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ACTIVE LEARNING OF NON-SEMANTIC SPEECH TASKS WITH PRETRAINED MODELS

Harlin Lee1 , Aaqib Saeed2, Andrea L. Bertozzi1

1University of California Los Angeles, Los Angeles, CA, USA
2Eindhoven University of Technology, Eindhoven, The Netherlands

ABSTRACT

Pretraining neural networks with massive unlabeled datasets
has become popular as it equips the deep models with a bet-
ter prior to solve downstream tasks. However, this approach
generally assumes that the downstream tasks have access to an-
notated data of sufficient size. In this work, we propose ALOE,
a novel system for improving the data- and label-efficiency of
non-semantic speech tasks with active learning (AL). ALOE
uses pretrained models in conjunction with active learning to
label data incrementally and learn classifiers for downstream
tasks, thereby mitigating the need to acquire labeled data be-
forehand. We demonstrate the effectiveness of ALOE on a
wide range of tasks, uncertainty-based acquisition functions,
and model architectures. Training a linear classifier on top of
a frozen encoder with ALOE is shown to achieve performance
similar to several baselines that utilize the entire labeled data.

Index Terms— active learning, audio, non-semantic
speech, self-supervised learning, transfer learning

1. INTRODUCTION

Deep neural networks require a large amount of well-annotated
training data to generalize well. In the real world, access to
labeled datasets is limited, and collecting abundant examples
requires significant investment in terms of both finance and
time. Further, the expertise required to collect high-quality
labels can be limited in domains like health monitoring. Pre-
training neural networks with massive unlabeled datasets have
become a popular choice to tackle this issue, as it equips the
deep models with a better prior for downstream problems. In
particular, self-supervision has been shown to achieve tremen-
dous success across data modalities including audio and speech
[1, 2, 3]. Self-supervised learning tasks a neural network to
solve an auxiliary learning problem for which supervision can
be acquired from the unlabeled input itself. This pushes the
model to learn useful representations from unlabeled data. One
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Fig. 1: Illustration of ALOE: active learning with a pretrained model.
The encoder parameters are frozen, allowing the use of the same
encoder across multiple downstream tasks.

can then use the pretrained model (or an encoder) either as a
fixed feature extractor or as initialization in transfer learning.

Still, the downstream learning tasks require sufficient anno-
tated samples for one to train a classifier on top of the encoder
from the self-supervised or unsupervised pretraining phase.
We note that for some tasks, pretrained models may require
only a small percentage (e.g., 10%-20%) of labeled data to
match the performance of a supervised model, but the number
of labeled instances can still be huge. As mentioned previously,
data labeling is cumbersome and expensive, and it is unclear a
priori for which instances we should get annotations, as not all
examples carry useful information for learning. In comparison,
getting unlabeled data for the desired task is much easier.

In light of these observations and challenges, we design
ALOE1 (Active Learning of non-semantic speech tasks with
pretrained models) to improve the label- and data-efficiency of
non-semantic speech tasks [1]. Figure 1 describes how ALOE
exploits pretrained models with active learning (AL) for grad-
ual labeling of data and learning classifiers for downstream
tasks. While AL has been explored in speech recognition [4,
5, 6], to the best of our knowledge, ALOE is a first attempt at
improving label efficiency for non-semantic speech tasks with
AL and pretrained models. In principle, AL provides a system-

1Code: https://github.com/HarlinLee/ALOE

https://github.com/HarlinLee/ALOE


atic way to procure labels for the most informative instances,
e.g., a class for which a model is highly uncertain [7, 8]. AL
framework comprises three stages: a) acquisition—selecting
relevant examples, b) annotation—getting ground-truth labels
from a human annotator; and c) retraining—learning model on
acquired and existing labeled instances. In practice, these steps
are time-consuming and computationally expensive because
a model has to be trained many times during the AL cycle.
We improve the efficiency of AL with the power of semantic
representations from pretrained models while also enhancing
its acquisition capability, which is otherwise limited when
training a model from scratch. Furthermore, we are privy to a
better view of the annotation process with human-in-the-loop.

