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Chapter 1

Inference on Functions under First

Order Degeneracy

Abstract

This chapter presents a unified second order asymptotic framework for conducting

inference on parameters of the form φ(θ0), where θ0 is unknown but can be estimated by

θ̂n, and φ is a known map that admits null first order derivative at θ0. For a large number

of examples in the literature, the second order Delta method reveals a nondegenerate weak

limit for the plug-in estimator φ(θ̂n). We show, however, that the “standard” bootstrap is

consistent if and only if the second order derivative φ′′θ0 = 0 under regularity conditions, i.e.,

the standard bootstrap is inconsistent if φ′′θ0 6= 0, and provides degenerate limits unhelpful

for inference otherwise. We thus identify a source of bootstrap failures distinct from that

in Fang and Santos (2015) because the problem persists even if φ is differentiable. We

show that the correction procedure in Babu (1984) can be extended to our general setup.

Alternatively, a modified bootstrap is proposed to accommodate nondifferentiable maps.

Both approaches are shown to provide local size control under restrictions on θ̂n and φ′′θ0 .

As an illustration, we develop a test of common conditional heteroskedastic (CH) features

1
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that allows the existence of multiple common CH features. In fact, this chapter contains new

results on the J-test in GMM settings that allow partial identification and/or degeneracy

of Jacobian matrices.



3

1.1 Introduction

There is a large number of inference problems in economics and statistics in which

the parameter of interest is of the form φ(θ0), where θ0 is an unknown parameter depending

on the underlying distribution of the data and φ is a known map. In these settings, it is

common practice to employ the plug-in estimator φ(θ̂n), where θ̂n is an estimator for θ0,

as a building block for conducting inference on φ(θ0). The Delta method asserts that if

rn{θ̂n − θ0}
L−→ G for some sequence rn ↑ ∞, then

rn{φ(θ̂n)− φ(θ0)} L−→ φ′θ0(G) , (1.1)

provided φ is at least Hadamard directionally differentiable at θ0, where φ′θ0 is the derivative

of φ at θ0 (Shapiro, 1991; Dümbgen, 1993). As powerful as the Delta method has proven

to be (van der Vaart, 1998; Fang and Santos, 2015), an implicit and yet crucial assump-

tion for the convergence (1.1) to be useful for inferential purposes is that φ′θ0(G) or φ′θ0 is

nondegenerate, i.e., φ′θ0 6= 0. Unfortunately, such first order degeneracy arises frequently in

asymptotic analysis, with applications including Wald tests or Wald type functionals (Wald,

1943; Engle, 1984), unconditional and conditional moment inequality models (Andrews and

Soares, 2010; Andrews and Shi, 2013), Cramér-von Mises functionals (Darling, 1957), the

study of stochastic dominance (Linton et al., 2010), and the J-test for overidentification in

GMM settings (Hall and Horowitz, 1996).

In the presence of first order degeneracy, one may resort to a higher order analysis

for the sake of a nondegenerate limiting distribution. Shapiro (2000) established that if φ

is second order Hadamard directionally differentiable (see Definition 1.2.2), then

r2
n{φ(θ̂n)− φ(θ0)− φ′θ0(θ̂n − θ0)} L−→ φ′′θ0(G) , (1.2)

where φ′′θ0 denotes the second order derivative of φ at θ0. Thus, when first order degeneracy
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occurs, (1.2) suggests that we may base our asymptotic analysis on

r2
n{φ(θ̂n)− φ(θ0)} L−→ φ′′θ0(G) . (1.3)

On the other hand, the common feature that the aforementioned examples share is that φ

is second order Hadamard (directionally) differentiable and that the resulting derivative is

nondegenerate. Usefulness of the limiting distribution in (1.3), however, relies on our ability

to consistently estimate it. In this regard, Efron (1979)’s bootstrap seems to be a potential

option. Specifically, if θ̂∗n is a bootstrap analog of θ̂n that works for estimating the law of

G, then in view of (1.3) one may hope that

r2
n{φ(θ̂∗n)− φ(θ̂n)} (1.4)

can be employed as an estimator for the law of φ′′θ0(G), at least when φ is smooth. Unfor-

tunately, there are simple examples where the law of (1.4) conditional on the data, referred

to as the standard bootstrap, fails to provide consistent estimates (Babu, 1984).

