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Research article

Reproductive and immune effects of chronic 
corticosterone treatment in male White’s 
treefrogs, Litoria caerulea
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Amphibian populations are declining globally. The potential contribution of glucocorticoid hormones to these declines has 
received little attention, but chronic elevation of glucocorticoids has been linked to a suite of negative outcomes across ver-
tebrate taxa. Recently, chronic environmental stress has been associated with precipitous declines in sperm count and sperm 
viability in White’s treefrogs (Litoria caerulea), but the mechanism remains unknown. In order to determine whether corticos-
terone is responsible for suppressing reproductive and immune function in this species, we elevated circulating concentra-
tions of corticosterone in 10 male captive-bred frogs via transdermal application for 7 days. We compared sperm count, sperm 
viability, splenic cell count and circulating leucocyte counts in corticosterone-treated frogs with those in untreated control 
frogs. Chronic application of exogenous corticosterone led to supraphysiological circulating concentrations of corticosterone, 
but had no effect on sperm count or viability. However, corticosterone-treated frogs demonstrated a significant decrease in 
circulating eosinophils, which are immune cells implicated in fighting a variety of pathogens, including extracellular parasites. 
These findings suggest that although chronic elevation of circulating corticosterone is not necessarily associated with repro-
ductive suppression in this species, it may cause immunosuppression. Thus, chronic glucocorticoid elevations in amphibians 
might enhance susceptibility to infection with pathogens and parasites, and their potential contributions to global popula-
tion declines warrant further study.
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Introduction
Stress elicits many neural and endocrine changes, including 
activation of the hypothalamic–pituitary–adrenal (HPA) axis. 
Activation of this axis, in turn, stimulates secretion of 

glucocorticoid hormones (corticosterone and/or cortisol), 
which have numerous physiological consequences. Although 
acute HPA activation stimulates processes that increase the 
likelihood of survival, chronic stress is generally associated 
with negative outcomes (Munck and Náray-Fejes-Tóth, 1992; 
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Irwin, 1994; McEwen et al., 1997; Dhabhar, 2002, 2008; 
Viswanathan and Dhabhar, 2005; Martin et al., 2010).

Adverse consequences of chronic HPA activation can 
include effects on immune function. While acute glucocorti-
coid elevations may stimulate immune cell production, chron-
ically elevated glucocorticoid concentrations often suppress 
cytokine synthesis, leucocyte mobilization and other immune-
promoting reactions (reviewed by Irwin, 1994; McEwen et al., 
1997; Sapolsky et al., 2000). Consequently, chronic HPA acti-
vation may lead to immunosuppression. In amphibians, for 
example, studies have linked long-term exposure to environ-
mental stressors, such as agrochemicals (Hayes et al., 2006; 
McMahon et al., 2011), and extreme environments, such as 
arid climates (Jessop et al., 2013), to parasitic (e.g. trematode) 
infection and fitness (Gendron et al., 2003; Hayes et al., 2006; 
Rohr et al., 2008a; Shutler and Marcogliese, 2011).

Prolonged stimulation of the HPA axis can also lead to 
numerous other adverse outcomes for animals. For example, 
chronically increased glucocorticoid concentrations suppress 
reproductive behaviour in a variety of taxa (Moore and Miller, 
1984; Moore and Mason, 2001) and may also mediate sup-
pression of reproductive physiology (Moore and Zoeller, 1985; 
Biswas et al., 2000; Tsai et al., 2003; Gore et al., 2006; Schoech 
et al., 2009).

