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Results on Invariance-based Feedback Control for

Hybrid Dynamical Systems

Jun Chai and Ricardo G. Sanfelice

Abstract— We present results for forward invariance-based
control of hybrid dynamical systems via static feedback. Using
recent results on forward invariance for hybrid systems without
inputs, we present conditions on the state-feedback laws to in-
duce forward invariance of a set for hybrid systems with inputs.
In addition, we propose a notion of control Lyapunov function
(CLF) that is suitable for the study of forward invariance of
sublevel sets. Conditions that guarantee the existence of CLF-
based feedback laws inducing forward invariance of sublevel
sets are established. Examples are given to illustrate the results.

I. INTRODUCTION

Forward invariance of a set is the property that every

solution to a system starting in the set stays in the set.

Also referred to as flow-invariance [1], positive invariance [2]

and viability [3], such a property is useful when analyzing

systems with complex dynamics for which locating the

omega-limit of solutions is challenging; for example systems

with possibly nonunique solutions and nonlinear set-valued

dynamics, and those which potentially combine continuous

and discrete behaviors. The work in [2] considers weak and

strong notions of forward invariance as well as invariance of

sublevel sets for single-valued purely continuous-time and

discrete-time systems. Ensuring conditions on a family of

Lyapunov like functions, [1] guarantees forward invariant

properties of single-valued continuous-time systems with

nonunique solutions. For nonlinear single-valued continuous-

time systems, [4] proposes generalized Lyapunov functions

to define the invariant set.

Relying on forward invariance results, invariance-based

control design techniques are widely used tools for controller

design for systems with inputs. For example, invariance-

based control designs are provided in [5] for power inversion,

in [6] for a genetic network, and in [7] for collision avoidance

in automotive systems. While tools for the study of forward

invariance and viability in hybrid systems can be found in

[8], [9], [10], to the best of our knowledge, results enabling

the systematic design of feedback controllers inducing for-

ward invariance for hybrid systems are not available.

In this paper, we present results for the design of state-

feedback laws inducing forward invariance for hybrid sys-

tems that are given in terms of hybrid inclusions. Building

on our previous work introducing notions and sufficient

conditions for analysis of forward invariance of a set [9],
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ricardo@ucsc.edu. This research has been partially supported by
the National Science Foundation under CAREER Grant no. ECS-1450484
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we present results for the existence and synthesis of static

state-feedback laws inducing invariance of sets for hybrid

systems with inputs u = (uc, ud) ∈ Uc × Ud ⊂ R
mc × R

md

that are given by

Hu

{
(x, uc) ∈ Cu ẋ ∈ Fu(x, uc)

(x, ud) ∈ Du x+ ∈ Gu(x, ud),
(1)

where Cu is the flow set, Fu is the flow map, Du is the

jump set, and Gu is the jump map. The state-feedback laws

of interest are given by continuous pairs (κc, κd), when

controlling Hu, lead to the closed-loop hybrid system

H
{
x ∈ C ẋ ∈ F (x) := Fu(x, κc(x))

x ∈ D x+ ∈ G(x) := Gu(x, κd(x)),
(2)

where F is the flow map governing the continuous evolution

of the state on the flow set C := {x ∈ R
n : (x, κc(x)) ∈

Cu}, and G is the jump map governing the discrete evolution

from the jump set D := {x ∈ R
n : (x, κd(x)) ∈ Du}. To

provide conditions that guarantee their existence, we employ

control Lyapunov-like functions that are tailored to forward

invariance. In particular, the proposed existence conditions

guarantee invariance of sublevel sets of such functions by

assuring the existence of continuous selections. The defini-

tions and results are illustrated by a running example.

The remainder of the paper is organized as follows. Sec-

tion II lists needed definitions and results for hybrid systems.

Results for the design of invariance-inducing feedback laws

are given in Section III. Conditions to guarantee existence

of such laws using control Lyapunov functions are proposed

in Section IV. The proofs of the results will be published

elsewhere.

Notation: Given a closed set S ⊂ R
n×R

m⋆ for some ⋆ ∈
{c, d}, the projection of S onto R

n is denoted by Π(S) :=
{x : ∃u⋆ ∈ R

m⋆ s.t. (x, u⋆) ∈ S}; given x ∈ R
n, the set of

values u⋆ such that (x, u⋆) ∈ S is denoted as Ψ̃⋆(x, S) :=
{u⋆ : (x, u⋆) ∈ S}. In addition, given a set K ⊂ R

n, we

define Υ̃⋆(K,S) := {(x, u⋆) ∈ S : x ∈ K,u⋆ ∈ Ψ̃⋆(x, S)}.

