Lawrence Berkeley National Laboratory

 Recent WorkTitle
SYMMETRIC SPLITTING OF VERY LIGHT SYSTEMS

Permalink

https://escholarship.org/uc/item/0zg6x3dd
Author
Grotowski, K.
Publication Date
1984-06-01

$1 B$ Lawrence Berkeley Laboratory UNIVERSITY OF CALIFORNIA

RECEIVED Lawrence berkeley lamotatnoy

JUL 231984

LIERARY AND
Submitted for publication
DOCUMENTS SECTION

SYMMETRIC SPLITTING OF VERY LIGHT SYSTEMS
K. Grotowski, Z. Majka, R. PXaneta, M. Szczodrak,
Y. Chan, G. Guarino, L.G. Moretto, D.J. Morrissey, L.G. Sobotka, R.G. Stokstad, I. Tserruya, S. Wald, and G.J. Wozniak

June 1984

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Symmetric Splitting of Very Light Systems

K. Grotowski, Z. Majka, R. PYaneta and M. Szczodrak
Institute of Physics
Jagellonian University
Reymonta 4
Cracow, Poland

Y. Chan, G. Guarino, ${ }^{\text {a L. G. Moretto, D. J. Morrissey, b }}$ L. G. Sobotka, ${ }^{\text {C R. G. Stokstad, I. Tserruya, }}{ }^{\text {d S. Wald and G. J. Wozniak }}$ Nuclear Science Division Lawrence Berkeley Laboratory University of California Berkeley, California 94720
a) Permanent address: Universitá Degli Studi Di Bari, 70100 Bari, Italy
b) Permanent address: National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321
c) Permanent address: Chemistry Department, Washington University, St. Louis, MO 63130
d) Permanent address: Weizmann Institute of Science, Rehovot 76100, Israe 1

This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098.

Symmetric Splitting of Very Light Systems

K. Grotowski, Z. Majka, R. PYaneta and M. Szczodrak
Institute of Physics Jagellonian University
Reymonta 4
Cracow, Poland

Y. Chan, G. Guarino, L. G. Moretto, D. J. Morrissey,
L. G. Sobotka, R. G. Stokstad, I. Tserruya, S. Wald and G. J. Wozniak

Nuclear Science Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

Abstract

Inclusive and coincidence measurements have been performed to study symmetric products from the reactions: $74-186 \mathrm{MeV}{ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}, 141 \mathrm{MeV}$ ${ }^{9} \mathrm{Be}+{ }^{40} \mathrm{Ca}$ and $153 \mathrm{MeV}{ }^{6} \mathrm{Li}+{ }^{40} \mathrm{Ca}$. The binary decay of the composite system has been verified. Energy spectra, angular distributions and fragment correlations are presented. The total kinetic energies for the symmetric products from these very light composite systems are compared to liquid drop model calculations and fission systematics.

NUCLEAR REACTIONS ${ }^{40} \mathrm{Ca}\left({ }^{6} \mathrm{Li}, Z_{1}\right) Z_{2}, E=153 \mathrm{MeV} ;{ }^{40} \mathrm{Ca}\left({ }^{9} \mathrm{Be}, Z_{1}\right) Z_{2}, E=141$
$\mathrm{MeV} ;{ }^{40} \mathrm{Ca}\left({ }^{12} \mathrm{C}, Z_{1}\right) Z_{2} ; E=121,186 \mathrm{MeV}$: measured $\sigma(E, Z, \theta), \sigma\left(E_{1}, Z_{1}, \theta_{1}\right.$, E_{2}, Z_{2}, θ_{2}); verified binary decay of the composite system. ${ }^{40} \mathrm{Ca}\left({ }^{12} \mathrm{C}, \mathrm{Z}\right), \mathrm{E}=$ 74, 121, 132, 162, 185 MeV ; measured $\sigma(E, Z, \theta)$ for symmetric products.

1. Introduction

Fission reactions that produce fragments close to one half the mass of the composite system are traditionally observed in heavy nuclei. In light systems, symmetric splitting is rarely observed and poorly understood.

The distribution of products from the decay of a compound system is expected to depend significantly on the mass A, atomic number Z, and angular momentum, ℓ, of the system. The potential energy varies dramatically with the exit channel mass asymmetry as the fissility parameter, x, crosses a critical value at $x=0.396$ (the Businaro-Gallone limit ${ }^{1}$). For $A \geq 100$ and $\ell=0, x$ is larger than the Businaro-Gallone limit. A minimum in the potential energy is present at symmetry and as a consequence such reactions should exhibit a maximum yield at symmetry. ${ }^{2-4}$ For $A<{ }_{\sim}^{<} 100$ and $\ell=0, x$ becomes equal to or smaller than the Businaro-Gallone limit. A maximum in the potential energy is present at symmetry and consequently such reactions should exhibit a minimum at symmetry. A peak in the yield at symmetry for such light systems would imply some amount of angular momentum, ${ }^{2}$ which moves the Businaro-Gallone point toward smaller values of x.

In view of the above considerations, it would be interesting to verify the existence of the symmetric splitting of compound nuclei with fissility parameters less than the Businaro-Gallone limit. For systems with $A<80$, evidence for possible symmetric splitting has been observed in only a few inclusive measurements. ${ }^{5-8}$ In the reaction $150 \mathrm{MeV}{ }^{4} \mathrm{He}+{ }^{45} \mathrm{Sc}$, David et al. ${ }^{6}$ observed a significant yield of ${ }^{24} \mathrm{Na}$ activity and suggested that this may represent a fission product. More recently, ${ }^{8}$ products with about half the mass of the compound system were observed in the reaction 156 MeV
${ }^{6} \mathrm{Li}+{ }^{40} \mathrm{Ca}$. Because the above studies were inclusive measurements, the presence of products with about one half the mass of the compound nucleus does not prove the existence of a fission process. In particular, these light compound nuclei were typically formed with sufficient excitation energy to undergo large mass loss due to successive α-particle evaporation.

