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Abstract

Expectation, or prediction, has become a major theme in cognitive science.

Music offers a powerful system for studying how expectations are formed and

deployed in the processing of richly structured sequences that unfold rapidly in

time. We ask to what extent expectations about an upcoming note in a melody

are driven by two distinct factors: Gestalt-like principles grounded in the audi-

tory system (e.g. a preference for subsequent notes to move in small intervals),

and statistical learning of melodic structure. We use multinomial regression

modeling to evaluate the predictions of computationally implemented models of

melodic expectation against behavioral data from a musical cloze task, in which

participants hear a novel melodic opening and are asked to sing the note they

expect to come next. We demonstrate that both Gestalt-like principles and

statistical learning contribute to listeners’ online expectations. In conjunction

with results in the domain of language, our results pointing to a larger-than-

previously-assumed role for statistical learning in predictive processing across

cognitive domains, even in cases that seem potentially governed by a smaller

set of theoretically motivated rules. However, we also find that both of the

models tested here leave much variance in the human data unexplained, point-

ing to a need for models of melodic expectation that incorporate underlying
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hierarchical and/or harmonic structure. We propose that our combined behav-

ioral (melodic cloze) and modeling (multinomial regression) approach provides

a powerful method for further testing and development of models of melodic

expectation.

Keywords: music, melody, expectation, statistical learning, probabilistic

modeling

1. Introduction

Across cognitive domains, people generate expectations or predictions about

upcoming events (Bubic et al., 2010; Clark, 2013; Friston, 2009). For example,

when perceiving complex sequences such as language and music, people pre-

dict upcoming words, grammatical structures, notes, chords, etc. (Altmann &5

Kamide, 1999; DeLong et al., 2005; Huron, 2006; Jackendoff, 1992; Kuperberg

& Jaeger, 2015; Levy, 2008; Meyer, 1956; Patel & Morgan, 2016; Rohrmeier &

Koelsch, 2012; Tillmann, 2012; Van Berkum et al., 2005; Van Petten & Luka,

2011; Vuust et al., 2009). Such prediction has been hypothesized to contribute

to learning (wherein incorrect predictions drive greater learning; Chang et al.,10

2000, 2006; Dell & Brown, 1991; Fine & Jaeger, 2013; Kidd et al., 2012) and

efficient information processing (e.g. aiding understanding speech in noisy en-

vironments or accurately reproducing musical rhythms; Clayards et al., 2008;

Povel & Essens, 1985). A fundamental question in cognitive science is thus

how such expectations are formed—both within a specific domain and across15

domains.

Here, we focus on the question of expectation in music, specifically melodic

expectations, or expectations about what notes are coming next in a melody.

In music, the ability to form expectations is crucially linked to enjoyment: lis-

teners form expectations about upcoming events, and their enjoyment of the20

music partly derives from strategically having those expectations confirmed and

violated at the right times (Huron, 2006; Jackendoff, 1992; Meyer, 1956). Un-

derstanding why humans universally enjoy music thus involves understanding
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how these expectations are formed.

In the closely related domain of language, accounts of expectation or predic-25

tion have demonstrated that predictions rely both on rule-like knowledge and on

statistical learning (for example, of n-gram sequences or transition probabilities;

Arnon & Snider, 2010; Arnon & Cohen Priva, 2013; Demberg & Keller, 2008;

DeLong et al., 2014; Morgan & Levy, 2016; Saffran et al., 1996). The relative

importance of these two factors in musical expectations is currently debated30

(Pearce & Wiggins, 2006; Temperley, 2014). Thus we will focus on compar-

ing theories of melodic expectation that rely on rule-like perceptual principles

versus those that rely on statistical learning from one’s lifetime experience.

On the one hand, it has been proposed that much like the Gestalt principles

that apply in vision (e.g. “good continuation”; Rock & Palmer, 1990), similar35

rule-like, Gestalt-like principles govern melodic expectations—for example, a

preference for subsequent notes to move in small intervals. A key feature of

such proposals is that they claim expectations are governed by a small number

of relatively simple principles. These principles are not domain-general but

are grounded either in music theory or in properties of the auditory system,40

perhaps stemming from principles used by the auditory system for auditory

scene analysis, i.e., segregating auditory ‘objects’ from complex mixtures of

sound (Bregman, 1990; Handel, 1993; Trainor, 2015). Perhaps the best-known

example of such a proposal is Narmour’s (1989; 1990) Implication-Realization

model, which proposes five such principles that are claimed to be innate and45

universal to music cognition. A more recent example is Temperley’s (2008)

Probabilistic Model of Melody Perception, which we will describe in more detail

in Section 1.1.1.

In contrast, statistical-learning-based models claim that listeners are track-

ing rich details about the statistics of the input—in particular, the probabilities50

of n-gram sequences over notes. These theories thus claim that melodic expec-

tation is but one instance of a domain-general statistical learning mechanism,

applicable additionally to language acquisition (Cristià et al., 2011; Saffran et al.,

1996), adult language processing (Arnon & Snider, 2010; Arnon & Cohen Priva,
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2013; Morgan & Levy, 2016), visual sequences and visual scene analysis (Fiser55

& Aslin, 2016; Kirkham et al., 2002), and the motor system (Schubotz, 2007).

While the ability to track n-gram sequences in language and domain-generally is

now well established, whether such sequences are used in online music processing

is currently less clear. Pearce and colleagues (e.g. Pearce, 2005; Pearce & Wig-

gins, 2006; Hansen & Pearce, 2014) have proposed that such statistical learning60

is indeed foundational to melodic expectations and have implemented a frame-

work for learning n-gram models of music known as Information Dynamics Of

Music (IDyOM). These models are much richer statistical learning models than

the Gestalt-like models: specifying probabilities over many n-gram sequences

requires tens of thousands of parameters, orders of magnitude more parameters65

than required by Gestalt-type models. Because they rely on domain-general

learning mechanisms, these statistical learning models explicitly minimize the

role of music-theoretically motivated principles and/or principles specific to the

auditory system in determining melodic expectations.

This issue of the relative importance of Gestalt-like mechanisms and statis-70

tical learning mechanisms in music perception has parallels in other branches

of psychology. For example, in theories of art, Arnheim (1969) argued that we

have instinctive responses to certain basic visual shapes, which guide our emo-

tional responses to visual art. In contrast, Goodman (1976) argued that our

aesthetic response to art is entirely based on learning and sensory experience.75

This debate has motivated a significant amount of research, which has found

that both types of mechanisms are involved in people’s aesthetic and emotional

responses to art (reviewed in Winner, 2018).

