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~ INTRODUCTION

Previous application of the finite element idealization in
the blast analysis of axisymmetric solids has been conducted utilizing
the SLAM code [1]. The SLAM code is a large capacity program utilizing
lTower-order finite eléments. Because of its many complex options the
program is not readily used by engineers in the dynamic analysis of complex
structures.

In reference [2] the finite element method coupled with a stable
step-by-step integration procedure was used for the elastic dynamic analysis
of two-dimensional plane strain solids. The computer program developed was
machine independent and was designed to be used in the dynamic analysis of
day-to-day éngineering problems. The purpose of this investigation is to
extend the step-by-step approach to the analysis of axisymmetric structures.
In addition, new coding techniques have been introduced in order to increase
the capacity of the program. Also, a higher order axisymmetric finite
element has been developed which has significantly increased the accuracy
of the procedure for the same numerical effort. Since the axisymmetric
formulation reduces the plane strain case for a large radius, the present

axisymmetrit computer program replaces the program given in reference [2].
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DYNAMIC EQUILIBRIUM EQUATIONS

The force equilibrium of a system of structural elements is

expressed by the following matrix equation:

M, +C0 +KY =P )

where U, Q, and ﬂ_are vectors of nodal point displacements, velocities, and
accelerations at time "t". The formation of the stiffness matrix K for an
axisymmetric finite element system is discussed in the Appendix A.

A formal mathematical development of the mass matrix M is possible.
Such an approach would result in a mass matrix with the same coupling pro-
perties as the stiffness matrix. However, if the physical Tumped mass
approximation is made the mass matrix will be diagonal. The lumped mass
approximation results in a small reduction in accuracy and a considerable
saving in computer storage and time. In this investigation one-fourth the
mass of each quadrilateral is assumed to be concentrated at each of the
four nodal points.

For most structures the exact form of the damping matrix C is
unknown. In the solution procedure the damping matrix may be completely
afbitrary; however, there is little experimental justification for selecting
specific damping coefficients. A form of viscous damping, which is sufficiently

general for most structures, is given by the following matrix equation:
C=oM+ 8K (2)

By assuming the damping matrix is proportional to the mass and stiffness
matrices the effect of viscous damping is included without requiring additional

storage within the computer program.
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STEP-BY-STEP INTEGRATION OF EQUILIBRIUM EQUATIONS

The dynamic equilibrium of the finite element system is given
by Eq. 1. The solution of this set of second order differential equations
is accomplished by a step-by-step procedure [3]; The only approximation
which is made is that the acceleration of each point in the system varies
Tinearly within a small time interval, At. This assumption Teads to a
parabolic variation of velocity and a cubic variation of displacement with-
in the time interval t - At and t.

A direct integration over the interval gives the following

equations for acceleration and velocity at the end of the time interval:

. 5 . .
Ye = 757 Y - me7 Yeone = 3 Vtont ~ 2 Yo pg (3)
-3 3 . £

Yp = mt Y - 78 Yeent = 2 Year - 7 Yent (4)

The substitution of Eqs. (2), (3) and (4) into the equilibrium relation-
ship, Eq. (1), results in a set of Tinear equations in terms of the unknown
vector g{. A solution of this set of equations yields the displacements of
the system at time t. The acceleration and velocities may then be found

- from Eqs. (3) and (4). This procedure may then be repeated for subsequent

time steps.



STABILITY OF THE STEP-BY-STEP METHOD

The previously described step-by-step integration technique is
accurate if the time step is small compared to the shortest period of the
finite element system. If the time step is long compared to the shortest
period, the method will become unstable and fail to produce rea]istic results.
Newmark [4] has studied this instability and has suggested a constant accel-
eration method. Newmark's procedure was found to be stable when applied to
finite element systéms; however, spurious finite oscillations associated
with the high frequencies of the system were still present in the results.
Several other stable step-by-step methods were investigated with respect
to finite element systems; the method found to be completely stable was a
modification of the previously described linear acceleration method.

The instability in the linear acceleration method is first initiated
by an oscillation of the displacements about the true solution. In the early
stages of instability it is apparent that the displacements at the center
of the time interval are a good approximation of the true solution. Therefore,
if this mid-point solution is utilized, the tendency for oscillations to
develop is eliminated.

In order to modify the previous step-by-step equations to reflect
this approach a time increment of 2 At is introduced and the acceleration,

U

t o+ AL at the end of the time interval is calculated. The midpoint accelerati on

is calculated as

L
Up = 2l Yppt ¥ Upeag ()



The velocities and displacements at time "t" are calculated from

- t » S
Oy =0y * 55 Y ye ¥ 97 U (6)
Yo = Up e v A0 U e v 557 Y * 5% Uy (7)

This modification eliminates all stability problems from the
linear acceleration method; However, the new procedure tends to introduce
damping in the higher frequencies of the system. Fortunately, this partial
truncation of the higher modes is justified in many dynamic analyses. The
selection of the time step and the finite element idealization for a particular
problem will depend on the experience of the user with similar problems. |

The step-by-step procedure, which is presented in a form which
minimizes computer storage and execution time, is summarized in Table 1.

The tffective" stiffness matrix is normally banded and its triangularized
form is also banded; therefore, a large amount of computer storage is not
required. Also, the time for the solution of the equations for each time

step is not large since the matrix was initially triangularized.



Table 1 Summary of Step-by-Step Procedure

IT.

INITIAL CALCULATION

a.
b.

c.
d.

Form Stiffness Matrix K and Di
Calculate the following consta

T = 24t

aq = 64307
T2+3BT

ay = 6_+ 3 (0-Bao)
7 7

a, = 6 + 2 (a-Bao)
T

dz = 2+ T (OL"BaQ)

ay = 3
3BT+

Form Effective Stiffness Matri
Trianguiarize K

FOR EACH TIME INCREMENT

a.

b.

c.

D

Form Effective Load

K=Pi g+ MIa

Pi-pt * a5l

kK U, =P

Calculate Accelerations, Velocities and Displacements at time t.

[
]

agonal Mass Matrix fl
nts:

ds 2 _:_3@&4 -3
T Tz
dg = 2[3&1, - _3_
T
a; = pgraus-1
2
dg = -ér,_
2
asg = At*
3
diqg F At2

6
xK =K+aM

Yoot * 3elp g + 3l ]
Solve for Effective Displacement Vector U,

t

oo

Up = aly +asly ¢ +acUy o +asly
Up = Ypope * 2allp g *+ U] .
Up = Uppg T A8 Uppg @by sy + a0 Uy

Calculate Element Stresses If Desired

Repeat For Next Time Increment




APPLICATION

The validity of the finite element method as applied to the
dynamic analysis of axisymmetric systems has been demonstrated in
reference [1]. Therefore; the purpose of this section is to illustrate
the application of this particular computer program to a complex structure
and to compare the results with an experimental study.

The method of analysis is compared with an experimental study
conducted by the Ralph M. Parsons Company. A steel encased concrete closure
model mounted at the end of a detonation tube is shown in figure (1). The
model was subjected to a blast load as shown and strains, displacements
and accelerations were measured at various points within the model. The
same model was idealized by a system of finite elements as shown in figure (2).
A Tisting of the input data for this structure is given in Appendix D. A
comparison of the strains in the steel at the axis of symmetry is illustrated
by figure (3). Since in this case the model was not loaded beyond the
elastic range, good agreement is obtained.