In light of the current status of declining amphibian popula-
tions (Blaustein and Kiesecker, 2002; Stuart et al., 2004; Hayes 
et al., 2010), an understanding of the effects of chronic envi-
ronmental stress on the physiology of these animals is of par-
ticular interest. Despite the well-established detrimental effects 
in many other taxa (McEwen, 2000; Sapolsky et al., 2000; 
Wingfield and Sapolsky, 2003), however, the potential adverse 
effects of chronic stress on amphibians have been largely over-
looked. Some studies have examined the correlation between 
amphibian stress and the effects of human encroachment on 
habitat (e.g. the introduction of pesticides or pollution and the 
spread of diseases; Newcomb-Homan et  al., 2003; Gabor 
et al., 2013; Kindermann et al., 2013), and recently, Janin et al. 
(2011, 2012) have examined the effect of substrate (as a proxy 
for matrix habitat) and habitat availability on stress hormones. 
Tennessen et al. (2014) reported that noise led to increased 
circulating corticosterone and altered mate choice. Recently, 
Kaiser et al. (2015) found that exposing frogs to an anthropo-
genic stressor (traffic noise) over a 7 day period led to increases 
in circulating corticosterone concentrations as well as signifi-
cant decreases in sperm count and sperm viability. However, 
the mechanism for this suppression was not investigated. 
Models from other vertebrates suggest corticosterone as a 
likely candidate to mediate reproductive suppression. In the 
present study, therefore, we measured the effects of chronic 
treatment with exogenous corticosterone on the amphibian 
reproductive system using male White’s treefrogs (Litoria 
caerulea). Given that a chronic increase in corticosterone is 
frequently associated with immunosuppresion, we also tested 
the effects of chronic exogenous corticosterone application on 
immune cell counts. We predicted that animals exposed to high 

concentrations of exogenous corticosterone for 1 week would 
show decreases in sperm count and sperm viability, similar to 
our previous findings (Kaiser et al., 2015), and would also 
show decreases in circulating lymphocyte counts and splenic 
cell counts.

Materials and methods
Animals and experimental design
Twenty captive-bred adult male White’s treefrogs were 
acquired from a North American breeder and individually 
housed in plastic tanks measuring approximately 40 cm 
× 24 cm × 32 cm (Kritter Keepers, size XL, San Marcos, CA, 
USA). This species has been used widely in physiological and 
ecological studies (Buttemer, 1990; Baker and Waights, 1994; 
Coddington and Cree, 1995; Warburg et al., 2000; Woodhams 
et al., 2007; Voyles et al., 2009; Kaiser et al., 2015). Frogs were 
given dechlorinated tap water that was changed daily and were 
fed three or four medium-sized crickets twice weekly. All crick-
ets were removed 24 h prior to blood collection. Lighting and 
temperature were controlled on a 12 h–12 h light–dark cycle 
(lights on at 09.00 h) and at 21–23°C, respectively. Tanks 
included a 10 cm length of PVC pipe for enrichment. The study 
was conducted during the North American breeding season for 
this species (from 6 August to 2 September 2012). All proce-
dures were approved by the University of California, Riverside 
Institutional Animal Care and Use Committee Protocol 
A-20100040. The University of California, Riverside is fully 
accredited by the Association for Assessment and Accreditation 
of Laboratory Animal Care.

Frogs were divided into three treatment groups: two con-
trol groups [undisturbed control (UC) and blood-sampled 
control (BC)] and a corticosterone-treated experimental 
group (CORT). The two control groups allowed us to obtain 
data from animals that were not manipulated during the 
period of data collection as well as from animals that did not 
undergo treatment but for which we obtained measures of 
plasma corticosterone concentrations at all time points for 
which we had comparable measures from CORT animals.

Blood sampling and exogenous  
corticosterone application
To elevate circulating corticosterone concentrations, we used 
the dermal patch method developed for use in amphibians 
(Wack et al., 2010). Based on preliminary data (K. Kaiser, 
unpublished data), we prepared a 20 mg/ml solution of corti-
costerone (92% pure, C2505; Sigma Aldrich, St Louis, MO, 
USA), which was suspended in sesame oil (unrefined expeller 
pressed; Whole Foods Market, Austin, TX, USA). Dermal 
patches were filter-paper pieces ∼5 mm in diameter (FisherBrand 
Filter Paper, P8, Pittsburgh, PA, USA). We applied 7 µl of the 
corticosterone solution to patches applied to the dorsal trunk 
region of CORT frogs for a dose of 140 µg per corticosterone 
treatment. Patches remained in place for 1 h, and treatment 
was repeated every 8 h for 7 days. We chose a chronic exposure 
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of 7 days to replicate the exposure duration of the study by 
Kaiser et al. (2015), in which significant reproductive effects 
were observed. During lights-off periods, applications were 
performed under red lights to avoid interference with circa-
dian rhythms. Frogs were monitored periodically during the 
hour that patches were in place. In a few cases, frogs removed 
patches; when this occurred, we immediately reapplied the 
patch.