The set-valued maps Ψc : Rn ⇒ Uc and Ψd : Rn ⇒ Ud

are defined for each x ∈ R
n as Ψc(x) := Ψ̃c(x,Cu) and

Ψd(x) := Ψ̃d(x,Du), respectively. Given a set K ⊂ R
n, we

define Υc(K) := Υ̃c(K,Cu) and Υd(K) := Υ̃d(K,Du). A

closed unit ball around the origin in R
n is denoted by B.

Given a vector x, |x| denotes the 2-norm of x. Given r ∈ R,

the r-sublevel set of a function V : Rn → R is LV (r) :=
{x ∈ R

n : V (x) ≤ r}. Given a closed set K , we denote the

tangent cone of the set K at a point x ∈ K as TK(x). Given

a set-valued mapping M : Rm ⇒ R
n, the range of M is

denoted as rgeM = {y ∈ R
n : ∃x ∈ R

m s.t. y ∈ M(x)}



and its domain is denoted as domM = {x ∈ R
m : M(x) 6=

∅}.
II. PRELIMINARIES

In this paper, we follow the hybrid systems framework in

[11], in which a closed-loop hybrid system H is given as

in (2). A solution to the hybrid system H is parameterized

by the ordinary time variable t ∈ R≥0 := [0,∞) and by

the discrete counter j ∈ N := {0, 1, 2, ...}, and defined on

a hybrid time domain E ⊂ R≥0 × N; see [11, Definition

2.3]. The set E is a hybrid time domain if, for each

(T, J) ∈ E, E ∩ ([0, T ]× {0, 1, ..., J}) can be written

as ∪J−1
j=0 ([tj , tj+1], j) for some finite sequence of times

0 = t0 ≤ t1 ≤ t2 ... ≤ tJ . A hybrid arc φ is a function

on a hybrid time domain if, for each j ∈ N, t 7→ φ(t, j) is

absolutely continuous on the interval {t : (t, j) ∈ domφ }.

A solution to H is a hybrid arc φ : domφ → R
n that satisfies

the dynamics of H, where domφ is a hybrid time domain

E; see [11, Definition 2.6]. A solution φ to H is said to be

complete if domφ is unbounded and maximal if there does

not exist another solution φ′ such that φ is a truncation of

φ′ to some proper subset of domφ′. Given a set K , SH(K)
represents a set including all maximal solutions to system H
that are initialized from set K .

The following regularity conditions on the system data

for the closed-loop hybrid system H will be needed. In

addition, they guarantee robustness of stability with respect

to perturbations, see [11, Chapter 6] for details.

Definition 2.1: ([11, Assumption 6.5]) A hybrid system

H with state x ∈ R
n is said to satisfy the hybrid basic

conditions if its data (C,F,D,G) is such that

(A1) C and D are closed sets;

(A2) F : R
n ⇒ R

n is outer semicontinuous and locally

bounded, and F (x) is a nonempty and convex for all

x ∈ C;

(A3) G : R
n ⇒ R

n is outer semicontinuous and locally

bounded, and G(x) is a nonempty subset of Rn for all

x ∈ D. �

We recall the following lemma from [12]. This result states

conditions on the system data of a hybrid system with inputs

Hu as in (1) and on the state-feedback pair (κc, κd) that lead

to the closed-loop system H in (2) satisfying (A1)-(A3) in

Definition 2.1.

Lemma 2.2: ([12, Lemma 3.2]) Suppose κc : Π(Cu) →
Uc and κd : Π(Du) → Ud are continuous and Hu =
(Cu, Fu, Du, Gu) is such that

(A1’) Cu and Du are closed subsets of Rn×Uc and R
n×Ud

respectively;

(A2’) Fu : Rn×R
mc ⇒ R

n is outer semicontinuous relative

to Cu and locally bounded, and for all (x, uc) ∈ Cu,

F (x, uc) is nonempty and convex;

(A3’) Gu : Rn×R
md ⇒ R

n is outer semicontinuous relative

to Du and locally bounded, and for all (x, ud) ∈ Du,

G(x, ud) is nonempty.

Then, H satisfies conditions (A1)-(A3) in Definition 2.1.

In this paper, we focus on the forward invariance notions

defined in [9, Definition 2.3 - 2.6].