Furthermore, reactions on light target contaminants can produce products with masses near $A=20$.

To demonstrate symmetric splitting for these highly excited light systems ($A \sim 50$), it is essential to show in a coincidence experiment that there are two fragments, each having approximately one half the mass of the compound nucleus. It is also important to minimize the production of symmetric fragments via a deep inelastic mechanism by choosing reactions with a large entrance channel mass asymmetry. To this end, the kinetic energy spectra and the in-plane angular correlation of symmetric products were measured for the following reactions: $121 \& 186 \mathrm{MeV}{ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}, 141 \mathrm{MeV}{ }^{9} \mathrm{Be}+{ }^{40} \mathrm{Ca}$ and $153 \mathrm{MeV}{ }^{6} \mathrm{Li}+{ }^{40} \mathrm{Ca}$. The out-of-plane correlation of symmetric products was also measured for the reaction $186 \mathrm{MeV}{ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$. Table 1 presents some characteristic parameters of these systems. The coincidence measurements of the ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ system demonstrated that essentially all of the inclusive yield of symmetric products around 40° results from a binary decay. To characterize the dependence of the symmetric splitting process on the excitation energy of the ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ system, inclusive measurements were made at bombarding energies of $74,132,162$ and 185 MeV .

Unfortunately, for such light systems, the primary fragments are highly excited and lose a significant fraction of their mass, charge, energy and momentum by sequential particle emission. This makes the transformation
of the laboratory data to the primary, preevaporative system difficult if not impossible. For this reason, comparisons with reaction models were made in the laboratory system after applying a Monte Carlo simulation of the effects of particle evaporation.
2. Experimental method and data

Beams of ${ }^{6} \mathrm{Li},{ }^{9} \mathrm{Be}$ and ${ }^{12} \mathrm{C}$ ions from the Lawrence Berkeley Laboratory 88 -Inch Cyclotron were used to bombard a $0.40 \mathrm{mg} / \mathrm{cm}^{2}$ self-supporting target of natural calcium. The reaction products were detected in $\Delta E-E$ (gas-silicon) telescopes placed on movable arms. The circular entrance windows of the telescopes had solid angles of $\sim 7 \mathrm{msr}$, determined for each telescope by an ${ }^{241}$ Am source of known activity placed in the target position. Small permanent magnets were mounted in front of the telescopes to suppress secondary electrons.

The energy scale (E) was calibrated at low energies with a ${ }^{212} \mathrm{~Pb}$ source and at high energies by ${ }^{12} \mathrm{C},{ }^{16} 0,{ }^{20} \mathrm{Ne}$ ions (75,100 and 125 MeV , respectively) elastically scattered from a thin gold target. The linearity of the scale was checked with a precision pulser. The ΔE energy scale was calibrated by measuring the shift of the energy peaks in the E detector and the corresponding amplitude in the ΔE detector for runs with and without gas in the telescope. Energy losses by the reaction products in the target and in the telescope windows were taken into account.

Time correlations between the telescopes were measured with a time-toamplitude converter (TAC). The random coincidences were a small fraction of the real coincidences. In measurements where singles and coincidence data were recorded simultaneously, the singles data were scaled down by factor of 32 or 64 . The $E, \Delta E$ and TAC signals were digitized by a 4096-channel analog-to- digital converter and were written event-by-event on magnetic tape.

2.1 Singles data

A typical E vs ΔE map for products from the reaction $186 \mathrm{MeV}{ }^{12} \mathrm{C}+$ ${ }^{40} \mathrm{Ca}$ is shown in Fig. 1. Ridges are seen corresponding to elements with atomic numbers up to $Z=20$. The absolute Z calibration was provided by the intense projectile ridge and the ${ }^{7} \mathrm{Be},{ }^{9} \mathrm{Be}$ doublet. For Z values larger than 14 , there is a loss of elemental resolution in the energy region below the Bragg peak. Different regions of the $E-\Delta E$ map are populated with different intensities (see Fig. 1). In the present work we shall concentrate on studying the weakly populated, nearly-symmetric region ($Z \approx 9-11$).

Representative laboratory energy spectra for nearly-symmetric products are presented in Fig. 2. To improve statistics, products with $Z=9-11$ and $Z=8-10$ were summed together for the ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ and ${ }^{6} \mathrm{Li},{ }^{9} \mathrm{Be}+{ }^{40} \mathrm{Ca}$ systems, respectively. These spectra were generated by setting two-dimensional free form gates around the corresponding element ridges shown in Fig. 1. Because individual elements are not resolved at low energies, an energy cutoff was set at about 15 MeV . Most of the energy spectrum is above this cutoff for the ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ reaction (Fig. 2 a); however, the peak region is not as well characterized for the ${ }^{6} \mathrm{Li},{ }^{9} \mathrm{Be}+{ }^{40} \mathrm{Ca}$ reactions. The effect of the energy cutoff increases with increasing laboratory angle. The error bars shown in Fig. 2 and the following figures reflect only the statistical uncertainties. Representative energy-integrated Z distributions are displayed in Fig. 3. For all three reactions there is about an order of magnitude decrease in yield between $Z=6$ and $Z=9$. All systems exhibit a weak odd-even effect ${ }^{9}$ that is strongest for the ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ system. In this latter case there is a minimum in yield, slightly below the Z value corresponding to a symmetric
disintegration. For the ${ }^{9} \mathrm{Be}+{ }^{40} \mathrm{Ca}$ system, the yields fluctuate around a more or less constant average value for $Z \geq 9$ whereas for the ${ }^{6} L i+{ }^{40} \mathrm{Ca}$ system the yield decreases with increasing Z-value.