Studying the relative contributions of rule-like principles and statistical learn-

ing in forming expectations in music processing also provides an interesting80

comparison to the study of a similar trade-off in language processing. While

music does have culturally-specific rule-like principles (Patel, 2003), musical se-

quences are more flexible and cannot be said to be strictly “ungrammatical” in

the way that language can be. Because musical sequences are not as directly

answerable to grammatical “rules,” one might a priori expect statistical learning85
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principles to play a relatively greater role in forming expectations in music than

in language. Nonetheless, as described above, Arnon & Snider (2010), Arnon

& Cohen Priva (2013), Morgan & Levy (2016), and others have argued for a

larger-than-previously assumed role of statistical learning of multi-word expres-

sions even in language, which seems potentially more rule-governed. Thus the90

time seems ripe to look for similar effects in music.

In the remainder of this introduction, we will describe existing computational

models of melodic expectation, with a focus on the Temperley and IDyOM

models, and discuss what work has previously been done comparing these types

of models. In Section 2, we describe an existing behavioral dataset from Fogel95

et al. (2015) using a novel “musical cloze task,” which we will use for our first

evaluation of the models. In Section 3 we discuss implementation details of the

two models, and in Section 4 we describe how we directly compare these models

on the Fogel et al. dataset. In Section 5, we describe a follow-up experiment

using a similar task, with convergent findings. Section 6 provides a general100

discussion and conclusion.

1.1. Computational models of melodic expectation

In the quantitative modeling of music cognition, melodic expectation has

been an active and important topic of research for over 20 years (e.g. Eerola

et al., 2009, 2002; Krumhansl et al., 1999, 2000; Larson, 2004; Margulis, 2005;105

Pearce & Wiggins, 2006; Pearce, 2005; Rohrmeier, 2016; Schellenberg, 1997;

Sears et al., 2018). Thus a benefit of studying melodic expectation is that there

are a number of computationally implemented models reflecting different theo-

ries of this phenomenon, which allow us to make precise, testable predictions to

compare with empirical human data. Specifically, these models assign probabil-110

ities to note sequences. In the formulations used here, two such models will be

used to assign probabilities to possible continuation notes given the preceding

melodic context. We describe these two models, the Temperley and IDyOM

models, in detail.
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1.1.1. Temperley model115

Temperley’s (2008) Probabilistic Model of Melody Perception is a Gestalt-

type model, in that it relies on a small number of music-theoretically motivated

principles. Specifically, it includes 3 principles:

• The central pitch tendency says that “a melody tends to be confined to

a fairly limited range of pitches.” This is operationalized as a normal120

distribution over pitches centered around the central pitch for a given

melody, which is itself chosen from some normal distribution over pitches

(representing the probability of central pitches across melodies).

• The pitch proximity principle says that “in general, intervals between ad-

jacent notes in a melody are small.” This is operationalized as a normal125

distribution over pitches centered around the previous note.

• The key profile measures “the compatibility of each pitch class with a

key,” reflecting the fact that certain scale degrees (i.e. positions of notes

within a scale or key) are known to be more probable than others and

to evoke more of a sense of “stability” (Brown et al., 1994; Krumhansl,130

1990). This principle is operationalized as the empirical probability (from

some training corpus) of each scale degree. (This operationalization is

analogous to a Krumhansl key profile, except that the profile is defined

by the probability of a note rather than by its stability rating).

These three principles are combined such that the probability of a note is the135

product of its probabilities under all of these principles, given the context.

Temperley’s model is a hallmark Gestalt-type model (Huron, 2006; Krumhansl

et al., 2000). Its three principles are interpretable and well attested in music

theory. The model makes minimal use of statistical learning (in particular, no

note-to-note transitions probabilities or n-grams). It also makes minimal use140

of harmonic or other hierarchical structure. It does make use of the key of the

piece (to determine a note’s scale degree for purposes of the key profile), but it

does not infer a moment-to-moment harmonic progression, nor does it have any
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notion of pitch classes or functions (beyond scale degrees), such as, for example,

a “leading tone.”145

In contrast to Narmour’s Implication-Realization model, which claims that

its Gestalt principles are innate, Temperley remains deliberately agnostic about

where the principles come from, noting that the principles may themselves be

learned from data.

Empirical support. Temperley (2008) evaluates his model against Narmour’s150

Implication-Realization model on a classic melodic expectation dataset from

Cuddy and Lunney. In Cuddy & Lunney (1995), participants heard a two note

context and were asked to judge a third note on a 7-point scale from “extremely

bad continuation” to “extremely good continuation”. Temperley finds that his

model outperforms Schellenberg’s (1997) state-of-the-art two-factor implemen-155

tation of Narmour’s Implication Realization model, providing a fairly good fit

to the rating data (r = 0.744), and thus providing some evidence that these

Gestalt principles are indeed influencing listeners’ expectations.

However, we note that this dataset is potentially a poor test of melodic

expectations for a number of reasons. Participants only heard a two note con-160

text, and the expectations formed from such an impoverished context may not

be representative of expectations in longer melodies. Also, because the rating

methodology is cumbersome—participants must hear every possible continua-

tion note in order to judge them—only a small number of context intervals can

be tested, and participants heard each context with multiple possible continua-165

tion notes over the course of the experiment, potentially confounding their later

judgements. We aim to address these limitations in our work.

1.1.2. IDyOM

We will compare Temperley’s model with Pearce’s (2005) Information Dy-

namics Of Music (IDyOM) model. IDyOM provides a framework for fitting170

Markov (i.e. n-gram) models of music. An IDyOM model consists of a probabil-

ity distribution over every possible note continuation for every possible n-gram

context up to a given length.
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In addition to learning Markov models over specific pitches, the IDyOM

framework can operate on “multiple viewpoints,” i.e. it can compute n-gram175

probabilities over multiple features of the musical surface, including absolute

pitch, scale degree, pitch interval from note to note, etc., as well as a limited

number of rhythmic viewpoints (e.g. note duration, whether the current note is

longer or shorter than the previous, etc.). In our work, we use a “linked view-

point” of pitch class (i.e. scale degree) and pitch interval between consecutive180

notes (in semitones)—in other words, our models will learn n-gram probabili-

ties over ordered pairs of (pitch class, pitch interval) or, in IDyOM terminol-

ogy, (cpint, cpintref). This choice of viewpoints not only follows previous work

(Hansen & Pearce, 2014), but also crucially gives IDyOM equivalent informa-

tion to the information that the Temperley model has, for a fair comparison185

between the two.

Unlike the Temperley or other Gestalt models, the IDyOM model is a rich

statistical learner, in that it stores many n-gram sequences (and hence has many

more parameters than the Temperley model). However, it still does not learn

any harmonic or other hierarchical structure. (It would in theory be possible to190

include a harmonic analysis within the IDyOM framework, but such a viewpoint

does not currently exist.)