Definition 2.3: (forward invariance) The set K ⊂ R
n is

weakly forward pre-invariant for H if for every x ∈ K there

exists at least one maximal solution φ with rgeφ ⊂ K . The

set K ⊂ R
n is weakly forward invariant for H if for every

x ∈ K there exists at least one complete solution φ ∈ SH(x)
with rgeφ ⊂ K . The set K ⊂ R

n is forward pre-invariant

for H if for every x ∈ K there exists at least one solution,

and every maximal solution from K satisfies rgeφ ⊂ K .

The set K ⊂ R
n is forward invariant for H if K is forward

pre-invariant for H and every maximal solution φ ∈ SH(K)
is complete. �

Remark 2.4: According to Definition 2.3, forward invari-

ance implies weak forward invariance. In the literature, the

weak forward invariance notion in Definition 2.3 is usually

associated with the term “viability ,” while the forward

invariance notion therein is referred to as an “invariance”

property; see [3]. In the special case when the system has

unique maximal solutions from the set of interest, the two

notions are equivalent.

Given a hybrid system H as in (2) and a set K ⊂ R
n,

the following mild assumptions are imposed in some of our

results.

Assumption 2.5: The sets K,C, and D are such that K ⊂
C ∪ D and that K ∩ C is closed. The map F : Rn ⇒ R

n

is outer semicontinuous, locally bounded relative to K ∩C,

and F (x) is convex for every x ∈ K ∩ C.

To derive conditions inducing forward invariance prop-

erties, we employ the following lower semicontinuous and

Lipschitz properties of set-valued maps.

Definition 2.6: (lower semicontinuous set-valued maps) A

set-valued map S : Rn ⇒ R
m is lower semicontinuous if for

every x ∈ R
n, one has that lim inf

xi→x
S(xi) ⊃ S(x), where

lim inf
xi→x

S(xi) := {z : ∀xi → x, ∃zi → z s.t. zi ∈ S(xi)}
is the inner limit of S (see [13, Chapter 5.B]). �

Definition 2.7: (locally Lipschitz set-valued maps) A set-

valued map F : R
n ⇒ R

m is locally Lipschitz on a set

K ⊂ R
n if for every x ∈ K , there exist a neighborhood U

of x and a constant λ ≥ 0 such that

F (x) ⊂ F (ξ) + λ|x − ξ|B ∀ξ ∈ U ∩ domF.

Furthermore, F is locally Lipschitz when it is locally Lips-

chitz on domF (see [14, Chapter 1, Definition 4]). �

III. INVARIANCE-BASED CONTROL OF HYBRID SYSTEMS

VIA STATIC STATE-FEEDBACK LAWS

In this section, we present results on forward invariance

properties of a set for hybrid system Hu given as in (1)

under the effect of the state-feedback pair (κc : R
n →

R
mc , κd : R

n → R
md). More precisely, inspired by [9], we

provide conditions on the static state-feedback pair (κc, κd)
that ensure forward invariance of a set for the closed-loop

system.

Our first result is for weak forward invariance of a set.

By establishing weak forward invariance property of a set,

we know the set is “viable,” in the sense that from every



initial condition in the set, at least one complete solution

never leaves it.

Proposition 3.1: (weak invariance-based control) The set

K ⊂ R
n is weakly forward invariant for the closed-loop

hybrid system H = (C,F,D,G) in (2), obtained from

controlling the hybrid system Hu in (1) by a continuous static

state-feedback pair (κc, κd), if the following conditions hold:

1.1) K,C, F, and D satisfy Assumption 2.5;

1.2) For every x ∈ K ∩D,Gu(x, κd(x)) ∩K 6= ∅;

1.3) For every x ∈ K \D,Fu(x, κc(x)) ∩ TK∩C(x) 6= ∅;

1.4) K ∩ C is compact or F (x) is bounded on K ∩ C.

The following conditions guarantee forward invariance

of a set for a given hybrid system with inputs and state-

feedback pair. When a state-feedback pair renders a set

forward invariant for the closed-loop system, all maximal

solutions that start from such set are complete and stay within

it. This is a desired property for many control problems.

Proposition 3.2: (invariance-based control) The set K ⊂
R

n is forward invariant for the closed-loop hybrid system

H = (C,F,D,G) in (2), obtained from controlling the

hybrid system Hu in (1) by a continuous static state-feedback

pair (κc, κd), if the following conditions hold:

2.1) K,C, F, and D satisfy Assumption 2.5;

2.2) For every x ∈ K ∩D,Gu(x, κd(x)) ⊂ K;

2.3) For every x ∈ K ∩ C,Fu(x, κc(x)) ⊂ TK∩C(x);

2.4) K ∩ C is compact or F (x) is bounded on K ∩ C;

2.5) x 7→ F (x) is locally Lipschitz on K ∩C.

