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Through the measure of thousands of small-molecule metabolites in diverse biological systems, 

metabolomics now offers the potential for new insights into the factors that contribute to complex 

human diseases such as cardiovascular disease. Targeted metabolomics methods have already 

identified new molecular markers and metabolomic signatures of cardiovascular disease risk 

(including branched-chain amino acids, select unsaturated lipid species, and trimethylamine-N-
oxide), thus in effect linking diverse exposures such as those from dietary intake and the 

microbiota with cardiometabolic traits. As technologies for metabolomics continue to evolve, the 

depth and breadth of small-molecule metabolite profiling in complex systems continue to advance 

rapidly, along with prospects for ongoing discovery. Current challenges facing the field of 

metabolomics include scaling throughput and technical capacity for metabolomics approaches, 

bioinformatic and chemoinformatic tools for handling large-scale metabolomics data, methods for 

elucidating the biochemical structure and function of novel metabolites, and strategies for 

determining the true clinical relevance of metabolites observed in association with cardiovascular 

disease outcomes. Progress made in addressing these challenges will allow metabolomics the 

potential to substantially affect diagnostics and therapeutics in cardiovascular medicine.

Keywords

AHA Scientific Statements; cardiovascular diseases; metabolome; metabolomics

Substantial technical advances have enabled robust and comprehensive profiling of 

molecular markers in the study of human health and disease. These advances have led to 

refinement in the application of genomic, epigenetic, transcriptomic, proteomic, and 

metabolomic tools in clinical studies designed to elucidate disease pathobiology, to identify 

clinically relevant biomarkers, and to guide therapy. Metabolomics, among the most recently 

emerged “omics” fields, involves the systematic measure and study of small-molecule 

metabolites across biological systems using biosamples that include plasma, urine, saliva, 

and tissues. Metabolomics serves as a reflection of gene and protein functional activity and, 

in doing so, captures information that is proximal to a given disease phenotype while 

spanning the spectrum from genetic sequence to cellular physiology. Therefore, 

metabolomics offers the potential to complement other cellular measures, including the vast 

genetic information derived from DNA sequencing in humans. Notably, whereas the genetic 

sequence is largely static from birth, metabolomic measures are relatively dynamic, 

representing cellular activity and the effects of extrinsic exposures, including dietary intake, 

physical fitness, microbiota variation, and toxicant exposures. The ability to integrate 

measures of both intrinsic and extrinsic origin, as well as their interplay, may effectively 

bridge investigations of both gene and environment and will be critical for understanding 

complex, multifaceted human diseases such as cardiovascular disease (CVD). Accordingly, 

the rich small-molecule metabolite data represented by an individual’s metabolome, along 

with the chemical diversity of population-scale metabolomes, could lead to key 

pathobiological insights and offer powerful tools for personalizing risk assessment and 

disease prevention. In this American Heart Association scientific statement, we aim to 

provide an overview of the rapidly evolving field of metabolomics, its applications to date 

for understanding CVD, and its future role in biomedicine. Instead of comprehensively 

reviewing technical metabolomics, which has been offered by prior reports, we sought 
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herein to highlight for the scientific community the key issues and challenges relevant to the 

application of metabolomics, including those related to metabolite standards, databases and 

identification, study design, bioinformatics, and clinical translation.

Metabolomics Approaches

A range of technical approaches have been used for the analysis of metabolites in 

biospecimens, including nuclear magnetic resonance (NMR) and mass spectrometry (MS). 

These analytical tools have been extensively reviewed elsewhere.1,2 Although each tool has 

its own strengths and detractions, both are capable of assaying metabolites in a number of 

biofluids and tissues. NMR typically requires minimal sample processing and provides 

absolute quantitation of analytes, but it is limited by sensitivity and thus generally allows 

measurement of only the most abundant of metabolites. By contrast, MS-based 

metabolomics can involve direct infusion into a mass spectrometer or, more routinely, 

coupling to upfront chromatography, either liquid chromatography (LC) or gas 

chromatography, to reduce sample complexity before mass analysis. Additionally, both LC-

MS and gas chromatography–MS require sample preparation with extraction of metabolites 

from complex specimens and, in many cases, even chemical processing before assay. 

Necessary preprofiling procedures notwithstanding, MS-based approaches offer a much 

greater range of detection with high sensitivity, allowing the measure of up to thousands of 

small molecules at a given time. Such MS-based approaches may be operated either in a 

“targeted” fashion, with detection of prespecified molecules (typically up to 100–200 

metabolites at a time), or as part of an “untargeted” full scan, in discovery mode without 

prespecification of molecules (typically measuring >1000 molecules at a time). Thus, 

advancing from NMR to targeted MS to untargeted MS approaches provides increasing 

analytical coverage and hence greater discovery potential. However, with a greater number 

of measures come additional analytical and computational hurdles. These challenges include 

those pertaining to alignment of data to allow comparison of specific metabolites across 

hundreds to thousands of samples, handling and extraction of large spectral data files, and 

ultimately the definitive identification of metabolites of interest (discussed below in Current 

Applications).

Metabolomics Discoveries in CVD

Although still early in its technical and scientific evolution, metabolomics and its application 

to the study of clinical CVD have already demonstrated substantial potential for discovery 

and insight.