Empirical support. The IDyOM model has also received empirical support as a

model of human melodic expectations. Pearce & Wiggins (2006) demonstrate

that it outperforms Schellenberg’s (1997) two-factor implementation of the I-R195

model on predicting data from three tasks: the Cuddy and Lunney two-note-

context rating task (described above); Schellenberg’s (1996) experiment with a

similar rating task using eight longer melodic fragments (drawn from British

folk songs) as context; and an experiment by Manzara et al. (1992) in which

participants provide implicit probability distributions over every note in the200

melodies of two Bach chorales using a betting paradigm. Pearce et al. (2010)

also demonstrated that the IDyOM model can predict neural data including

ERP amplitudes and beta band oscillations, while Hansen & Pearce (2014)
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demonstrated that it can also be used to predict human ratings of uncertainty

during music listening. (See also Moldwin et al., 2017, for convergent evidence205

using a simpler Markov model.)

1.2. Gestalt-like principles versus statistical learning

While both the Temperley and IDyOM models have received empirical sup-

port, little work has compared them directly. In particular, this means that we

do not know to what extent the predictions made by one could be subsumed by210

the predictions made by the other. For example, it could be the case that seem-

ing evidence of n-gram learning is actually a case of n-grams capturing specific

instances of the general principles embodied by the Gestalt models. Alternately,

learning n-grams may in fact be necessary because each n-gram sequence is dis-

tinctive, and the Gestalt principles captured by the Temperley model may be215

post-hoc generalizations drawn by music theoreticians that do not play a true

cognitive role. Thus it is important to directly compare the predictions of these

two models.

One previous comparison comes from Temperley (2014). In the interest of

making the models as comparable as possible, he uses a simplified Markov model220

(far simpler than IDyOM) and a simplified version of his 2008 model, which he

calls the “Gaussian model.” The Markov model in particular is simplified in

ways that may worsen its predictions relative to IDyOM: it treats scale degree

and pitch interval as orthogonal (computing probabilities over them separately

and then multiplying them together), rather than treating them as a linked225

viewpoint (computing probabilities over ordered pairs) as IDyOM can.1 Tem-

perley also considers unigram, bigram, and trigram models separately, rather

than allowing for combinations of these models (known as interpolation, a com-

mon technique in computational modeling for improving the predictions made

by n-gram models). In summary, the Markov model Temperley considers is very230

1We see in our own data that the linked IDyOM viewpoint frequently—though not always—

outperforms the unlinked viewpoint (Appendix A).
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simplified relative to IDyOM.

Temperley tests the two models on three tasks: predicting corpus data, pre-

dicting the Cuddy and Lunney rating data, and predicting distributions of inter-

vals across melodies. For the third of these (predicting distributions of intervals

across melodies) both models do extremely well, providing little basis for useful235

comparison. For predicting corpus data, the Markov model consistently outper-

forms the Gaussian model. For predicting human rating data, performance is

more mixed but the Markov models generally outperform the Gaussian model.

However, Temperley proposes that the actual model performance be weighed

against the much larger number of parameters in the Markov model, and hence240

argues for the Gaussian model on the basis of simplicity.

Given the limitations of the Markov model that Temperley uses, the limi-

tations of the Cuddy and Lunney dataset, and the general inconclusiveness of

the results, we think it is well worth revisiting this issue using state of the art

models and a richer behavioral dataset. We will return to the issue of comparing245

number of parameters in the models in the general discussion.

Thus our goal is to do a direct comparison of state-of-the-art versions of

both the IDyOM and Temperley models. Moreover, we test them against data

that measures expectedness of upcoming notes as directly as possible: we use a

“musical cloze” task in which participants hear novel melodic openings and are250

asked to sing the note or notes that they think should come next. (See Section

2.) We can then compare the empirical probabilities of different notes with the

probabilities predicted by the models.

2. Experiment 1: Behavioral Data

We first compare the IDyOM and Temperley models using behavioral data255

from a new task developed by Fogel et al. (2015). Comparable to a traditional

linguistic cloze task, in which participants see the beginning of a novel sentence

and are asked to predict what word will come next, participants in the musical

cloze task heard the beginning of a novel melody and were asked to “sing the
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note you think comes next.” Participants found this task easy to do, and we260

believe it is well suited to reveal participants’ expectations. Moreover, it avoids

some problems with traditional tasks that probe melodic expectations such as

requiring participants to play the note on a piano (which requires musical train-

ing) or asking participants to rate a continuation note following a context (in

which all possible continuation notes must be rated, so that contexts are gen-265

erally heard many times by the same participant in order to collect enough

data).

2.1. Materials and Methods

Melodic openings (’melodic stems’) for the task were composed in pairs, such

that by changing a small number of notes in the context, Fogel et al. manip-270

ulated whether the stem implied an authentic cadence (AC condition) or not

(Non-Cadence or NC condition; Figure 1). An authentic cadence is a progression

from harmony V (a dominant chord), which is subjectively perceived as very un-

stable and is overwhelmingly followed by harmony I, to the expected harmony

I (a tonic chord), producing a sense of resolution; this transition is arguably275

the most foundational harmonic progression in Western music, and is expected

even by non-musically-trained listeners (Loui & Wessel, 2007). Specifically, a

melodic stem ending with an implied V harmony would be expected to resolve

to a I harmony, and hence participants are expected to sing the tonic (the note

with scale degree 1) in the AC condition melodies. NC condition melodies did280

not end on a V harmony and were designed to not create a strong expectation

for any particular continuation note. (There were 45 melodic pairs: any given

participant only heard the AC or NC version of a particular melody.) Although

the stems used in this task were monophonic melodies, and hence do not con-

tain explicit harmonic material, such melodies still reliably generate implicit285

harmonic structure for Western listeners (Cuddy et al., 1981; Povel & Jansen,

2002). Melodic stems in each pair were matched for melodic contour, number

of notes, rhythm, and key, and averaged 8.4 notes in length. (All melodies are

given in Supplementary Materials.) Participants were 50 undergraduates from

11



Figure 1: Sample pair of Authentic Cadence (AC) and Non-Cadence (NC) condition melodies

annotated with one possible interpretation of the underlying harmonic progression expressed

both as chord names (e.g. F, Dm, C) and harmonic functions (I, IV, V).

Tufts University who self-identified as musicians (mean 9 years of formal music290

training). Full details on the task, stimuli, and participants are available in

Fogel et al..

2.2. Preliminary results from Fogel et al.

Figure 2 shows the type of data generated by the melodic cloze task. The

left and rights panels show the distributions of responses produced by partic-295

ipants who heard the AC and NC versions of the melodic stems in Figure 1.

For the AC stem, the vast majority of the participants sang the tonic. For

the NC stem, responses were much more varied. Indeed, across all melodic

stems, participants overwhelmingly sing the tonic in the AC condition melodies

and not in the NC condition (Figure 3, row 1, Exp 1). We can quantify this300

difference in multiple ways, including the constraint (the probability of the

most-commonly sung continuation note, as determined by cloze responses) and

the entropy of the distribution (an information-theoretic measure of how diffuse

responses are). NC condition melodies had substantially lower constraint (41%

vs. 69%; t86.90 = 7.74, p < 0.0001 using a two-tailed unequal variance t-test)305

and higher entropy (2.27 vs. 1.37; t79.84 = 7.74, p < 0.0001) of responses than

AC condition melodies.

