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Abstract. Although forest conservation activities particularly in the tropics offer significant potential for mitigating carbon 

emissions, these types of activities have faced obstacles in the policy arena caused by the difficulty in determining key elements of 

the project cycle, particularly the baseline.  A baseline for forest conservation has two main components: the projected land-use 

change and the corresponding carbon stocks in the applicable pools such as vegetation, detritus, products and soil, with land-use 

change being the most difficult to address analytically. In this paper we focus on developing and comparing three models, ranging 

from relatively simple extrapolations of past trends in land use based on simple drivers such as population growth to more complex 

extrapolations of past trends using spatially explicit models of land-use change driven by biophysical and socioeconomic factors. 

The three models of the latter category used in the analysis at regional scale are The Forest Area Change (FAC) model, the Land Use 

and Carbon Sequestration (LUCS) model, and the Geographical Modeling (GEOMOD) model. The models were used to project 

deforestation in six tropical regions that featured different ecological and socioeconomic conditions, population dynamics, and uses 

of the land: (1) northern Belize; (2) Santa Cruz State, Bolivia; (3) Paraná State in Brazil; (4) Campeche, Mexico; (5) Chiapas, 

Mexico; and (6) Michoacán, Mexico.  



A comparison of all model outputs across all six regions shows that each model produced quite different deforestation 

baseline. In general, the simplest FAC model, applied at the national administrative-unit scale, projected the highest amount of forest 

loss (four out of six) and the LUCS model the least amount of loss (four out of five). Based on simulations of GEOMOD, we found 

that readily observable physical and biological factors as well as distance to areas of past disturbance were each about twice as 

important as either sociological/demographic or economic/infrastructure factors (less observable) in explaining empirical land-use 

patterns.   

We propose from the lessons learned, a methodology comprised of three main steps and six tasks can be used to begin 

developing credible baselines.  We also propose that the baselines be projected over a 10-year period because, although projections 

beyond 10 years are feasible, they are likely to be unrealistic for policy purposes.  In the first step, an historic land-use change and 

deforestation estimate is made by determining the analytic domain (size of the region relative to the size of proposed project), 

obtaining historic data, analyzing candidate historic baseline drivers, and identifying three to four major drivers.  In the second step, 

a baseline of where deforestation is likely to occur --a potential land-use change (PLUC) map—is produced using a spatial model 

such as GEOMOD that uses the key drivers from step one.  Then rates of deforestation are projected over a 10-year baseline period 

using any of the three models. Using the PLUC maps, projected rates of deforestation, and carbon stock estimates, baseline 

projections are developed that can be used for project GHG accounting and crediting purposes: The final step proposes that, at 

agreed interval (eg, +10 years), the baseline assumptions about baseline drivers be re-assessed.  This step reviews the viability of the 

10-year baseline in light of changes in one or more key baseline drivers (e.g., new roads, new communities, new protected area, etc.).  

The potential land-use change map and estimates of rates of deforestation could be redone at the agreed interval, allowing the rates 

and changes in spatial drivers to be incorporated into a defense of the existing baseline, or derivation of a new baseline projection.  

Keywords.  Baselines, Carbon Sequestration, Chiapas Land use, deforestation, forestry, GEOMOD, LULUCF, tropics. 

1 INTRODUCTION 

On a global scale, land-use change and forestry activities have historically been, and are currently, net 

sources of carbon dioxide to the atmosphere. During the decade of the 1990s, carbon dioxide emissions to 

the atmosphere caused by changes in land use were estimated to be 1.6 billion t C/yr (Bolin and Sukumar, 

2000), with tropical deforestation essentially responsible for most of this source. Activities that reduce 

deforestation rates, increase forestation, or improve land use efficiency offer significant potential for 

mitigating greenhouse gas (GHG) emissions, thereby reducing the potential impacts of climate change.  

Through projects and policies that change forest and other land management practices, humans have the 

potential to change the direction and magnitude of the flux of carbon dioxide between the land and 



atmosphere.  At the same time these changes can provide multiple co-benefits to meet environmental and 

socioeconomic goals of sustainable development. 

Afforestation and reforestation projects are generally accepted as projects that can generate tradable 

greenhouse gas (GHG) emission reductions (e.g., under the Clean Development Mechanism of the Kyoto 

Protocol).  Forest conservation projects, on the other hand, have faced obstacles to acceptance due to the 

difficulty in determining key elements of the project cycle. For instance, some have argued that determining 

baselines for forest conservation projects is too difficult and uncertain. Others have raised objections with 

respect to “leakage” (i.e., the off-site effects of project activities on carbon stocks and GHG emissions. ) 

(Brown et al, 2000b).  Without inclusion of projects that are designed to avoid deforestation and improve the 

sustainability of agriculture in developing countries, a large opportunity is lost (Niles et al., 2002). 

At the same time, several countries continue to be interested in developing forest conservation 

projects given the potential for such projects to slow or even reverse high rates of deforestation that could 

generate credible GHG emission reductions. Given the challenge of addressing important analytical issues 

related to and the continuing interest in forest conservation projects, we look at issues related to these project 

types. 

A fundamental  and challenging, component of land use, land-use change, and forestry (LULUCF) 

projects, and avoided deforestation projects specifically, is the determination of the extent to which project 

interventions lead to GHG benefits that are additional to business-as-usual scenarios (i.e., the baseline 

scenarios). The development of a baseline is a key step in the implementation of LULUCF projects to ensure 

accurate crediting of their carbon impacts (OECD/IEA, 2003), because GHG benefits of a project activity 

are computed as the difference in carbon stocks and other GHG emission levels of the project activity and 

the baseline. A key issue therefore, is how to develop a baseline scenario for avoided deforestation that 

reasonably represents the net emissions without the project.  

There are currently no standard practices for developing baselines for conservation activities.  A 

baseline has two major components: the projected land-use or land-cover change, and the corresponding 

carbon stocks in vegetation and soil.  Of the two components needed for baselines, the projections of 



changes in land use are the most important and yet the most difficult to address analytically (OECD/IEA, 

2003) because many socioeconomic and environmental factors affect the way people use land and these are 

difficult to predict. Indeed, there are currently no standard practices for determining projections of changes 

in land use, and without tested and credible methods the design and implementation of forest conservation 

projects is likely to be slowed.  

Existing baseline estimates are limited by the absence of agreed standardized methods.  For many of 

the existing pilot forestry-based carbon projects, estimates of changes in land use and baselines were 

determined on a project-by-project approach using simple logical argument that assumed continuation of 

observed past trends for the limited project area or a region. These projects generally did not use analytically 

rigorous and transparent agreed methods because they did not exist at the time and were not required by 

voluntary programs to which the projects were reported as demonstrations (Brown et al., 2000b; OECD/IEA, 

2003). They also did not test alternative baseline approaches. In addition, this project-by-project approach is 

likely to increase investment costs, further undermining the potential for developing these kinds of projects 

(OECD/IEA, 2003). The result is the perception of LULUCF baselines as subjective projections of land-use 

change and hence GHG mitigation potential with high uncertainty, high cost per unit of carbon benefit, and a 

lack of transparency.  