We illustrate Proposition 3.2 with the following example.

Example 3.3: (nonlinear planar system with jumps) Con-

sider a hybrid system with inputs Hu given as in (1) with

the following data:1

Fu(x, uc) :=

{[
x2
1 − γ

x1x2

]
uc : γ ∈ [3, 4]

}
,

Gu(x, ud) := {−R(ud)x,R(ud)x} ,
Cu := {(x, uc) ∈ R

2 × R : |x| ≥ 1, |x1| ≥ |uc|,
(|x|2 − 2)x2

1 ≤ ucx1 ≤ (|x|2 − 1)x2
1},

Du :=
{
(x, ud) ∈ R

2 × R : x1 = 0, |x| ≥ 1, ud ∈
[π
4
,
π

2

]}
.

Π(Du)

x2

x1

0 1
√
2

K

Π(Cu)

Fig. 1: Sets in Example 3.3.

1
R(s) =

[

cos s sin s

− sin s cos s

]

represents a rotation matrix.

We consider the set K = {x ∈ R
2 : 1 ≤ |x| ≤

√
2}, and a

continuous state-feedback pair (κc, κd) given by

κc(x) =

(
|x|2 − 3

2

)
x1 and κd(x) =

π

3
.

Conditions 2.1) and 2.4) in Proposition 3.2 hold by construc-

tion of H and K . By definition of Fu and κc, we have

F (x) :=

{[
x2
1 − γ

x1x2

](
|x|2 − 3

2

)
x1 : γ ∈ [3, 4]

}
,

which is Lipschitz on the set C ∩K . Since C ∩K = K is

closed, by definition of tangent cone, for each x ∈ K , we

have

TK(x) =





R
2 if x ∈ int K,

{ω ∈ R
2 : 〈∇V (x), ω〉 ≥ 0}

if x ∈ K1 := {x ∈ R
2 : |x| = 1},

{ω ∈ R
2 : 〈∇V (x), ω〉 ≤ 0}

if x ∈ K2 := {x ∈ R
2 : |x| =

√
2},

where V : R
2 → R is the continuously differentiable

function V (x) := x2
1 + x2

2 for every x ∈ R
2. For every

x ∈ int K , F (x) ⊂ R
2; for every x ∈ K1 and ξ ∈ F (x), we

have

〈∇V (x), ξ〉 = 2x1ξ1 + 2x2ξ2 = (γ − 1)x2
1,

which is nonnegative since γ ∈ [3, 4]; and for every x ∈ K2

and ξ ∈ F (x), we have

〈∇V (x), ξ〉 = 2x1ξ1 + 2x2ξ2 = (2 − γ)x2
1 ≤ 0.

Therefore, condition 2.3) holds. Condition 2.2) holds be-

cause the rotation matrix R only changes the direction of

x, while its magnitude remains the same after each jump.

Thus, by an application of Proposition 3.2, the given state-

feedback pair (κc, κd) renders the set K forward invariant

for the closed-loop system H. △
IV. INVARIANCE-BASED CONTROL FOR HYBRID

SYSTEMS VIA STATE-FEEDBACK LAWS USING CLFS

In this section, using control Lyapunov functions (CLFs),

we present results on the existence of invariance-based

control laws for hybrid systems Hu as in (1). The definition

of a CLF for forward invariance for Hu is given as follows.

Definition 4.1: (CLFs for forward invariance) Given sets

Uc ⊂ R
mc , Ud ⊂ R

md , a constant r ∈ R and a continuous

function V : Rn → R that is continuously differentiable on

an open set containing Π(Cu), if

inf
uc∈Ψc(x)

sup
ξ∈Fu(x,uc)

〈∇V (x),ξ〉 ≤ 0

∀x ∈ LV (r) ∩Π(Cu), (3)

inf
ud∈Ψd(x)

sup
ξ∈Gu(x,ud)

V (ξ)−V (x) ≤ 0

∀x ∈ LV (r) ∩Π(Du), (4)

then, the pair (V, r) defines a control Lyapunov function for

forward invariance of the r-sublevel set of V with U = Uc×
Ud controls for Hu = (Cu, Fu, Du, Gu). �

Next, we use a variation of Example 3.3 to illustrate this

definition.