Metabolite Correlates of CVD

An overview of clinical studies of metabolomics in CVD is provided in Table 1. Early 

metabolomics studies made use of NMR-based approaches to distinguish individuals with 

multivessel coronary artery disease (CAD) from individuals without angiographic CAD 

using spectral fingerprint patterns.3 Although initially promising with reportedly >90% 

predictive power for identifying patients with CAD from control subjects, spectral 

fingerprint data were in hindsight more reflective of sex and statin medication use than 

independent correlates of CAD.4 These results underscore the need for comprehensive 
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follow-up to identify signatures of a potential cause rather than a consequence of disease, 

careful chemistry to annotate metabolite peaks, and statistical evaluation of potential 

confounders that can influence dynamic metabolomic signals. A later study used a targeted 

tandem MS (MS/MS) approach to identify and quantify 69 metabolites in individuals with 

angiographic CAD, revealing higher levels of branched-chain amino acids (BCAAs) in 

association with CAD even after adjustment for cardiovascular risk factors.7,13 

Subsequently, high-throughput NMR measures of 68 abundant plasma metabolites, 

performed in a multicohort epidemiological study (including the National Finnish FINRISK 

study, Southall and Brent Revisited Study, and British Women’s Health and Heart Study), 

showed that higher phenylalanine and monounsaturated fatty acid levels were associated 

with increased CVD risk, whereas higher concentrations of omega-6 fatty acids and 

docosahexaenoic acid were associated with lower risk of CVD over a follow-up period 

spanning decades. Importantly, these observations were validated not only in multiple 

independent cohorts but also with orthogonal targeted MS approaches applied to an 

additional 2000 participants from the Framingham Offspring Study, demonstrating the 

potential for generalizability and validity of metabolomic observations.16

Untargeted, also known as nontargeted, MS-based analyses have now extended the measure 

from several dozen to several thousand metabolites in a single sample. Recent applications 

of LC-MS have identified 4 unsaturated lipids (lysophosphatidylcholine 18:1, 

lysophosphatidylcholine 18:2, monoglyceride 18:2, and sphingomyelin 28:1) in association 

with CVD independently of traditional risk factors in the TwinGene cohort; these findings 

were then validated in the ULSAM (Uppsala Longitudinal Study of Adult Men) and PIVUS 

(Prospective Investigation of the Vasculature in Uppsala Seniors) cohorts.14 Using 

alternative untargeted LC-MS approaches, others have assessed thousands of metabolite 

features in a small cohort of CVD cases and controls; the metabolite trimethylamine-N-

oxide (TMAO) was observed to be highly associated with CAD, and this finding was 

validated in multiple large cohorts in models adjusting for clinical risk factors.8,11 

Interestingly, TMAO was found to be produced by the interaction of gut bacteria with 

dietary intake of phosphatidylcholine and carnitine, components typically overrepresented in 

a meat-based diet.8,10,17 Furthermore, supplementation with TMAO or intermediary 

metabolites involved in the production of TMAO, including γ-butyrobetaine, was found to 

promote atherosclerosis formation in mice.8,18 Although the exact mechanisms underlying 

the atherosclerosis-promoting effects of TMAO and related metabolites have yet to be 

defined, initial work has suggested that TMAO may regulate sterol metabolism and promote 

macrophage foam cell formation.8

Collectively, the breadth and depth of metabolomics studies conducted over the past decade 

have begun to reveal previously unappreciated factors that may contribute to the 

pathogenesis of CVD, including dietary factors and gut microbiota variation. As the number 

of human investigations with metabolomics profiling data available has expanded, studies 

have begun to associate circulating metabolites not only with global CVD outcomes7,9 but 

also with specific CVD subtypes, including myocardial ischemia and infarction,5 congestive 

heart failure,6,12 and stroke.15
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Metabolite Correlates of Cardiometabolic Risk Factors

Overall, CVD represents a complex collection of multifactorial disease states and risk 

factors. Thus, to complement the study of the end-disease phenotypes, extensive 

complementary efforts have been made to understand the pathophysiology of more well-

circumscribed risk factors. As seen in other “omics” fields, research focused on individual 

CVD risk factors can yield more specific information on potential pathways to disease 

progression. For instance, metabolomics studies of traditional risk factors have identified 

both plasma and urinary metabolite correlates of blood pressure and hypertension. These 

include amino acids such as alanine,19,20 hippuric acid derivatives of gut microbial activity,
19,21 and hexadecanedioate, a dicarboxylic acid that has also been associated with mortality.
22 Given the established importance of lipids (including triacylglycerides and cholesterol-

based species) to CVD pathobiology, lipidomic correlates of conventional cholesterol 

subfractions (eg, high-density lipoprotein, low-density lipoprotein, and very low-density 

lipoprotein) have also been the subject of multiple investigations.23–26 Studies to date have 

demonstrated varying degrees of intercorrelation among lipid species, underscoring the 

potential of lipidomic variation to shed important insights into cardiovascular risk that are 

not reflected by traditional lipid measures alone.27,28

Perhaps the most consistent and developed finding with respect to cardiometabolic risk traits 

has been the link between BCAAs with insulin resistance and type 2 diabetes mellitus. 

BCAAs and related metabolites have been associated with insulin resistance in several 

cohorts,29–31 and an investigation in the Framingham Heart Study observed that baseline 

levels of circulating BCAAs predicted the development of diabetes mellitus up to 12 years 

later.32 In another study, BCAA levels were found to decrease more after bariatric surgery 

than after behavioral weight loss, even for an equivalent amount of weight lost,33 paralleling 

the greater impact of surgical weight loss on glucose homeostasis. Furthermore, BCAAs 

appear lower in metabolically healthy versus metabolically unwell overweight/obese 

individuals34 and can predict improvement in insulin resistance with weight loss.35 Studies 

in rats suggest that dietary supplementation of high-fat diets with BCAAs can promote 

insulin resistance regardless of weight gain.29 In humans, changes in circulating BCAA 

levels have been independently associated with CVD, adding further to the growing body of 

data pointing to common metabolic disturbances giving rise to both diabetes mellitus and 

CVD.7,13 Although the mechanistic underpinnings of these findings to date remain unclear, 

recent work has raised the intriguing possibility that elevated BCAAs may originate from 

gut microbiota rather than from endogenous sources. In identical twins discordant for 

obesity,36 fecal microbiota transplantation from the obese twin into germ-free mice led to 

increased total body and fat mass and the development of obesity-associated metabolic 

phenotypes; these results stood in contrast to those in mice transplanted with microbiota 

from the lean twin.36 Transplantation of microbiota from obese twins was also associated 

with increased expression of genes involved in metabolism of BCAAs and higher BCAA 

levels in serum, again offering support for a possible unifying source of risk for obesity, 

diabetes mellitus, and CVD.