Inclusive laboratory angular distributions for $Z=10$ and 11 from the ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ system are shown in Fig. 4 for several bombarding energies between 74 and 185 MeV . At all bombarding energies, the angular distributions are forward peaked and the degree of forward peaking increases with decreasing bombarding energy. At all angles the yield decreases with decreasing bombarding energy. However, at larger angles ($40-60^{\circ}$) the decrease in yield is much more rapid and falls by more than an order of magnitude over the measured range of bombarding energies.

2.1 Coincidence data

Energy- and angle-integrated charge distributions for $Z_{1}-Z_{2}$ coincidences are presented in Fig. 5 for the $186 \mathrm{MeV}{ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ reaction. For this system the bulk of the events are spread along a diagonal line with $Z_{1}+Z_{2} \sim 20$. The diagonal line given by $Z_{1}+Z_{2}=Z_{p}+Z_{T}=26$, corresponds to binary reactions with no subsequent charged-particle evaporation. Here Z_{p}, Z_{T}, Z_{1} and Z_{2} denote respectively the atomic numbers of the projectile, target, and of the fragments detected in the two telescopes. Thus, the line defined by $Z_{1}+Z_{2}=20$ represents an average missing charge ΔZ of 6 , which is most likely lost through particle evaporation from the excited primary fragments.

The yield for equal values of Z_{1} and Z_{2} clearly demonstrates the existence of symmetric and nearly symmetric splitting of these light systems with $A \sim 50$. It appears that the symmetric products have a somewhat smaller
total charge loss than the asymmetric splits (see Fig. 5). For the ${ }^{12} \mathrm{C}+$ ${ }^{40}$ Ca system, the average charge loss decreases from six to four charge units when the bombarding energy is lowered from 186 to 121 MeV . The average missing charges for the $153 \mathrm{MeV}{ }^{6} \mathrm{Li}+{ }^{40} \mathrm{Ca}$ and the $141 \mathrm{MeV}{ }^{9} \mathrm{Be}+{ }^{40} \mathrm{Ca}$ systems are 5 and 4, respectively.

In Fig. 6 are shown the in-plane angular correlations of symmetric products for four systems measured with two telescopes at equal angles on opposite sides of the beam. The angular correlations are peaked at angles between $40-50^{\circ}$ and have a significant width. As is expected for a binary process, the mean angle of the correlation increases as the bombarding energy and projectile mass decrease. In section 3 it is shown that the mean angle for symmetric splitting is simply related to the total decay energy in the CM system. For the ${ }^{12} C+{ }^{40} C a$ system the yield of symmetric products decreases slightly as the bombarding energy decreases from 186 to 121 MeV . However, the yield of symmetric products decreases by more than an order of magnitude as the entrance channel asymmetry increases from ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ to ${ }^{6} \mathrm{Li}+{ }^{40} \mathrm{Ca}$. This strong decrease is somewhat moderated (see section 3) after applying the larger energy cutoff corrections for the ${ }^{6} \mathrm{Li}+{ }^{40} \mathrm{Ca}$ data.

The in-plane angular correlation data in Fig. 7 were measured by placing one of the telescopes at the angle ($\theta_{S S}$) of the maximum coincidence yield and varying the angle of the second telescope. To facilitate comparison of the inclusive and coincidence data, the data in Fig. 7 include coincidences between symmetric products $(Z=9-11)$ and all residues $(Z=8-14)$ of the complementary fragments (see Fig. 5). These in-plane correlation functions are quite broad, and may result from both Q-value fluctuations at the saddle point and evaporation of particles from the excited primary reaction products.

A coarse out-of-plane correlation function was measured with one telescope fixed in the reaction plane, at $\theta_{1}=\theta_{s s}$ (at the azimuthal angle $\emptyset=0^{\circ}$) and three others placed in the plane perpendicular to the reaction plane and located on the opposite side of the beam, also at $\theta_{2}=\theta_{\text {ss }}$. Coincidence data were taken between the in-plane telescope and each out-of-plane telescope. Due to the low coincidence counting rates and the limited amount of beam time available, the out-of-plane correlation curve contains only three experimental points (Fig. 8).

The above angular correlation measurements clearly demonstrate the existence of symmetric and nearly symmetric splitting in systems with $A \sim 50$.
3. Monte Carlo calculation and results

It is an open question whether evaporation occurs before as well as after the splitting of the compound nucleus. We assume in this work the formation of a compound system followed by a first chance binary splitting and, afterwards, evaporation of light particles from the excited fragments. This is based on the assumption that first chance evaporation and the corresponding loss of angular momentum should reduce considerably the probability of symmetric splitting. However, one can not exclude some contribution from prescission evaporation.

The following reaction picture has been adopted. In a collision of a projectile P with a target nucleus T, two highly excited fragments are produced. As a result of evaporation, the secondary fragments have different directions, energies, and atomic and mass numbers than the primary products. All the reaction parameters and cross sections before evaporation are denoted by primed symbols and after evaporation by unprimed ones.

3.1 Monte Carlo calculation

An event-by-event transformation from the secondary reaction products (observed in the lab system) to the primary reaction products is made impossible by the evaporation of particles that are not observed in the experiment. Therefore, the primary symmetric splitting of the composite system and the subsequent velocity change due to secondary evaporation have been simulated using the Monte Carlo method. The calculations were performed in velocity space (see Fig. 9) where \vec{V}_{0} is the velocity of the composite system and $\vec{V}_{C M}^{\prime}$ denotes the initial center-of-mass (CM) velocity of each fragment. A symmetric mass split was assumed. A random number generator gave
the initial directions of the fragments according to an assumed CM angular distribution ($d \sigma / d \bar{\Omega} \sim 1 / \sin { }^{\theta} \mathrm{CM}$). To determine the average recoil velocities for both fragments ($\vec{v}_{\text {recoil }}^{1}$ and $\vec{v}_{\text {recoil }}^{2}$), a Gaussian probability distribution was assumed for each Cartesian component of $\vec{v}_{\text {recoil }}$ with a variance S^{2} (see ref. 10). The final velocity of a fragment is given by