We demonstrate the effectiveness of our approach on a
broad range of tasks, uncertainty-based acquisition functions,
and model architectures. Training a linear classifier on top of
a frozen encoder with AL uses only a fraction of the examples
yet results in a similar performance as several baselines that
utilize the entire labeled data. ALOE provides an end-to-end
system for exploiting pretrained models more effectively and
mitigates the need to acquire large labeled data beforehand.

2. METHODOLOGY

We propose to use a pretrained (unsupervised or self-supervised)
model with active learning (AL) to improve the data- and
label-efficiency of deep models in non-semantic speech tasks.
Importantly, ALOE has a shared fixed pretrained encoder with
separate shallow classifiers for each end-task. Our approach
leverages generic speech representations learned from massive
amounts of unlabeled data and identifies key samples from an
intended end-task that are to be labeled by a human annotator
(i.e., an oracle) depending on their uncertainty scores.

We consider an AL setup with the pool-based acquisition
as commonly studied in the literature [8, 9]. Let X ⊆ Rd

be d-dimensional speech data samples, Y be labels of a non-
semantic speech classification task, and Fθ : X → Rm be
a pretrained encoder, whose embedding dimension m ≪ d.
Given some labeled instances Dl ⊂ X ×Y and a large amount
of unlabeled data Du ⊂ X with |Dl|≪ |Du|, the aim is to
incrementally label samples in Du to minimize the cost of
annotation, better understand the annotation process, and ulti-
mately improve model generalization with few labels.

For each task, we initiate the AL process by acquiring Dl

to train a shallow classifier Gω : Rm → R|Y| on top of the m-
dimensional representations from Fθ. Gω is a fully-connected
linear model with softmax activation such that it outputs the
probability an input x ∈ X belongs to each class y ∈ Y:

Gω(Fθ(x)) = [P (y1|x), P (y2|x), . . . , P (y|Y||x)]. (1)

Once Gω is trained on Dl, model weights ω is fixed and pre-
dictions for each instance in Du are generated. ALOE then
uses an acquisition function A : R|Y| → X to select the most
valuable examples of Du for label generation within a certain

budget. Once these labels are acquired, this batch of examples
is merged into the existing Dl. It is followed by retraining
Gω using the updated Dl, and we repeat this process for a
fixed number of AL acquisition steps. We note that instead
of keeping Fθ fixed during AL, one can fine-tune the entire
model (i.e., Fθ and Gω) end-to-end, but this process can be
very time-consuming as retraining has to be performed after
each label acquisition step, and the learnable parameters also
increase significantly. Similarly, the feature extraction model
Fθ will become task-specific; it may lose its generalizable
nature and not perform well for other downstream tasks.

For the acquisition function A, we use an uncertainty
sampling-based method called smallest margin, which is rela-
tively simple yet shown to be effective in identifying informa-
tive examples for annotation [8, 10]. Specifically, A selects

x∗ = arg min
x∈Du

P (y(1)|x)− P (y(2)|x), (2)

where P (y(i)|x) is the ith largest probability in (1), e.g. the
predicted label for the sample is y(1). That is, (2) chooses
samples that have a “very close second prediction.” Thus the
model is less certain about them, and acquiring their labels
from the oracle will provide more information about where
the decision boundary of the updated model should be.

3. EXPERIMENTS

For Fθ, we leverage publicly available pretrained models from
the TRILLsson family, in particular, the Audio Spectrogram
Transformer (AST) [12]. TRILLsson models are trained via
knowledge distillation using large-scale unlabeled data with a
massive self-supervised conformer-based teacher model. They
provide state-of-the-art performance on a broad spectrum of
downstream non-semantic speech tasks while being smaller
than the teacher model. All pretrained models mentioned in
this paper are from TensorFlow Hub [13]. Fθ embeds the
entire audio clip into a vector with dimension m = 1024.

For each task, we report results aggregated from 10 inde-
pendent runs of the experiment. For each run of the experiment,
there are 100 AL acquisition steps, and at each AL acquisition
step, Gω is trained for 100 epochs with Adam and a learning
rate of 0.001. As the size of ω is quite small, the added benefit
of our approach is that AL executes at a rapid pace. Dl is ini-
tially seeded with 5 labeled examples per class. At each round
of AL, class-aware sampling selects one example per class
based on the predicted labels, while class-agnostic sampling
picks a single example from all of Du. Note that this means
they acquire |Y| labels and one label at each step, respectively.