We collected blood from CORT and BC animals at three 
time points: day −5 (5 days before CORT treatment began in 
CORT animals), day 4 (4 days after CORT application began 
in CORT animals on day 0) and day 7 (the end of the study). 
Blood was collected from UC animals only on days −5 and 7.

On days −5 and 4, blood was collected via cardiac puncture 
as in the study by Kaiser et al. (2015). Frogs were treated with 
a topical antibiotic, and blood was collected using a sterile 
27-gauge needle and a 1 ml syringe. On day 7, animals were 
killed by decapitation followed by double pithing, and blood 
and organs (see below) were harvested. At all time points, blood 
was collected within 3 min of initial disturbance to the animal. 
At each time point, we were unable to collect samples from 
some individuals, so these data are missing. Samples were taken 
at 12.30–13.30 h, ∼4.5 h after the most recent application of 
exogenous corticosterone. This time frame was chosen to allow 
animals time to metabolize the exogenous corticosterone from 
the most recent experimental application and to minimize dif-
ferences due to diel rhythms in baseline corticosterone. Blood 
was centrifuged for 12 min at 13.3 g at 4°C, and plasma was 
extracted and stored at −80°C until assayed for corticosterone.

Corticosterone assay
We measured plasma corticosterone concentrations using a 
double-antibody 125I-radioimmunoassay kit (MP Biomedicals, 
Costa Mesa, CA, USA) previously validated in our laboratory 
for this species (Kaiser et al., 2015). Samples were extracted 
and assayed in duplicate in two assays. Assay sensitivity was 
50.4 pg/ml. The intra-assay coefficient of variation (CV) of an 
internal control plasma pool at the low end of the standard 
curve (83% bound) sampled in duplicate was 1.6%; interas-
say CV of this pool was 1.4%. The intra-assay CV of an inter-
nal pool at the high end of the standard curve (26% bound) 
was 8.0%; interassay CV of this pool was 5.0%.

Reproductive measures
The right testis was collected from each frog, and sperm were 
collected and labelled as described by Kaiser et al. (2015). 
Briefly, we minced the testis in 5 ml of 0.1 M phosphate-
buffered saline and incubated it at room temperature for 1 h to 
allow sperm to separate from the testicular tissue. Total sperm 
count was measured as the average of duplicate counts for 
each testis on a haemocytometer loaded with sample in a 10% 
solution of Trypan blue (Thermo Scientific, Logan, UT, USA).

For analysis of sperm viability, we used the same protocol 
as Kaiser et al. (2015). Sperm were centrifuged at 1000g for 

5 min at 4°C. Cells were washed with FACS buffer (phos-
phate-buffered saline containing 0.5% bovine serum albumin 
and 2 mM EDTA) and labelled using CellTrace™ CFSE Cell 
Proliferation Kit (Invitrogen, Carlsbad, CA, USA) according 
to the manufacturer’s instructions (2 µl/ml cells from 5 mM 
stock solution for 10 min). Cells were further treated with 
Fixable Viability Dye eFluor® 660 (eBioscience, San Diego, 
CA, USA) according to the manufacturer’s instructions (1 µl 
of undiluted dye/ml cells for 30 min). Cells were then fixed 
with 500 µl of 4% paraformaldehyde in FACS buffer and 
stored at 4°C for later analysis with a BD FACSCantoII flow 
cytometer (BD Biosciences, San Jose, CA, USA).