Metabolomics research has also focused on lifestyle behaviors that can alter the natural 

history of CVD, including exercise- and diet-based interventions, given their pleiotropic role 
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in attenuating the effects of multiple traditional risk factors. Anticipating that metabolite 

profiles will differ on the basis of the timing and duration of physical activity, both short-

term and long-term studies have sought to characterize the biochemical response to exercise. 

Early studies by Lewis et al have shown that the acute response to an exercise stress test 

involves an increase in plasma markers of glycogenolysis, lipolysis, and adenine nucleotide 

catabolism, in addition to an increase specifically in concentrations of amino acids, span 2 

tricarboxylic acid cycle intermediates, and niacinamide, a modulator of insulin release and 

glycemic control.37 Metabolite changes after prolonged exercise (ie, marathon running) have 

been correlated with a further increase in markers of lipolysis, an increase in products of 

ketogenesis, and a marked downturn in concentrations of most amino acids. Huffman et al38 

studied previously sedentary individuals undergoing 6 months of aerobic exercise and 

observed that inactive overweight to obese adults who underwent exercise training had 

improved insulin sensitivity that was associated with increased plasma glycine, proline, and 

alanine levels, as well as increased concentrations of free fatty acids and products of fatty 

acid oxidation. More recently, studies of adult twin pairs and age- and sex-matched pairs of 

unrelated adults have found that more active individuals have better lipoprotein cholesterol 

profiles and higher levels of polyunsaturated relative to saturated fatty acids.39 

Corroborating the findings from studies of cardiometabolic disease and diabetes mellitus, 

Kujala et al39 also found that the BCAA isoleucine was lower in active than inactive 

individuals, with similar findings for valine, tyrosine, and phenylalanine. With respect to 

diet, comparatively fewer investigations have been reported, in part because of the relatively 

greater challenge of analytically disentangling nutrient from nonnutrient signals detectable 

in biofluids.40 Nonetheless, a recent experimental study demonstrated the potential of a 

high-choline or L-carnitine diet in mice to inhibit intestinal microbial production of 

trimethylamine,41 a previously reported correlate of cardiometabolic risk. Follow-up 

preclinical and human studies are needed to further clarify the potential for dietary changes 

to induce metabolomic variation that, in turn, affects clinical outcomes.

Moving forward, it will be important for all study results to be validated by independent 

groups in different clinical populations, to delineate causality of CVD risk-related 

metabolites in experimental models, and to define the biological mechanisms by which these 

metabolites either promote or attenuate atherogenesis. For metabolites meeting this high bar, 

it will be essential to determine whether their dietary or pharmacological modulation alters 

both metabolomic signatures and the associated natural history of CVD in humans. In 

addition to shedding light on fundamental mechanisms of disease, changes in the human 

metabolome may serve as indicators of how efficacious a given cardiovascular intervention 

may be and could even elucidate the molecular basis for such efficacy (ie, 

pharmacometabolomics).42 Kitzmiller et al43 demonstrated that multiple metabolic 

pathways, including those involving the microbiome, potentially contribute to the low-

density lipoprotein cholesterol lowering efficacy and the pleiotropic effects of simvastatin. 

Another study investigating the differential response of hypertensive patients to the β-

blocker atenolol demonstrated that the variability in metabolic pathways is a function of race 

and genotype.44 Although still early in its infancy, pharmacometabolomics could prove 

important for personalizing CVD therapy.
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Current Applications

Although broad-scale metabolomics assays have not been approved by the US Food and 

Drug Administration for clinical purposes, MS is routinely used under US Food and Drug 

Administration approval to measure a variety of select compounds or metabolites in clinical 

laboratories, as shown in Table 2. The main criteria required to deploy an assay in clinical 

practice are safety and efficacy. A review of the US Food and Drug Administration’s 

perspective on clinical MS provides several examples of pathways leading to approved 

diagnostic tests.45 In the research setting, metabolomics data have been used primarily to 

classify different populations with respect to presence or absence of disease or with respect 

to risk for disease. For metabolomics to be used in the clinical setting for individual patients, 

substantial evidence will be required to demonstrate that metabolomics data are indeed 

effective for providing either a diagnosis or information that will optimize therapy. Some of 

the potential requirements for transitioning metabolomics from a research to a clinical 

practice application are shown in the Appendix.

A key issue concerning the possible future translation of metabolomics from research to 

clinical practice is the fact that most laboratory data used for patient care involve 

quantification of results expressed as concentration units (absolution quantification); most 

metabolomics data are currently expressed as a percent increase/decrease relative to a 

reference population (relative quantification). In the clinical laboratory, quantitative 

measurements are very tightly controlled. By contrast, metabolomics data are collated, 

analyzed, and reported from different laboratories using a variety of methods. Accordingly, 

quality control systems for relative quantification need to be developed before metabolomics 

can transition to routine clinical practice. One approach to this challenge could be to develop 

quantification relative to an analyte that is present in all samples, as is currently done when 

quantifying the percent of glycated hemoglobin for monitoring diabetes mellitus therapy. 

Nonetheless, controlling data from multiple different sources also poses challenges with 

regard to standardized analytical practices. Thus, for metabolomics to migrate from a 

research application to a patient care application, major investments in infrastructure will be 

required. An example of this kind of structure is the Clinical Proteomic Tumor Analysis 

Consortium of the National Cancer Institute for developing proteomics platforms.46

Study Design and Technical Considerations

The challenges pertaining to translation notwithstanding, several key study design and 

technical considerations are also required for successful implementation of metabolomics 

approaches in research (Table 3). The type of study subjects, size of the study cohort, and 

availability of appropriate control subjects are all important factors for evaluating the extent 

to which there is adequate statistical power for detecting associations between metabolites 

and a given outcome of interest (Data Analyses and Data Reporting below). Investigators 

should also carefully review the quality of the collection and storage of biospecimens for 

proposed metabolomics profiling because some types of analytes may be at risk for at least 

partial degradation under certain sample handling conditions. Because variation in 

metabolites may be related to a range of exogenous and endogenous factors, data collection 
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on study subjects should ideally include information about medication use, dietary patterns, 

and environmental exposures, as well as concomitant clinical conditions.