Developing regional baselines for the land-use component by project-activity type offers an 

alternative to the project-by-project approach (also called the performance standard approach in the World 

Resources Institute / World Business Council for Sustainable Development [WRI/WBCSD, 2003] project 

protocols). Regional baselines are projections of the magnitude and in some cases spatial depiction of one or 

more land-use change activities (e.g., forestation, deforestation) over a region in which a potential mitigation 

project could be located. These baselines would use regional data and transparent analytic assumptions not 

derived from a specific project, to set a generic baseline for the defined class of activity. This baseline can be 

either spatially resolved (e.g., a projection for specific pixels or lands), or an average rate of change over 

time for the activity in that region.  The concept was pioneered by the Scolel Te project team in Chiapas 

state, southern Mexico, which developed several alternative baselines projected out 50 years for about half 



of the state, spatially resolved (Tipper and De Jong, 1998; Tipper et al, 1998). Regional baselines may have 

several advantages, including: reduced investment cost to develop compared to project-specific baselines; 

consideration of regional factors that could affect land-use changes; and opportunity for host country or state 

governments to identify the effects of and target the type of projects supportive of their sustainable 

development. Use of regional baselines is likely to result in more transparent and credible baselines.  

For the carbon stocks, most pilot projects based their baselines on estimates from the scientific 

literature in combination with some field measurements in nearby areas.  The use of estimates from the 

literature for the carbon stocks is a reasonable first approximation for the baseline.  However, once a project 

area is selected, if the carbon stocks are measured at that locale and the first approximation revised; a more 

project-specific baseline is produced.   Carbon stocks and their changes in above- and below-ground 

biomass, on a unit area basis, can be measured under many circumstances to relatively high levels of 

accuracy and precision at a modest cost (95% confidence intervals of less than ±10 % of the mean, at an 

estimated cost of about <$1/t C; Brown, 2002).  

In this paper we focus on developing baseline projections of the changes in land use, particularly 

projecting deforestation.  We have identified three approaches for developing regional baselines for changes 

in use of the land. The approaches use models that provide a conceptual basis for integrating diverse 

measures into a self-consistent framework and for making extrapolations across time and space. Here we 

report on the application of these three models to determine baseline scenarios in land-use change for six 

regions in the tropics, four of which encompass a pilot carbon-offset project.   

The methods range from relatively simple model extrapolations of past trends in land use based on 

simple drivers such as population growth, to more complex extrapolations of past trends using spatially 

explicit models of land-use change driven by biophysical and socioeconomic factors.  All models were used 

to project the baseline for changes in land use over the same duration of 20 years out.  The regions used in 

this work were specifically chosen to encompass existing sites where several of us had already been actively 

engaged and where data were available.   



The study was designed to address an overarching research question and related questions with 

policy relevance.  The principal research question was: what is the most analytically feasible and credible 

approach for establishing deforestation baselines?  Secondary questions include: 1) which baseline-setting 

method provides more credible results, by project activity type and land use conditions? 2) What is a 

reasonable time frame over which a deforestation baseline should be projected?  3) Under what changes in 

baseline conditions, and how often, should baselines be reviewed and potentially revised? 4) How feasible 

and practical are each of the methods? 5) What are the tradeoffs among data availability, spatial scale of 

analysis, and precision of a baseline?  6) Lastly, can these results offer any potential guidance to 

policymakers confronted with the task of establishing guidelines for land use based GHG   projects to 

mitigate climate change?  We conclude with a discussion of lessons learned and steps that can be undertaken 

to develop credible baselines.   

This paper is a summary of two large projects that applied these three models to six tropical regions 

(four regions supported by the US Environmental Protection Agency [Belize, Bolivia, Brazil, and Chiapas, 

Mexico] and two regions supported by US Agency for International Development-Mexico [Campeche and 

Michoacán, Mexico]).  Details on the descriptions of the study areas and models, with corresponding 

sources, are given in Brown (2002b, 2003). 

2 METHODS 

2.1 DESCRIPTION OF STUDY AREAS 

The six study regions featured different ecological and socioeconomic conditions, population dynamics, and 

uses of the land (Table 1).  The six study areas included in this analysis are sub-regions of (Fig. 1): (1) 

Belize encompassing the Rio Bravo Climate Action project in northern Belize; (2) Santa Cruz state, Bolivia 

encompassing the Noel Kempff Climate Action project (Brown et al., 2000a); (3) Paraná state in Brazil 

encompassing the Itaqui Climate Action project in the Atlantic rainforest zone; (4) Campeche, Mexico 

encompassing a planned project in the Calakmul Biosphere Reserve area; (5) Chiapas, Mexico 

encompassing the Scolel Te project (Castillo-Santiago et al., in press; De Jong et al., in press); and (6) 

Michoacán, Mexico. Further details of each study area are covered in the larger reports mentioned above.  



2.2 DESCRIPTION OF THE MODELS 

Our goal was to consistently compare multiple, competing methodological approaches to deforestation 

baseline setting that ranged from models that used readily available non-spatial data for relatively large 

geographical areas (e.g., millions of ha), to models that required more intensive data collection but could 

operate in smaller geographic areas (e.g., tens to hundreds of thousands of ha).  Kaimowitz and Angelsen 

(1998), based on a review of 146 existing tropical deforestation models, grouped such models into three 

classes:  analytical, simulation (including programming), and regression models.  The three models used in 

this study to simulate future changes in land use are described below (further details are given in Brown 

2002b, 2003).  Each of these models represents each of the class of models proposed by Kaimowitz and 

Angelson, e.g, FAC is a non-spatial analytical model, LUCS is a non-spatial simulation model, and 

GEOMOD is a spatial regression and rule-based model.   

Forest Area Change (FAC): This model was first formulated in the framework of the FAO Forest 

Resources Assessment Project implemented during 1990-94 (Food and Agriculture Organization; FAO, 

1993; Sciotti, 1991), and revised in 1998 (Sciotti, 2000).  The deforestation model was developed to 

overcome the lack of multi-temporal information on forest cover in tropical countries. The goal was to 

develop a modelling approach that could produce the required forest area change information for all 

countries. The basis was multi-date observations for a limited number of countries, in combination with 

another set of correlated variables for which data were available for all countries. In building this model it 

was assumed that the overall pattern of expansion of non-forest area over time (deforestation) would be 

described by a logistic curve of two key variables, with different parameters for different ecological zones 

within a country. The model uses historical data on forest cover and associated population density.  Using 

these data, two key variables were developed, generally expressed at a sub-national level: the dependent 

variable –ratio of non-forest area to total area, and the independent variable—population density. Then, 

using projections of human population growth for the area in question, the model simulates the change in 

forest cover over time.   



Advantages of this model for baseline setting include minimal data requirements, potentially 

reducing costs of its use, and its applicability to large regions (e.g., millions of ha).  Disadvantages include 

its lack of spatial resolution (it presents single values for deforestation for an entire region), reliance on only 

two major variables to project complex deforestation patterns and processes, and its inability to be used at 

smaller geographic scales relevant to sequestration projects if key data variables are not available.  

Land Use Carbon Sequestration (LUCS): This model was developed to estimate land-use change in 

rural areas that depend largely upon low-productivity agriculture for subsistence and fuel wood for energy 

(Faeth et al. 1994). The model assumes that land-use change is primarily driven by changes in population 

and land management. As the population grows, more land is required to supply food and livelihoods, and in 

some cases, fuel wood. While demand for food and income grows, the land’s ability to meet that demand 

may increase or decrease depending on changes in productivity and other activities. The key parameters 

used in this model are: the rate of population growth and the year it is expected to stabilize; the initial area of 

principal land uses, including: permanent agriculture, shifting agriculture, agroforestry, and native closed 

and open forests, plantations and secondary forests; and required agricultural land as a function of 

population, agricultural land required per person, fraction of food imported and agricultural land required for 

export production. The main driving force after initialization is change in population in the modeled area. 