$$
\begin{equation*}
\vec{v}_{i}=\vec{V}_{0}+(-1)^{i+1} \vec{V}_{C M}^{\prime}+\vec{V}_{\text {recoil }}^{i} \tag{1}
\end{equation*}
$$

where $\mathbf{i}=1$ or 2 , respectively.
In order to obtain the final laboratory energy of a fragment one has to know its velocity after evaporation. Two approximations were made: an isotropic distribution of recoil velocities was assumed ($v_{\text {recoil }}^{i}$) and the velocity distribution for the fission fragments in the CM was replaced by an average value $V_{C M}^{\prime}$. One can argue that the recoil velocity distribution is not isotropic, as the intrinsic spin of the fragments should give some focusing in the reaction plane, particularly for evaporated α-particles. However, the intrinsic spin of the symmetric fragments takes no more than $1 / 7$ of the entrance channel angular momentum. This gives only about 7 h units per fragment. Since at the scission point the fragments are probably deformed, the actual fragment spin is probably smaller, and this suggests that the isotropic approximation is reasonable. The mass of the fragment was assumed to be twice its atomic number.

The Q-value fluctuations at the scission point give a distribution of the CM kinetic energies around the average value $E_{k i n}^{\prime}$: . This effect contributes to the width of both the energy and the angular distributions (angular cor-
relations) observed in the laboratory system. ${ }^{2}$ Let $\sigma_{\text {evap }}$ be the variance of the angular correlation between the fragments caused by evaporation, and let ${ }^{\sigma}$ fluct denote the corresponding variance due to the Q-value fluctuations. One obtains for the ratio of the out-of-plane to the in-plane widths:

$$
\sigma_{\text {evap }} / \sqrt{\sigma_{\text {evap }}^{2}+\sigma_{\text {fluct }}^{2}}=0.84
$$

for the ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ system. Here we have made use of the formula given for $\sigma_{\text {evap }}$ by Sikkeland and Viola ${ }^{11}$ (after some modification), and for $\sigma_{f l u c t ~}$ by Moretto. ${ }^{2}$

In Fig. 8 the in-plane and out-of-plane correlations are estimated with Gaussian functions (solid curve) having variances $\sqrt{\sigma_{\text {evap }}^{2}+\sigma_{\text {fluct }}^{2}}$, and $\sigma_{\text {evap }}$, respectively. The agreement between the data points and the solid curves is reasonable. A Monte Carlo calculation (dashed curves) which includes the detector acceptance angles gives somewhat better agreement with the experimental data.

This estimated ratio of the in-plane to out-of-plane widths results in a 16% correction in the evaluation of the cross section (section 3.3) but does not change the corrections for the energy threshold nor the evaluation of $E_{k i n}^{\prime C M}$ (section 3.2). The corresponding corrections are comparable (22% and 16% for the ${ }^{9} \mathrm{Be}+{ }^{40} \mathrm{Ca}$, and for the ${ }^{6} \mathrm{Li}+{ }^{40} \mathrm{Ca}$ systems, respectively.

Following the Monte Carlo procedure one can generate the energy spectra of particles and simulate event-by-event the number of singles and coincidences detected above some energy cutoff at different laboratory angles. In this way one can predict the shapes of both singles angular distributions and coincidence correlation functions measured in the laboratory system above the experimental energy cutoff:

$$
\begin{align*}
& {\left[N_{\text {singles }}(\theta, \phi)\right]_{\text {M.C. }}=\frac{N}{\sigma_{f}}\left[\frac{d \sigma}{d \Omega}(\theta, \phi)\right]_{\text {M.C. }} \Delta \dot{\Omega}} \tag{2}\\
& {\left[N_{\text {coinc }}\left(\theta_{1}, \theta_{2}, \phi_{1}, \phi_{2}\right)\right]_{\text {M.C. }}=\frac{N}{\sigma_{f}}\left[\frac{d^{2} \sigma\left(\theta_{1}, \theta_{2}, \phi_{1}, \phi_{2}\right)}{d \Omega_{1} d \Omega_{2}}\right]_{M . C .} \Delta_{1} \Delta \Omega_{2}} \tag{3}
\end{align*}
$$

Here, $\left[\frac{d \sigma}{d \Omega}\right]_{\text {M.C. }}$ is the differential cross section assumed in the Monte Carlo calculation, σ_{f} is the total cross section for a symmetric mass split having the angular distribution $\left[\frac{d \sigma}{d \Omega}\right]_{\text {M. }} . ; \Delta \Omega_{\Omega}, \Delta \Omega_{1}$, and $\Delta_{\Omega_{2}}$ are the solid angles of the detectors; and N is the number of Monte Carlo drawings. If proper values are chosen for $E_{k i n}^{\prime} C M, S^{2}, \frac{d \sigma}{d \Omega}$, and for the experimental energy cutoffs, then

$$
\left[N_{\text {singles }}(\theta, \phi)\right]_{\text {experiment }}=\left[N_{\text {singles }}(\theta, \phi)\right]_{\text {M.C. }}
$$

and

$$
\left[N_{\text {coinc }}\left(\theta_{1}, \theta_{2}, \phi_{1}, \phi_{2}\right)\right]_{\text {experiment }}=\left[N_{\text {coinc }}\left(\theta_{1}, \theta_{2}, \phi_{1}, \phi_{2}\right)\right]_{\text {M.C. }}
$$

In this case, the value of σ_{f} assumed in the Monte Carlo calculation is the best estimate of the true cross section.