With respect to the technical aspects of metabolomic profiling, it should be decided at the 

outset whether a targeted or untargeted approach will be used, along with the most 

appropriate quality control methods. If a targeted approach is selected, the extent to which 

candidate analytes will be measured as part of a hypothesis-driven analysis should be 

prespecified. For example, if BCAAs and acylcarnitines are to be analyzed to test a given 

hypothesis, a variety of targeted analytical platforms are available, including commercial 

kits that can provide validated quantitative values. Given their feasibility and accessibility, 

targeted MS approaches have been used in the majority of CVD studies published to date. 

However, studies geared toward generating novel hypotheses or discovering disease-stage 

specific biomarkers are more likely to benefit from an untargeted approach that offers the 

simultaneous measurement of all detectable metabolites in a given biospecimen. Because of 

the widespread availability and robustness of accurate mass spectrometers, such instruments 

are often used for study designs based on untargeted metabolomics. Notably, an untargeted 

approach does not exclusively require accurate mass analyses that provide part-per-million 

mass accuracy. In fact, biomarker discovery and biomarker identification can logically be 

separated into 2 different objectives within a given research study. For example, a 

multitargeted method for specific compounds could be used in conjunction with untargeted 

(full scan) data acquisitions with a nominal mass instrument. After identification of 

metabolites of potential clinical importance, an in-depth secondary analysis can be 

conducted with an accurate mass instrument. Furthermore, although untargeted analysis is 

generally considered unbiased, as is the case with virtually all scientific approaches, it too is 

inherently biased with respect to the types of metabolites (ie, hydrophobic versus 

hydrophilic) extracted from complex specimens given the use of specific organic solvents 

and the chemical class of molecules assayed with specific chromatography techniques. For 

example, if an LC reversed-phase C18 column is used, hydrophilic compounds will not be 

well retained. Such an untargeted method would be unable to distinguish the presence and 

abundance of hexose isomers (eg, common molecules such as fructose and galactose) and 

hexoses that are rarely reported (eg, tagatose, allose, or idose). Alternatively, such 

metabolites are easily separated by gas chromatography when detected in human biofluids. 

Therefore, comprehensive and unbiased interrogation of the human metabolome will likely 

require multiple complementary methods.

Bioinformatics and Statistical Considerations

As seen with genomics, the promise of any profiling technology is fully realized only in the 

setting of a computational infrastructure that is capable of managing the vast amount of 

high-dimensional data generated. Robust approaches for storage, integration, statistical 

analyses, and visualization of metabolomics data remain in the early stages of development. 

Thus, the need for data tools is of particular importance in dealing with untargeted 

metabolomics, in which both the volume and complexity of data can scale by multiple 

orders of magnitude, especially when applied to large population-level studies.
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Data Processing—Central to metabolomics is the actual collection and handling of either 

MS or NMR data. Particularly with mass spectra, data processing can involve a number of 

critically important steps, including filtering background noise, detecting and defining 

thousands of spectral peaks from a single sample, and aligning spectra across multiple 

samples to allow comparison of metabolite features across sample groups. Although dozens 

of open-source and commercial tools have been used to process and report the results of 

MS- or NMR-based metabolomics data,47 there remains little uniformity or standardization 

from platform to platform, often complicating efforts to perform independent replication of 

metabolomics findings.

Data processing and robust analyses are much more difficult for untargeted metabolomics 

than for targeted metabolomics. Existing widely used software packages have recognized 

limitations, including the most recent version of MS-DIAL, which can be used for data-

independent mass fragmentations (SWATH-type data acquisitions), and classic software 

such as MZmine or XCMS. Although MS-DIAL excels in combining the different adducts 

and potential in-source fragments of all compounds on the level of intact molecules, in 

contrast to simple mass-to-charge (m/z) and retention time (rt) feature-finding software such 

as XCMS, MS-DIAL has not yet been benchmarked against alternative software (eg, 

MZmine) with respect to achieving lower rates of false-negative and false-positive peak 

finding results. Accordingly, caution is advised in the interpretation of reports of thousands 

of distinct metabolites present in a single LC-MS run, which may result from poor software 

performance and a high number of chemical noise peaks that are not derived from a truly 

biological background. As the field of metabolomics continues to advance, so too will data 

processing approaches as part of ongoing collective efforts to ensure the robustness and 

reproducibility of findings across laboratories.

Data Analyses—Similar to issues in data processing, there currently exists little 

uniformity in the biostatistical management and analysis of metabolomics data. Statistical 

challenges for handling and analyzing metabolomics data are similar to those for other large-

scale profiling data but also include several unique features. Metabolomics measures are 

influenced by time-dependent factors, including short-term and long-term perturbations or 

exposures that will influence detectable levels of metabolites to varying degrees. Time-

dependent factors may or may not contribute to variable missingness of values. Statistical 

approaches to handling missing data, especially for measurements obtained from a broad 

untargeted metabolomics method, need to consider technical and biological contributions to 

missingness. Measurement values for individual analytes can be missing because they are 

below the lower limit of detection of a given platform, because of technical issues not 

specifically related to detection limits, or because they are truly biologically absent in a 

given tissue sample. Accordingly, the rate of missingness for an analyte profiled across a 

human cohort is often, but not always, correlated with the relative abundance of that analyte 

in samples obtained from that cohort. How to best handle metabolomics data depends on the 

nature and distribution of measurement values, including rates and types of missingness (eg, 

missing not at random). Thus, imputation approaches to handling missingness may be 

appropriate for some situations and not for others.
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Beyond issues related to how metabolite variables are handled, a number of different 

approaches have been used to identify potentially biological meaningful relationships 

between metabolites and clinical outcomes of interest in univariate and multivariable 

analyses. A traditional approach that is commonly applied involves analyzing each 

metabolite separately and adjusting for multiple comparisons across the number of 

metabolites studied with Bonferroni or false discovery rate thresholds. Given collinearity 

between metabolites, reflecting shared biological pathways and shared environmental 

perturbations, data reduction approaches are often additionally applied to reduce the 

statistical burden of multiple comparisons. An advantage of data reduction approaches is that 

the identification of interrelated groups of metabolites can highlight underlying biology in 

ways that prioritization of single metabolite analysis cannot. Such approaches include but 

are not limited to principal components analysis and hierarchical cluster analyses. 