Several publicly available datasets are used to evaluate au-
dio recognition models on non-semantic speech tasks [1, 12].
We perform experiments on MSWC (Micro-English) [14]
and SpeechCommands [15] for keyword spotting, compris-
ing of (96, 099 samples, 31 classes) and (100, 503 samples,
12 classes), respectively. For spoken language identification,



Table 1: Comparison of test set accuracy (%) of our approach with other baselines on different end-tasks. ALOE achieves similar recognition
rate with class-aware sampling, while using several folds less labeled examples. The baseline results are from [11], where available; else we
train a linear classifier on time-averaged representations using published models.

Dataset TRILL [1] TRILL-Dist [1] FRILL [11] TRILLsson [12]
ALOE (Ours)

Class-Aware Class-Agnostic
Random Uncertainty Random Uncertainty

MSWC (Micro-EN) 81.3 74.4 79.1 93.7 90.6 93.0 76.0 79.7
SpeechCommands 81.9 80.2 79.7 96.4 92.6 94.9 70.3 78.6
Vocalsound 88.2 85.8 86.7 91.1 84.9 88.2 79.0 79.1
Voxforge 84.5 80.0 76.9 99.6 98.4 99.2 94.4 96.2
FluentSpeech 69.3 62.3 64.9 97.5 83.5 87.5 60.8 62.6
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(a) Class-Aware Sampling
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(b) Class-Agnostic Sampling

Fig. 2: Uncertainty sampling outperforms random sampling at every AL round, as measured by validation set accuracy (%).

we use Voxforge [16] containing 176, 436 audio clips from 6
different languages. Similarly, for human vocal sounds moni-
toring, e.g., coughing and sneezing, we use Vocalsound [17]
that has 21, 024 audio examples from 6 classes. Finally, we
evaluate on action detection (30, 043 samples, 6 classes) using
FluentSpeech [18]. In all cases, we use the standard train,
validation, and test splits provided with the original datasets,
with audio sampled at 16kHz.

We compare ALOE against many baseline models. First,
we investigate several other self-supervised or distillation-
based methods. In TRILL [1], TRILL-Dist [1], FRILL [11],
and TRILLsson (AST), the linear classifiers are trained us-
ing the entire labeled data from the downstream task. These
baselines, particularly the AST model, establish an upper-
bound performance that can be achieved with a simple clas-
sifier trained with all labeled examples from a specific task.
Additionally, we explore other uncertainty sampling methods
[8, 9] such as largest margin, least confidence, entropy, and
norm, as well as random acquisition, i.e. sampling from a

uniform distribution on the pool Du at each acquisition step.
Lastly, we compare the performance of AST as Fθ to other
neural network architectures such as ResNet-50 and Efficient-
Netv2 (B3) from the TRILLsson family [12]. Unless otherwise
specified, ALOE uses the TRILLsson (AST) pretrained model
with class-aware smallest margin sampling.

4. RESULTS AND ANALYSIS

Table 1 compares the test set performance of ALOE after 100
rounds of AL to other self-supervised or distillation-based
models. As expected, TRILLsson has the highest recognition
rate (often above 95%) across a wide range of non-semantic
speech classification tasks. But ALOE with class-aware
uncertainty-based sampling achieves accuracy comparable to
TRILLsson while using several times fewer labeled examples.
For example, ALOE arrives at 99.2% accuracy on Voxforge
after only acquiring labels for 600 samples, surprisingly close
to the 99.6% achieved by the upper-bound model that used the



Table 2: Uncertainty sampling provides better performance on test set than random sampling across different architectures.