The predictions of the Monte Carlo simulation are compared to experimental data in Fig. 2 (energy spectra), and in Figs. 6 and 7 (angular correlations). For reasonable values of S^{2} the agreement is good. Calculations were performed for a number of different values of S^{2} and showed that the angular correlation data are more sensitive to S^{2} than are the energy spectra. The best fit values of S^{2} are listed in Table 2. The S^{2} values are similar for the ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ system at both bombarding energies. At other bombarding energies, linearly interpolated (or extrapolated) values of S^{2} were used.

The value of S^{2} for the reaction ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ which gives the best agreement with the data is $\sim 8 \times 10^{-5} \mathrm{c}^{2}$; the excitation energy of each primary fragment (${ }^{26} \mathrm{Al}$) is centered at about 50 MeV for the 186 MeV bombarding energy. A comparison of these extracted widths, S^{2}, can be made with those obtained from the decay of ${ }^{26} A 1$ formed by the fusion of ${ }^{12} \mathrm{C}+{ }^{14} \mathrm{~N}$ (ref. 10). The corresponding widths for evaporation residues of $Z=10$ in this case are $4 \times 10^{-5} c^{2}$ at $\mathrm{E}^{\star}=40 \mathrm{MeV}$ and $29 \times 10^{-5} \mathrm{C}^{2}$ at $\mathrm{E}^{\star}=83 \mathrm{MeV}$. Thus, these values bracket those obtained in fitting the binary reaction products from the ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ reaction.

As seen in Figs. 4 and 10a, the Monte Carlo predictions (solid lines) agree well with the $186 \mathrm{MeV}{ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ angular distributions, except at laboratory angles smaller than about 25° where a forward peaked component is seen. This component becomes stronger when the incident ${ }^{12} \mathrm{C}$ energy decreases. For $74 \mathrm{MeV}{ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ and the ${ }^{6} \mathrm{Li},{ }^{9} \mathrm{Be}+{ }^{40} \mathrm{Ca}$ systems, it extends out to an angle of about 40°.

It should be pointed out that in the Monte Carlo calculations a $1 / \mathrm{sin}$ ${ }^{\theta} C M$ shape of the angular distribution was assumed for the primary fragments, and that this resulted in a good agreement with experimental data over a quite wide range of laboratory angles. For $185 \mathrm{MeV}{ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ system and $\mathrm{Z}=11$ this range is from 20° to 60°. After taking into account the evaporation effects this corresponds roughly to a range of CM angles of $45^{\circ}-115^{\circ}$.

3.2 CM kinetic energy of the fragments

For a symmetric mass split, the primary reaction angle $\theta_{S S}^{\prime}$ is simply related to $E_{k i n}^{C C M}$ by

$$
\begin{equation*}
E_{k i n}^{\prime C M}=\frac{1}{2} \frac{A_{p}}{A_{p}+A_{T}} E_{p} \tan ^{2} \theta_{S S}^{\prime}, \tag{5}
\end{equation*}
$$

here A_{p} and A_{T} denote the mass numbers of the projectile and target nuclei and E_{p} is the incident energy. In our coincidence experiment, we measure $\theta_{S S}$, the position of the maximum in the correlation curve, $\theta_{1}=\theta_{2}$. As can be seen from Fig. 6a the position of this maximum is not very sensitive to the value of S^{2}. It is also relatively insensitive to the value of the experimental energy cutoff (see Fig. 11b). Consequently, one can conclude that

$$
\begin{equation*}
\theta_{S S} \simeq \theta_{s s}^{\prime} \tag{6}
\end{equation*}
$$

The determination of $E_{k i n}^{\prime C M}$ from the measured value of. $\theta_{\text {Ss }}$ using Eq. 5, and from a fit of the Monte Carlo calculations to the singles energy and coincidence distributions leads to similar results (see Table 2).

3.3 Cross sections

The total cross section σ_{f} for the symmetric mass split was obtained by normalizing the Monte Carlo curve to the experimental angular distribution (Eq. 2), or to the experimental angular correlation (Eq. 3). Operationally, the symmetric mass split was defined to be the yield in a bin three charge units wide centered at $Z_{\text {sym }}=1 / 2\left(Z_{p}+Z_{T}-\Delta Z\right)$ where ΔZ was the average charge loss due to evaporation. Table 3 contains values of σ_{f} obtained from both the coincidence and singles measurements. Figure 12 presents the energy dependence of σ_{f} measured for the ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ system over the bombarding range of 74 to 186 MeV . For this reaction the symmetric yield deduced from the singles and coincidence data agrees within the errors. On the other hand, the ${ }^{9} \mathrm{Be}+{ }^{40} \mathrm{Ca}$ and ${ }^{6} \mathrm{Li}+{ }^{40} \mathrm{Ca}$ inclusive results exceed the coincidence cross sections by factors of 2 and 4 , respectively. This indicates that the singles
data for these latter reactions have contributions from processes other than symmetric splitting of an equilibrated system. These other processes seem to be stronger at forward angles (Fig. 10b, c) for the ${ }^{6} \mathrm{Li},{ }^{9} \mathrm{Be}+{ }^{40} \mathrm{Ca}$ systems and at lower incident energies (Fig. 4) for the ${ }^{12} C+{ }^{40} \mathrm{Ca}$ system.

4. Discussion

The measurements presented in this work clearly demonstrate the existence of symmetric or nearly symmetric decay of the three light systems investigated: ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca} \rightarrow{ }_{26}^{52} \mathrm{Fe}{ }^{*},{ }^{9} \mathrm{Be}+{ }^{40} \mathrm{Ca} \rightarrow{ }_{24}^{49} \mathrm{Cr}{ }^{*}$ and ${ }^{6} \mathrm{Li}+{ }^{40} \mathrm{Ca} \rightarrow{ }_{23}^{46} \mathrm{~V}^{*}$. The corresponding cross sections for the symmetric decay decrease from about $27 \mathrm{mb} / 3 Z$ for ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ at 186 MeV to about $6 \mathrm{mb} / 32$ for ${ }^{6} \mathrm{Li}+{ }^{40} \mathrm{Ca}$ at 153 MeV (see Table 3).