Complementary methods that are optimized for feature selection or prediction and are 

particularly suitable for high-dimensional data include discriminant analysis, partial least-

squares analysis, least absolute shrinkage and selection operator and related analyses, rule-

based approaches (eg, random forests), and instance-based approaches (eg, support vector 

machines). The relative advantages and disadvantages of different statistical approaches can 

be understood on the basis of several features: (1) the extent to which a dimension reduction 

step is either required or not required before association analyses, (2) the extent to which 

metabolite associations are assumed to be linear or nonlinear, (3) the extent to which 

prediction of an outcome versus variable selection is favored, and (4) the desire for 

sparseness in the predictive model versus identification of the larger set of correlated 

analytes for biological interpretation. Not all statistical approaches are efficient to run with 

standard computing resources, particularly those that involve recursive modeling, and so 

practical considerations are also involved in the selection of the most appropriate approach 

for a given dataset. Notably, commonly used methods have yet to be formally evaluated in 

comparison to each other for analyzing high-dimensional metabolomics data acquired from 

either large or small cohorts. It is possible that a combination of statistical methods (eg, 

ensemble approach) may be desirable for some data sets. For approaches that require a 

dimension reduction step, the extent to which this initial stage of analysis should be 

unsupervised or supervised to account for intercorrelations between metabolite variables is 

not entirely clear and depends on the purpose of the study. The next generation of 

discoveries in metabolomics will rely heavily on progress made to establish robust statistical 

methods for analyzing these high-dimensional data and improvements in the annotation of 

metabolite-related biochemical pathways to enable in silico pathway analyses.

Data Reporting—With respect to reporting metabolomics data and results, standardization 

is also greatly needed. Metabolomics data reporting procedures should ideally include a 

universally accepted set of minimal criteria to be used in all published reports, including 

detailed methods and quality control metrics. Additionally, efforts should make use of 

standard pooled quality control samples. These control samples could include the National 

Institute of Standards & Technology Standard Reference Material 1950 standard plasma, 

which would also enable researchers to compare results, including use of untargeted 

metabolomics methods for which abundance of small molecules could be reported in 

relation to abundances found in that standard plasma. In addition, publication requirements 
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should ensure the deposit of all metabolomics data, including raw and processed data, in a 

central publicly accessible repository, as is currently required for other “omics” data. In the 

absence of raw data, verification of metabolite identifications cannot be performed by 

independent reviewers, and scientific claims may not be reproducible. Additionally, a 

centralized storage of metabolomics data provides opportunities for secondary analysis and 

data mining, ensuring the continued value of generated data sets. Such repositories will be 

essential for uncovering new metabolite correlates and detailing the dynamic range of 

metabolites across populations and samples. It should be noted that achieving this priority 

may be complicated by the dependence of some groups on third-party clinical research 

organizations from which raw spectral data are generally not available, making independent 

verification impossible. In anticipation of the need for a central data repository, the National 

Institutes of Health has implemented a metabolomics repository for Common Funds projects 

that is open also for general purpose metabolomics48 and is highly endorsed for National 

Institutes of Health–funded studies. A similar resource has also been established in Europe.
48a

Moving forward, efforts must be made across the field to include distinct database identifiers 

in metabolomics reports, at a minimum in supplemental tables. It is a common 

misconception that metabolite names are unique. For some compounds, up to hundreds of 

names exist; indeed, for most compounds, at least a dozen different names have been 

reported, often with overlapping use. A continued practice of using names as chemical 

identifiers leads to ambiguity and also severely hampers electronic retrieval of findings such 

as from PubMed searches. Instead, the National Institute of Standards & Technology and 

International Union of Pure and Applied Chemistry have defined a standardized, open-

source way to encode chemical structures into a simple string of letters, the International 

Chemical Identifier code. This code is accompanied by a very short International Chemical 

Identifier key that fits easily into tables and documents to facilitate automated searches.

Current Challenges

To ensure that metabolomics can realize its potential to substantially affect research and 

practice, experts in the field are currently addressing key challenges in implementation and 

application, including high-throughput approaches to extend profiling capacity; strategies for 

determining the biochemical identity and, in turn, the functional role of novel analytes; and 

methods for determining the true clinical importance of analytes observed in association 

with cardiovascular phenotypes.

High-Throughput Metabolomics

As tools for applying metabolomics to larger-scale cohorts are developed, so too will the 

utility of metabolomics and metabolic markers in clinical practice. This is especially true of 

untargeted metabolomics applied to population-based studies, an essential step for defining 

the human metabolome and providing new knowledge of the biochemical landscape of 

health and disease. Because untargeted metabolomics allows monitoring thousands of 

metabolite features and assuming that metabolite-disease effect sizes will be comparable to 

those observed in targeted metabolomics studies, application across much larger cohorts 
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than those previously studied will be needed to limit false-negative errors. In turn, the ability 

to profile multiple separate cohorts will be needed to validate findings and to limit false-

positive errors. Given these imperatives, emerging high-throughput technologies must 

leverage higher-selectivity mass analysis and maintain acceptable levels of reproducibility 

and sensitivity while scaling capacity.

Until recently, high-scale sample throughput was achievable only with NMR-based 

approaches, which are technically robust, are amendable to automation, and do not require 

extensive upfront sample preparation.49 However, NMR approaches have limited sensitivity 

for detecting low-abundancy metabolites. Thus, extending from NMR to more 

comprehensive measures of the metabolome with MS-based techniques represents the next 

challenge in throughput technology. Typically, MS-based approaches require coupling to 

chromatographic methods to reduce sample complexity before introduction into a mass 

spectrometer. Although very effective, chromatographic methods are often time consuming, 

especially when serial chromatography is applied to each sample to capture representative 

molecules across very different chemical classes in a discovery mode (ie, subplatforms). 