Dataset ResNet-50 EfficientNet-v2 (B3) Spectrogram Transformer (AST)

Random Uncertainty Random Uncertainty Random Uncertainty

MSWC (Micro-EN) 91.4± 0.70 92.8± 0.58 88.2± 1.11 91.9± 0.56 90.6± 1.48 93.0± 0.50
SpeechCommands 92.4± 1.37 93.1± 0.89 90.4± 0.58 92.5± 0.96 92.6± 1.70 94.9± 1.12
Vocalsound 82.4± 0.92 85.6± 0.80 84.2± 0.73 87.6± 0.38 84.4± 0.94 88.2± 0.35
Voxforge 95.7± 0.41 97.4± 0.23 97.0± 0.29 98.4± 0.07 98.4± 0.17 99.2± 0.06
FluentSpeech 79.0± 1.90 82.7± 1.07 80.9± 1.95 85.1± 0.96 83.5± 1.14 87.5± 0.96
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Fig. 3: Different uncertainty sampling methods paired with pre-
trained model perform similarly well on validation set.

entire labeled dataset. This suggests that with the pretrained
TRILLsson (AST) model as Fθ, the linear classifier Gω needs
only a couple hundred labeled examples to be near perfect in
this task. The implications are impressive: when deployed in
the real world, this human-in-the-loop approach may eliminate
the cost of acquiring excess labels in the first place, taking the
guesswork out of data collection. We note that ALOE gets
to within 0.7% to 2.9% of TRILLsson’s accuracy in MSWC,
SpeechCommands, and Vocalsound as well, supporting the
notion that AL with pretrained models can improve data- and
label-efficiency in many non-semantic speech tasks.

Next, we discuss the effect of uncertainty-based sampling
in ALOE. Comparing the neighboring random and uncertainty
columns in Table 1 shows that although the extent may differ
(0.1% to 8.3%), the uncertainty-based sampling method often
leads to a higher test set accuracy for different tasks in both
class-aware and class-agnostic settings. Figure 2 confirms
that this is also observed during the AL phase, as measured
by validation set accuracy. These results indicate that ALOE
successfully selects examples that are more informative than
random picks. Within uncertainty-based sampling, the differ-
ent acquisition functions perform similarly well; see Figure 3.
Furthermore, we explore the effect of AST as the default pre-
trained model by switching it out with different neural network

architectures. Results on the test set are summarized in Table
2. The different pretrained TRILLsson models performed sim-
ilarly, but AST showed a slight advantage. We point out from
Table 2 that uncertainty sampling performs better than random
sampling across different architectures as well.

Recall that class-aware setting selects more examples than
class-agnostic setting at every acquisition step, and therefore
these two cannot be directly compared to each other. Instead,
users should choose an approach based on their AL labeling
budgets and computational costs. For example, class-agnostic
may make more sense when labeling is very expensive and
there are many classes. Users also need to choose the number
of AL acquisition steps. While we fixed that number at 100 for
all experiments in this work, users can easily monitor valida-
tion accuracy as in Figure 2 to determine stopping points. For
instance, they may decide to do early stopping when the per-
formance plateaus (e.g. SpeechCommands with class-aware
sampling) or let the model train longer (e.g. Fluent Speech).

ALOE’s core strength is in its simplicity. Indeed, adding
more layers or complexity to Gω may improve the classifica-
tion accuracy, but we wanted to show that even with a linear
(i.e. single layer) model, optimal performance can be achieved.
Also, it is standard protocol in self-supervised learning to eval-
uate pretrained models with linear probes [3]. Further, keeping
Gω small greatly improves training efficiency and reduces the
number of parameters to be learned. To reiterate, ALOE does
not fine-tune the encoder during AL as our motivation is to
use a generic feature extractor for more than one task, and up-
dating the parameters with few samples can have catastrophic
consequences for the learned representations from large-scale
data. However, we note that when a sizeable portion of the
data is labeled at the end of the AL phase, it may be used for
end-to-end model fine-tuning.

5. CONCLUSIONS

We proposed ALOE, a novel approach to improve label- and
sample-efficiency of non-semantic speech tasks with active
learning. It provides an end-to-end system that exploits
pretrained models more effectively, consequently mitigating
the need to prepare large labeled data for downstream tasks.
ALOE’s simplicity allows easy implementation, scaling and
deployment. We plan to extend this framework to graph-based
active learning and to AudioSet in the future.
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