In another analysis the results of an elastic finite element
analysis were compared with an experimental study of a structure buried in
a soil material. This experimental study was conducted in the Blast Load
Simulator at Vicksburg, Mississippi. In figure (4) the displacements at a
point in the soil are plotted. In this case the need for a nonlinear analysis .
is clear -- the experimental results indicate a permanent set in the material;

whereas, the displacements from the elastic analysis return to zero.



COMPUTER PROGRAM

A FORTRAN IV 1isting of the computer program for the dynamic
elastic analysis of axisymmetric structures is given in Appendix C.

The program utilizes axisymmetric elements with a triangular, quadrilateral
or one-dimensional cross-section. The capacity of the program will’depend
on the storage of the computer used.

Within the program a method of dynamic storage allocation is used;
therefore, for a given problem all required data is compressed into the
smallest possible storage area. This also allows the capacity of the program
to be increased or decreased by only changing one number within the program.

The operation of the program may be summarized by the following
steps:

Control information, material properties and nodal point

geometry data is read (or generated) by the computer.

Second:

Element data is read (or generated) a single element at

a time. For each element, an 8 x 8 stiffness matrix and

a 4 x 8 stress-displacement are formed. These matrices,

the element's mass and the element nodal point numbers are

placed on tape for temporary storage. Therefore, there is

practically no 1imit on the number of elements which can

be used.



‘Third:

At this point in the execution of the program the nodal

point data is no longer required; therefore, this storage

is available to be used by the complete stiffness matrix

for the structure. The element stiffnesses are then

read from tape and added into the banded, symmetric stiffness
matrix. A]so; the diagonal mass matrix is formed at the

same time.

~ Fourth:

The step-by-step solution technique, as summarized in
Table 1, is used to evaluate the displacements as a function
of time. At specified time points the element stresses

can be calculated by reading the element stress-displacement
matrices from tape. These 4 x 8 matrices are read in groups

in order to minimize computer time.
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* EXTENSION TO NONLINEAR MATERIALS

The method of analysis and the computer program presented in
this report can be used in the elastic analysis of complex plane or axi-
symmetric structures subjected to dynamic Toads. The next step in the
development program is the extension to the dynamic analysis of structures
with nonlinear material properties.

Initially, the nonlinear behavior of soils will be incorporated
into the computer program. In reference [5] the stress-strain behavior of
soils subjected to dynamic loads is discussed. It appears that one of the
most important nonlinear parameters is the volumetric strain. A typical
test of a soil is illustrated in figure (5). If unloading occurs the
material tends to have a different behavior (modulus) than if the Toads are
increased monotonically.

For a nonlinear analysis, it is necessary to form an incremental
stiffness of the system; therefore, an incremental stress-strain relationship
is required. This incremental relationship will be assumed to be of the

following form:

1
.. = K¥ ..t *Ae. .
A61J K AecSlJ 26G AelJ

where

K*

I* (P, Pmax, e, €)

G* = G(P)

The values of the incremental bulk modulus K* and the incremental shear

moduTus G* must be determined from experimental tests. As indicated by

- 14 -
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figure (5) the Toading and unloading values of the bulk modulus will be
different.

It is not necessary to express the material properties in
mathematical form for the purpose of a numerical analysis; a sequence of
points which describe the stress-strain behavior may be used. Therefore,
a series of points with the following information will constitute the input
to the computer program:

1. Pressure

2. Strain

3. Unloading Bulk Modulus

4, Shear Modulus
This type of material behavior is currently being incorporated into the

computer program.

- 16 -
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APPENDIX A
STLFFNESS MATRIX FOR QUADRILATERAL ELEMENT

Introduction

The purpose of this section is to present the development of a
five-point quadrilateral aXisymmetric e]ement; The general form of the

stiffness matrix [K] for any finite element is
[K] = f (81" [DI[B] dv (A-1)
Vol.

where [B] is the strain-displacement relationship and [D] is the stress-
strain law; i.e.
[e] = [B] [d] [o] = [D] [e]
For a four-point axisymmetric solid the strains [e], stress [o]

and nodal point displacements [d] are given pz _

E; —_
fo; € u
r r -5;‘—
_|o e (1)
[o] z [e] z =7
O €q u
r
T Y Uy v
" L B T
I
[d]" = [ UiViUuaVvaUsvsuyvy]

The derivation of the five-point stiffness matrix is more readily

demonstrated by starting with the four-point element.

Coordinate Systems

The coordinates (r,z) are cartesian while the natural coordinates

(s,t) may be skewed and are defined such that s and t vary from -1 to 1,



FIG. Al

(=1,~1) / (1,-1)

THE NATURAL COORDINATE SYSTEM



as shown in figure A-1. The (r,z) coordinates are given in terms of (s,t)

via the interpolating functions:

4 4
r(s,t) =i§i hir{ z(s,t) = ig% hizi (A-2)
hy, = (1-s)(1-t)/4 hs = (1 +s)(1+ t)/4
A-3
hy = (14s)(1-t)/4 ST

Since strains are defined by derivatives with respect to (r,z)
and the displacement expansions are given in the (s,t) system, the chain

rule for differentiation must be used to calculate

s 35 9t ot
or * 3z ° Jr and 0z
Inverting the chain rule;
3 or 3z 3
3s { _ |os 3s or
o or 3z 5 (A-4)
ot | ot ot 0z
gives
3 1 8z -8z 3
or = = ot as as
a (Yl ar o (A-5)
9z ot oS ot
where
J=13(s,t) =3r 3z -3r oz
9s at 3t 3s

Expressions used in evaluating J are useful in obtaining the

strain-displacement relationships. Substitution of (A-2) and (A-3) into

(A-5) gives 4 4
D hi hj _ hi hj)
J= 55 =1 ry\ s t t S
4 4
- L L v =T E (A-6)
i=1  j=1
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where T

[r] " =1 rirorars]
- T :
[z] = [ z12,2524]
_ 0 T1-t -5+t =1+s
[Pl =g 0 Ths -set -7)
0 t+]
skew
~-symmetric 0
— -
Therefore, —
r—qu - Z34S = Zpat
_ =Zy3 t Z34S + Z;,4t
[PI[Z] = &
=Zyy + 21,5 - Z3,t (A-8)
Z13 = 218 t Z,5t
""“ ety
and
_p=aT -0 1
J = [r]'[P][z] = g‘[(rlazzu"rzuzla) + S(T34212~r12234)
+ t(raszis-rivzas)] (A-9)
where
rij =r; - rj
Zij =z, - Zj

Strain Displacement Transformation [B]

Let nodal point values of the displacements u and v be given by

[uiuzusuy]

ral’

(A-10)

[vivavsvs]

[v]’



The assumed displacement expansion uses the same interpolation functions

as appeared in (A-2); 1i.e.