Advantages of this model for baseline setting include its applicability to many scales and its ability 

to model many types of land use change activities (not just deforestation).  Disadvantages include its lack of 

spatial resolution, its model code and structure are not readily understandable by the operator, and the 

assumptions that are needed for many poorly-known parameters.  

Geographical Modeling (GEOMOD): This model uses spatially distributed data to simulate 

landscape dynamics in a geographical information system (GIS) (Hall C. et al., 1995; 2000; Hall M. et al., in 

press; IDRISI Project 2003).  There are two components to this model: the rate of land-use change and 

where the change will occur. For the rate determination, an extrapolation of past rates is used, generally 

based on interpreted satellite imagery for two or more points in time for the area under study. To simulate 

where deforestation will occur, the model uses numerous spatial data layers of biophysical and 



socioeconomic factors (e.g., elevation, slope, soils, and distance from rivers, roads and already established 

settlements) to explain the pattern of deforestation.  The model is calibrated by assigning weights to map 

cells based on analysis of the importance of each driving factor, and combination of factors.  

The GEOMOD model has an internal validation procedure built into it—the kappa index for-

location, an index that measures the improvement by the model over what just a random selection would 

achieve (Pontius et al. 2001). Use of GEOMOD quantifies some of what has been termed “counterfactual 

uncertainty” (Kerr 2001, Moura Costa 2001) inherent in all models used to estimate the business-as-usual 

baseline.  The kappa-for-location statistic represents a standardized procedure of assessment of some aspects 

of this “counterfactual uncertainty” because it quantifies model performance compared to chance; like other 

models, however, it still must make projections based on assumptions with associated uncertainties.  

Potential advantages of GEOMOD include its capability of spatial resolution at any scale for which 

data are available because it is raster-based (and thus gives deforestation estimates for any pixel or 

geographic scale requested within the analytic domain; for an entire region).  Additionally, incorporation of 

the kappa for-location statistic allows evaluation of model performance versus chance. Potential 

disadvantages include its large data requirements, the need to experiment with a large number of variables to 

identify those providing the most explanatory power for predicting deforestation, and the potential cost of 

data acquisition and analysis.  

2.3 SCALE OF SIMULATIONS 

The FAC model was simulated at the entire state level and for the entire country of Belize (Table 2). For all 

study areas in Mexico, the lack of reliable historical data of forest cover prevented a locally parameterized 

version of the FAC model from being developed; instead a general model was used with effects of local 

ecofloristic zones incorporated.  The LUCS model, on the other hand, can simulate land-use changes within 

smaller sub-national units depending at what scale population data are provided.  For most of the study 

areas, the LUCS model encompassed the same area as that used by GEOMOD; the exception was Campeche 

where LUCS simulated one large municipality only (Calakmul representing more than 75% of the total area 

simulated by GEOMOD) (Table 2).  For the Brazil LUCS simulation, the population dynamics of water 



buffalo were used instead of human population because buffalo livestock management was the main driving 

force behind deforestation. Also, LUCS was not applied to Belize because conversion to mechanized 

agriculture by Mennonite farmers is the main cause of deforestation in northern Belize, and LUCS could not 

readily model this type of commercial agricultural conversion. GEOMOD simulated land-cover change at a 

scale where boundaries were defined to reflect biophysical, socioeconomic and cultural or other relevant 

factors for all study areas.  

The main reason areas simulated differ among the models is related to the spatial scale of available data 

required for each model.  For example, the FAC and LUCS models rely on available data that are generally 

reported at sub-national political units (e.g., population data at the municipality level, or forest cover data at 

the state level), within which data are not further subdivided.   Consequently the FAC and LUCS models are 

limited in their application to the corresponding scales of the available data (e.g., municipalities for 

population data).  On the other hand, GEOMOD can model at any scale desired for which satellite imagery 

can be acquired, and is limited rather by the availability of spatial databases of interest, particularly socio-

economic databases, and the processing capacity of the computer running the model.    

As mentioned above, several of the study areas encompass pilot projects or planned pilot projects.  

For the Santa Cruz, Bolivia and Campeche, Mexico areas, the existing or proposed large pilot projects were 

about 640,000 ha and 323,000 ha in area, respectively.  The analytic domain for GEOMOD and LUCS 

models is about 5-6 times the pilot project areas, whereas the domain for the FAC model is about 13-60 

times the project area.  For the smaller projects in Belize (about 15,000 ha) and Paraná, Brazil (about 5,000), 

the analytic domain for GEOMOD and LUCS models is about 30-38 times the project area, and for FAC 

model the domain is about 146 (Belize) and almost 4,000 (Brazil) times larger.  Although Chiapas contains a 

pilot project, it consists of several hundred very small landowners scattered throughout the analytic domain 

for all models. 

The geographic scale selected as the baseline modelling domain for each model has a significant 

effect on estimates of the initial percent of forest area in each of the six regions (Table 2).  The large-region 

wide FAC model tend to result in lower percent forest cover estimates than the more highly resolved 



GEOMOD and LUCS models, and thus generate substantially higher baselines of forest area from which 

project activities of slowing forest loss rates would be calculated.  For example, the percent initial forest 

cover in Paraná, Brazil; Santa Cruz, Bolivia; and Campeche, Mexico is considerably lower for the FAC 

model than for the other two because the FAC model was applied to the total area of these three states.  

Expanding the size of the modelling domain caused by data requirements adds in lower-carbon-density 

disturbed forest and agricultural lands not included in the geographically more constrained modelling 

domains of LUCS and GEOMOD (which have a higher percent of forest lands). The FAC estimates of 

initial forest cover average about 62% of GEOMOD and LUCS estimates for the six regions. Thus the 

simple selection of method and level of data aggregation used produced an almost 40 percent difference in 

the initial forest area that could affect baseline projections. These differences in forest cover between the six 

regions illustrate the contrasting situations in level of development and subsequent pressures on the forested 

landscape.   

3 RESULTS AND DISCUSSION 

3.1 COMPARISON OF PROJECTED BASELINES FOR DEFORESTATION  

To make a meaningful comparison of the land-use change component of the baseline, the results from each 

modeling approach were expressed as the cumulative percent of the initial forest cover lost or deforested 

over time for a 20-year period for each of the six study areas (Fig. 2).  (The results presented here for 

GEOMOD are only the rate projections, the spatial component will be presented later.)  It is clear from this 

analysis that there is little similarity in the deforestation projections produced by the different models for a 

given region.  The maximum projected cumulative loss in forest cover over the 20-yr period ranges from 

14% to 52% of the initial forest cover, with the FAC model projecting the highest amount in four of the six 

areas (Table 3). The minimum projected loss over the 20-yr period ranges from a gain of 7% to a loss of 

21%, and the LUCS model projects the minimum loss in four out of the five cases.  The maximum projected 

loss in forest cover is about twice the minimum projected loss for Chiapas and Michoacán, and as high as 36 

to 70 times the minimum for Santa Cruz and Campeche.   



Population growth rate estimates and their spatial distribution are major variables driving 

deforestation baselines in all three models, and hence need to be carefully assessed. For Belize, only two 

models were used (see above). Depending on the model and population scenario (e.g., the FAC models 

results are based on projected high and low rates of population growth for the whole country), the 

cumulative amount of forest lost over the 20-yr period ranges from about 10 to 50% of that present at the 

start of the simulations.   