Example 4.2: (nonlinear planar system with jumps re-

vised) Consider a hybrid system with inputs Hu given as

in (1) with the following data:

Fu(x, uc) :=

{[
x2
1 − 1

αx1x2

]
uc : α ∈ [1, 2]

}
,

Gu(x, ud) := {βR(ud)x : β ∈ [0, 1]}
Cu := {(x, uc) ∈ R

2 × R : |x| ≥ 1, |x1| ≥ |uc|,
(|x|2 − 3)x2

1 ≤ ucx1 ≤ (|x|2 − 2)x2
1},

Du :=
{
(x, ud) ∈ R

2 × R : x1 = 0, |x| ≥ 1, ud ∈
[π
4
,
π

2

]}
.

Thus, the set-valued maps Ψc and Ψd are given as follows:

Ψc(x) =






[(|x|2 − 3)x1, (|x|2 − 2)x1]

if x ∈ Π(Cu), x1 > 0,

[(|x|2 − 2)x1, (|x|2 − 3)x1]

if x ∈ Π(Cu), x1 < 0,

{0} if x ∈ Π(Cu), x1 = 0,

∅ otherwise,

(5)

Ψd(x) =

{[
π
4 ,

π
2

]
if x ∈ Π(Du),

∅ otherwise.
(6)

Consider the candidate pair (V, r) given by a function V :
R

2 → R, where V (x) = x2
1 + x2

2 for each x ∈ R
2, and

r = 2. Note that V is continuously differentiable. We have

LV (2) = {x ∈ R
2 : x2

1 + x2
2 ≤ 2}, and Π(Cu) = {x ∈ R

2 :
x2
1 + x2

2 ≥ 1}. Then, for every x ∈ LV (r) ∩Π(Cu) = {x ∈
R

2 : 1 ≤ x2
1 + x2

2 ≤ 2} and each uc ∈ Ψc(x), we have

sup
ξ∈Fu(x,uc)

〈∇V (x), ξ〉 = sup
ξ∈Fu(x,uc)

(2x1ξ1 + 2x2ξ2)

= max
α∈[1,2]

2(|x|2 − 1 + (α− 1)x2
2)x1uc. (7)

By (5), for every x ∈ LV (r) ∩ Π(Cu), it is the case that

ucx1 ≤ 0. Hence, for every x ∈ LV (r) ∩ Π(Cu) and every

uc ∈ Ψc(x), the expression in (7) is maximum when α = 1,

and

2x1uc ≤ sup
ξ∈Fu(x,uc)

〈∇V (x), ξ〉 ≤ 0.

Thus, (3) holds. With given jump dynamics, for each x ∈
LV (r) ∩ Π(Du) = {x ∈ R

2 : 1 ≤ x2 ≤
√
2, x1 = 0}, since

β ∈ [0, 1], we have

sup
ξ∈Gu(x,ud)

V (ξ) − V (x) = (ξ21 + ξ22)− (x2
1 + x2

2)

=(β(cos(ud)x1 + sin(ud)x2))
2

+ (β(− sin(ud)x1 + cos(ud)x2))
2 − (x2

1 + x2
2)

=(β2 − 1)(x2
1 + x2

2) ≤ 0,

which is independent of the choice for ud, i.e., (4) holds. △
As stated in Section II, to have a well-posed closed-

loop system H that satisfies conditions (A1)-(A3) in Def-

inition 2.1, we require a continuous feedback-pair (κc, κd).
Hence, given a pair (V, r) for Hu that satisfies conditions

(A1’)-(A3’) in Lemma 2.2, we study the existence of a

continuous state-feedback pair (κc, κd) inducing forward

invariance properties of

Mr := LV (r) ∩ (Π(Cu) ∪ Π(Du)) (8)

for the resulting closed-loop system H. For each (x, uc) ∈
R

n × R
mc , we define the function

Γc(x, uc) :=






sup
ξ∈Fu(x,uc)

〈∇V (x), ξ〉

if (x, uc) ∈ Cu ∩ (Mr × R
mc),

−∞ otherwise

and for each (x, ud) ∈ R
n × R

md , we define the function

Γd(x, ud) :=






sup
ξ∈Gu(x,ud)

V (ξ)− V (x)

if (x, ud) ∈ Du ∩ (Mr × R
md),

−∞ otherwise.

