallel test scores were totaled (Fig. 3).

Discussion

Alterations in the sense of smell are among the first signs of 
a number of serious medical diseases and disorders, includ-
ing COVID-19 and such neurodegenerative diseases as Par-
kinson’s and Alzheimer’s. The sequential screening of smell 
function is rarely practiced in the clinical setting, despite the 
usefulness of such testing in identifying the onset of disor-
ders such as COVID-19. One potential reason is the lack 
of parallel short tests to overcome the subject’s recall bias.

In this study, a number of machine-learning models were 
compared using UPSIT® odorant items to establish optimal 
brief screening tests for differentiating patients with smell 
dysfunction from healthy controls. We used COVID-19 
patients as a surrogate for smell dysfunction in general, as it 
provides a strong metric for such differentiation. Although 
most of the investigated models performed quite well, the 

Table 4   Optimized odorant sets for multiple testing of smell function

Leave-one-out cross-validation of each feature set was done using the LDA (sum-based) model. Optimization criteria (Crit), accuracy (Acc), 
sensitivity (Sens), and specificity (Spec) are shown as percentages and area under the receiver operating curve (AUC) is from 0 to 1. Feature sets 
were determined by simultaneous optimization of odorant combinations, under constraints to limit overlap (≤ 4 items) between sets

Test # Odors Crit Acc Sens Spec AUC​

1 Grass, apple, lemon, menthol, mint, baby powder, motor oil, natural gas 92.8 92.7 90.0 94.7 0.93
2 Watermelon, grass, turpentine, garlic, mint, onion, lemon, popcorn 92.0 92.2 89.0 94.7 0.92
3 Grass, apple, pineapple, cheese, motor oil, wintergreen, bubble gum, natural gas 91.6 90.9 92.0 90.2 0.93
4 Lemon, onion, grape, magnolia, gingerbread, natural gas, menthol, apple, 91.2 91.4 88.0 93.9 0.91
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sum based LDA model was superior, exhibiting 95.7% accu-
racy, 94.0% sensitivity, and 97.0% specificity. A minimum 
of eight odorant/response items was found to be needed to 
produce accuracy rates of 91–93%. We found that brief tests 
with as few as 3–5 odorant items could not achieve such high 
levels of accuracy.

In addition to determining the minimum number of odor-
ant items needed to achieve high sensitivity, we identified 
four sets of short eight-item odorant tests useful for serial 
testing while minimizing the likelihood of remembering pre-
viously presented stimuli. Serial testing potentially allows 
for detection and continuous monitoring of smell dysfunc-
tion and may also be useful in tracking disease progression, 
recovery, and intervention effectiveness. Such testing may 
also be useful for testing persons who cannot accurately per-
form longer tests in single test sessions (e.g., due to fatigue 
and difficulties concentrating, as occurs in some elderly per-
sons or patients with dementia).

To increase the generalizability to other populations and 
to focus on the predictive power of the smell tests, per se, 
we focused on using only the responses to the odorant items 
in the machine learning analysis and didn’t emphasize non-
olfactory demographic variables. Inclusion of the limited 

demographic information available, namely age and sex, 
did not result in any improvement beyond that achievable 
with odorant test data alone (see Supplementary File). If 
one wished to combine the smell test data developed in this 
study with other demographic data, such inclusion would 
likely necessitate a more sophisticated scoring.

To our knowledge, this is the first study to develop multi-
ple parallel brief smell identification tests useful for detect-
ing temporal changes in smell function with high sensitivity 
and specificity. The study has both strengths and weak-
nesses. Among its strengths are the use of data from a rela-
tively large number of persons with and without smell dys-
function. Another strength was the systematic exploration 
of the efficacy of numerous machine learning algorithms to 
optimize sensitivity in detecting smell dysfunction. Several 
potential weaknesses should be acknowledged. First, one 
might argue that the current sample size was inadequate 
for the performed analyses. However, this is unlikely since 
the cross-validation procedure addresses this concern and 
demonstrated the opposite. Second, data augmentation 
(Shorten & Khoshgoftaar, 2019) was not performed in this 
study. Such augmentation is employed to reduce overfitting 
when training a machine learning model. However, since 
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Fig. 3   Comparison of sequential test score with UPSIT® score. Note. 
Total score of the sequential tests are summed up as serial test score 
which is correlated with UPSIT score (r = 0.84, p < 0.0001). Area 
under the curve of the receiver operating characteristics curve analy-

sis was 0.91 in differentiating normosmics from olfactory compro-
mised subjects. The right subpanels compare each parallel smell test 
with UPSIT® score with the AUCs of the ROCs
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the dataset contained relatively balanced numbers of partici-
pants in the two groups, this procedure was not necessary. A 
third concern might be that the tests we employed were reli-
ant on smell identification and did not account for changes 
that may occur on other measures, such as an odor threshold. 
This is also unlikely, since it is well documented that iden-
tification tests such as the UPSIT® are strongly correlated 
with a number of types of olfactory tests, including detection 
threshold tests (Doty et al., 1994; Doty et al., 2019).
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