The excitation function for the reaction ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca} \rightarrow$ symmetric products exhibits a rapid increase with bombarding energy and then flattens out at higher energies (see Fig. 12). Such a dependence is suggestive of a compound nucleus process. Additional evidence that an equilibrated process is responsible for at least a large fraction of these symmetric products comes from the angular distributions. The higher energy ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ data, which are less susceptible to contamination problems, are consistent with the angular distribution expected from the decay of a long lived composite system (1/sin θ_{CM} in the vicinity of 90°).

These systems are characterized by high fission barriers. Since angular momentum enhances the fission probability, one expects that the l-wave distribution responsible for symmetric splitting must be weighted toward the higher incident angular momenta. For these systems, the critical angular momentum for complete fusion (${ }^{\mathrm{CFF}}$) is approximately $30 \hbar,{ }^{12}$ while the grazing angular momenta ($\ell_{g r}$) vary from $53 \hbar$ for ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ at 186 MeV to 30 h at 74.3 MeV. If these symmetric products originate from true compound nuclei, the mean ℓ-wave should be less than but near the critical value. On the other hand, the ℓ-wave region between ${ }^{\ell}$ CF and $\ell_{\text {gr }}$ may also be responsible for producing these fragments if there is a significant probability for a composite
system to form and survive long enough to diffuse towards mass symmetry and to rotate sufficiently to yield a $1 / \sin { }^{\theta} \mathrm{CM}$ angular distribution.

Evidence that the higher l-waves are responsible for the production of these fragments is also apparent from the measured kinetic energies. In Fig. 13 the experimental total kinetic energies or TKE (crossed hatched areas) are compared to liquid-drop model calculations. ${ }^{13,14}$ Since the saddle-toscission energy is negligible in this region, the TKE is made up of the Coulomb (E_{C}) and relative rotational (E_{R}) energies at the saddle point. As the angular momentum is increased, the saddle point stretches, reducing the Coulomb energy. However, due to the small moment of inertia of the light systems, the reduction in Coulomb energy is more than compensated for by the increase in rotational energy. As a result the predicted total kinetic energy increases with ℓ-wave, and becomes consistent with the data for $\ell \geq 30$. The importance of the rotational energy term in the TKE for light systems has been established previously by Natowitz et al. for deep inelastic reactions. ${ }^{15,16}$

It is also of interest to compare the TKE of these symmetric products to standard fission systematics. Viola and Sikkeland have measured $E_{k i n}^{\prime C M}$ for a number of nuclei between the rare earth and uranium region. The least square analysis of their and other available data ${ }^{16,17,18}$ gives:

$$
\begin{equation*}
2 E_{k i n}^{\prime C M}=0.1071 \mathrm{Z}^{2} / \mathrm{A}^{1 / 3}+22.2 \mathrm{MeV} . \tag{7}
\end{equation*}
$$

Here Z and A are the atomic and mass numbers of the composite system. According to Viola and Sikkeland this result is consistent with scission shapes corresponding to spheroids whose shapes minimize the total energy of the system.

For a system with $Z=0$, the total kinetic energy release should also be zero. Thus the Viola systematics, which were determined for large values of $Z^{2} / A^{1 / 3}$ and predict a substantial non-zero value for the total kinetic energy release at $Z^{2} / A^{1 / 3}=0$, must fail at small values of $Z^{2} / A^{1 / 3}$ like the present case. Nevertheless, it is interesting to see at what value of $Z^{2} / A^{1 / 3}$ the Viola systematics begin to deviate from the experimental data. The values of $2 E_{k i n}^{\prime} \mathrm{CM}$ measured in this work are plotted in Fig. 14 together with the data of Viola and Sikkeland. In fact the values of $2 E_{k i n}^{\prime} \mathrm{CM}$ measured in this work fall $20-30 \%$ below the best fit line to the data of Viola and Sikkeland.

In summary we have verified the existence of symmetric splitting for very light systems by utilizing coincidence techniques. The angular distributions imply a lifetime for the intermediate system equal to or greater than a rotational period. The measured excitation function for the ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ system is consistent with compound nucleus decay. Comparison of the experimental kinetic energies to liquid-drop model calculations indicate that the ℓ-waves responsible for these symmetric splittings are greater than ~ 30. .

Acknowledgements

Three of the authors (K.G., Z. M., and R.P.) would like to thank the Nuclear Science Division for the support and hospitality received during their visits at the Lawrence Berkeley Laboratory.

This work was supported by the Director, Office of Energy Research, Division of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098.