Given the costs associated with obtaining and operating an MS infrastructure and the need 

for trained personnel to manage such instrumentation, extended analytic times can translate 

into substantial cost per sample. Time- and cost-related limitations will, in part, be overcome 

with the recently established National Institutes of Health Regional Comprehensive 

Metabolomics Resource Cores and the development of similar academic and commercial 

facilities capable of multiplexing metabolomics studies. As seen over the past decade in the 

field of genomics, the currently high cost per sample of metabolomics profiling is expected 

to decline over the next several years as throughput technologies continue to develop.

Technical advances, including the integration of ultrathroughput high-resolution MS with 

automated sample handling and computational identification of mass spectral features, are 

facilitating the transition to an era when thousands of samples can be analyzed in a short 

time, with the measure of thousands of metabolites per specimen. Such throughput applied 

to large-scale studies will allow characterization of chemical diversity across multiple racial/

ethnic populations in relation to prospective disease phenotypes and in conjunction with 

integrated data on genomic variation, epigenetic markers, mRNA transcription, and other 

biomarkers to enable a true systems-level analysis of human physiology and disease.

Biochemical Identity and Role of Novel Metabolites

Early chemoinformatics approaches have been developed to aid in metabolite identification 

and data visualization, although existing tools remain relatively rudimentary. Thus, 

improvement in experimental and computational tools designed to clarify the identity and 

role of novel metabolites represents an important future challenge for the field. With 

untargeted analysis of any complex human biospecimen, only a minority fraction of the 

metabolites is definitively identifiable by current standards, with the majority of molecules 

remaining unknown with respect to structure and origin (ie, endogenous versus exogenous). 

Future technical advances in MS may aid in molecular identification, including differential 

mobility spectrometers that could be placed between an LC and an MS instrument that could 

further extend metabolomic coverage and theoretically assist with compound identification. 
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At present, a number of spectral databases currently exist47 and serve as invaluable 

resources. Expanding these databases, along with computational methods for predicting 

metabolite identification, will be essential for progress in the field. To guide database and 

computational methods development, the Metabolomics Standards Initiative has put forward 

criteria for reporting of metabolites that importantly include the level of rigor used for 

identification of metabolites.49a Because the practice of metabolomics extends from the 

analytical chemist to the mainstream biologist, additional data analysis and visualization 

tools will be needed to facilitate scientific discovery as well as communication, including 

those tools allowing pathway analysis or metabolite set enrichment analysis, as well as 

correlation-based network analysis. Sophisticated methods for mapping metabolomics data 

to pathways will be critical for interrogating not only interanalyte relationships but also 

metabolite relationships with genomic, epigenetic, transcriptomic, and proteomic factors, as 

well as clinical phenotypes.

Clinical Relevance

Metabolomics studies conducted in population-based cohorts will allow studies of how 

various factors, including diet and medical comorbidities, affect the metabolome. As has 

been demonstrated with metabolomic studies of oral glucose challenge, acute caloric intake, 

and the attendant stimulation of insulin signaling, select metabolic interventions have a 

profound impact on circulating metabolites. Much less is known about how differences in 

dietary composition modulate the metabolome chronically and acutely. Indeed, the majority 

of metabolomics biomarker studies to date have examined plasma obtained from fasting 

individuals and thus are agnostic to effects of metabolite variation in the fed or challenged 

state. Disentangling the relative contribution of various medical comorbidities to circulating 

metabolite levels is also important in assessment of the potential value of select metabolites 

as markers of CVD risk. In addition to having a causal role in CVD pathogenesis, diabetes 

mellitus and obesity have a substantial impact on the metabolome that can confound 

metabolomics studies of CVD prediction. Perhaps less appreciated is the substantial impact 

that kidney disease can have on both CVD risk and circulating metabolite levels. Although 

recognized for their ability to excrete select nitrogenous metabolites such as creatinine and 

urea, the kidneys also exert broad and heterogeneous effects, depending on the extent to 

which metabolites of interest are filtered, absorbed, secreted, catabolized, or even 

synthesized by the kidney.50 Ultimately, a full accounting of diet, medical comorbidities, 

and other potential confounders in metabolomics studies of CVD will require a variety of 

approaches. First, metabolomics data acquired from large, well-phenotyped cohorts are 

required to establish the matrix of correlations between metabolite levels and clinical 

variables known to be associated with cardiometabolic disease (eg, age, race, sex, body size, 

insulin resistance, blood pressure, and renal function). Second, more in-depth studies of 

individuals over time are required to clarify how fasting versus fed status, dietary patterns, 

circadian cycles, other time-dependent factors, and random variation can affect circulating 

metabolites. Third, although less important from a strict biomarker sense, studies that use 

invasive catheterization of select vascular beds are important to establish the potential organ 

specificity of select peripheral venous metabolite signatures. Finally, understanding the 

genetic determinants of plasma metabolite levels and cross-referencing with prior genetics 
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studies of CVD offer the potential to implicate select metabolite biomarkers in causal 

pathways.

Future Directions

With continued advancement in metabolomic technologies, several possible applications in 

cardiovascular medicine may be on the horizon. With respect to understanding the 

pathophysiology of disease, integration of genomic and metabolomic data could allow 

clinicians and researchers to better explain why an individual develops CVD in response to a 

given exposure history such as tobacco or chronic stress. For example, sources of 

interindividual variation in response to risk exposures could include the possibility that a 

specific metabolite is not produced as a result of exposure to the stimulus or is produced but 

degraded at a different rate. With respect to risk prediction, the ability to one day perform 

actual or nearly real-time monitoring of blood or urine metabolites could allow clinicians to 

detect small-molecule biomarkers associated with worsening or improving clinical 

trajectories and to target early interventions. Similarly, changes in metabolite profiles over 

time, with aging, or after administration of a drug could be used to define an individual’s 

predisposition for disease and response to therapy. Ultimately, the ability to efficiently and 

effectively use metabolomics tools to conduct molecular phenotyping could serve to 

substantially advance the goals of precision medicine.