In the Santa Cruz, Bolivia case, the amount of forest loss estimated by LUCS and GEOMOD is 

considerably lower (less than 2% of the initial forest cover lost after 20 years) than that projected by the 

FAC model (about 14% of the initial forest cover lost).  The LUCS and GEOMOD models were applied to 

the same region (3.7 million ha) adjacent to the Noel Kempff project area, whereas the FAC model was 

applied to the whole state of Santa Cruz, an area of about 36 million ha.  The high rate of forest loss 

projected by the FAC model is a result of the influence of high population growth rates in large cities and 

towns throughout the state, particularly the main city of Santa Cruz de la Sierra (see Fig. 1b)—that produces 

a high deforestation estimate in the model, even though the growth does not occur in rural, forested areas.  In 

contrast, the low rates projected by LUCS were caused by the simulation of local-scale conditions where 

only a scattering of small communities occur and population growth is low. The low forest cover change 

rates projected by GEOMOD (rates based on analysis and projection of spread of deforestation from the 

capital, Santa Cruz de la Sierra, in 100 km rings using satellite images from 1975 through 1995; Hall et al. in 

press) reflect the projected slow rates of population spread, and corresponding forest clearing, in progressive 

waves in the zones farthest from the departmental capital city of Santa Cruz.  

The model simulations for Paraná, Brazil produce the most contrasting results of all six areas. The 

FAC model projects a continuing loss so that after 20 years, another 14% of the forest is gone.  In contrast, 

GEOMOD projects a net loss of only 0.1% with reforestation of abandoned pasture areas keeping pace with 

new deforestation, and LUCS projects a gain of forest of about 7% of the initial amount.  The results from 

the FAC model are based on the population-forest cover relationship for the whole state of Paraná, a state 

that encompasses a high, more temperate plateau, and where the forest clearing has been extensive in the 



past from urban growth and development (Fig. 1a). The lowland coastal area modeled by LUCS and 

GEOMOD encompasses municipalities that show little to no growth in population and consequently little 

deforestation over the recent past.  The LUCS model used the population dynamics of water buffalo instead 

of humans because clearing for pasture for the buffalo has been a major cause of deforestation in the area.   

However, during the past decade or so the population of water buffalo has been declining at about 4% per 

year.  Even assuming growth of the buffalo population of +2% per year, no net loss of forest occurred 

because a small loss of mature forest to pasture was offset by regrowth of young forest to more mature 

forest. 

For Campeche, the FAC model projected that 25% of the forests would be deforested over the 20-yr 

period, compared to 11.5% projected by GEOMOD and the 0.7% projected by LUCS. Somewhat like the 

Bolivia area, the FAC simulation is influenced by the concentration of human populations and infrastructure, 

and resulting forest conversion, in the west and northwest section of the region with conversion in the rest of 

the region more scattered (Fig. 1f). Even though the GEOMOD simulation of the total area produced results 

that were about half those based on FAC, we did find that for the two municipalities closest to the west and 

northwest of the GEOMOD area, the projected cumulative deforestation was similar to that projected by 

FAC. 

The GEOMOD model projected Chiapas to have the highest rates of forest loss compared to all 

other regions, with 52% of the initial forest gone after 20 yr, based on forest cover as a function of projected 

population.  In this case, GEOMOD projected deforestation based on projected population growth from 

official sources and one remote sensing image because of the unavailability of existing imagery products for 

two points in time.  Even though the area simulated by the FAC model was almost three times larger than 

that used by LUCS, both gave practically the same results and projected that about 20% of the forest would 

be gone within the 20-yr period.   

Because of the high and relatively evenly distributed density of human population and subsequent 

use of the land across the entire region of Michoacán, the three models projected amounts of forest loss over 

the 20-year period that were more similar to each other, ranging from a low of 21% (GEOMOD and FAC) to 



a high of 35% (LUCS), or less than a two-fold difference.  The tendency for convergence of results from the 

three models in Michoacán implies that no particular concentration of human activity dominates 

deforestation patterns.  This is similar to the situation for Chiapas.  

A comparison of all model outputs across all six regions shows that depending upon which model is 

used, we obtain quite different results-—largely driven by how population change is modeled.  In general, 

the FAC model projects the highest amount of forest loss (four out of six) and the LUCS model projects the 

lowest amount of forest loss (four out of five cases).  Both of these models rely heavily on population 

dynamics, with the FAC model using published projections and LUCS model using population change based 

on a hypothesized growth rate.  When GEOMOD made projections of forest loss linked to population 

projections rather than from remote sensing products, as in the case of Chiapas, a high rate of deforestation 

also resulted because population growth in the region is exponential.  As described above, the FAC model is 

applied at the national administrative-unit scale where population data needed to simulate the model are 

generally available.  However, when the national administrative unit encompasses more than one 

biophysical-socioeconomic zone, as in the case of Paraná, Brazil (lowland sparsely populated coastal zone 

and populated cool plateau; Table 1), or where the pattern of deforestation has a discernable frontier or 

wave, as in the case of Santa Cruz and Campeche, the FAC model gives higher rates of deforestation in 

remote areas than the other two models caused by the influence of the highly concentrated population in 

cities and towns far removed from the area of interest.  On the other hand, when human populations and 

their infrastructure are widely dispersed across the landscape, regardless of whether different biophysical-

socioeconomic zones occur, as in the case of Chiapas and Michoacán, all three models tend to converge on 

similar results, particularly in the near-term (about 10 years).   

3.2 EVALUATION OF THE MODELS FOR PROJECTING RATES OF DEFORESTATION 

At the outset of this work, the questions we were attempting to answer by comparing three different models 

were (1) what is the most analytically feasible, and credible, approach for establishing deforestation 

baselines and (2) were the models feasible and practical to use for this purpose? To address these questions, 

we evaluated the models against a set of five criteria and 13 indicators (Brown, 2003).  The five criteria and 



corresponding indicators were: (1) transparency with indicators of understandability and replicability; (2) 

accuracy and precision with indicators related to model calibration, validation, and uncertainty in data bases; 

(3) applicability with indicators related to ability to deal with multiple scales and multiple land uses; (4) 

compatible with international standards (i.e., standard definitions of forest); and (5) cost effective with 

indicators related to intensity and availability of data needs, time to simulate models, and knowledge and 

skills needed to run the models. For each indicator, a score (from 1—lowest to 5—highest) was assigned, 

then averaged for each criterion, and summed for all criteria for a maximum of 25 points. The overall 

evaluation gave the GEOMOD model the highest score (22.6), and little difference in the scores between the 

FAC (18.6) and LUCS (17.5) models. However, for some criteria, the order of the evaluation was different 

from the overall trend, for example: 

• For transparency, the GEOMOD and FAC models scored the highest and LUCS scored the lowest 

because its model code and structure are not readily understandable by the operator.   

• The data bases needed for all three models tend to have a high degree of uncertainty associated with 

them, either because they depend on interpretation of remote sensing imagery (GEOMOD), on national 

statistics (FAC and LUCS), or on assumptions for many parameters that are poorly known (LUCS).  

• The GEOMOD and LUCS models are the most applicable for modeling land-use change as they can be 

applied to any scale and to many changes in land uses; the FAC model was built to simulate only 

deforestation at sub-national political units with population growth as the single driver. 

• The FAC model is particularly compatible with international requirements because it has been officially 

used and accepted by FAO to estimate deforestation for year 1990 and 1995 for all developing countries 

and the model was built on a clear and internationally accepted definition of forest.   