4 4
u ==§: h.u. Vi .y = E: h.v, (A-11)
(s,t) G 11 (s,t) 54 i
The eestrain is given immediately by
4“!
€, = Z hou, = Z G.u
B . . 11
i=1 - i=1
i

€n must be obtained by differentiation

€. =3 = 3u 3 + du 3t

or 3s or ot oar
v Lo, (ohi ahj - phi kg,
= :J-Z Z it 3s ot ot os i
i=1 §=1
- [a]'[PI[Z]
J (A-12)
where [P] is given by (A-8)
Similarly
o [W[PI[F]
z 3z J
T - - -
U TR VA ra M o A wa ]
rz 3z or J J



Yl F—Xl
L [PI[Z] - [PILF] &
et C[Pi[z] _ ' - -LPiirl _ 1 -
T |y | s and EEgs= b= 1
Y, X
L. I
The Xi and Yi are evaluated directly from (A-8)
Xy = = 1§ (rau=rsus = rpat)/d
Y, = %- (zou-234S = Zo3t)/J, and so on.
With this definition the strains are given by
4 4 4
€, = E: G.u, , e . = E: Y.u. , e = E: X.v.
0 =1 11 r i=1 11 VA j=1 11
4
er = Z; (Xiu + Yivi)
i=]
In matrix form porem
= - - == U1
€P Y1 0 Y2 0 Y3 0 Yq 0 Vi
Uz
EZ 0 X1 0 Xz 0 X3 0 Xq Vo
= Us (A-13)
€9 Gl 0 Gz 0 G3 0 Gq 0 Vi
Uy
er X1 Y1 Xz Yz Xs Y3 Xq Yq Vi
L. 4] - S
or [e] = [BI[d]

[B] is the strain-displacement relationship required in (A-1)

to evaluate the stiffness matrix of the element.
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Strain - Displacement Transformation

A modified quadrilateral element stiffness is obtained by

assuming that the shear strain is constant over
assumption improves the bending behavior of the

The value of the constant shear strain is given

shear strain at (t,s) = (0,0).

Let

The [B] matrix for the

Y1

0
(6] =
, 6

Ks

X1
0
Ys

Yo

G2
X6

element is simply:

X2

Ye

Xj(r,z)

Yi(r,z)

Y3

Gs

X7

U Yy
X3 0

U  Gu
Yz Xs

the element (this

element significantly).

by the evaluation of the

1]

Extension to the Modified Five-Point Quadrilateral

(A-14)

A five-point quadrilateral with an internal degree of freedom

associated with the displacement function (1 - 52) (1 - td) can be added

to the above formulation.

the displacement expansion becomes

U=

Z hiU, + (1 - s%) (1 - t4) ue

i=1

Letting the new degrees of freedom be Uc and Vc



~—
™
o+

The [B] matrix for the five-point element is

oy

Y1 0 Yp_ U Y3 0 Yq 0 Yc 0
Bl = 1o x, 0 X, 0 X5 0 X 0 Xc
G1 U Gz 0 G3 U Gq 0 Gc 0

X1 Y1 X2 Yo Xg Yz Xy Yy, Xc o Yc

The [B] matrix for the modified five-point element is obtained by

assuming the shear to be constant within the element. Or

Y, 0 Y, 0O Ys O Yy O Yc O
0 X3 0 X2 U Xs U Xs 0 X
Gb. 0 G2 0 Gs U G 0O G O
Xs Ys Xe Ye¢ X7 Yy Xg Ysg O 0

(A-15)

(A-16)



Numerical Integration

The stiffness matrix is given by the 1ntegrél (A-1)

[K]=JJ Jr 81T [0IBl rdedrdz

Z r 0

For a one radian segment
[K] f f [B17[DI[B] r d r d z
r z

The derived [B] matrices are functions of (s,t). The variables of

integration are changed to (s,t) by means of the Jacobian determinant J

11
(K] = f f (81T [D[6] r J ds dt

-1 -

(A-5)

Using and N point numerical integration scheme to evaluate [K] gives

Mz

(ki =

B (s;, t)1T000B (5,5 t)1 v, J(s,, t) W,

=1

—to

where w1 is a weighting factor.
Triangular elements are obtained by letting two adjacent nodes
of a quadrilateral coincide. This would not be possible if closed formed

integration were used to evaluate [K] because of singular derivatives at



the double node. A numerical formula with integration points internal

to the element does not "see" the singularity.
The above procedure yields the 10 x 10 element stiffness matrix.
echnique may be applied to develop

the 8 x 8 quadrilateral stiffness matrix.

A - 10
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APPENDIX B
DESCRIPTION OF INPUT DATA FOR COMPUTER PROGRAM

The purpose of this computer program is to determine time-
dependent displacements and stresses within elastic axisymmetric structures
of arbitrary shape and materials. In order to define the computer input
a two-dimensional cross-section of the axisymmetric structure must be
jdealized by a system of finite elements. Quadrilateral, triangular and
one-dimensional membrane elements can be used. Elements in the system
are identified by a sequence of numbers starting with one. Also, all
nodal points are identified by a separate numbering sequence. The reference
coordinate system to be used and a simple finite element representation
of a structure is shown in Figure B-1.

The following sequence of punched cards numerically define

the axisymmetric structure to be analyzed.

A. IDENTIFICATION CARD. (72 H)
Columns 1 to 72 contain information to be printed with results.
B. CONTROL CARD. (715, 4F10.0)
Columns 1 - 5 Number of nodal points (n)
6 - 10  Number of elements (no limit)
11 = 15  Number of different materials (m)
16 - 20 Number of time steps
21 - 25 Number of time increments between the print
displacements and stresses

26 - 30  Number of Toad cards (&)
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- 35

> - 45

- 55

- 65

- 75

Number of boundary pressure cards (p)
Damping coefficient o}
Damping coefficient B
Time increment At

Reference number to be added to all R ordinates

C. MATERIAL PROPERTY IWFORMATION.

The following card must be supplied for each different material

(I5, 4F10.0)
Columns

1

6

16

26

36

Material identification number
Modulus of elasticity
Poisson's ratio

Mass density of material

Thickness (for membrane shell elements)

D. NODAL POINT CARDS, (I5, F5.0, 2F.10.0)

One card is required for each nodal point witnh tne following

information:

Columns 1 -5 Nodal point number
b - 10 Boundary condition code "k"
11 - 2u R-ordinate
21 - 30 L-ordinate
Specifications for code "k". If
k=0 load in the R-direction

load in the Z-direction



k =1
k =2
k =3

zero displacement in the R-direction

Toad in the Z-direction

load in the R-direction

zero displacement in the Z-direction

zero displacement in the R-direction

zero displacement in the Z-direction

Nodal point cards must be in numerical sequence.

If cards are omitted,

the omitted nodal points are generated at equal intervals along a straight

line between the defined nodal points.

equal to zero.

E. ELEMENT CARDS. (615)

Columns 1 -5
6 - 10
11 - 15
16 - 20
21 - 25
26 - 30

Element number
Nodal point I
Nodal point J
Nodal point K

Nodal point L /

Material Identification

The boundary condition code is set

The maximum difference

“b" petween these numbers
is an indication of the
band widtn. The execution
time for the program will
be proportional to tnis
number squared.

For a right hand coordinate system tne nodal point numbers I, J, K and L

must be in sequence in a counter-clockwise direction around the element.

Element cards must be in element number sequence.

If element cards are

omitted the program automatically generates the omitted information by

incrementing by one the preceeding I, J, K and L.