This dataset thus provides a good test for computational models of melodic
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Figure 2: Proportion of responses to sample melody shown in Figure 1. Each column of the

histogram shows the proportion of participants who sang that note after hearing the melodic

stem in Figure 1a (left histogram) or Figure 1b (right histogram). Individual participants

heard one or the other stem.

expectation because it allows us to test (at least) two questions:

1. Can these models can recognize authentic cadences (one of the most im-310

portant and prevalent instances of expectation in western music)?

2. Can these models make correct diffuse predictions in cases such as the NC

melodies where there isn’t a single strong expectation?

3. Models

3.1. Training corpora315

The Temperley model was original trained on the Essen Folksong Collec-

tion (Schaffrath & Huron, 1995). The IDyOM model has been previously been

trained on a partially overlapping corpus, which we call the Pearce-Wiggins

(PW) corpus (Pearce & Wiggins, 2006; Hansen & Pearce, 2014): The Fink

subset of the Essen corpus (consisting of 566 German folksongs), 185 Bach320

chorale melodies (Bach, 1892; Center for Computer Assisted Research in the

Humanities, 1994), and 152 Nova Scotian songs (Creighton, 1966; Sapp, 2018).

While the Essen corpus is larger, the Pearce-Wiggins corpus is more stylistically

diverse—in particular, it contains composed melodies as well as folk songs. We
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report results training both models on both possible corpora. (In order to do an325

apples-to-apples comparison, we always report comparisons in which the models

to be compared are trained on the same corpus.)

We next describe the details of how we trained and made predictions from

our two models of interest.

3.2. Temperley model330

The parameters required to specify the Temperley model are: the mean

and variance of the central pitch profile, the variances of the range and pitch

proximity profiles, major and minor key profiles, and probability of a major

versus minor key. All these parameters can be computed straightforwardly from

a training corpus. Temperley kindly provided us with code to run this model,335

with parameters calculated from the Essen Folksong Collection (as reported in

his 2014 paper). We additionally computed the parameters from the Pearce-

Wiggins corpus in order to run a version of the model trained on that corpus.2

For purposes of computing the key profiles from the PW corpus, we assumed all

pieces were in a major key (which was consistent with the high probability of340

a major and not a minor third in the resulting key profiles). All test melodies

were in major keys, so it was not necessary to compute a minor key profile from

the PW corpus.

In its original formulation, Temperley’s model is a Bayesian model in that

it computes the probability of an upcoming pitch given the musical prefix for345

all possible keys, and then marginalizes over keys to get the probability of the

target note. We modified the model to report the probability of a continuation

note given the key of piece, rather than marginalizing over keys. We did this for

two reasons: First, doing so makes the Temperley model more comparable to the

IDyOM model, which is also given the key of piece (as is required to translate350

2The pieces in the Pearce-Wiggins corpus were not annotated with their mode, so we

could not compute the probability of a major versus minor key from this corpus. However,

as described below, we used a modified version of the Temperley model which was given the

correct key of each test melody, so this parameter wasn’t necessary.
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pitches into scale degrees). Second, initial tests showed that the Temperley

model performed better as predictor of human data when given the key versus

when marginalizing over keys, so using the key-given version gave this model

the best chance to perform well in comparison with the IDyOM model.

For the Temperley model trained under each corpus, we computed for all355

our test melodies the probability of all possible continuation notes from midi

note 47 to 83 (aka. B2 to B5).

3.3. IDyOM model

The IDyOM model is publicly available (Pearce, 2005). We trained it using

a linked viewpoint of pitch class and pitch interval between consecutive notes,360

or (cpint cpintref). Both the long term and short term models were used. As

with the Temperley model, the long term model was trained on both the Essen

and Pearce-Wiggins corpuses. All other model parameters were left as defaults.

Again, using the model trained under each corpus, we computed for all our test

melodies the probability of all possible continuation notes from midi note 47 to365

83 (aka. B2 to B5).

4. Experiment 1: Model Evaluation and Results

4.1. Initial visualization of model predictions

We begin by visually inspecting the predictions made by both the Temperly

and IDyOM models (Fig. 3). The first striking thing we notice is that both370

models severely underpredict tonic responses (i.e. scale degree 1) in the AC

condition (and in turn predict much more diffuse responses across other scale

degrees). In other words, both models are underconfident in recognizing the

implied authentic cadence. This suggests that the answer to Question 1 in

Section 2 (Can these models recognize authentic cadences?) is No, or at least375

that the models are underconfident in their recognition of such cadences. This

suggests that there is a need for implicit harmonic structure to be explicitly

represented in these computational models, even if the models’ aim is only to
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predict the melody and not the harmony. (See Arthur, 2017; Kim et al., 2018,

for convergent evidence.)380

We also conclude from this that when we continue with further analyses, we

should pay particular attention to the NC conditions. We already know that

both models are doing a relatively poor job of predicting responses in the AC

condition, but (given their lack of explicit harmonic representations) they may

do better in cases where cadence-based expectations are not at play.385

4.2. Model comparison

We use multinomial discrete-choice logit modeling (Agresti, 2002) to evaluate

the predictive power of both the Temperley and IDyOM models as predictors

of the human behavioral data. Multinomial logit models are a generalization

of logistic regression which predict the probability of choosing between some390

number (more than two) of categorical outcomes—in this case, continuation

notes. In discrete choice logit models, the value of the predictor can depend on

the outcome (e.g. in this case, the value of the Temperley and IDyOM models

that we use as predictors depends on the outcome note, as opposed to predictors

like subject age that would be constant across outcomes). The mlogit package395

in R (Croissant, 2013; R Core Team, 2016) allows us to fit such models with

by-subjects random effects. Specifically, these models allow us to determine

what combination of the independent/predictor variables (IVs) best predict the

dependent/outcome variable (DV). Crucially, a statistically significant effect of

one IV implies that this IV has predictive power above and beyond what is being400

explained by the other IVs—i.e. it accounts for a statistically significant amount

of unique variance. The use of these models thus allows us to test whether the

Temperley and IDyOM models are explaining the same or unique variance in

the human data.

For each test dataset and training corpus of interest, we fit the model:

human ∼ Temperley + IDyOM

The model does not include a fixed-effect intercept. We additionally include405
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Coeff. Estimate Std. Error t value p value

Essen
Temperley 0.44 0.036 12.46 < 2 × 10−16∗∗∗

IDyOM 0.61 0.028 21.49 < 2 × 10−16∗∗∗

PW
Temperley 0.43 0.034 12.77 < 2 × 10−16∗∗∗

IDyOM 0.60 0.030 20.15 < 2 × 10−16∗∗∗

Table 1: Experiment 1: Model fit for all data (AC+NC conditions), with models trained on

either Essen or Pearce-Wiggins corpus. The table shows regression coefficients, as well as

standard errors, t, and p values, for both model predictors. ∗ indicates statistical significance.

by-subject intercepts and random slopes of both the Temperley and IDyOM

predictors. We run this model comparison for Temperley and IDyOM predictors

trained on both training corpora, and using the whole dataset (AC+NC) as well

as using just the NC subset of data.