A. Existence of a State-feedback Pair for Weak Forward

Invariance

This section pertains to weak forward invariance of Mr

for Hu under the effect of a continuous state-feedback pair

(κc, κd). For every x ∈ Mr, we consider sets that include

all inputs that keep “some solutions” to the system within

Mr (see Section IV-B for the case of “all solutions”). More

precisely, with Π(Cu) closed, for every x ∈ Π(Cu) we define

Θc(x) := {uc ∈ Ψc(x) : Fu(x, uc) ∩ TΠ(Cu)(x) 6= ∅}; (9)

and for every x ∈ Π(Du), we define

Θd(x) := {ud ∈ Ψd(x) :

Gu(x, ud) ∩ (Π(Cu) ∪Π(Du)) 6= ∅}. (10)

The following result presents conditions for the existence

of a continuous feedback pair (κc, κd) inducing weak for-

ward invariance of Mr for Hu.

Theorem 4.3: (existence of state-feedback pair for weak

forward invariance) Given a hybrid system Hu as in (1)

satisfying conditions (A1’)-(A3’) in Lemma 2.2, suppose

there exists a pair (V, r) for forward invariance of r-sublevel

sets with U controls for Hu. Furthermore, suppose the

following conditions hold:

R1) The set-valued maps Ψc,Ψd are lower semicontinuous,

and gphΘc, gphΘd in (9) and (10) are open relative

to gphΨc, gphΨd, respectively;

R2) For every x ∈ Mr ∩ Π(Cu),Θc(x) is nonempty and

convex, and for every x ∈ Mr ∩ Π(Du),Θd(x) is

nonempty and convex;

R3) For every x ∈ Mr ∩ Π(Cu), the map uc 7→ Γc(x, uc)
is convex on Ψc(x) and, for every x ∈ Mr ∩ Π(Du),
the map ud 7→ Γd(x, ud) is convex on Ψd(x).

Then, there exists a continuous state-feedback pair (κc, κd)
rendering the set Mr in (8) weakly forward pre-invariant

for H = (C,F,D,G) as in (2). Furthermore, if either F is

bounded on Mr ∩C or Mr ∩C is compact, Mr is weakly

forward invariant for H.



Remark 4.4: Note that Theorem 4.3 provides sufficient

conditions for the existence of continuous state feedback pair

(κc, κd) to render the set Mr weakly forward invariant for

H. Thus, some solutions to H starting in Mr might leave

this set. In such a case, while the Lyapunov inequalities in

Definition 4.1 guarantee that solutions stay within LV (r),
they may leave the set Mr by either jumping or flowing out

of C ∪D.

Next, we illustrate Theorem 4.3 in an example.

Example 4.5: (nonlinear planar system with jumps revised

revisited) Consider the hybrid system and the pair (V, r) in

Example 4.2. It is easy to verify that Hu satisfies (A1’)-(A3’)

in Lemma 2.2. The (trivial) extension to R
n of the set-valued

maps Ψc and Ψd in (5) and (6) are lower semicontinuous

by construction. By the definition of Θc given in (9), we

verify that Θc = Ψc, i.e., for every x ∈ Π(Cu) and

every ud ∈ Ψc(x), there exist ξ ∈ Fu(x, uc), such that

Fu(x, uc)∩TΠ(Cu)(x) 6= ∅. Since Π(Cu) is closed, for each

x ∈ Π(Cu) = {x ∈ R
2 : |x| ≥ 1}, the tangent cone is given

by

TΠ(Cu)(x) =





R
2 if x ∈ int Π(Cu),

{ω ∈ R
2 : 〈∇V (x), ω〉 ≥ 0}

if x ∈ ∂Π(Cu),

where V (x) = x2
1 + x2

2 for each x ∈ R
2. For every x ∈

int Π(Cu), trivially, Fu(x, uc) ⊂ R
2. For every x ∈ Π(Cu)

and ξ ∈ Fu(x, uc), we have

〈∇V (x), ξ〉 = 2x1ξ1 + 2x2ξ2

= 2(|x|2 − 1 + (α− 1)x2
2)x1uc.

Then, when uc ∈ Ψc(x), by definition of Ψc as in (5), every

x ∈ {x ∈ R
2 : |x| = 1} satisfies the inequality

−4(α− 1)x2
2x

2
1 ≤ 〈∇V (x), ξ〉 ≤ −(α− 1)x2

2x
2
1.