Immune measures
Blood smears and white blood cell count

We collected two blood smears from each frog immediately after 
they had been killed on day 7. Smears were stained with haema-
toxylin and eosin, photographed at ×40 magnification, and 
counted using the ImageJ Cell Counter plugin (ImageJ v. 1.46r; 
NIH, available at http://imagej.nih.gov/ij). A minimum of three 
investigators blinded to sample treatments counted each smear. 
Prior to counting images for the experiment, all investigators 
were trained and tested on a set of images not included in this 
study. Cell types were distinguished based on characters 
described and illustrated by Claver and Quaglia (2009) and 
Hadji-Azimi et al. (1987). Each investigator counted the number 
of each type of white blood cell (WBC: eosinophils, neutrophils 
and lymphocytes) from among at least 500 erythrocytes (RBCs). 
Other WBCs were encountered infrequently and not counted. 
We used the mean counts from all three scorers for analysis; any 
outlier counts were rescored. We calculated the ratio of each 
type of WBC to RBCs and the ratio of neutrophils to lympho-
cytes (Woodhams et al., 2007; Davis et al., 2008).

Spleen cell count

Spleens were harvested immediately after animals had been killed 
and placed in cRPMI media (RPMI media; Gibco, Grand Island, 
NY, USA) supplemented with 10% fetal bovine serum, l-gluta-
mine, penicillin–streptomycin antibiotic, Hepes, sodium pyruvate, 
non-essential amino acids and 2-β-mercaptoethanol) on ice. 
Splenic cell suspensions were prepared by straining cells through 
40 μm nylon filters (Fisher Scientific, Pittsburgh, PA, USA) and 
rinsing with cRPMI media. Cells were centrifuged at 300 g for 
5 min at 4°C; supernatant was discarded, and each cell pellet was 
resuspended in ACK Lysing Buffer (Lonza, Walkersville, MD, 
USA) for 5 min on ice. Cells were washed three times with cRPMI 
media. The final cell pellet was resuspended in 1 ml of cRPMI 
media. A subsample of the cell suspension was labelled with a 
10% solution of Trypan blue (Thermo Scientific) and counted in 
duplicate on a haemocytometer.

Data analysis
We used FlowJo (v. 8.7.3; TreeStar, Ashland, OR, USA) for 
analysis of flow cytometry data, SPSS 18.0.0 (PASW Inc., 
Hong Kong) for analysis of corticosterone data, and StataIC 
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(v. 10; StataCorp, College Station, TX, USA) for all other sta-
tistical analyses. All data were tested for normality using 
Shapiro–Wilk tests. Corticosterone concentrations were loga-
rithmically transformed and analysed using general linear 
models that allowed for repeated measures. We first tested for 
differences in plasma concentrations of corticosterone between 
UC and BC frogs at days −5 and 7 to ensure that blood sam-
pling on day 4 did not affect hormone concentrations in the 
BC frogs. We then compared circulating corticosterone con-
centrations in BC and CORT animals at all three time points 
(days −5, 4 and 7); to interpret a significant interaction term, 
we used the EMMEANS command in SPSS and a Bonferroni 
correction for multiple comparisons. Given that we did not 
sample UC animals on day 4, we omitted them from this anal-
ysis. Finally, because we found no significant differences in cir-
culating concentrations of corticosterone between UC and BC 
animals, we combined these two treatments to increase statisti-
cal power and conducted a general linear model (GLM) for the 
combined control groups vs. the CORT group for days −5 and 
7 to test the effect of exogenous corticosterone application on 
circulating corticosterone concentrations.

Sperm and spleen cell counts were logarithmically trans-
formed prior to analysis to meet the assumption of normality. 
Sperm-viability data met normality assumptions and were not 
transformed. Blood-smear data were converted to a ratio of 
WBCs to RBCs or neutrophils to lymphocytes, square-root 
transformed, and analysed with Student’s unpaired t-tests. 
ANCOVAs were used for all sperm and splenic cell count 
analyses, with body mass as a covariate. As no significant dif-
ferences were detected between the UC and BC groups in any 
of these measures, data from the two control groups were 
combined for each ANCOVA, and subsequent comparisons 
were made between control and CORT animals. Data were 
analysed using SPSS v.21. All tests were two tailed, with a 
critical P-value of 0.05.