• The FAC model scored the highest on cost -effectiveness indicators, whereas the other two models 

require more data, time and effort to simulate.   



3.3 MAIN FACTORS EXPLAINING THE EMPIRICAL PATTERN OF LAND-USE CHANGE 

Whereas all the models estimate the rate of deforestation, GEOMOD is the only one of the three specifically 

developed to project where deforestation is likely to occur in the future.  Spatially-explicit models like 

GEOMOD can project the location and pattern over time of estimated deforestation—of interest to land 

managers, government agencies, and local and international sequestration project developers or evaluators.  

For example, GEOMOD analyzed a total of 29 spatially-distributed factors to determine which ones explain 

the historical pattern of human settlement and deforestation in each of the six regions.  Significance is based 

on the percent of each class of each factor already deforested at time one, the calibration period.  From these 

percentages a weighted map of potential land-use change (PLUC) is produced that supplies the model with 

information on which forested cells to select for future deforestation.  We analyzed these PLUC maps using 

principal components analysis (PCA) to compare the importance of factors across the six regions.  The PCA-

derived values indicate how much of the land-use variation at time one is explained by each factor compared 

to all others analyzed for that region (Table 4).   

Not all factors were used in all regions due to data availability constraints (Table 4).  An importance 

factor was calculated to estimate how many factors in each variable category (physical, biological, distance 

to areas of past disturbance, sociological/demographic, and economic/infrastructure) ranked among the top 

three in a study region. A comparison of the importance factors reveals that physical (factors 7 – 19) with 9 

out of 23 (0.39) and biological factors (factors 20 – 21) with 0.50, as well as distance to areas of past 

disturbance (factors 22 - 25) with 0.38, were each about twice as important as either 

sociological/demographic (factors 26 - 28) with 0.20 or economic/infrastructure factors (factors 1 – 6) with 

0.24, in explaining empirical land use patterns.  Elevation (factor 7) ranked among the top three factors in all 

five regions where it was analyzed, and slope, an elevation derivative, was among the top three in Chiapas.  

Distance to roads (factors 3 - 5) were highly significant in half of the regions, principally Paraná, Chiapas 

and Belize, and distance to already deforested areas (factors 23 - 25), which was also highly significant in 

three regions, explains between 11 and 17 percent of the variation in deforestation in Santa Cruz, Belize and 

Campeche.  Distance to assumed market areas, and or community services (factors 1 – 2), was ranked 



among the top three factors only in Belize.  Land tenure (factor 26) ranked high in both regions where it 

could be analyzed, Belize and Chiapas, but ranked among the top three in only the latter.  Distance to water 

sources (factors 13 – 17) was not nearly as important as we assumed, except for Campeche and Michoacán, 

where rainfall averages between 750 – 800 mm/year, significantly lower than the other regions analyzed. 

3.4 STRENGTH OF FACTORS IN PROJECTING FUTURE LAND USE CHANGE: WHICH FACTORS, 

AND HOW MANY ARE NEEDED?   

The percent of cells projected correctly based on a comparison of GEOMOD’s simulated time-2 map with 

the actual time-2 validation map ranges from 90 to 99.8% for all sites except Chiapas, where only 72% were 

correctly modeled (Table 4).  However, it is possible to get a high percent correct when little change is 

occurring between two time periods, as in Santa Cruz and Paraná.  Also, a certain percent of the cells will be 

modeled correctly based simply on random assignment, or chance alone, due to persistence of large areas of 

either agriculture when population is high or forest when it is not.  The kappa-for-location statistic, which 

varies between 0 (no better than a random model) and 1 (a perfect simulation), takes this into account, and 

provides a better metric of how well the model performed than just percent correct.  For Belize, Paraná, 

Campeche, and Michoacán , the kappa-for-location is greater than 0.5 suggesting that the GEOMOD 

improved significantly over a random assignment of newly deforested cells.  For Noel Kempff, the lower 

kappa combined with a lower percent correct suggests that model enhancements could be made, thus 

illustrating the importance of validation as a means of building the best model possible to achieve the most 

robust projections (Hall et al. in press).  

The individual importance of factors in explaining patterns of land use for a past time period does 

not necessarily portend their ability to predict a future landscape. This underlines the importance of 

validation in the modeling process.  The predictive strength of empirical patterns is enhanced or diminished 

in combination with other factors and must be tested for before projecting into the future.  All the factors 

analyzed for Santa Cruz, Belize, and Paraná, not just the top three, were required to derive the best possible 

fit (kappa-for-location) between the simulated and actual time-2 maps.  In Campeche seven 

(2,3,6,7,17,27,29) of the eleven factors analyzed were necessary to improve more than 50% over a random 



model, and those seven did not even include any of the PCA top three.  In Chiapas, a combination of only 

five (3,24,20,27,28) of the seven yielded the best fit possible, and in Michoacán only two factors, slope 

(factor 8) and distance to water sources (factor 16), were required to produce an 88% improvement over a 

random model.  This is not surprising in a region where steep slopes are being developed as the best land is 

already in production. In both Chiapas and Michoacán, only one factor of the final “best” predictive set had 

ranked among the top three in the PCA analysis of past pattern – distance to roads (factor 3) and distance to 

year-round and seasonal water sources (factor 16) respectively. 

Even though a large initial list of driving factors were included in the spatial modeling, the factors 

providing the best fit in validation could be reduced to a few key ones.  Targeting a few key factors per 

activity type and region could offer potential for streamlining and standardizing the principal components 

analysis, thereby reducing data requirements, and costs of spatial baseline analysis.  For instance, we found 

that in five out of six regions, distance to roads (factor 3) was included in the final set of factors, and in four 

out of six regions the following were required: distance to towns (factor 2), elevation (factor 7), distance to 

areas of some kind of earlier human use (factors 23,24, and 25) and distance to water (factors 13, 14, 16, and 

17).  Distance to roads, though important elsewhere, did not enhance validation in Michoacán; this could be 

due to the high density of both roads and deforested areas in the region.   

3.5 POTENTIALITY FOR DEFORESTATION 

We created a final map of potential land-use change (PLUC) (Fig. 3) in GEOMOD based on the factors for 

each region that yielded the best “goodness of fit” (Table 4) between the simulated and actual time-2 land-

use map as measured by the kappa-for-location statistic. The PLUC map, indicating each cell’s likelihood 

for future development, was derived by summing the percent developed for all factors yielding the best 

kappa-for-location in validation.  The model simulates the distribution of potential future deforestation by 

selecting the highest value cells (those most likely to be deforested) in these maps in descending order up to 

the amount of area projected to be lost over a 20-year period.  We then aggregated these values into three 

quartiles to visualize those areas of most likely (red) and least likely (blue) for future deforestation pressure.   



These mapped cells with varying potentiality of deforestation essentially provide estimated timing 

and location of deforestation differentially across a landscape over the period of projection.  Thus they also 

essentially provide a spatially resolved estimate of the relative additionality (sensu additional to a business-

as-usual baseline) of all lands evaluated regarding their potential for deforestation-avoidance projects—i.e., 

carbon benefits in avoided deforestation projects are estimated and measured as additional to (or departure 

from) a baseline.  Lands assigned low probability of deforestation over 20 years would have relatively low 

additionality, and lands with high probability of conversion would have higher additionality—if project 

activities prevent forest conversion, they would counter projected land movement out of forest.   