The material identification

for the generated cards is set equal to the corresponding value on the last

card. The last element card must always be supplied. Triangular elements

are also permissible; they are identified by repeating the last nodal point



number (i.e. I, J. K, K). One dimensional membrane elements are identified

by a nodal point numbering sequence of the form I, J, J, I.

F. PRESSURE CARDS (Z2I5, 3F10.0)
One card for each boundary element which is subjected to a
normal pressure.
Columns 1 -5 Nodal point I
6 - 10 Nodal point J
11 - 20 Pressure multiplier Pi
21 - 30 Pressure multiplier Pj
31 - 40 Arrival time of pressure at tne center of the

surface element

As shown in Figure B-2 the boundary element must be on the left as one

progresses from I to J. Surface tensile force is input as a negative

pressure.

G. LOAD CARDS (2F10.0)

These cards specify the normal pressure as a function of time
in the form of straight line segments. One card is required for each point
with the following information:
Columns 1 - 10 Time t

11 - 20 Normal pressure p (t)



QUTPUT INFORMATION
The following information is developed and printed by the
program:
. Reprint of input data
2. Pressure boundary conditions
3. Nodal point displacements, velocities and accelerations
as a function of time
4. Stresses at the center of each element as a function of

time

PROGRAM LIMITATIONS

The capacity of the program is limited by the dimension "d"

of the "A" array in program DYNS.

[Un + 22 + 7p + 4n (b + 1) must not be greater than d.

The symbols n, &, p and b have been defined previously ana their values

will depend on the particular structure to be analyzed. The maximum size
which d can have will depend on the particular computer being utilized.
For a computer with 32K storage the maximum value for d will be approx-

imately 20000.



APPENDIX C

FORTRAN IV LISTING UF COMPUTER PROGRAM



PROGRAM DYNS( INPUTOUTPUT s TAPFS=tNPUT s TAPF6=0UTPUT s TAPF )
COMMON NUMNP s MBaAND o NT s NPRINT s NP g NUMPC s DELT o TToNUMEL s ALEASBETA s RA

1oHFN(12)9A(33200)
€ 3 B3 33 3 33 33 03636 33 I B0 I 33303 3 33 A3 3 033336 36 33 263 I 063696 936 36 9 36 26 6 3¢

C READ AND PRINT OF CONTROL INFORMATION
€ 33 33 33 3 e 3 I I I I K I 03I I3 3 0 I MR

50 READ (551000) HEDsNUMNP¢NUMEL sNUMMAT s NT o NPRINT s NP g NUMPC,ALFA 5

1BFTALDELToRA
WRITE (652000) HENoNUMNP sNUMEL gNUMMAT s NT gNPRINT o NP o NUMPC g ALFA »
1RFTASDFLT
€ 33 332 I I BN I I T3 I3 33 30 3 36 396 33 36 96 26 36 363 3 9 3¢ 3636 3 3 % 3¢
c RFEAD DATA AND FORM FLEMEMT STIFFNFSSFS
€ F 3 33 33 3 I I 3332033033396 369 93369 3636 3 330 3 36 96 3 36 363 696 36 30 30 3 6 36 9 96 996 3 36 9 30 I3 336 3 ¥ 3
NEQ=» ¥NUMNP

No=z1+NUMPC
Na=N2+NMPC
Na=N3+NUMPC
NE=Ng+NUIMPC
Ne=Ns+NUMPC
N7=Ne+NUMPC
Ng=N7+NUMPC
No=Ng+NEQ
NiNn=Ng+NEQ
N11=N10+NUMNP
N12=N11+NUMNP
N13=N172+NUMNP
M14=N13+NUMMAT
N15=N14+NUMMAT
N1s=NI15+NUMMAT
IF (N16+NUMMAT.LEs33200) GO TO 100
WRITF (86,1100}
STOP
100 eall STYFFIACGTLYsA{N?2YsAINSBYsA(NLAYSAINS) oA INEYoA(NTY A INBYsAIND)
T «A(N1O)YsA(NILIYsA(NIZ)eAINTI3JoA(NIGYysAINIBYeAINLIGLY s NUMMATY
C*****************%**************************************************%**

' FORM TOTAL STIFFNESS aNp MASS MATRTcES ANRn SOLVE STeP=-pY=STEP
C*************%*********************************************************
N11=N10+NEQ
NY12=N11+2%NP
N13=N12+NUMNP
N14=N13+NEQ
1 (N14+NFQEMBAND LE 233200y 0 TO 20N
WRITFE (6s1100)
STOP
200 cALL SOLVF(ALT)sA(ND2) s AIN3YsA(NLGYsAING)sAINE)YsAINT)A(NRYsA(NG) o
1 A(NIO)sAINIT)IsA(NI2) sAINIZ)sA(NTLY JNFEQ)
C********************************************************************ﬁ**

GO TO 50
C*****;**%****%*****%****%******************************************%&**
1000 FORMAT (1286/715:4F10,0)
1100 FORMAT (25H0 DIMENSTON OF A FXCFFNED)
2000 FORMAT (1H1 12A6/

1 20HO NUMBER OF NODAL POINT§==——==—= 14 /
5> 30HN NUMBER OF ELEMENTG====——e—=—m 14 7
3 30HN NUMBER OF DIFF, MATERIALS—=- 14 /



OO0 ® N 5 &

3NHN
clslals
30HO
30HOD
30HO
30H0
Elalalal
END

NUMBER OF TIMF INCREMENTS==-
PRINT INTERyAL===—m— -
NUMBER OF LOAD POINTS=====—-
NUMBFR OF PRESSIIRE CARDS——==
DAMPING COEFFICIFNT ALFA-==-
DAMPING COEFFICTENT BETA==-=
TIME INCREMENT - === e o

la
I4

—
B
NN N N

14
F10e5 /
F1Ne5 /
F1ne5)



SURROUTINFE STIFF (TotNTsINJsHT sHIs VT aVIsXOsX1sCONFsRs7 » YMOP s ENUs

1 ROsH s NUMMAT)

COMMON NUMNP s MBAND sNT s NPRINT s NP s NUMPC s DELT s TTs NUMEL s ALEA s BETA o RA
COMMON /LS4ARG/ LMU8)5SS(4s8)sXCoYCoFLMASS sS(Rs8) sClbss )

OTMENSTON TO1) o TNTELYy s NI sHT (1) sHd{T1)sVTIT1)sVI(T)sXOL1)sX1(1)5s
1 fohf(ﬂ)val)9Z(1§9TX(4)9T¢(5)yYMOm(])9FNU(1),RO{]y,H(])

CF T I NHFHH AN I IR T I I K93 920 K3 6 26 36 9 306 363 I I 36 % 96 M % 3
56 NO 59 M=1sNUMMAT
READ (591001) MTYpﬁsYMOh(MTYPF),FNU(MTYPF,,RO(MTypp),H(MTpr)

59 WRITF (£92011) MTVPEoYMOD(MTYPEi9ENU(MTYPE)oRO(MTYPE)oH(MTYPE)
(C 363030 33330 TSI T I NI I K I H T K I 393K H I 390 396 3696 3036 K36 36 30 3636 6 369 3 3¢
C READ AND PRINT OF NODAL POINT DATA