The promise that metabolomics offers for improving medical diagnostics and therapeutics 

notwithstanding, advances in the field will depend on overcoming certain intrinsic 

challenges. The tractable number of metabolites potentially measurable in the metabolome is 

a potential analytic advantage over other detailed profiling assays such as genomics and 

proteomics.51 On the other hand, the complexity of metabolite profiling exceeds that of 

other profiling techniques such as genomics or transcriptomics, given that the basic chemical 

constituents of DNA or mRNA are far less diverse. The inability of basic investigators to 

transparently convey the challenges intrinsic to the field, combined with the clinical 

community’s desire for rapid integration of new technologies, has led to an initial mismatch 

of expectations and “metabolomic deliverables.” However, this divide between expectation 

and deliverables is beginning to narrow. Protocols for evaluating major classes of 

compounds have become increasingly more standardized. Authentic chemical standards for 

providing absolute quantitation of analytes have been integrated into these protocols, 

throughput technologies have become more powerful, and databases for compound 

identification have become more robust. In turn, standardized procedures are increasingly 

being applied to large clinical cohorts, including individuals representing the spectrum of 

cardiovascular and metabolic disease risk. As a result, the scientific community is 

fortunately beginning to see consistency in the findings reported from across different 

metabolomics studies. Beyond feasibility and reliability, however, the ultimate challenge 

pertains to exactly how much new information metabolomics will add to established 

diagnostic approaches and tests, the critical bar for any nascent technology.

The next generation of scientific discoveries will emerge from an improved understanding of 

the mechanisms underlying disease risk and phenotypes at the individual level.52 Given the 

potential of metabolomics to integrate detailed biochemical information with data on both 
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endogenous and exogenous exposures, metabolomics also offers the opportunity to bridge 

the methodological and informational gap between the fields of genomics and environmental 

science in particular.53,54 Such an integrated approach to understanding and targeting the 

links between genetic predisposition and external risk exposures is especially needed for 

complex and multifactorial disease entities such as CVD.

Summary

Having evolved considerably from traditional analytical chemistry, metabolomics now 

provides extremely detailed molecular profiling of biospecimens and offers an integrated 

approach to investigating both the intrinsic and extrinsic factors that contribute to CVD risk. 

Early work in the field has led to the discovery of novel molecular markers of CVD risk, 

including metabolites related to dietary patterns and gut microbiome activity. Future work 

will leverage ongoing technical advances, which are widening the scope and throughput with 

which small-molecule profiling can be conducted. Therefore, the prospects for further 

discovery are rapidly growing. Nonetheless, the extent to which metabolomics work will 

yield a next generation of important discoveries in cardiovascular science will depend on the 

success with which the field can address key challenges, including bioinformatics 

approaches for handling high-throughput untargeted metabolomics data, strategies for 

identifying the biochemical structure and functional role of novel metabolites, and methods 

for determining the true relevance of metabolites observed in association with clinical 

outcomes. Progress made in addressing these challenges will allow the potential for 

metabolomics approaches to substantially affect diagnostics and therapeutics in 

cardiovascular medicine.
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Appendix

Appendix

Requirements Necessary to Transition Metabolomics From Research Applications to 

Clinical Diagnostics

Component Considerations

Guidance documents Structure for good laboratory practices needs to be established

Input needed from metabolomics experts

Input needed from clinical laboratories

Input needed from regulatory agencies

Cheng et al. Page 19

Circ Cardiovasc Genet. Author manuscript; available in PMC 2018 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.metabolomicsworkbench.org/data/index.php
http://www.metabolomicsworkbench.org/data/index.php
http://www.ebi.ac.uk/metabolights/


Component Considerations

Regulatory structure Laboratory standards need to be established

Laboratory inspection protocols need to be developed

Proficiency testing materials need to be developed

Laboratory inspectors need to be trained

Reimbursement needs to be defined

Clinical concerns Patients who will benefit from metabolic profiling need to be identified

The clinical utility of testing needs to be defined

The safety and efficacy of the testing for individual patients need to be demonstrated

Analytical considerations Patient preparation needs to be defined

Protocols need to be standardized

Performance of tests needs to be compared with established techniques

Standard reference materials need to be developed for harmonization (eg, National 
Institute of Standards & Technology)

Proficiency materials need to be developed

Quality control metrics need to be developed

Expected ranges for different patient populations need to be defined

Education Physicians need to be trained on clinical utility

Laboratories need to gain expertise in analysis

Insurers (payers) need to understand clinical value of testing

Quality control Consensus documents on degree of control are needed (eg, with untargeted metabolomics, 
how to monitor recovery and relative concentration for unknown metabolites)
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Table 1

Major Findings to Date From Selected Clinical Studies of Metabolomics and Cardiovascular Disease

Study Study Design and Size Method Major Findings

Brindle et al3 (2002) Case-control: n=36 patients with triple-
vessel disease compared with n=30 
patients with normal coronaries

NMR Case-control: PLS-DA (80% training set, 20% test 
set) demonstrated the most discriminating analytes 
to be lipids, mostly VLDL, LDL, HDL, and choline

Cross-sectional: n=76 patients with CAD 
with 1-, 2-, or 3-vessel disease

Cross-sectional: NMR chemical shifts of δ1.30 and 
δ3.22 (representing LDL variants and other lipid 
elements) discriminated CAD severity, whereas 
traditional clinical risk factors did not

Kirschenlohr et al4 

(2006)
Cross-sectional: n=322 patients with 
normal coronaries or 1-, 2-, or 3-vessel 
CAD

NMR Predictions for CAD presence were only 80% 
correct for patients not treated with statins and 61% 
for treated patients

Lewis et al5 (2008) Experimental: n=36 planned MI patients Targeted LC-MS Experimental: metabolites involved in pyrimidine 
metabolism, TCA cycle, and the pentose phosphate 
pathway were altered after planned MI

Cross-sectional: 12 acute MI patients; 9 
non-CAD patients

Cross-sectional: aconitic acid, hypoxanthine, 
TMAO, and threonine distinguished presence vs 
absence of spontaneous MI

Turer et al6 (2009) Experimental: n=37 patients undergoing 
CABG

Targeted LC-MS Lower extraction rates of acetylcarnitine and 3-
hydroxybutyrylcarnitine by the myocardium were 
observed after intraoperative reperfusion

Shah et al7 (2010) Cross-sectional and prospective: n=757 
patients total (3 groups of CAD case-
control pairs)