In the study regions where human populations and their infrastructure are widely dispersed across 

the landscape (e.g. Chiapas and Michoacán ,yellow color on maps in Fig. 3), high potentiality for 

deforestation is generally scattered in relatively small parcels with few areas that have low potentiality.  In 

contrast, areas with large blocks of forest with both high and low potentiality for deforestation are located in 

those study regions where human populations and infrastructure are not widely scattered and where a 

deforestation frontier is evident (e.g. Belize, Campeche, and Bolivia; Fig. 3).  

Four of the study regions (Belize, Bolivia, Brazil, and Chiapas) have pilot carbon sequestration 

projects embedded within them (see Fig. 1a-1c, 1e) and it can be seen that large blocks within these study 

regions have low and medium potentiality for deforestation, and only smaller areas with high potentiality, so 

targeting project sites to high-potentiality areas is important for demonstrating additionality for greenhouse 

gas mitigation programs.  The GEOMOD approach was used in developing final baselines for three of the 

pilot projects (Belize, Bolivia, and Brazil) and took into account the patterns shown in Fig. 3.   

3.6 CARBON EMISSIONS BASELINE 

In the analyses presented so far, the focus has been on developing the land-use change component of the 

baseline.  However, carbon sequestration projects need to develop a baseline of carbon emissions or 

removals by projecting the rate of land-use change over a given time period combined with carbon stock 

data.  The benefit of using spatially explicit models to project where the change will occur is that it provides 

a means for matching change locations with the corresponding carbon stocks.  This is particularly 



advantageous in areas where forest types vary across a project landscape (e.g. flooded forests and upland 

forests, degraded and mature forests, etc.). The “location tells us which forest type is being cleared  

The application of this approach to an example pilot project –the Noel Kempff pilot project in 

Bolivia–is shown in Fig. 4 (Brown 2002b).  The carbon baseline for the Bolivian pilot project is not a 

monotonic increasing curve, but rather it is an irregular pattern of high emissions some years and lower 

emissions other years (Fig. 4). This irregular pattern is caused by two main factors: (1) the deforestation is 

modeled within a larger landscape and in any given year, the total amount of forest projected to be lost does 

not occur all within the project boundaries because not all the most suitable land exists there, and (2) the 

pilot project areas had six different forest strata with a corresponding range of carbon stocks, and in any 

given year forest with high or lower carbon stocks could be cleared. Thus in this example, the rate of 

deforestation and identification of lands suitable for conversion are established in the regional context. But 

the actual baseline is developed at the project scale, where the area cleared within the project area is matched 

to the carbon stocks measured in the same area—thus the carbon baseline is project specific.  

If the baseline projections for the Noel Kempff pilot project was based on the other two models and 

used in combination with an area-weighted carbon stock for the project area (147.6 Mg C/ha; Brown 2002a), 

the projected baseline would be a monotonically increasing curve with a total carbon emissions of 11.54Tg 

for the FAC model and 0.183 Tg for the LUCS model over the 20-yr period (applying the percent 

deforestation rate to the area of the project).  The total emissions from GEOMOD (summed annual 

emissions from Fig. 4) would be 1.05 Tg C over the same 20-yr period.   

If the carbon benefits of stopping deforestation are estimated as the difference between the baseline 

emissions and the “with-project” emissions (essentially zero) as is typically done (Brown et al. 2000), then 

the benefits from using GEOMOD would be 1.05 Tg for the 20 years, with either an order of magnitude less 

using LUCS or order of magnitude more using FAC.  Thus, clearly the choice of model to make the 

projections can have a major effect on the potential carbon benefits.   



3.7 STRATEGY FOR GENERATING DEFORESTATION BASELINES 

A large opportunity to mitigate GHG emissions is lost without the inclusion of projects designed to avoid 

deforestation and improve the sustainability of agriculture in developing countries (Niles et al., 2002; 

Klooster and Masera, 2000). Sathaye et al (in press) estimates that under quite moderate carbon price 

scenarios, by 2100, the global cumulative carbon benefits from avoided deforestation is 51-78 percent of all 

potential in the land use sector.  Many developing countries continue to be interested in forest conservation 

projects because of their potential to slow or even reverse high rates of deforestation and to conserve 

biodiversity and other natural resources. In this section, we propose, based on the work presented here and 

the lessons learned, a common methodology to advance the development of credible baselines for 

deforestation.  This approach also may be generally applicable to other climate change mitigation activities 

involving land use change, like afforestation, reforestation, and restoration of degraded forests, but we have 

not assessed them here. 

For an avoided deforestation project to produce credible carbon benefits, the baseline needs to 

demonstrate that the area was under threat of deforestation.  Large areas of tropical forests are often not 

under threat for deforestation and would therefore not be eligible for such a project.  An analysis of 

deforestation threats using spatial models is suited to this task.  For the six areas analyzed here, we have 

generated maps showing the areas of most immediate threat scaled from high to low potentiality for 

deforestation (Fig. 3).  Projects intended to stop deforestation would have a measurable difference on carbon 

emissions in areas of high to medium potentiality.  An additional advantage of using potential land-use 

change (PLUC) maps as shown in Fig 3 is that other development criteria could be overlain on the map to 

help select areas that meet multiple goals.  For example, maps of ranges of threatened or endangered species, 

maps of poverty indicators or maps of critical watersheds could be overlain on the PLUC maps, and the 

intersection of other development goals with the highest threat for deforestation could be identified. 

The temporal dimension for avoided deforestation baselines is a significant analytic and policy 

issue—how far into the future can, and should, the baseline be projected?  Rates and patterns of land-use 

change are subject to biophysical factors regulating human use of the land that change marginally over time, 



but socioeconomic and political factors are more dynamic and less predictable through time.  Thus, the 

farther business-as-usual baseline scenarios are projected into the future, the less reliable they are likely to 

be. We suggest that a 10-year period is a reasonable time frame for projecting baselines forward based on 

the following: a) historical data are often collected over the decadal time frame (e.g., population data), and 

may indicate future projections over the same time period given the dynamics of development and growth in 

most countries; b) for some regions in our analyses there tends to be convergence among the model 

projections during the first 10-year period; and c) from a policy perspective, a decade is two Kyoto 

commitment periods (of five years) , and roughly two political election cycles (averaging 4-6 years 

generally, varying by political system).  We propose a projection timeframe for land-use changes and 

associated carbon benefits equal to the proposed project length (currently set at 20-60 years under the 

guidelines developed for the CDM), but a baseline locked in for only the first 10-year period, and then 

reviewed and adjusted if needed throughout the project duration.Combining these baseline duration issues 

with the work presented here, we propose a methodology for developing a credible baseline projection for an 

avoided deforestation project that involves three major steps comprising six tasks (below): 

Step 1:  Develop historic land-use change and deforestation estimate: 

Task  1:  Determine analytic domain and obtain historic data: 

• Delineate the approximate regional analytic domain scale: 

• About 5-7 times the area of large projects (e.g., greater than several hundreds of thousand ha; magnitude 

and thresholds recommended will vary with regional conditions), or 20-40 times the area of smaller 

projects (e.g., tens of thousands of ha or less; will vary by regional conditions).  

• Obtain historic data on land use and socioeconomic characteristics for the past c. 10-15 years, ideally 

including two remote sensing imagery sets at least 5 years apart, and identify potential major baseline 

drivers.   