Results
Plasma corticosterone concentrations
As expected, the blood-sampled control (BC) and undisturbed 
control (UC) groups did not differ in plasma corticosterone 
concentrations on days −5 and 7 of the experiment (F1,5 = 4.4, 
P = 0.091), nor was a significant interaction between day and 
treatment found (F1,5 = 1.6, P = 0.25). However, because UC 
frogs were not sampled on day 4, we did not pool the two 
control groups for analysis of the effect of corticosterone 
treatment on circulating corticosterone concentrations.

A repeated-measures GLM using logarithmically trans-
formed circulating corticosterone concentrations, comparing 
CORT and BC frogs, confirmed that transdermal treatment 
with exogenous corticosterone every 8 h significantly elevated 
circulating corticosterone concentrations in male White’s tree-
frogs, as reflected in significant effects of treatment, day of 
study and day × treatment interaction (treatment, F1,5 = 12, 
P = 0.016; day, F2,10 = 18, P < 0.001; and interaction, 

F2,10 = 6.9, P = 0.013). Within-group planned pairwise com-
parisons revealed that BC animals had statistically indistin-
guishable levels of circulating corticosterone across all three 
time points, whereas plasma corticosterone concentrations in 
CORT frogs increased significantly across the study (day −5 
vs. day 4, P = 0.026; day −5 vs. day 7, P = 0.003; and day 4 vs. 
day 7, P = 0.004). This divergence is evident when the treat-
ments are compared at each time point; plasma corticosterone 
concentrations did not differ between groups on day −5 
(F1,5 = 0.10, P = 0.76), but were significantly higher in CORT 
frogs than in control frogs on day 4 (F1,5 = 12, P = 0.017) and 
day 7 (F1,5 = 180, P < 0.001; Fig. 1 and Table 1).

Sperm count and viability
To determine whether treatment with exogenous corticosterone 
led to a decrease in reproductive function, we measured sperm 
count and the proportion of sperm that were viable in the right 
testis of each frog. As previously described, the BC and UC 
control groups did not differ in any measures of reproductive 
function (sperm count, t = 0.11, d.f. = 8, P = 0.91; and sperm 
viability, t = −0.34, d.f. = 6, P = 0.75); therefore, data from the 
two control groups were combined for subsequent analyses. 
Frogs in the CORT group did not show a difference in sperm 
count (F3,16 = 0.73, P = 0.55; Table  1) or sperm viability 
(F3,16 = 1.6, P = 0.23; Table 1), compared with control frogs. 
Body mass was not a significant predictor of either sperm count 
or of sperm viability.

Immune measures
To determine whether chronically elevated corticosterone con-
centrations led to suppressed immune function, we phenotyped 
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Figure 1:  Circulating concentrations of corticosterone after 
transdermal treatment. Transdermal treatment with corticosterone 
every 8 h increased plasma corticosterone concentrations in White’s 
treefrogs over the course of the study. Shown are back-transformed 
means ± 95% confidence intervals of circulating corticosterone in 
treated (CORT) and blood-sampled control (BC) frogs. Asterisks mark 
time points at which control frogs were significantly different from 
CORT frogs.
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circulating leucocytes and compared splenic cell counts in frogs 
that did and did not receive corticosterone treatment. Hormone 
treatment reduced the ratio of circulating WBCs to RBCs; 
CORT frogs had significantly lower ratios of eosinophils to 
RBCs compared with control frogs (BC and UC groups com-
bined; t = 3.3, d.f. = 17, P = 0.004; Fig. 2 and Table 1). Although 
lymphocyte-to-RBC and neutrophil-to-RBC ratios did not dif-
fer significantly between groups, the lymphocyte ratio tended to 
be lower in CORT animals (t = 1.9, d.f. = 17, P = 0.078; Fig. 2). 
We found no effect of treatment on the neutrophil-to-lympho-
cyte ratio (t = 0.41, d.f. = 17, P = 0.69).