Hence, for every (x, uc) ∈ Υc(∂Π(Cu)),〈∇V (x), ξ〉 = 0
when α = 1. Thus, Θc(x) = Ψc(x) for every x ∈ Π(Cu).
Similarly, for every x ∈ Π(Du), Θd(x) = Ψd(x). This can

be checked by noticing that the rotation matrix R(ud) does

not effect the 2-norm of x at jumps. Then, since Θ⋆ = Ψ⋆,

condition R1) in Theorem 4.3 holds. Moreover, with Mr ∩
Π(Cu) = {x ∈ R

2 : 1 ≤ x2
1 + x2

2 ≤ 2} and Mr ∩Π(Du) =
{x ∈ R

2 : 1 ≤ x2 ≤
√
2, x1 = 0}, R2) holds. In addition,

condition R3) holds since Fu and Gu are convex functions of

uc and ud, respectively. Then, by Theorem 4.3, there exist a

state-feedback pair (κc, κd) that renders the set Mr = {x ∈
R

2 : 1 ≤ x2
1 + x2

2 ≤ 2} weakly forward invariant for the

closed-loop system. One such continuous state-feedback pair

is defined by κc(x) = (x2
1+x2

2− 5
2 )x1 for every x ∈ Π(Cu),

and κd(x) =
π
3 , for every x ∈ Π(Du). Note that some of the

maximal solutions from Mr with such state-feedback pair

leave Mr. △

B. Existence of a State-feedback Pair for Forward Invariance

In addition to the weak forward invariance result, to get

the stronger forward invariance property in Definition 2.3,

we further assume that the flow map is locally Lipschitz. To

get Lipschitz continuity of F in (2), we consider a locally

Lipschitz set-valued map Fu(x, u) under the effect of a

locally Lipschitz state-feedback κc. The following result is

immediate.

Lemma 4.6: (Lipschitzness of F with state-feedback κc)

Suppose Fu : S1 × S2 ⇒ S1 is locally Lipschitz (as a set-

valued map) and κc : S1 → S2 is locally Lipschitz (as a

function). Then, F := Fu(x, κc) is locally Lipschitz on S1

(as a set-valued map).

Since forward invariance requires that every solution to H
stays in Mr, we define the following two set-valued maps.

With Π(Cu) closed, for each x ∈ Π(Cu), we define

Θ̃c(x) := {uc ∈ Ψc(x) : Fu(x, uc) ⊂ TΠ(Cu)(x)},
and for each x ∈ Π(Du),

Θ̃d(x) := {ud ∈ Ψd(x) : Gu(x, ud) ⊂ (Π(Cu) ∪ Π(Du))}.
Then, the following proposition establishes conditions that

guarantee the existence of a continuous state-feedback pair

(κc, κd) for Hu to render the set Mr forward invariant.

Theorem 4.7: (existence of state-feedback pair for for-

ward invariance) Given a hybrid system Hu as in (1) sat-

isfying conditions (A1’)-(A3’) in Lemma 2.2, suppose there

exists a pair (V, r) for forward invariance of r-sublevel sets

with U controls for Hu. Furthermore, suppose the following

conditions hold:

R1’) The set-valued map Θ̃c is locally Lipschitz on Π(Cu);
the set-valued map Ψd is lower semicontinuous, and

gph Θ̃d is open relative to gphΨd;

R2’) For every x ∈ Mr ∩ Π(Cu), Θ̃c(x) is nonempty,

compact and convex; and for every x ∈ Mr ∩Π(Du),
Θ̃d(x) is nonempty and convex;

R3’) For every x ∈ Mr ∩ Π(Cu), the function uc 7→
Γc(x, uc) is convex and locally Lipschitz on Ψc(x), for

every x ∈ Π(Du) ∩Mr, the function ud 7→ Γd(x, ud)
is convex on Ψd(x);

R4) The flow map Fu is locally Lipschitz on Cu.

Then, there exists a continuous state-feedback pair (κc, κd)
rendering the set Mr in (8) forward pre-invariant for the

closed-loop system H = (C,F,D,G). Furthermore, if either

F is bounded on Mr ∩ C or Mr ∩ C is compact, Mr is

forward invariant for H.

The following example illustrates Theorem 4.7.

Example 4.8: (nonlinear planar system with jumps revis-

ited) Consider the hybrid system with inputs Hu in Exam-

ple 3.3. Note that Hu satisfies (A1’)-(A3’) in Lemma 2.2.

Consider the pair (V, r) in Example 4.2. The set-valued maps

Ψc and Ψd are given as follows:

Ψc(x) =






[(|x|2 − 2)x1, (|x|2 − 1)x1]

if x ∈ Π(Cu), x1 > 0,

[(|x|2 − 1)x1, (|x|2 − 2)x1]

if x ∈ Π(Cu), x1 < 0,

{0} if x ∈ Π(Cu), x1 = 0,

∅ otherwise,

(11)



Ψd(x) =

{[
π
4 ,

π
2

]
if x ∈ Π(Du),

∅ otherwise.