Task 2: Analyze candidate historic baseline drivers and identify major drivers:  

• Analyze satellite imagery for producing maps of land use or obtain existing digital, satellite imagery-

based, land-use maps for location of deforestation. Analyze candidate baseline drivers (e.g., see table 4) 

to find the three to four key drivers that best describe patterns of historic land-use change. 

Step 2:  Generate baseline projection for deforestation 

Task 4:  Use key drivers to project potential land-use change (PLUC): 

• Use the three to four key drivers of land-use change to make a projection from those trends forward in 

time.  Generate a potential land-use change (PLUC) map, or a map of areas predicted to have high to 

low risk for deforestation using a spatial model, such as GEOMOD or others locally available (e.g., 

Castillo-Santiago et al., in press; De Jong et al., in press).  . Potential deforestation can be divided into 

quartiles, from high risk to low risk.   

Task 5: Project rates of deforestation using the PLUC map: 

As baseline projections beyond a 10-year period are not likely to be realistic because rates of land-use 

change are subject to many factors that are difficult to predict over the long term, a 10-year baseline 

projection for project GHG accounting and crediting purposes is suggested.   

• Projections of rates of land-use change over a 10-year period could be made with any of the three 

models presented here, with the specific selection based on the evaluation criteria. At least initially for 

this step, it would make sense to employ change detection of satellite imagery, such as used by 

GEOMOD in five out of six cases, because such images would already be on hand as part of the data 

base for the PLUC map.  However, if at least two such images are not available (two images will give a 

linear projection only, but for a 10-yr period this may be adequate) and the pattern of existing 

deforestation is dispersed across the landscape, then the simpler FAC model could be used.  

• Assess the relative additionality of mitigation actions in the proposed project case area and activities, by 

land parcel.  Each parcel combines land and socioeconomic characteristics with proposed mitigation 

activity, overlain on projected high potential for deforestation (and thus relatively high additionality of 



project activities), to low potential (thus low additionality, as these lands are unlikely to be converted).  

For example, one might apply the total estimated rate of deforestation to areas in the potential project 

area mapped as high potential, some discounted rate to the medium potential (how to discount would 

likely be a policy decision), and assume no deforestation in areas with low potential.  This step would 

result in a projection of the baseline rate and location of deforestation. 

Task 6: Combine PLUC map with projected rates of deforestation and carbon stock estimates and make 

baseline projections  

• Estimates of the carbon stocks in the forests being cleared would be made from measurements in the 

potential project area or from the literature depending on the status of project development.  If it is only 

a feasibility study, then literature data or limited field studies would suffice, but if the project is beyond 

a feasibility stage, more detailed measurements and analyses of the carbon stocks might be needed (e.g. 

see Brown 2002a). 

• Combine the rate of forest loss over the 10-year period with carbon stock data to produce the 

deforestation baseline as shown in Fig. 4 for example.  If a potential avoided deforestation project was at 

an implementation stage, the GEOMOD model could be used to simulate where the land is likely to 

change in the project area using the rate data, and to subsequently to match these with the corresponding 

carbon stock data. 

• For reporting of project estimated GHG benefits, the project could submit its baseline driver 

assumptions to GHG registry or marketing programs for review for reasonableness, and some form of 

certification of these assumptions, the baseline they produce, and hence the estimated project GHG 

benefits. 

Step 3:  At agreed interval (e.g., +10 years), review and re-assess baseline: 

• Because a 10-year baseline might be considered to be short and interest is in longer-term projects, it 

could be envisaged that the spatial PLUC map and estimates of rates of land-use change would be 

redone on a 10-year cycle. This would allow for the rates and changes in spatial drivers (e.g., new roads, 



new communities, new protected area, etc.) to be incorporated into the derivation of the new PLUC map 

and for adjustments in the estimation of the rate of land-use change and carbon stocks.    

Greenhouse gas mitigation programs or market investors in GHG offsets are likely to require periodic 

review of the reasonableness of the project baseline under changing market, commodity product, population, 

other socioeconomic factors, natural disaster, or other circumstances in the project’s region. An agreed 

period for review, say 10 years out, would provide certainty to investors that the baseline would be in place 

for at least that time, yet would allow baseline updating if conditions warrant.   

Operationally, the analysis of baseline conditions and assumptions about the values of baseline 

drivers could be proposed by a project, and reviewed and certified by a greenhouse gas registry program for 

10 years.  After 10 or an agreed number of years, the baseline conditions and drivers would be reviewed by 

the project and program, and proposed unchanged for another 10 years.  An agreed set of baseline conditions 

and drivers could be identified in advance that, if they change by an agreed percentage or amount, would 

automatically trigger a required revision to a baseline.  If no such changes trigger a revision, then the 

original baseline driver values would be re-certified for the next period.  Candidate conditions and triggers 

for revision might vary by the key baseline drivers for a given mitigation activity and region.   
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Figure Legends 

 

Figure 1.  Location of sites used in the study. A. state of Paraná in Brazil, B. Santa Cruz 

Department in Bolivia, C. northern Belize, D. Michoacán , Mexico, E. Chiapas, Mexico, and F. 

Campeche, Mexico. “Project area” refers to the area of the pilot carbon sequestration projects in 

these regions. 

 

Figure 2. Comparison of cumulative % of initial forest area deforested for each study area by each of the three models.  

FAC = Forest Area Change model, LUCS = Land Use and Carbon Sequestration model, and GEOMOD = 

Geographic Model.  The high and low scenarios of the FAC model for Belize represent high- and low-population 

growth projections. 

 

Figure 3.  Maps showing the location of potential deforestation in each region analyzed, based on GEOMOD’s 

calculation of each cell’s potential suitability for human use.  Suitability is derived through analysis of the 

important biophysical/socio-demographic/economic factors determining where people have chosen to settle in the 

past. Suitability values are ranked into quartiles to facilitate visualization of the areas of most likely future 

deforestation pressure, independent of the rate of change experienced in the region.  The bottom quartile is 

considered as having no potential of being deforested.    

 

Figure 4.  Carbon baseline of annual net carbon emissions for a pilot carbon sequestration project –Noel Kempff 

project in Bolivia. 
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Table 1. Summary of geographic and land-use characteristics of the six study areas. 

Characteristic Belize Santa Cruz, Bolivia Paraná, Brazil Campeche, MX Chiapas, MX Michoacán, MX 

Climate 

Well-marked dry 
season February to 
May; continuous wet 
season June to 
December. 

Mostly lowland 
seasonal to dry. 
Mean annual rainfall 
1200 to 2300 mm with 
dry seasons of 2-3 
months to 3-5 months.  

Lowland tropical moist 
with short dry season 
in the coastal zone; and 
moist with cool season 
on the plateau . 

Lowland moist with 
dry season to lowland 
sub-dry.  
Mean annual rainfall 
about 750 mm. 
Mean annual 
temperature 24 °C. 

Two main zones—
lowland tropical moist 
zone and the montane 
temperate-cold zone. 

Pre-montane moist and 
lowland sub dry.  
Mean annual rainfall 
800-1100 mm. 
Mean annual temp 11-
14 °C. 

Topography 

Low coastal plain 
occupies most of 
northern half and 
eastern fringe of 
country. 

Most forest land is 
below 500 m above sea 
level. 

Mostly flat to 
undulating in both the 
coastal zone and 
plateau. 

Mostly flat with some 
low hills—260-385 m 
above sea level. 

Lowland to montane.  