The BC and UC control groups did not differ in splenic cell 
count (t = 0.39, d.f. = 8, P = 0.97); therefore, data from the two 
control groups were combined for analysis. Splenic cell count 
was not influenced by corticsterone treatment (F2,17 = 2.5, 
P = 0.12). Body mass was included in the ANCOVA model but 
was not a significant predictor of splenic cell count.

Discussion
We previously found that chronic (7 day) exposure to an 
anthropogenic noise stressor elevated circulating corticoste-
rone concentrations and decreased sperm count and sperm 
viability in captive White’s treefrogs (Kaiser et al., 2015). In 
the present experiment, therefore, we treated treefrogs with 
exogenous corticosterone for the same duration to determine 
whether increased corticosterone concentrations might have 
mediated this stress-induced reproductive suppression and to 
evaluate possible effects on immune function. Here, we found 
that despite chronically elevated plasma corticosterone con-
centrations, neither sperm count nor sperm viability was 
affected. Indeed, in this study, plasma corticosterone concen-
trations were elevated to levels that were likely to be supra-
physiological (K. Kaiser, unpublished data) and were an order 
of magnitude above those seen in our previous study (Kaiser 
et al., 2015). The exogenous corticosterone treatment in the 
present experiment yielded decreases in ratios of circulating 

eosinophils to red blood cells, relative to control frogs. No 
other immune measures differed among treatments.

Studies in many vertebrate taxa have demonstrated a link 
between chronically elevated corticosterone or cortisol concen-
trations and reproductive suppression in both males and 
females (Carragher et al., 1989; Brann and Mahesh, 1991; 
Salvante and Williams, 2003). However, chronic increases in 
corticosterone do not always lead to such changes, and some 
organisms, potentially including male L. caerulea, may be able 
to decouple the HPA and hypothalamic–pituitary–gonadal axes 
(Astheimer et al., 2000; reviewed by Wingfield and Sapolsky, 
2003). Alternatively, it is possible that another hormone(s) in 
the HPA axis, such as corticotrophin-releasing hormone 
(CRH), endogenous opioids (Moore and Miller, 1984) or adre-
nocorticotrophic hormone, rather than corticosterone, is 
responsible for stress-induced reproductive suppression in male 
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Table 1:  Mean, SEM and sample size for corticosterone, sperm and splenic cell measures as well as average body mass at the end of the study, for 
each treatment group

Parameter
Exogenous 

corticosterone (CORT) 
group

Undisturbed control 
(UC) group

Blood-sampled control 
(BC) group

Combined UC and BC 
groups

Plasma corticosterone (ng/ml), day −5 4.0 ± 1.8 (n = 8) 2.7 ± 1.4 (n = 4) 2.0 ± 0.6 (n = 4) 2.3 ± 0.6 (n = 8)

Plasma corticosterone (ng/ml), day 4 16 ± 4.2 (n = 7) n.d. 2.0 ± 0.92 (n = 5) n.d.

Plasma corticosterone (ng/ml), day 7 27 ± 4.8 (n = 9) 3.2 ± 0.92 (n = 5) 6.2 ± 1.1 (n = 5) 3.2 ± 0.61 (n = 10)

Sperm count (millions) 8.2 ± 1.4 (n = 10) 7.6 ± 2.3 (n = 5) 7.3 ± 3.4 (n = 5) 7.6 ± 2.2 (n = 10)

Sperm viability (% viable) 88.3 ± 1.2 (n = 8) 88.4 ± 2.1 (n = 3) 89.5 ± 2.1 (n = 5) 89.1 ± 1.4 (n = 8)

Splenic cell count (millions) 1.2 ± 0.36 (n = 10) 3.2 ± 1.6 (n = 5) 3.1 ± 1.3 (n = 5) 3.2 ± 1.0 (n = 10)

Mass (g) 34.40 ± 2.4 36.00 ± 2.3 34.40 ± 0.24 35.20 ± 1.1

Undisturbed control animals were not sampled on day 4 and thus no corticosterone data are reported (n.d.). Although most data were transformed for analyses (see 
main text), raw data are presented for ease of interpretation, and data are presented separately for each group. For analyses, the two control groups were pooled 
because there were no statistically significant differences between them; pooled values are also shown.