C***********************************%***********************************

WRITF (6e2004)
L=n
60 RrFAD (541002) NsCOPE(NYsRINYsZ (Ny
R{NYy=R(NY+RA
IF {(LeFQs0) GO TO 85
7ZX=N=L
DR=(R{NY~R(L))/ZX
N7=¢2(NY—-21LYY/ZX
a8 NL=L+1
TN L=0L+4+1
IF(hN-L) 100+90+80
B0 CODF(LY=0e0 ‘
R{Ly=R(L=-1)4DR
2iLy=Z{L~1)4+D2Z
GO TO 70
00 WRITFE (6920023 (KeCONFIK)sRIK) o7 (K) sK=NL4N)
TFINUMNP=N) 1005110580
100 WRITE (£92009) N
5TOP
110 COMTINUF
C*'ﬂé‘*****%%*%***‘K"*%*%%**%********************************************* -3¢ 3t ¢

C READ AND PRINT OF FLEMENT PROPERTIFS
C 3T 3 3 I B TR I I IR I I 303603 360 I3 96 9 3 33 9E 9 3 36 300 066 3 30 36 3 5 36 N e
WRITE (62001
Nz
MRAND=0
130 RFaAN (5,1003) Mol 1e(1)s7=1,5)
140 N=N+j3
IFIM,FQ.NY GO TO 145
DO 142 I=14¢4
142 IX{Ty=IX{T1Y+1
GO 1O 18N
1% NO 148 =144
148 TX{T3=1F{T1}
MTYPF=IF(5})
(e DETERMINE BAND wIDTH===——w——-
150 MB=n
NO 180 T=144
DO 180 J=1,4
MM=TARS{IX(I)—IX{J})
TF{MMeGToMRY) MB=MM



160 CONTINUF
MB= 2 #MB+ 2
[FIMBLGT -MBAND) MRAND=MB
WRITF (620031 Ne{IX({T)sI=1984) s MTYPFE MR
c***********************************************************************

C FORM ELEMENT STIFFNFESS MATRICES
bt e R R AR S T X TR e

TFIIX{2),NFIX(3))y GO TO 420
C 3 33 I I I3 I3 3 I3 33 336 I I KA I I I 3K I K KR

¢ FORM STIFFNESS FOR ONF~-D ELEMFNT
a2 2 R R R e gy Ly S T I s T T o

CALL ONED (RsZsYMODSsENUsHs IXsMTYPE sVOL)

GO TO 430
C AR I I IR RIS I I 6 I 33 I3 RN RN
C FORM QUADRILATERAL STIFFNESS MATRIX

é***********************************************************************

420 F=YMOD(MTYPE)Y/(1,0+ENUIMTYPFE )Y/ (1626 *FNU(MTYPFY)
Cl1s1)=F*(1,~FNU(MTYPF))
Cl1s2)=FRENU(MTYPF)
Cl1:3)=Cl1s2)

Cl1s81=NL0
Ci{2s1)=C112)
C{?2s2¥=C{1s1}
Cl2e3y=C1152)
Cl2e85=0,0
Ci3s13=c{1s3)
C{3+231=C({293}
C{3s3)1=C{1s1)
C(?,43=0»ﬂ
Clas191=0,0
((49?’=ﬂoq
Clas3yi=C{3.4)
Clhs63=0,5%F (1,2, ¥ENUIMTYPFY)

IT=1X(1}
J=1X02)
KeIX(3)
L=1X(4)
~all QUAH(R(I?QR(J)eR(K),R(L)’Z(Y)9Z(J)$Z(K)97(L’,X('sY('qvoL;C’
1 55859
420 FLMASS=VOL®*RO(MTYPF)Y /4,
C***********************************************************************

C MODIFY FOR ZERO DISPLACEMENTS
s e ey L e s T s S T TSI L 2%
DO &nn I=194
T1=1X(1)
LM{2#])=0%11
LM o#1-9y=0%11~1
IF (CODF{TTY1eFQ0,0) O TO 600
1F (cONF{T11)6FQel,0y ~O TO 580
PO 570 J=148
5(2%19J)=0,0
570 S{Js2%1)=NgN
580 TF (CONF(I1)eFQe2,0) RO TO 0N
NO 590 J=1,8



590
600

S(?*I”loJ’=O.O
S{Je2*¥1-1)=0,0
CONTINUE

CALL WRITEB(LMy107sNsNUMEL)
IFIN,EQ.NUMELY GO TO 7nn
IF{N,EQeM) GO TO 1130

GO TO 140

€ 339 3 3 I 30336 36 336 330303 336 33 I 2 9 363 I 0I5 6 36 IO I 30 3 96 36936 06 3 3 3¢

P

C

PRESSURE BOUNDARY CONDITIONS

€ I 3 23 3 A T I T T I I I I K I3 I 36 3 I I3 00T R I 396 9 36 3 3 3630 36 36 3 3¢

N0

230
C****

1001
1002
1003
1007
2001
2002
20073
2004
2009
2010

2011

2013

WRITE (652010)

DO 330 K=1,NUMPC

READ (8551007) INT(K)sJINJI(K)sAsRsT(KY

T=TINT (K)

J=JNJ(K)

NZ={2(1y=20J)y1/12,0

PR={R(J)=R(11)/12.0
RX=A%{3,0%R{134R(J))+B*¥(R(T)+R(J})
ZX=A¥(ROIY+R(JYV+BH(R(T)+3,0%R(J))

HI(Ky=RX#D2Z

HJ(K)y=ZX*%DZ

VI{(K)=RX%*DR

VJIJIKY=ZX#DR

WRITE (692012) TeJoAsReHTI(K)oVT(KY gHII(KYsVI(KYoT(K)Y
*******%***********************************************************
RETURN

FORMAT (1544F1060)

FORMAT (I54F5.052F10eN)

FORMAT (615}

FORMAT (21553F10,N)

FORMAT (49H1FLFMENT NO, 1 J K L MATERIAL )
FORMAT (179 F106252F10,3)

FORMAT (17135416527112)

FORMAT (37HINODAL POINT TYPE X=~ORD Y—~ORD )
FORMAT (26HNONUDAL POINT CARD ERROR N= I8)

FORMAT (29H1PRESSURE BOUNDARY CONDITIONS/

15X o 1T 95X o LHJI s TX 0 4HP T /P sB8X s 4HPJ /P e 8X s 2HHT s 10X s 2HV T 510X e 2ZHHJI s 10X =
2 2HVJI 11 Xs THT)

FORMAT (16HOMATFERTAL NUMRER 713/

1 4HO F= F16,6/

2 4HONU= F16,6/

3 4HORO= F1646/
4 4HN H= F16+6)

FORMAT (21657F1263)

END



SURROUTINF SOLVE (ToINTsJINJsHT sHIsVIsVIsXNsX1eX2sPsMASS,ReANEQ)
cOMMON NUMNP s M aANR gNT g NPRINT NP yNUMPC s DELT s TToNUMEL s ALFALBFTA
COMMON /LS4ARG/ LM(8)s5S(4s8)sXCsYCsFLMASSsS(B38B)sC(4e4)
PHIMENSTON TO1)sTNT(1) o JINJCT)oHTITYoHI(T)sVI{T1YeVI(T)sXOCT1)sX1(1)s
1 X201)sP(251)sMASSI1YsRITISAINFQs1Y