All variables (IVs and DV) are coded as scale degrees, collapsing across410

octaves. In other words, for the human data, the outcome (DV) is coded as

the scale degree that was sung, regardless of octave. For the model predictions,

for a given melody, we add up the model’s predictions for a given scale degree

across all octaves, and use the log of this probability as the IV for that scale

degree. (See Supplementary Materials for graphs of human data and model415

predictions which include octave information.) In order to have a tractable

number of outcome categories, we consider only in-key notes. (Out-of-key notes

were sung 5.3% of the time in the human data in the AC condition and 9.7%

in the NC condition, and in many cases were likely instances of poor singing

in which the participant intended to sing an in-key note. For example, 51%420

of out-of-key notes in the AC condition were the minor second and were likely

intended to be the tonic.)

4.3. Results

As seen in Tables 1 and 2, both the IDyOM and the Temperley models are

significant predictors of human data, across both training corpora and data sub-425

sets, suggesting that both statistical learning and Gestalt-like principles make
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Coeff. Estimate Std. Error t value p value

Essen
Temperley 0.46 0.050 9.22 < 2 × 10−16∗∗∗

IDyOM 0.35 0.037 9.55 < 2 × 10−16∗∗∗

PW
Temperley 0.31 0.046 6.75 1.44 × 10−11∗∗∗

IDyOM 0.43 0.036 12.00 < 2 × 10−16∗∗∗

Table 2: Experiment 1: Model fit for NC data only, with models trained on either Essen or

Pearce-Wiggins corpus. The table shows regression coefficients, as well as standard errors, t,

and p values, for both model predictors. ∗ indicates statistical significance.

independent contributions to human melodic expectations. Note that because

the model predictors are both log probabilities, and hence measured on the same

scale, we can compare the coefficient estimates directly. Looking at all model

fits (both training corpora and both data subsets), IDyOM generally outper-430

forms the Temperley model, as measured in larger coefficient estimates and t

values, and smaller p values. This suggests that statistical learning may play a

slightly larger role than Gestalt principles in determining human expectations.

4.4. Error analysis

Both the IDyOM and Temperley models leave much variance in the hu-435

man data unexplained. To quantify this, we define an error metric for each

melody (under a given model) by taking the absolute value of the difference in

probability between human responses and the model prediction for each possi-

ble continuation note, summing these values, and dividing by two. This gives

a number between 0 and 1 representing the amount of probability mass that440

would need to be moved in order to turn one distribution into the other (where

higher numbers = more error). Mean errors for each model are reported in Ta-

ble 3. For example, for the Essen-trained IDyOM model, the mean error is 0.48

for AC and 0.46 for NC melodies. In other words, the model is putting barely

more than half of the probability mass in the right place. Looking at individual445

melodies to see how model predictions differ from the human data may lead to

insight about further factors that influence human melodic expectations. We
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AC NC

Essen
Temperley 0.56 0.45

IDyOM 0.48 0.46

PW
Temperley 0.54 0.46

IDyOM 0.52 0.44

Table 3: Average melody-level error (see Section 4.4) for each model (Experiment 1)

have included error measures for all melodies, as well as graphs of the human

data and the model predictions for all melodies, in Supplementary Materials.

For example, one melody for which human and model predictions interest-450

ingly diverge is NC43 (shown in Figure 4). A substantial proportion of human

participants continued this melody with B[3, which is unpredicted by any of

the models (see Figure 5). This effect in the human data likely arises from

“stream segregation” (Huron, 2001) wherein the large intervals between succes-

sive pitches in the melody, contrasted with the stepwise motion of every other455

pitch, cause the lower notes (in particular, D4 and C4 in the last two measures)

to be perceived as a separate melodic line from the higher notes (B[4 and A[4).

B[3 is a natural continuation of the stepwise motion of the D4-C4 sequence,

but goes unpredicted by models that cannot separate the lower stream from

the higher stream. We believe this represents another instance of the need for460

hierarchical structure in models of melodic expectation: hierarchical structure

is not purely used to represent harmony but is also necessary to represent other

aspects of the way melody itself is perceived.

We further notice that even among the NC melodies, some of melodies on

which the models perform worst are those in which many participants sing465

the tonic (e.g. melodies NC14 and NC44; see Supplementary Materials). We

previously pointed out that both models underpredict the tonic for AC melodies,

but it also worth noting that the IDyOM model underpredicts tonic responses

in the NC condition (Fig. 3). This could imply that human expectations are

systematically biased towards the tonic, even beyond its true distribution in470
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corpus data. (For a similar comparison case, Huron, 2006, demonstrates that in

skip-reversal patterns, trained musicians expect the reversal after a skip beyond

what is justified by the statistics of the input.3)

Another possibility is that the tonic responses we see in the human data could

be influenced by task-specific demands. In particular, although participants in475

the cloze task were instructed to “continue but not necessarily complete” the

phrase, they may nonetheless have been biased to find a continuation note that

provided a sense of closure. If so, this would be a major confound in our results.

To rule out this possibility, we ran a follow-up experiment in which participants

were allowed to sing as many notes as necessary to complete the phrase.480

5. Experiment 2

Experiment 2 was identical to Experiment 1 except that participants were

instructed to “complete [the melody] by singing up to a few notes”. 50 self-

identified musicians (26 female, 24 male; age range 18-26, mean age 21) with

5+ years of musical experience in the last 10 years participated in the exper-485

iment. Participants had an average of 9 years (sd 5 years) of formal musical

training. 72% reported “voice” as one of their instruments. Participants were

compensated for their participation. Materials were identical to those used in

3A skip-reversal is a common pattern in Western music wherein a large leap in pitch (a

’skip’) is followed by movement in the opposite direction (the ’reversal’), e.g. a large ascending

interval would commonly be followed by a descending interval. Von Hippel & Huron (2000)

demonstrated via musical corpus statistics that this pattern is entirely predicted by the general

phenomenon of regression to the mean, and therefore its prevalence in corpus statistics requires

no special explanation in terms of either physical or cognitive properties of music. Nonetheless,

Huron (2006) further found that trained-musician listeners, after hearing a skip, expect to hear

a reversal even more strongly than is justified by the regression to the mean phenomenon,

and indeed even more strongly than is justified by the statistics of reversals following skips in

musical corpora. He concludes that while the skip-reversal pattern may initially have arisen

merely from regression to the mean, trained musicians have nonetheless extracted it as a

known pattern from their musical experience and/or training, such that they now expect to

hear it out of proportion to how frequently it in fact occurs.
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Coeff. Estimate Std. Error t value p value

Essen
Temperley 0.29 0.034 8.55 < 2 × 10−16∗∗∗

IDyOM 0.57 0.026 21.65 < 2 × 10−16∗∗∗

PW
Temperley 0.31 0.033 9.50 < 2 × 10−16∗∗∗

IDyOM 0.51 0.028 18.59 < 2 × 10−16∗∗∗

Table 4: Experiment 2: Model fit for all data (AC+NC conditions), with models trained on

either Essen or Pearce-Wiggins corpus. The table shows regression coefficients, as well as

standard errors, t, and p values, for both model predictors. ∗ indicates statistical significance.