Targeted LC-MS Cross-sectional: BCAAs and urea cycle metabolites 
were associated with presence of CAD in 
derivation and validation cohorts

Prospective: dicarboxylacylcarnitines predicted 
incident CAD events

Wang et al8 (2011) Cross-sectional: n=1876 patients 
undergoing elective cardiac 
catheterization

Targeted LC-MS Higher levels of TMAO, choline, and betaine were 
associated with presence of CVD

Shah et al9 (2012) Prospective: n=2023 patients undergoing 
elective cardiac catheterization

Targeted LC-MS Long-chain dicarboxylacylcarnitines, BCAAs, and 
fatty acids were associated with death or MI

Medium-chain acylcarnitines were also associated 
with death

Koeth et al10 (2013) Cross-sectional and prospective: n=2595 Targeted LC-MS Higher L-carnitine in plasma was associated with 
prevalent CVD and incident coronary, stroke, and 
mortality events in individuals with concurrently 
high TMAO levels

Tang et al11 (2013) Prospective: n=4007 patients undergoing 
elective cardiac catheterization

Targeted LC-MS Higher baseline TMAO was associated with major 
adverse cardiovascular event (death, MI, or stroke)

Zheng et al12 (2013) Prospective: n=1744 blacks Targeted LC-MS Two unknown novel metabolites were associated 
with incident heart failure in multivariable models: 
dihydroxy-docosatrienoic acid and an isoform of 
either hydroxyleucine or hydroxyisoleucine

Bhattacharya et al13 

(2014)
Cross-sectional: n=1983 patients with no 
vs significant CAD

Targeted LC-MS Two distinct PCA-derived metabolite factors were 
associated with both CAD presence and CAD 
severity in adjusted models: 1 factor was composed 
of BCAA and the other was composed of short-
chain acylcarnitines

Ganna et al14 (2014) Prospective: n=3668 from 3 separate 
derivation and replication cohorts

Untargeted MS Four metabolites were associated with incident 
CAD: lysophosphatidylcholine 18:1, 
lysophosphatidylcholine 18:2, monoglyceride 18:2, 
and sphingomyelin 28:1

Monoglyceride 18:2 showed association with an 
SNP in the ZNF259/APOA5 region with a weak 
but positive causal effect in mendelian 
randomization analysis
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Study Study Design and Size Method Major Findings

Jové et al15 (2015) Prospective and cross-sectional: n=131 
patients with TIA in derivation and 
n=162 in validation cohorts

Targeted LC-MS Prospective: low lysophosphatidylcholine (16:0) 
was associated with increased stroke risk

Cross-sectional: lower levels of 
lysophosphatidylcholine (20:4) and 
lysophosphatidylcholine (22:6) also demonstrated 
potential risk for stroke or atherosclerosis

Würtz et al16 (2015) Prospective multicohort: n=7256 
derivation; n=2622 and n=3536 
replication

NMR and targeted 
LC-MS

Four metabolites were associated with incident 
CVD in metaanalyses: higher phenylalanine and 
monounsaturated fatty acids, lower omega-6 fatty 
acids, and docosahexaenoic acids

BCAA indicates branched-chain amino acid; CABG, coronary artery bypass graft; CAD, coronary artery disease; CVD, cardiovascular disease; 
HDL, high-density lipoprotein; LC, liquid chromatography; LDL, low-density lipoprotein; MI, myocardial infarction; MS, mass spectrometry; 
NMR, nuclear magnetic resonance; PCA, principal components analysis; PLS-DA, partial least-squares discriminant analysis; SNP, single-
nucleotide polymorphism; TCA, tricarboxylic acid; TIA, transient ischemic attack; TMAO, trimethylamine-N-oxide; and VLDL, very low-density 
lipoprotein.
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Table 2

Current Routine Uses of Mass Spectrometry in the Clinical Laboratory

Type of Test Test Description

FDA-approved in vitro diagnostic tests LC-MS/MS for quantification of tacrolimus

LC-MS/MS for newborn screening

MALDI-TOF for microbial identifications

Laboratory-developed tests: routinely used GC-MS and LC-MS/MS for drugs of abuse confirmation

GC-MS and LC-MS/MS for monitoring pain management compliance

LC-MS/MS for quantifying steroids

LC-MS/MS for monitoring immunosuppressants

LC-MS/MS for quantifying vitamin D and related metabolites

Laboratory-developed tests: specialized assays (partial list) Amino acid analysis

Heavy-metal analysis

Light-chain analysis

Metanephrine analysis

Methylmalonic acid quantification

Novel psychoactive substances

Parathyroid hormone–related protein

Quantification of thyroglobulin

Renin

Therapeutic drug monitoring

Thyroid hormone

FDA indicates US Food and Drug Administration; GC, gas chromatography; LC, liquid chromatography; MALDI-TOF, matrix-assisted laser 
desorption/ionization–time of flight; MS, mass spectrometry; and MS/MS, tandem mass spectrometry.
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Table 3

Metabolomics Study Design and Implementation Considerations

Study Component Considerations

Study design Prospective vs retrospective

Cohort vs case-control

Appropriate control group

Sample collection Fasting status and length of time of fasting

Consistency of collection protocol across the study cohort

Time between sample collection and processing

Time between sample collection and freezing to <−70°C

Protocols for sample preparation, depending on type of tissue

Type of storage tubes and caps used

Automated vs manual sample handling methods used for dividing into aliquots

Total storage time and conditions before profiling (eg, number of freeze-thaw cycles)

Data collection Concomitant medication use

Dietary history (acute and chronic)

Environmental factors

Clinical comorbidities and outcomes

Metabolomic profiling Sensitivity of platform being used

Quality control measures (repeat samples, pooled samples, standards)

Metabolite identification methods (for nontargeted data)

Biological and analytical reproducibility

Statistical analysis Quality control assessment

Missing values, values below lower limits of detection

Outliers

Batch effects

Multiple comparisons

Multidimensional data reduction approaches

Supervised vs unsupervised analyses

Potential clinical and measurable confounders (comorbidities, renal function, medications, fasting status)

Assessment of independent and incremental association
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