We check condition (3). For every x ∈ LV (r) ∩ Π(Cu) =
{x ∈ R

2 : x2
1 + x2

2 = 2}, we have

sup
ξ∈Fu(x,uc)

〈∇V (x), ξ〉 = sup
ξ∈Fu(x,uc)

2x1ξ1 + 2x2ξ2

= max
γ∈[3,4]

2x1uc(|x|2 − γ).
(12)

We have the following two cases:

• For every x ∈ LV (r) ∩ Π(Cu), uc ∈ Ψc(x) such that

ucx1 ≥ 0, the expression in (12) is maximum when

γ = 3, and

sup
ξ∈Fu(x,uc)

〈∇V (x), ξ〉 ≤ −2x1uc ≤ 0;

• For every x ∈ LV (r) ∩ Π(Cu), uc ∈ Ψc(x) such that

ucx1 < 0, the expression in (12) is maximum when

γ = 4, and

sup
ξ∈Fu(x,uc)

〈∇V (x), ξ〉 ≥ −6x1uc > 0.

By definition of Ψc in (5), we have for every x ∈ LV (r) ∩
Π(Cu),

inf
uc∈Ψc(x)

sup
ξ∈Fu(x,uc)

〈∇V (x), ξ〉 = min
uc∈Ψc(x)

−2x1uc,

which is nonpositive for all x since for each such x, there

exists uc such that ucx1 ≥ 0. Then, (3) holds.

Then, as in Example 4.5, we find that Θ̃⋆ = Ψ⋆. More

precisely, for every x ∈ int Π(Cu), TΠ(Cu)(x) = R
2 and

Fu(x, uc) ⊂ R
2; for every x ∈ ∂Π(Cu), and ξ ∈ Fu(x, uc),

we have

〈∇V (x), ξ〉 = 2x1ξ1 + 2x2ξ2 = 2x1uc(1− γ).

Then, when uc ∈ Ψc(x), by definition of Ψc(x) as in (11),

every x ∈ {x ∈ R
2 : |x| = 1} satisfies the inequality

2(γ − 1)x2
1 ≥ 〈∇V (x), ξ〉 ≥ 0.

Therefore, Θ̃c = Ψc for every x ∈ Π(Cu), and Θ̃c is locally

Lipschitz on Π(Cu). Similarly for the jump dynamics, Ψd is

lower semicontinuous by construction, we have Θ̃d = Ψc for

every x ∈ Π(Du), thus, gph Θ̃d is open relative to gphΨd.

Hence, R1’) and R2’) in Theorem 4.7 hold. Then, condition

R3’) holds, because Fu and Gu are convex functions of uc

and ud, respectively. Moreover, R4) holds by construction of

Fu. Hence, by Theorem 4.7, there exists a state-feedback pair

(κc, κd) that renders the set Mr = {x ∈ R
2 : 1 ≤ x2

1+x2
2 ≤

2} forward invariant for the closed-loop system. One such

particular state-feedback pair is given in Example 3.3, which

confirm the findings by Proposition 3.2. △
Condition R1’) in Theorem 4.7 is somewhat restrictive in

the sense that it requires a locally Lipschitz property of Θ̃c

rather than of the general input projection Ψc. This is due

to the fact that, in general, intersections of locally Lipschitz

maps are not Lipschitz. However, as the following lemma

suggests, it is possible to relax that condition.

Lemma 4.9: In Theorem 4.7, when either

1) for each x ∈ Π(Cu), Fu(x, uc) ⊂ TΠ(Cu)(x) for each

uc ∈ Ψc(x); or

2) there exist Lipschitz functions γ : Π(Cu) → R>0 and

ε : Π(Cu) → (0, 1) such that Ψc(x) ∩ ε(x)r(x)B 6= ∅,

and for every x ∈ Π(Cu), Θ̃c(x) = Ψc(x) ∩ r(x)B,
condition R1’) in Theorem 4.7 can be replaced by

R1*) The set-valued map Ψd is lower semicontinuous,

gph Θ̃d is open relative to gphΨd, and the set-valued

map Ψc is locally Lipschitz.

V. CONCLUSION

In this paper, building from previous work on forward

invariance properties of hybrid systems without inputs, we

presented conditions for the design of invariance-based static

state-feedback controllers for hybrid dynamical systems.

Using a novel concept of control Lyapunov functions for

forward invariance, regulation maps were built to ensure

the existence of a (Lipschitz) continuous state-feedback law

that leads to forward invariance properties of sublevel sets.

This work is part of ongoing research on the construction of

invariance-based control laws using selection theorems that

guarantee optimality.
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