References

1. U. L. Businaro and S. Gallone, Nuovo Cim. 1, 629, 1277 (1955)
2. L. G. Moretto, Nuc1. Phys. A247, 211 (1975)
3. H. Oeschler, P.Wagner, J. P.Coffin, P. Engelstein, and B. Heusch, Phys. Lett. 87B, 193 (1979)
4. G. Guillarme, J. P. Coffin, F. Rami, P. Engelstein, B. Heusch, P. Wagner, P. Fintz, J. Barrette, and H. E. Wagner, Phys. Rev. C26, 2458 (1982)
5. R. Holub, M. Fowler, L. Yaffe, and A. Zeller, Nucl. Phys. A288, 291 (1977)
6. P. David, J. Debrus, H. Fahlbusch, and J. Schulze, Nucl. Phys. A319, 205 (1979)
7. R. Eggers, M. N. Namboodiri, P. Gonthier, and J. B. Natowitz, Cyclotron Institute, Texas A\&M University Report, 1980 (unpublished)
8. J. Brzychczyk, L. Freindl, K. Grotowski, Z. Majka, S. Micek, R. Planeta, M. Albinska, J. Buschman, H. Klewe-Nebenius, H. J. Gils, H. Rebel, and S. Zagromski, Nucl. Phys. A417, 174 (1984)
9. L. G. Moretto, S. K. Kataria, R. C. Jared, R. Schmitt, and S. G. Thompson, Nucl. Phys. A255, 491 (1975)
10. J. Gomez del Campo, R. G. Stokstad, J. A. Biggerstaff, R. A. Dayras, A. H. Snell, and P.H. Stelson, Phys. Rev. C19, 2170 (1970)
11. T. Sikkeland and V. E. Viola, Jr., Proc. of the Third Conference on Reactions Between Complex Nuclei, Ed. by A. Ghiorso, R. M. Diamond, and H. E. Conzett, 1963, p. 232.
12. W. Wilcke, J. R. Birkelund, H. J. Wollersheim, A. D. Hoover, J. R. Huizenga, W. U. Schröder, and L. E. Tubbs, Atomic Data and Nuclear Data Tables 25, 389 (1980)
13. S. Cohen, F. Plasil, and W. J. Swiatecki, Ann. of Phys. 82, 557 (1974)
14. • J. B. Blocki and W. J. Swiatecki, Nuclear Deformation Energies, LBL Rep. 12811 (1982)
15. R. Eggers, M. N. Namboodiri, P. Gonthier, K. Geoffroy, and J. B. Natowitz, Phys. Rev. Lett. 37, 324 (1976)
16. J. B. Natowitz, M. N. Namboodiri, R. Eggers, P. Gonthier, K. Geoffroy, R. Hanus, C. Towsley, and K. Das, Nucl. Phys. A277, 477 (1977)
17. V. E. Viola, Jr. and T. Sikkeland, Phys. Rev. 130, 2044 (1963)
18. V. E. Viola, Jr., Nucl. Data Tables Al, 391 (1966)

Figure Captions

Fig. 1. An E vs ΔE map for angle-integrated $\left(\theta_{1 a b}=20-70^{\circ}\right)$ reaction products from the $186 \mathrm{MeV}{ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ reaction illustrating the elemental resolution of the $\Delta E-E$ telescopes.

Fig. 2. Representative laboratory energy spectra (symbols) for symmetric products from the a) $186 \mathrm{MeV}{ }^{12} \mathrm{C}$, b) $141 \mathrm{MeV}{ }^{9} \mathrm{Be}$ and, c) $153 \mathrm{MeV}{ }^{6} \mathrm{Li}+$ ${ }^{40}$ Ca reactions. The curves are Monte Carlo calculations for different values of S^{2} (in units of $10^{-5} c^{2}$), the variance of the $C M$ velocity distribution (see text).

Fig. 3. Representative energy-integrated charge distributions of products from three reactions on a ${ }^{40} \mathrm{Ca}$ target: $186 \mathrm{MeV}{ }^{12} \mathrm{C}, 141 \mathrm{MeV}{ }^{9} \mathrm{Be}$ and 153 $\mathrm{MeV}{ }^{6} \mathrm{Li}$. The data have not been corrected for the experimental low energy cutoff.

Fig. 4. Inclusive laboratory angular distributions for typical symmetric products a) $Z=10$ and b) $Z=11$ from the ${ }^{12} C+{ }^{40} \mathrm{Ca}$ reaction at several bombarding energies. The curves are Monte Carlo angular distributions calculated with (solid) and without (dashed) the experimental energy cutoff (see discussion in text). Experimental cross sections corrected for the low energy cutoff can be obtained by multiplying the data points by the ratio of the dashed to solid curves.

Fig. 5. $A Z_{1}-Z_{2}$ correlation plot. The yield is proportional to the density of dots (see text). The upper and lower lines correspond to $Z_{1}+Z_{2}=20$ and $Z_{1}+Z_{2}=26$, respectively.

Fig. 6. In-plane angular correlation $\left(\theta_{1}=\theta_{2}\right)$ of symmetric products $\left(Z_{1}=Z_{2}\right)$ for four systems: a) $186 \mathrm{MeV}{ }^{12} \mathrm{C}$, b) $\left.121 \mathrm{MeV}{ }^{12} \mathrm{C}, \mathrm{c}\right)$ $141 \mathrm{MeV}{ }^{9} \mathrm{Be}$ and d) $153 \mathrm{MeV}{ }^{6} \mathrm{Li}+{ }^{40} \mathrm{Ca}$. The values of Z_{1} summed together are: 9-11, 10-12, 8-10 and 8-10, respectively. The data have not been corrected for the low energy cutoff. The curves are Monte Carlo
calculations for different values of S^{2} (in units of $10^{-5} c^{2}$, see text) and primary CM kinetic energies of the symmetric fragments of: a) 16.7 MeV , b) $17.3 \mathrm{MeV}, ~ c) ~ 15.0 \mathrm{MeV}$ and d) 14.3 MeV . The shape of the calculated curves is unaffected by the low energy cutoff.
Fig. 7. In-plane angular correlation of symmetric products from a ${ }^{40} \mathrm{Ca}$ target for fixed θ_{1} and the Z_{2} gate wide enough to accept all residues of the complimentary fragments: a) $186 \mathrm{MeV}{ }^{12} \mathrm{C}, \theta_{1}=40^{\circ}$; b) $121.2 \mathrm{MeV}{ }^{12} \mathrm{C}, \theta_{1}=46.5^{\circ}$; c) $141 \mathrm{MeV}{ }^{9} \mathrm{Be}, \theta_{1}=46^{\circ}$; d) $153 \mathrm{MeV}{ }^{6} \mathrm{Li}$, $\theta_{1}=50^{\circ}$. The curves are Monte Carlo calculations for the same parameters used in Fig. 6.
Fig. 8. Measured a) in- and b) out-of-plane correlation for the ${ }^{12} C+$ ${ }^{40}$ Ca system. The solid curve is a Gaussian which includes contributions to its width from $\sigma_{\text {evap }}$ and $\sigma_{\text {fluct }}$ (see discussion in text). The dashed curve is a Monte Carlo calculation with $S^{2}=8.4 \times$ $10^{-5} \mathrm{C}^{2}$ and $\mathrm{E}_{\mathrm{k} \text { in }}^{\prime \mathrm{CM}}=16.7 \mathrm{MeV}$.
Fig. 9. A velocity vector diagram of the symmetric decay process showing the effect of particle evaporation on the secondary velocities.