Experiment 1.

5.1. Behavioral results490

The revised task successfully elicited multi-note continuations. Participants

sang an average of 4.06 notes (sd 1.05) for AC melodies and 4.73 notes (sd

1.00) for NC melodies. Participants sang a one note completion on 31.0% of AC

condition trials and 13.5% of NC condition trials.

Because our computational models specifically make predictions about the495

next note in a melody, and for direct comparison with the results from Exper-

iment 1, we analyze only the first note in each continuation. These data are

shown (aggregated across melodies) in Figure 3, row 1 (Exp 2), and for each

individual melody in graphs in the Supplementary Materials. Looking both at

Figure 1 and at the individual melody graphs, we notice a striking convergence500

in the results between Experiments 1 and 2, suggesting that the results of Ex-

periment 1 were not substantially biased by a task-specific tendency to find a

single note that would provide a sense of closure. To confirm this impression,

we rerun the computational model comparisons using the Experiment 2 data.

5.2. Model comparisons505

We begin by noting that the computational models predict the next note

without regard to whether it is the final note in a melody or not. Thus, the
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Coeff. Estimate Std. Error t value p value

Essen
Temperley 0.31 0.047 6.60 4.07 × 10−11∗∗∗

IDyOM 0.35 0.035 9.93 < 2 × 10−16∗∗∗

PW
Temperley 0.21 0.046 4.61 4.02 × 10−6∗∗∗

IDyOM 0.40 0.037 10.79 < 2 × 10−16∗∗∗

Table 5: Experiment 2: Model fit for NC data only, with models trained on either Essen or

Pearce-Wiggins corpus. The table shows regression coefficients, as well as standard errors, t,

and p values, for both model predictors. ∗ indicates statistical significance.

model predictions are identical for Experiments 1 and 2. We run the same multi-

nomial discrete-choice logit analyses for Experiment 2 as we did for Experiment

1. Results are shown in Tables 4 and 5. We again find that across both data510

subsets and both training corpora, both the IDyOM and the Temperley models

are significant predictors of human data, again suggesting that both statistical

learning and Gestalt-like principles make independent contributions to human

melodic expectations. We again find that the IDyOM model slightly outper-

forms the Temperley model, as measured in larger coefficient estimates and t515

values, and smaller p values.

The results of Experiment 2 are thus entirely consistent with those of Ex-

periment 1, implying that the results of Experiment 1 are not due to a bias

to sing a note that provides a sense of closure in the single-note-continuation

task. In melodies that end with an implied Authentic Cadence, participants520

overwhelmingly sing the tonic even when it is not the final note they will sing,

but these tonic responses are severely underpredicted by both models. More-

over, as described in Section 4.4, participants also sing the tonic in response to

NC melodies more so than is predicted by the IDyOM model (though the Tem-

perley model does better in this regard), suggesting that melodic expectations525

are biased towards the tonic over and above the extent to which it is justified

by the statistics of the input.
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6. General Discussion

We set out to investigate whether melodic expectations stem from rule-

like Gestalt principles or from statistical learning. Specifically, we asked to530

what extent two state-of-the-art computational models of melodic expectation—

Temperley’s Probability Model of Music Perception and Pearce’s IDyOM model—

predict human responses in a musical cloze task. In two experiments, we demon-

strated that both models contribute significantly and independently to predict-

ing the human data, suggesting that both Gestalt principles and statistical535

learning contribute to human expectations. Across all ways of analyzing the

data, the IDyOM model tended to be a stronger predictor of the behavioral

data, suggesting that expectations rely somewhat more heavily on statistical

learning than Gestalt principles. In other words, we conclude that listeners

track the probabilities of n-grams of notes over the course of their lifetime of540

musical experience, and that they are sensitive to simple music-theoretically

motivated, Gestalt-like principles, and that both of these knowledge sources

play a role in shaping expectations for upcoming notes.

We additionally showed that both models failed to recognize authentic ca-

dences, underpredicting responses of the tonic in cases where participants sang545

that note overwhelmingly. We conclude that implicit harmonic structure plays

an important role—not currently recognized by either model—in determining

human melodic expectations. Other types of hierarchical structure such as an

ability to segregate melodic streams (see Section 4.4) also likely play a role in

human melodic expectations, and again are not captured by either of the models550

considered here.

Our current investigation used musically trained participants, raising the

question of whether our results would generalize to non-musically-trained indi-

viduals. Our prediction is, broadly speaking, that our findings would hold in

non-musically-trained individuals as well. Individuals without musical training555

are known to form expectations about both melody and harmony, although the

ability to attend to multiple aspects of music (such as melody and harmony)
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simultaneously may be strengthened by musical training (Bigand et al., 2000;

Bigand & Poulin-Charronnat, 2006; Koelsch et al., 2002; Loui & Wessel, 2007;

Tillmann, 2012). Indeed, the ability to form these expectations in music is560

thought to be fundamental to the enjoyment of music, a phenomenon which

is certainly not limited to trained musicians (Huron, 2006; Meyer, 1956). We

know of no theoretical reason why non-trained individuals should not have ac-

cess to both Gestalt-type principles and statistical knowledge, noting that all

individuals growing up in a Western culture will have significant, regular expo-565

sure to music, even without formal training. Of course, future work could test

our prediction by repeating the experiments presented here using participants

without musical training.

6.1. The role of simplicity in evaluating theories

Our work builds on the somewhat-mixed results of Temperley (2014), who570

found that Markov models generally out-performed his Gaussian model on a

variety of tasks. However, Temperley argued for his Gaussian model on the

grounds of simplicity, specifically highlighting that it requires far fewer parame-

ters than any Markov model. While we agree that favoring a simpler hypothesis

is a useful heuristic, we argue it cannot take the place of or overcome empirical575

data that actually favors one hypothesis over the other. Here we have presented

empirical evidence that human expectations indeed rely on knowledge of n-gram

probabilities that cannot be abstracted into the Gestalt principles of Temper-

ley’s (2008) model, but that they likewise rely on Gestalt-like principles which

are not captured by n-gram probabilities.580

We also note that the number of parameters in a computational model is not

the only possible measure of simplicity, particularly when we view theories of

melodic expectation within the context of other theories of cognition. For exam-

ple, in language processing, tracking the probabilities of multi-word expressions

(comparable to tracking statistics of multi-note n-gram sequences in music) was585

once thought to be infeasible for human learners due to memory limitations

(Pinker, 2000). But we now know that probabilities of even fairly low frequency
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multi-word expressions are indeed stored and used in online language processing

(Arnon & Snider, 2010; Arnon & Cohen Priva, 2013; Morgan, 2016). Given how

many more words there are than musical notes (as an approximation, there are590

88 keys on a piano, which already spans a much larger pitch range than is typ-

ically encountered), to suggest that we further store note n-gram probabilities

seems relatively little burden compared to the number of word n-gram probabil-

ities we already know are stored. Indeed, given our knowledge that word n-gram

probabilities are stored, and given the similarities between the two domains, it595

could be argued that the simplest theory from a broader cognitive perspective

is that note n-gram probabilities would also be stored.