REAL MASS
e R L e e s e e e E R E L S a st
¢ FORM TOTAL MASS AND STIFFNFSS MATRICFS

CH B I T3 I 06 3 I 3 I TS 3 I I I I I 5t
PO 100 I=1,NFQ
X0(11=060

nO 100 J=1sMBAND
100 AlTsed)=NeN
PO 375 N=1sNUMEL

CALL READB (LM,107sNsNUMEL)

DO 300 T=1,8
[T=LM(T)
PO 300 J=1,8
JJ=LM(I)=11+1
1IF (JJeLTe1y 6O TO 300
AlTTsJJ)=A(TT1sJJ)14S(T,5J)
3nn CONTINUE
DO 350 I=1s4
[1=LMI2%T) /D
350 MASS(TT)=MASS(11)4FLMASS
375 CONTINUF
C***************%*******************************************************

¢ RFEAD AND PRINT OF LOAD DATA
C***************%*******************************************************
WRITF (62Nn07)
DO 38n M=1,NP
380 RFAD(B10N4) (PIKeMy,K=142)
WRTITE (Ae7008) ({(P(KsM)eK=1432),M=1 NP}
C*****%*%*******%*********%*********************%***********************

r CONSTANTS FOR THE STFP-BY-STFP SOLUTION
C***%**%*%**************************************************************
DELT1=2,0¥DELT
NELT?=DELT1¥¥>
AN=(3,0¥ALFAXDFELT 146601/ (NDFLT 243, 0*BFTA*DFLT)
RN=ALFA-RETA¥AD
A1=6,0/DFLT2+3,0%#R0/NFLT1
A2=6,N/NFLT1+2,0%R0
A3=2,0+BO%DELT
A4=3,0/(3,0¥ETA¥NFLT1+NFLT2)
R1=RFTA%®A4
AS=3,0%B1/DELTI=3.,0/DFLT?2
Ab=2eO*B1~3,N/DELTY
AT7=0e5%R1*NFLT1I-N,S



ABR=NS5%#NFLT
AO=PFLT®%2 /3,0

ATN=0,5%A0
C**ﬁ********************************************************************
C FORM EFFFFCTIVFE STIFFNFSS MATRIX
C***********************************************************************

TT=P(1s1)

IK=1

CALL LOAD (TsPsRsINTsINJsHIsHIsVIsVJ, IK)
NO 400 1=14NEQ
11=(1+1)/2
X2(1)=R(1)/MASS(TT)
TF(A(Ts1)oNFo00) AlTs1)=A(T51)4A0*MASS(TT)
4nn CONTINUE
C%**********************************************************************

C TRTANGULARIZE STIFFNFSS MATRIX
€% 3 I3 0 I KT IE I 33 I E30II3 0 0 I3 36363 I I 6B 3 336 30 33636 96 30 36 36 36 9 3696 36 96 % 3 3

calLlL TRIA (NFQ,MBAND,A)
C***********************************************************************

C STEP-BY-STEP SOLUTION

39 333 0 30 I 3 I 30 IE I I I I I 36 396 3 3 3 0 362 36363 3 3 3 I 296 36 3 9 903606 36
LL=0
DO 500 NNN=1oNT
TT=TT+DFLT

C

C FFFFeTIVF LOAD CALCULATION

C

calll LOAD (T9P9R91N19JNJ9HT9HJ9V19VJ91K)
DO 460 1=1sNEQ

[I=(1+1}/2
R{TY=R{TI+MASSITTII*(ATEXO(TYI+A2EXT(TY+ABEXD(TY)

IF(A(T51)aFQe0,0) R{T)=NeN
460 CONTINYE

SOLUTION AT FND OF TIMF STFP

YD

CALL BACKS(NEQ,MBANDsA 4B}
DO 48N 1=1sNEQ
ACC=A4*R (T Y+ABEXO(TISALFXT{TVHATRXD(T)
XO(T)1=X0{T34+nNFLTEXT(TY4AQEXD (T )Y+ATON%ACE
X1(T3=X1(1)+A8* (X2 (T Y4Arr)

480 X2 (1y=ACC

PRINT NISPLACFMFNTS ANPD STRFSSFS

AT NS

LL=0L0L+1

IFILLeNFNPRINTY GO TO son

LL=(’Q(”

WRITE (4#e2006Y TT

WRTITE (6320084 (NogXO(2¥N=131 XN (2¥Ny X1 (D2¥N=1§ 4XT1(2%¥N}JsX2(2%N=1) o
1 Xo(o%#N) s NgN=1 s NUMNP

COMPUTE STRESSES

AXa RS

CALL STRESS(X0)



| snn CONTINUFE
‘ RFTURN
C******************************************************%*******i*l******
1004 FORMAT (2F10,0)
2005 FORMAT (2F15.7)
2006 FORMAT (8HITIMF T=F10.6/118 HONODAL POINT X-DISPLACEMENT vy-DISPLA

| 1CEMENT X-VELOCITY Y=VELOCITY X~ACCELERATION Y=-ACCELERATI
ﬁ 5ON  NODAL POINT )
. 20N7 FORMAT (27H1 TIMF PRESSURE Py
2008 FORMAT (19s6F 16,4419}
FND




J SURROUTINE LOAD (TePsBeINI s INJsHIsHIsVI VI IK)
‘ COMMON NUMNP ¢ MBAND oNT g NPRINT 4NP yNUMPC s DELT s TT s NUMEL y ALFASBETA
| NTMFNSTON TU1)ePl251)1oRI1)oTNTITYsINJCLYsHTI(TIYoHI(TYeVTI(1)sVI(T)

PO 600 1=1sNUMNP
RIPo*T=1)=0,0

| 6NN R{P¥1)1=06N

| N=1

; 100 TAU=TT=T (N}
TE(TAUY 5N0200,200

20 1E(TAULGFPL1sTK)ANN, TAULF ,P(1:1K+739 GO TO apnn
IF (TAULGT,Pl1sTK+1yy) tK=TK+1
TF (TAULT,P(1:IKY)) tK=1K—3
GO TO 200

300 N=P (1, IK+1)~P(1s1IK)
DH=P (2, IK+1)-P(2,51K)
TF (TTFQaP(1s1)) TAU=~DFLT

~ PDT=TAU~P (1. IK)y+DELT

| F=P (2, TKY+NT*NH/D

| 4nn T=1NT(N)

| J=JNJ (N}
BIP*¥T1—1)=R{2¥ -1 )4+F¥HT (N)
BI2¥T)=R(O*I)4+F*VT(N)
B(2¥J=1)=B(2¥J=1)1+F*HJI(N)
BRioRJy=RB{o%J)y+F¥VJ(N)

500 N=N+1
IF (NeGToNUMPCY RETURN
TFITINYFQ,T(N=1y) 60 TO 4n0
GO TO 100
FND

C =9




SURROUTINF STRFSS(XN)
CcOMMON NUMNP s MBAND yNT g NPRINT o NP s NUMPC s DELT s TToNUMFL,ALFASBFTA
HIMENSTON XN{(131s51607)

FOMMON /LS4ARG/ LM(BY) 385 {4eBY)eXC Yot LMASS S (R BY)sC (Bt
C******************************************* (2 s E TS F E LS PSS PSS TE S S 2 2 )

C COMPUTFE ELEMENT STRESSES

€3 3 93 33 3 3 303 3 056 0 B30 I 06 33 6 I I I I3 I I I 336 336 36 33 36963 26 9696 0 30 36 38 3 9 2 ¢
MPRINT=0

C
REWIND 1

DO 300 N=1,NUMEL
CALL RFADB (LMs107sNsNUMFL)

DO 180 1=144
SIGLTYI=NeN
PO 180 J=1.8
Jd=LM(J)
180 SIGITI=STGITY+SS{Ts Y EXN(JIT)

cALCULATE PRINCIPAL STRESSES

TR EATS!