Fig. 10. Inclusive laboratory angular distributions for symmetric products from a) $186 \mathrm{MeV}{ }^{12} \mathrm{C}$, b) $141 \mathrm{MeV}{ }^{9} \mathrm{Be}$ and c) $153 \mathrm{MeV}{ }^{6} \mathrm{Li}+{ }^{40} \mathrm{Ca}$. The curves are Monte Carlo angular distributions calculated with (solid) and without (dashed) the experimental energy cutoff, $E_{t h}$ and values of $E_{k i n}^{\prime C M}=16.7,15.0,14.3 \mathrm{MeV}$ for a$), \mathrm{b}$) and c), respectively.
Fig. 11. Angular correlation ($\theta_{1}=\theta_{2}$) of symmetric products for the 186 MeV ${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ system. The curves are Monte Carlo calculations showing the dependence of the maximum in the correlation on a) the CM kinetic energy and b) the experimental cutoff. The effect of the lower energy cutoff is small.

Fig. 12. Measured cross section of symmetric products ($Z=9-11$) from the ${ }^{12} C+{ }^{40} C a$ reaction for several bombarding energies. The circles represent inclusive measurements and the squares coincidence measurements. The solid line is drawn through data points in order to guide the eye.

Fig. 13. Comparison of the extracted primary total kinetic energy for both the 186 MeV and $121 \mathrm{MeV}{ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}$ reactions (hatched areas) to a liquid drop model calculation. ${ }^{14}$ The separate contributions for the Coulomb and rotational energies are indicated by dashed curves. The calculated total kinetic energy is indicated by the solid curve. Note the suppressed zero on the ordinate scale.
Fig. 14. Total kinetic energy for fission as a function of $z^{2} / A^{1 / 3}$ of the composite system. The data of Viola ${ }^{18}$ (solid circles) are in the upper right of the figure and the data from the present work (open circles) are shown in the lower left. The solid line is a fit ${ }^{18}$ to the data of Viola (see text).

Table 1
Some parameters which characterize the reaction systems investigated in this work.

Reaction	$E_{L A B}(\mathrm{MeV})$	$E_{C M}(\mathrm{MeV})$	$A_{T}-A_{p}$ $A_{T}+A_{p}$	fissility X
${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca} \rightarrow{ }^{52} \mathrm{Fe}^{*}$	186	143	0.54	0.25
${ }^{9} \mathrm{Be}+{ }^{40} \mathrm{Ca} \rightarrow{ }^{49} \mathrm{Cr*}$	141	115	0.63	0.23
${ }^{6} \mathrm{Li}+{ }^{40} \mathrm{Ca} \rightarrow{ }^{46} \mathrm{~V} *$	153	133	0.74	0.23

Table 2
The values of S^{2} and $E_{k i n}^{\prime C M}$ values obtained from the singles and coincidence measurements.

Reaction	$s^{2}\left(10^{-5} c^{2}\right)$	$E_{\mathrm{kin}}^{\prime} \mathrm{CM}(\mathrm{MeV})$ [singles]	$E_{\mathrm{kin}}^{\prime} \mathrm{CM}(\mathrm{MeV}) \text { [coincidence] }$
${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}, \begin{aligned} & 186 \mathrm{MeV} \\ & 121.2 \mathrm{MeV} \end{aligned}$	$\begin{aligned} & 8.4 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 16.7 \pm 1 \\ & 17.3 \pm 1.5 \end{aligned}$	$\begin{array}{r} 15.1 \\ 17.0 \end{array}$
${ }^{9} \mathrm{Be}+{ }^{40} \mathrm{Ca}, 141 \mathrm{MeV}$	5.6	15.0 ± 2.5	14.8
$6_{L i}+{ }^{40} \mathrm{Ca}, 153 \mathrm{MeV}$	5.6	14.3 ± 3.5	14.5

Table 3
The σ_{f} cross section for products in a bin three charge units wide centered at symmetry from coincidence and from singles measurements.

Reaction	$\begin{gathered} \sigma_{\mathrm{f}}[\mathrm{mb}] \\ {[\text { coincidences }]} \end{gathered}$	$\begin{gathered} \sigma_{f}[\mathrm{mb}] \\ {[\text { singles }]} \end{gathered}$
${ }^{12} \mathrm{C}+{ }^{40} \mathrm{Ca}, 186 \mathrm{MeV}$	21.6 ± 3.4	27.7 ± 4.2
121.2 MeV	17.2 ± 6.8	16.5 ± 3.6
184.7 MeV		25.9 ± 5.9
161.9 MeV		23.3 ± 5.4
131.9 MeV		12.9 ± 3.4
74.3 MeV		2.2 ± 0.5
${ }^{9} \mathrm{Be}+{ }^{40} \mathrm{Ca}, 141 \mathrm{MeV}$	6.1 ± 1.2	11.6 ± 1.7
$6_{\mathrm{Li}}+{ }^{40} \mathrm{Ca}, 153 \mathrm{MeV}$	5.6 ± 1.4	21.9 ± 3.5

Fig. 1

Xbl 844.10330

Fig. 2

Fig. 3

Fig. 4

Fig. 5

XBL 844-10336

Fig. 6

Fig. 7

Fig. 8

XBL 844-10329

Fig. 9

Fig. 10

Fig. 11

XBL 344-10327

Fig. 12

XBL 844-10334

Fig. 13

XBL 844-10337

Fig. 14

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

TECHNICAL INFORMATION DEPARTMENT LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720