6.2. Cognitive models combining statistical learning and Gestalt-like principles

Our finding that both statistical learning and Gestalt-like principles influ-

ence melodic expectations raises a new question: what sort of cognitive process600

might combine these two types of knowledge in determining melodic expecta-

tions? Broadly speaking, we envision two possible types of answers: in one case,

statistical learning and Gestalt-like principles operate independently, and then

their predictions are combined. In the other case, these two types of principles

might in fact emerge from a single system.605

In the first case, two types of expectation might come about roughly as

their current proponents have suggested: a small set of principles specific to

the auditory domain generates one set of expectations, while a domain-general

statistical learning mechanism generates another, and these two sets of expec-

tations are combined in some weighted fashion to determine online expectations610

during music listening, to generate responses in the musical cloze task, etc.

While the multinomial logit models we use for data analysis are not designed

to be cognitive models, we will note that this type of weighted combination is

exactly what they do, providing an algorithmic proof of concept for this method

of combining expectations.615

In the second case, a single system might be capable of learning both types

of knowledge. For example, recent research on Gestalt principles of vision sug-
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gests that they may be rational solutions to a statistical inference problem,

rather than needing to assume that these principles are specified a priori (Froyen

et al., 2015). Indeed, Temperley himself points out that his model’s principles620

might be learned from the input. However, learning the conceptual structure

of a system is potentially a much more difficult task than learning the correct

values of known parameters. For example, for Temperley’s model to be learned

via the statistics of the input, the learner would not only need to learn the

correct value of the mean and variance parameters for e.g. the central pitch625

profile, but would need to learn that the central pitch tendency itself is the cor-

rect principle to follow in the first place (as opposed to a uniform distribution

over pitches in a given range, a disjoint set of possible pitch ranges, or any of

infinitely more possible pitch distributions). At least from our perspective as

cognitive scientists, this seems like a much more difficult to problem to model630

a solution for. We know of no proposals for how this might be solved in the

domain of music. But, on the other hand, humans clearly are capable of doing

this type of abstract reasoning/conceptual structure learning in general, as it

seems to be necessary for understanding complex real-world situations (and thus

understanding how humans can do this in general is an important question for635

cognitive science; Kemp & Tenenbaum, 2008). Indeed, there is some evidence

from computational models that it is beneficial to simultaneously learn the con-

ceptual structure of a domain along with the values of particular parameters,

and the models that do so can take advantage of both domain-specific knowledge

and of domain-general statistical learning mechanisms (Tenenbaum et al., 2006).640

Such an approach may also prove fruitful for modeling how people could learn

to generate melodic expectations from n-grams and from Gestalt-like principles

simultaneously. (However, we caution that the current examples of such models

use highly simplified situations, and so a fully implemented model of melodic

expectation along these principles may not be available in the near future!)645
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6.3. Inferring probabilities from the cloze task

It is important to ask to what extent the responses provided by participants

in the cloze task (and the resulting probability distribution over notes) accu-

rately reflect their subjective probabilistic beliefs about upcoming notes. Our

implicit assumption in this work has been that participants sample from their650

subjective probability distributions to generate their outputs in the production

task. However, in the linguistic cloze task, Staub et al. (2015) have suggested

that the distribution of cloze responses more likely reflects the effects of different

levels of activation of word candidates as implemented in a race model, rather

than a direct sample from participants’ subjective probability distributions.655

While the cloze distribution may not exactly reflect a sample from partici-

pants’ subjective probability distribution, it also might not be far off. In general,

we know that cloze probabilities are a strong predictor of human data (both be-

havioral and neural) in language tasks (e.g. DeLong et al., 2005; Rayner & Well,

1996). Moreover, in language, cloze responses are actually a better predictor660

of reading times than true corpus probabilities, suggesting that cloze responses

are tracking something truthful about subjective probabilities beyond what is

realized in the corpus data (Smith & Levy, 2011).

Ultimately, while recognizing that the cloze responses might not provide a

perfect mirror of subjective probabilities, we nonetheless consider cloze data at665

least as good a way of tapping into these subjective probabilities as a more

traditional rating task, in which the mapping from ratings to subjective prob-

abilities is entirely unclear. Of course, future work could attempt to replicate

the results using a variety of methodologies, including rating tasks as well as

neuroscientific methods (discussed further in Section 6.4). In the idealized fu-670

ture, a full theory of melodic expectation would not only capture true subjective

probabilities but also, to the extent that these probabilities may appear to differ

as a function of the task used to elicit them, would explain what cognitive pro-

cesses cause these differences in mapping between subjective probabilities and

the behavioral/neuroscientific results.675
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6.4. Future work

We believe that the combination of the musical cloze task with the use

of multinomial regression to directly compare models represents a productive

and powerful approach to testing future theories of melodic expectation. Any

implemented computational model of melodic expectation (which can make pre-680

dictions about upcoming notes given a musical context) can be tested via this

approach. For example, in future work we would like to compare the cur-

rent models against models that include harmonic structure (Margulis, 2005;

Rohrmeier, 2011) or that take rhythmic information into account (van der Weij

et al., 2017). We can also develop musical cloze stimuli to probe other facets685

of melodic expectation, such as other types of cadences or the interaction of

melodic expectation with rhythmic prediction (e.g. do listeners form different

melodic expectations for stronger versus weaker beats in the metrical hierar-

chy?). In fact, the modeling and cloze paradigms can work hand-in-hand: we

can use computational models to identify moments in music (either from existing690

musical corpora or in constructed stimulus materials) where different models’

predictions diverge, potentially pointing to musical phenomena that are diag-

nostic of the different predictions made by different theories. We can then test

these moments specifically using the cloze paradigm, and finally compare the

model predictions to the human data using regression modeling as we did here.695

(We note in passing that the rise of internet-based auditory testing may per-

mit the collection of large melodic cloze datasets relatively quickly, using new

methods that ensure participants are wearing headphones, and automated pitch

tracking algorithms to measure sung responses; Woods et al., 2017)

Another direction for future research is to use discrepancies between model700

predictions and human expectations (in our dataset or others) to develop ideas

for new principles to incorporate in models of melodic expectation. For example,

as described in Section 4.4, we have identified some melodies in which, even in

the NC condition, participants tend to sing the tonic more than predicted by

the IDyOM model, potentially pointing to a need to incorporate a specific bias705

towards predicting the tonic. We also discussed a case of stream segregation
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that neither model can capture, pointing to a need for hierarchical structures

to represent separate melodic streams. In the supplementary materials we have

provided our experimental items (both in music notation and audio format).