Mountainous (621-
3935 m above sea 
level). [[ round to 660-
3900? ]] 

Main forest types 

Broadleaf forests, 
marsh and swamp 
communities, pine 
savannas, and scrub 
and shrub lands (from 
degradation of closed 
forests).   

Broadleaf evergreen 
through semi-deciduous 
and deciduous (most 
important formation) to 
dry and pre montane / 
montane.  

Brazilian plateau 
forests dominated by 
Araucaria angustifolia, 
and coastal lowland 
dominated by tropical 
moist forest species 
(Coastal Atlantic 
Rainforest).   

Broadleaf, multi-
species tropical forests.  

Forests are divided 
equally in area into 
premontane and 
montane forests 
(pine/oak, pine, oak, 
fir) found in the higher 
elevations, and tropical 
moist forests in the 
lowlands. 

Mostly conifers and 
broadleaf forests of 
pine and oak species; 
some broadleaf, 
multispecies tropical 
forests. 

Transportation 
infrastructure 

Road network in place 
but most roads unpaved 

Except for the major 
city and surrounding 
area, mostly 
undeveloped, frontier 
area. 
 

Generally well 
developed road system, 
unpaved in rural areas. 

Mostly undeveloped, 
frontier area. 

Well-developed road 
system for the most 
part. 

Well-developed road 
system. 

Land uses  

Timber extraction from 
broadleaf forest and 
pine savannas.  
shifting cultivation, 
mechanized 
agriculture, and grazing 
in the pine savannas. 

Timber extraction 
(mostly concessions), 
shifting cultivation, 
pastures for cattle. 

Most land converted to 
agriculture on plateau 
in past, coastal forests 
subject to conversion to 
pasture for water 
buffalo, rice, bananas, 
and other tropical 
crops. 

Agriculture—shifting 
cultivation, and pasture 
Forest product 
extraction. 

Agriculture—shifting 
cultivation, and pasture 
Forest product 
extraction. 

Forest product 
extraction (often 
illegal) and processing  
Agriculture, avocado 
orchards, and pasture. 

 

 



Baselines for tropical deforestation 

 

Table 2.  Areas of land encompassed by each model for each region (in million ha), estimated initial percent forest cover, and 

average percent cover by model, (FAC = Forest Area Change model; GEOMOD = Geographic Model; and LUCS = Land Use and 

Carbon Sequestration model).  

 

Study area 
FAC 

Initial Forest 
Cover 

FAC 
Initial % 

Forest Cover 

GEOMOD 
Initial Forest 

Cover 

GEOMOD 
Initial % 

Forest Cover 

LUCS 
Initial Forest 

Cover 

LUCS Initial 
% Forest 

Cover 
Belize 2.2 74 0.46 80 -- -- 
Santa Cruz, 
Bolivia 36.4 55 3.7 85 3.7 85 

Paraná, Brazil 19.9 8.9 0.19 74 0.19 74 
Campeche, 
Mexico 4.2 78 1.7 97 1.3 95 

Chiapas, 
Mexico 7.4 70 2.5 59 2.5 59 

Michoacán, 
Mexico 6.0 42 0.60 45 0.60 41 

Average  55  73  71 
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Table 3.  Minimum and maximum baseline projected cumulative loss of forest cover over 20-year period from base year, as % of 

initial forest cover, for the six study areas and model producing each value. The negative minimum value for Paraná represents a 

gain in forest cover. 

 

Study area 
MINIMUM LOSS OF 

FOREST 
MAXIMUM LOSS OF 

FOREST 
Minimum as % 
of Maximum 

 Cumulative 
Loss % 

Model Cumulative 
Loss % 

Model  

Belize 10 FAC 45 FAC 22 
Santa Cruz 0.2 LUCS 14 FAC 1.4 
Paraná -7.0 LUCS 14 FAC -- 
Campeche 0.7 LUCS 25 FAC 2.8 
Chiapas 22 LUCS 52 GEOMOD 42.3 
Michoacán 21 GEOMOD 36 LUCS 58.3 
AVERAGE     46 
 



Baselines for tropical deforestation 

 

 

Table 4.  Amount of variation each factor explains in GEOMOD, based on principal component analysis, in the spatial distribution of forest and non-forest lands in the historic 

time-1 land-use map of each of the six regions.  The sum of all quantities for a given region equals the maximum value of 1.0.  A combination of these factors for a given region 

produced the best goodness-of-fit, as measured by the kappa-for-location statistic, between the simulated time 2 and the actual time 2 maps in each region.  

Type of 
Variable 

Numeric 
ID 

Individual Spatially 
Distributed Factor Santa Cruz Belize Paraná Campeche Chiapas Michoacan Importance 

Factor* 

1 Dist. to centers of government & 
commerce 0.07 0.07     

2 Dist. to all towns & 
communities 0.09 0.15 0.04 0.08  0.10 

3 Dist. to all roads 0.12 0.11 0.13 0.10 0.15 0.09 
4 Dist. to primary roads  0.09     

5 Dist. to primary and secondary 
roads  0.16     

E
co

no
m

ic
/  

   
   

   
   

   
 

In
fr

as
tr

uc
tu

re
 

6 Political district   0.08 0.10   

0.24 

            
7 Elevation 0.15 0.11 0.15 0.09  0.12 
8 Slope   0.07  0.15 0.09 
9 Aspect   0.04   0.09 
10 Watershed   0.09    
11 Precipitation      0.10 
12 Temperature      0.13 
13 Dist. to major rivers 0.12  0.05    
14 Dist. to navigable water   0.08    
15 Dist. to year-round water    0.11   

16 Dist. to year-round and seasonal 
water source    0.11  0.11 

17 Dist. to year-round streams    0.10   
18 Presence of wetlands    0.02   

Ph
ys

ic
al

 
(T

op
og

ra
ph

ic
/M

et
eo

ro
lo

gi
c/

H
yd

ro
lo

gi
c/

 
E

da
ph

ic
) 

19 Soil   0.15   0.10 

0.39 
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20 Vegetation type     0.12  
B

io
lo

gi
ca

l 

21 Ecozones 0.15      

0.50 

            
22 Dist. to logging camps 0.09      
23 Dist. to forest edge 0.14      

24 Dist. to previously cultivated 
areas   0.11 0.11 0.12 0.08 

H
um

an
 

D
is

tu
rb

an
ce

 

25 Dist. to previously deforested 
land (all uses) 0.08 0.17     

0.38 

            
26 Land tenure  0.14   0.15  

27 Density of land-based economic 
sector of population    0.09 0.15  

So
ci

o/
   

   
 

D
em

og
ra

ph
i

c 

28 % marginalized population     0.15  

0.20 

            

H
is

to
ri

c/
C

u
ltu

ra
l 

29 Dist. to archeological sites    0.10   0.00 

  Best kappa 0.34 0.65 0.97 0.53 0.41 0.88  
  Validation '% Correct'  99.80% 90% 99% 95% 72% 94%  
 

 Driver combination yielding 
best kappa  

1,2,3,7,13,
21- 23,25 

1,2,3,4,5,7, 
25,26 

2,3,6-10, 
13,14,19, 

24 

2,3,6,7,17,  
27,29 

3,24,20,2
7, 28 8,16  

* The importance factor is calculated as the occurrence of the three factors that individually explained most of the variation (shaded values for each region) for a variable type 

divided by the total occurrence of all factors for a variable type (e.g. for economic/infrastructure [#1-6], the total occurrence of the three shaded values is 4 and the total occurrence 

of all factors for this variable type is 17, giving an importance value of 0.24). 
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