CO=(STGI1Y+STIGI2)4/2,.0
RR=(STGI1Y~SIG(2))/7,

CR=SQRT(RR#%24+SIG(4)*#2)

S16G(8Y=CC+CR

S1G(8Y=CC—CR

TF ((BRFQeD60)eAND(STG(4),FQR0,0)) GO TO 285
STE{T7Y1=28,648%ATAND(STA{4) 9RAY

265 1TF (MPRINT) 110:1055110

108 WRITE (46,2000
MPRINT=5%0

110 MPRINT=MPRINT=1

3N5 WRITE (6s2001) NoeXCoeYrs(STGEITYeT=147}
300 CONTITNUF
C
220 RFETURN
C
2nnn FORMAT (BH1EL NN  7x  1HR 7% 1HZ? 7% B5H&IG~R 7Y 8HEIG~7 TFX
1 B5HSTG-T 6X 6HTANI-R7 & X THSTA-MAYX 5X THSTG~MIN TH ANGLFE
2001 FORMAT (1531X:2Fr8,256F12,4,F6,2)
o
FAND

C - 10



DAY N

sUsROUTINF QuaDd (R19R79R39R4971y22973,ZayRM,ZM,VOLsﬁaQK,QS)

FORMS STIFFNFSS MATRIX QKs CENTROIDAL STRESS MATRIX Qs

FOR A FIVF POINT AXTISYMMETRIC TRONtS QUANDRILATERAL HSING
A FOUR POINT INTEGRATION FORMULA,
CONSTANT SHEAR STRAIN INTRODUCES INCOMPATIBILITY
NTMENSTON QK(848)sQS(4s8)sN(4s4)sTT(4)sQC(4510)1s55(4)sQ0(10510)
NATA 55/ =lesleslee=ls /7 s TT /=1os=1loslesle /

00

et

NO 6 T=1s
QAL TY=040
Ri1p7=R1=-R2

R149=R1-=R3

R14=R1~R4

Ro24=R2~R3

Ro24=R>=R4

R24=R2-R4

2172=71~22

Z13=21=773

214=71~74

223=72~773

To04=7 =74

73%=73=7 4
VOL=R13%¥7224-R24%712
RM=(R1+R2+R3+R4 74,0
TM=(714724+234+24)/44D
Y&8=724/vOL

X6=R13/vOL

X7=Rp4 syvOL

Y8=213/vOL

XE==%T

Yé6=~Y8

Y 7==Y5H

XR==¥X6

PO 30 1T=144
S=55(1134%0,577350269189626
T=TTI113%0577350269189626
XJ =VOL+S*(R34%219-R1o%224)4+T*(R23%7214~-R14%7213)
XJAC=XJ/8eN

CMat ,N=2

SP=1,N4+%

TMﬁlon“T

TP=1,0+7

Hi=0, PR ¥SMETM
H2=0,25%5P%*TM
Ha=0,285%SP#TP
Ha=0, P88 SMRETP
ReH1%#R1+HI#¥RO+H3%¥Ra+H4%#R 4
H1=H1 /R

no=H? /R

GA=H3 /R

G4g=H4 /R

GC=GMESPRTMETP /R
X1=(-R24+R34%*S+Ro2%T) /XJ

C =11



SNANS!

Y

10

>0
20

X2=( R12~R34%*5~Ri4%#T)/xJ

X2=( R24-R1>¥54+R14%7T) s%xJ
X4={~R123+R12%¥5-R2a#T) /xJ

Yi=( 224-234%5-7223%T) /XJ
Y2=(=2134234%S4+214%Ty /XJ
Y3=(=2244212%S=214%T)/XJ

Yas{ Z13-Z12%S4229%T)/%XJ

RS20 28* (~TMRR1+TMRR 54+ TP#Ra=TP*Ry)
2520 25% (=~ TM¥Z1+TM#Z2 54 TP%23~TP¥*24)
RT=0,25%{~SMER1-SP*R54+5P%¥Ra4+5M%R4)
72T=0e26% (=SM¥Z1~SPRZ o4 5P#7945M%7 4
XC==2e O (THSM*SP*¥Rg—g*¥ TMRTP®RT) yXJAC
YO 20 (THSMESP#75~CRTM¥TP¥*2T) /XJAC
FAC=XJAC¥*R

FORM STIFFNESS QK

"o 1N 1=1+4

N1=N(Ts1)*FAC
N2=N(Ts2%*FAC
N2=N{Te+3)*FAC
Ma=N{Teb4 ) *FAC

QC(T1s1)= DI#Y14+D4*XB5+D3%G
QCiTIs3)= DI#Y2+D4%EXE4DIHGD
QClIs5)= DI¥*Y3+D4 %X T74+D3%GA
QrtleT)= D1¥Y44+D4a*¥XR+D3*G4
QGri1,9)= NDI#*YC +N3*GE
Qr{ts2y= No2¥X14+H4aRYS
Qritostsy= NO#X24DNa%Ys
Qei1+6)= NO#*XALDLRY T
QC(T48)= Do#Xa+Da*yYR
QClI410)= Do%*XC

CONTINUF

PO 20 I=191N0

NT=QC{1s7)

No2=QC (2.1}

N3A=QC(3s7)

MN4=QC (4971

QA1 1)1=QQ( 15 TY+DIHYI+NLE*XEEDIXA]
QQ(3,1)=QQ(3s TI+D1HY24DLRXE+DIRGD
QB 1)1=0Q (B T1+DIHYSZ4DLA*XT+DNIHES
QA7 11=QQ( 75 TI+DI1¥Y4+N4*XB+N3 %G54
QQLe,11=QQ(0s T)+DNy %YL +N3*c
QA2 11=QQ(25 TY4DIHXT4NL*Y S
Q041 )=QQ 45 TIEN2EXDLNLHEY S
QQU6s11=QQ(6s T 1+DN2¥X34N4%YT
QQA(8,1)=QQ(Bs 1) +D2¥X4+N4%*YR
QQ(10s1)=QQ(10s1)+D2*XC

CONTINUE

CONTINUF

FORM STReSS MATRIX Q8 AT reENTROIN (RM,ZMy OF FLEMENT

NO 40 I=1e4
D1=H(I1s1}

C =12



YN

2 ¥ Wa

4n

48

50

70

Ho=N(T+2)
N3=N(Ts3) /(46 O¥RM)
Na=N(1s4)