For each melody, we also provide histograms depicting human responses and710

model predictions, and each model’s error (as defined in Section 4.4). We hope

this may be of use to researchers searching for principles lacking in current

state-of-the art models of melodic expectancy.

Finally, we feel that combining the melodic cloze and current modeling ap-

proach with neuroscientific methods could provide a rich area for exploration.715

Specifically, neuroimaging experiments with stimuli from a melodic cloze study

(such as Fogel et al. 2015) can be designed to precisely engineer the degree of

melodic ‘surprise’ of a given note following a given stem. Using such controlled

stimuli, the strength of a neural response to an unexpected note in auditory

cortex can be quantitatively compared to its probability according to either hu-720

man melodic cloze data or a computational model of melodic expectation. We

can ask which is a better predictor of the amplitude of the neural response: the

probability of the note according to melodic cloze measurements, or its proba-

bility according to a model of melodic expectation (such as IDyOM)? Initially

one might think that probabilities based on cloze data should be a better pre-725

dictor, since such data are based on human expectations. Yet, as discussed in

Section 6.3, the probabilities of notes sung in a melodic cloze paradigm may

not be a simple linear reflection of underlying probabilities of tone sequences

as tracked by the auditory cortex. Combining data from auditory cortical re-

sponses, behavioral paradigms, and statistical learning models such as IDyOM730

might better allow us to triangulate any non-linear relationships between these

phenomena (Pearce et al., 2010; Hsu et al., 2015). More generally, we feel that

combining the melodic cloze paradigm with computational models of expecta-

tion and neuroimaging methods can provide a powerful new way to study the

cognitive science of predictive processing in music.735
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Model All data NC data

Temperley (Essen) -3725.1 -1860.0

Temperley (PW) -3681.5 -1865.0

IDyOM (Essen, linked viewpoint) -3394.9 -1820.6

IDyOM (PW, linked viewpoint) -3448.4 -1786.0

IDyOM (Essen, unlinked viewpoints) -3518.6 -1769.4

IDyOM (PW, unlinked viewpoints) -3616.3 -1792.3

Table A.6: Log-likelihood of individual model fits as described in Appendix A. Larger (i.e.

less negative) values indicate better fit..
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Appendix A. Individual model performance

For every melodic expectation model under consideration, we entered the

model’s predictions as the sole predictor variable in a multinomial discrete-

choice logit model (as described in Section 4.2), for both the whole dataset and745

the NC melodies only as dependent variables. To show the relative performance

of all models, we report the log-likelihood of each model fit (Table A.6).

References

Agresti, A. (2002). Categorical Data Analysis. Wiley-Interscience.

Altmann, G. T. M., & Kamide, Y. (1999). Incremental interpretation at verbs:750

restricting the domain of subsequent reference. Cognition, 73 , 247–264.

30



Arnheim, R. (1969). Art and Visual Perception: A Psychology of the Creative

Eye. Revised edition.. Berkeley: University of California Press.

Arnon, I., & Cohen Priva, U. (2013). More than words: The effect of multi-word

frequency and constituency on phonetic duration. Language and Speech, 56 ,755

349–371.

Arnon, I., & Snider, N. (2010). More than words: Frequency effects for multi-

word phrases. Journal of Memory and Language, 62 , 67–82.

Arthur, C. (2017). Taking harmony into account. Music Perception: An Inter-

disciplinary Journal , 34 , 405–423.760

Bach, J. S. (1892). Bach-Gesellschaft Ausgabe, Band 39 . Leipzig: Breitkopf &

Hrtel.

Bigand, E., McAdams, S., & Forêt, S. (2000). Divided attention in music.

International Journal of Psychology , 35 , 270–278.

Bigand, E., & Poulin-Charronnat, B. (2006). Are we “experienced listeners”?765

A review of the musical capacities that do not depend on formal musical

training. Cognition, 100 , 100–130.

Bregman, A. S. (1990). Auditory Scene Analysis. The Perceptual Organization

of Sound. The MIT Press.

Brown, H., Butler, D., & Jones, M. R. (1994). Musical and temporal influences770

on key discovery. Music Perception: An Interdisciplinary Journal , 11 , 371–

407.

Bubic, A., Yves von Cramon, D., & Schubotz, R. (2010). Prediction, cognition

and the brain. Frontiers in Human Neuroscience, 4 , 1–15.

Center for Computer Assisted Research in the Humanities (1994). Chorales,775

BWV 253-438.

31



Chang, F., Dell, G. S., & Bock, K. (2006). Becoming syntactic. Psychological

Review , 113 , 234–272.

Chang, F., Dell, G. S., Bock, K., & Griffin, Z. M. (2000). Structural priming as

implicit learning: A comparison of models of sentence production. Journal of780

Psycholinguistic Research, 29 , 217–230.

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the

future of cognitive science. Behavioral and Brain Sciences, 36 , 181–204.

Clayards, M., Tanenhaus, M. K., Aslin, R. N., & Jacobs, R. A. (2008). Per-

ception of speech reflects optimal use of probabilistic speech cues. Cognition,785

108 , 804–809.

Creighton, H. (1966). Songs and Ballads from Nova Scotia. New York: Dover.
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Figure 3: Human data from the melodic cloze experiments (top row) and raw predictions

from both models, based on both training sets. y-axes show proportion of responses as given

by humans or predicted by models. Error bars show ±2 standard errors (computed over

melodies).

Figure 4: Melody NC43 likely causes “stream segregation” wherein listeners perceive two

melodic lines.
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Figure 5: Proportion of human responses and model predictions for melody NC43 (shown in

Figure 4), for models trained on the Essen and Pearce-Wiggins (PW) corpora. A substantial

proportion of human participants continued this melody with B[3, which is unpredicted by

any of the models.

41


	Introduction
	Computational models of melodic expectation
	Temperley model
	IDyOM

	Gestalt-like principles versus statistical learning

	Experiment 1: Behavioral Data
	Materials and Methods
	Preliminary results from Fogel et al.

	Models
	Training corpora
	Temperley model
	IDyOM model

	Experiment 1: Model Evaluation and Results
	Initial visualization of model predictions
	Model comparison
	Results
	Error analysis

	Experiment 2
	Behavioral results
	Model comparisons

	General Discussion
	The role of simplicity in evaluating theories
	Cognitive models combining statistical learning and Gestalt-like principles
	Inferring probabilities from the cloze task
	Future work

	Individual model performance