Figure 2:  Ratios of white blood cell counts to red blood cells after 
corticosterone treatment. Back-transformed means and 95% confidence 
intervals are presented. Asterisks indicate measures that differed 
significantly between CORT and control (BC and UC combined) frogs.
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L. caerulea. The use of exogenous corticosterone in this experi-
ment is likely to have downregulated the HPA axis through 
negative feedback. Therefore, while it is unlikely that these 
hypothalamic and pituitary hormones directly suppressed 
immune measures in this study, we cannot rule out the possibil-
ity that reductions in these hormones, rather than or in addition 
to increases in corticosterone, contributed to our findings. 
Another caveat to our results is that because of logistical con-
straints, we did not incorporate a vehicle-treated control group. 
However, pilot studies suggested that patch application alone 
did not elicit a stress response (K. Kaiser, unpublished data).

The use of blood smears in the present study allowed us to 
quantify changes in circulating leucocyte numbers. Only 
eosinophils, which have been implicated in fighting parasitic 
infections, such as trematodes (Mitchell, 1982; Claver and 
Quaglia, 2009), showed significant reduction in CORT ani-
mals, though lymphocytes also showed a slight, non-significant 
decrease. This reduction in eosinophils should be interpreted 
with caution, because it might have resulted from supraphysi-
ological corticosterone concentrations (Kaiser et al., 2015). In 
addition, we did not evaluate the functional effects, if any, of 
chronic corticosterone elevation on the immune system. In 
multiple species, however, increased glucocorticoid concentra-
tions have been found to be correlated with increased infec-
tion rates, suggesting that chronic elevations of corticosterone 
concentrations may contribute to functional immunosuppres-
sion in amphibians as well (Gendron et al., 2003; Hayes et al., 
2006, 2010; Rohr et al., 2008a, b).

In conclusion, although stress-induced reproductive suppres-
sion is frequently attributed to elevated circulating concentra-
tions of glucocorticoids (Brann and Mahesh, 1991; Rivier and 
Rivest, 1991; Moore and Jessop, 2003; Wingfield and Sapolsky, 
2003; Schoech et al., 2009), we found no evidence for such an 
effect in male treefrogs. Thus, our findings add to the growing 
literature suggesting that the interactions of glucocorticoids 
with reproduction are species specific and complex; effects 
of these hormones are likely to be not only concentration 
dependent but also context dependent (Schoech et al., 1997; 
Moore and Jessop, 2003; Wingfield and Sapolsky, 2003). 
Understanding other mechanisms for reproductive suppression 
may be important in allowing for conservation of threatened 
species. This is particularly applicable to anurans: although 
laboratory and wild animals often exhibit different physiologi-
cal traits (Calisi and Bentley, 2009), amphibians are increasingly 
being captive bred in assurance colonies due to global declines.

Nevertheless, chronic increases of circulating corticoste-
rone concentrations in this experiment led to decreased circu-
lating eosinophils, suggesting a possible role for corticosterone 
and stress in disease- or parasite-related amphibian declines. 
Because of the potential for such population-level effects due 
to chronic stress, we suggest that future work should focus on 
functional assays, such as experimentally determining the 
effect of corticosterone concentrations on WBCs and infection 
rates in animals affected by parasites, and understanding the 
levels of pesticides and/or corticosterone necessary to cause 

immunosuppression. These results could provide insight into 
the endocrine correlates of amphibian population dynamics 
and could prove useful in advancing amphibian conservation.
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