Ti=( DI1*Z24-n4a%*R24y /vOL
To2=(=-D1%¥Z13+N4#R13y 7/vOL
T3={(=N2¥R244N4%224y /VvOL
Ta={( D2¥R13~D4*212)/vOL
QCl151)=N3+T1
QC(1s3)=N3+T2
Qril,5)1=D3=T1
Qr{ls7)=N3=T?
QC(1+9)=4,0%Nn3

QritTs2)= T3

Qr(lety= T4

QC(1e6)=—T3

QC(1+8)==T4
QCL1s10)=NeD

CONTINUF

FLIMINATE CFNTRF NODF

N0 B0 N=1s2

L=10n=N

M=L +1

NO 485 1=1.4

F=QC(T «M)/QQ{MM)

NO 48 J=14L

Qe 1s N =QC(ToIY~F*QQA (M, J)
nO 80 T=1sL
C=QQ1TsM)/QQ MMy

noO 50 J=1sl
QQIT1,J)=QQ(T1,J)~CHQQ(M,J)

RrLLOCATE STRFESSs STIFENFSS ANN LOAND MATRICFS

NO 70 J=1+8

NO 70 1=1s4
QSt1sJY=QC (1)
QK({T14J1=QQ(I+J)
QK(14+4J)=QQ( T4+4+J)
VOL=yvOL¥RM />,
RFTURN

FND

c
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408

410

411

412

414

SURROUTINE ONED (ReZsYMONsENUsHs 1XsMTYPFsVOLY

COMMON /LS4ARG/ LM(8)s55(498)9XCoYCoFLIMMASSsS(BsB) s (494
NIMENSTON RITVsZ{1ysYMON{T1YysrNUCT Y st (1) o TX(41S5T (498)
N0 410 1T=1,+8

N0 405 J=1s4

ST(Js11=0,0

NO 414 J=1+8

S{1eJy=0,4U

1=1X(1)

J=1X(2)

Xe=(R{1Y+R(J}) ) /2,0

Ye=(Z(1Y+Z(JY ) /26D

DX:R(J)—R‘I)

NY=Z2(Jy=Z(1)

XL=SQRT(DX*¥k2,nY¥kHts)

VOL=H(MTYPEy* X[ #*X¢

F1=YMOD(MTYPF) /(1 ,0-ENU(MTYPF)*%2)
Cl1e1)y=F1

C{2e2)=F1

Fi1e2y=rNU(MTYPFy#r]

r(2e1)=c(192)

STE1s1)y=—DX/XL#¥¥*D
ST(1e2)y==DY/ XL%¥*>
ST(1s3)y=—5T(191)
ST(1s4)==5T(132)
STU?2s1)V=e5/XC
ST(2s3)=5T(291)

PO 411 T1=194
nO 411 J=1e8
55(1sJ)=0,0

NO 412 I=1s2
NO 412 J=1ls4
NO 412 K=152
S55{19J1=05(1edy4+r{ 15Ky #ST(KsJ)

NO 414 J=ls4

DO 414 I=1+4

DO 414 K=1,2
S(71eJy=5(T79J)+S5T{Ke 1y *¥SS5(KeJy*VOL
RETURN

FND

C-14



100N
1NN

250

260N

SUBROUTINE TRIA (NNsMM,A)

DIMENSION A(NNg1)
N=n

N=N+1

1F{N,FQ.,NNy RFTURN

1F(AINS1)FQ0,0y 0 TO 100

1=N

MB=MINN (MM NN=N+1}

NO 20 L= MB

IT=T+1

C=A{NsLY/A(Ns1})
TF(C,FQ,Ne0Y GO TO 260
J=0

N0 280 K=L +MB

J=J+1
AlTosJY=ALlT s JY=CH*A(INSK)
A(N,L)=C

CONTINUF

GO TO 10N

FND

c
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270

2885

100

4nn

SURROUTINF BACKS(NN,MMyA,B)
NIMFEFNSION A(13eR (1)

MMM =z MM=1{

N=0

N::N+1

C=R({N)

TElA(NY NF,N,0) R{Ny=aa{N)/a(N)y
IF{N,EQ.NN} GO TO 300
TL=N+1
TH=MINO (NN s N+MMM)

M=N

PO 288 1=1L,IH

M=M+NN
B{Ty=R{IY~A(My*C

GO TO 270

IL=N

N=N-1

IF(N,EQo0) RETURN
TH=MINO (NN N+MMM)
M=N

PO 400 T=1L,IH
M=MenNN
AR(NY=R(N)=~A(MIXR(T}Y
GO TO 300

END

c
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170

2A0

300

400

SUBROUTINE WRITEB (A,LAsNsNUMEL)

DIMENSION A{LA)Y

COMMON /BUF/ B(2140)

LR=2140

1F  N oNFes 1 3y GO TO 1060
RFWIND 1

M=0

MM=M+LA

DO 200 1=1.LA

11=1+M

RITTY=A(T)

M=MM

1IF { N 4FQ, NUMFL j 60 TO 2a0n
IF ( (M+LAY oLFy LR ) GO TO 400

WRTTe (1) R

M=n

RETURN

END

Cn
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SURRNOUTINF RFANR (Asl AsNeNUMFEL Y
NTMENSTON AL A)Y
rOMMON /RUF/ a(2140)
La=2140
IF ( N NFg 1 Yy GO TO 100
REWIND 1
M=0
R=ap (1) R
17000 MM=M4aL A
NO 200 T=1eLA
11=1+M
200 A(1y=R{T11)Y
M=MM
IF { N oFQ, NUMFL 3y 0 TO 400
15 { (M&LA)Y oLFe LR Yy GO TO 400
3N0 RFAD (1) R
M=0
4 ReTURN
FAD

c -18




APPENDIX D

LISTING OF INPUT DATA FOR SAMPLE PROBLEM



AXISYMMETRIC SOLID SURJFCETEND TO BLAST LONDDING

56 55
12900
2 300
1 1
? 1
3 1
4 1
5 1
& 1
7 1
8 .

14

15

71

22

28

29

35

36

42

43 2,

49

50 2,0

56
1 1
2 2
7 7
8 8
9 9

14 14

15 15

16 16

21 21

2?2 22

23 23

28 28

29 29

30 3

a5 35

36 36

37 37

472 42

413 473

44 L4

49 49

50 51

55 5

14 7

21 14

28 21

2 40
@ .3
o 017
28308
#3308
leb616
1.6616
24924
24924
363232
33232
461540
44,1540
4 ,93850
4,9850
55635
B e2635
8 8
i 8
6 13
15 i5
8 15
13 20
22 22
15 22
20 27
29 29
22 29
27 34
36 36
29 36
34 41
413 43
36 43
41 48
50 ' 50
473 50
48 55
gy 50
R5 55
1e0
1,0
1,0

43

1 12
s 0007
« 000225
21875
2 ORT9
1.,78873
?.5887
3,3891

. 441895

4499

21875
4499

e 18758
4499

21875
4,99

21875
4499

61875
4,99
4,99
s 1875
4,99

1

9
14
"R
14
21
18
23
28
22
a0
35
20
37
42
26
44
49

51
56
51
56
1o0
1.0
1.0

= NN RN = RN = RO R = RO R = N R e [ R e

7

01875

s 00002