As the first contribution of this paper, we show that the standard bootstrap (1.4) is

consistent if and only if φ′′θ0 = 0, whenever G is centered Gaussian. Thus, the standard boot-

strap is necessarily inconsistent when φ′′θ0 is nondegenerate, while when φ′′θ0 is degenerate,

the resulting asymptotic distribution is degenerate and hence not useful for inference. We

thus conclude that the failure of the standard bootstrap is an inherent implication of first

order degeneracy. It is worth noting that the failure of the standard bootstrap persists even

when φ is differentiable. Hence, we identify a source of bootstrap inconsistency completely

different from that in Fang and Santos (2015) — i.e., nondifferentiability of the map φ.

Heuristically, the reason why the standard bootstrap fails is that even though

r2
nφ
′
θ0

(θ̂n − θ0) = 0 in the “real world”, its bootstrap counterpart is nondegenerate, i.e.,

r2
nφ
′
θ̂n

(θ̂∗n − θ̂n) = Op(1), echoing Efron (1979)’s point that the bootstrap provides approxi-

mate frequency statements rather than approximate likelihood statements. This observation

was picked up by Babu (1984) who provided a consistent resampling procedure by including
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the first order correction term:

r2
n{φ(θ̂∗n)− φ(θ̂n)− φ′

θ̂n
(θ̂∗n − θ̂n)} . (1.5)

As the second contribution, we generalize the above modified bootstrap (1.5), referred to

as the Babu correction, to settings that accommodate infinite dimensional models and a

wide range of bootstrap schemes for θ̂∗n. However, we stress that the Babu correction is

inappropriate when φ is only Hadamard directionally differentiable.

As the third contribution of the paper, we follow Fang and Santos (2015) and provide

a modified bootstrap which is consistent regardless of the presence of first order degeneracy

and nondifferentiability of φ. The insight we exploit is that the weak limit φ′′θ0(G) in (1.3)

is a composition of the limit G and the second order derivative φ′′θ0 . Therefore, we may

estimate the law of φ′′θ0(G) by composing a suitable estimator φ̂′′n for φ′′θ0 with a bootstrap

approximation rn{θ̂∗n− θ̂n} for G. Since the conditions on φ̂′′n proposed by Fang and Santos

(2015) in order for this approach to work are either demanding or hard to check in our

setup, we provide a high level condition that is easy to verify. We further demonstrate

that numerical differentiation provides a desirable estimator φ̂′′n in general; alternatively, we

show how to estimate φ′′θ0 by exploiting its structure in particular examples. Interestingly,

we note that the above procedure is a combination of bootstrap and analytic asymptotic

approximations, while initially the former was intended as a substitute for and improvement

upon the latter (Horowitz, 2001).

It is often the case that a hypothesis on θ0 can be formulated as: for some φ,

H0 : φ(θ0) = 0 H1 : φ(θ0) > 0 . (1.6)

In turn, the above asymptotic framework suggests that we employ r2
nφ(θ̂n) as the test statis-

tic in the presence of first order degeneracy. Pointwise size control then follows immediately

by employing critical values based on our resampling procedures. As argued by Imbens

and Manski (2004) and Andrews and Guggenberger (2009a), however, pointwise asymp-
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totic approximations may be unreliable when φ(θ̂n) is irregular, i.e., when the asymptotic

distribution of φ(θ̂n) is sensitive to local perturbations of the distribution of the data. In

our setup, such irregularity is inherent to first order degeneracy. We show that our test

ensures local size control provided θ̂n is regular and τ ◦ φ′′θ0 is subadditive for some strictly

increasing map τ . We note that unlike Fang and Santos (2015), however, φ′′θ0 itself often

fails to be subadditive.

Our framework includes many existing results as special cases. To further demon-

strate the applicability of our framework, we develop a test of common conditional het-

eroskedastic (CH) features studied by Dovonon and Renault (2013) but under weaker as-

sumptions that allow partial identification, i.e., allow the existence of more than one com-

mon CH feature. This is important because it is unknown a priori how many common

features there are and in the context of asset pricing the number is presumably large (Engle

et al., 1990). Monte Carlo simulations indicate that our tests substantially alleviate size

distortion and have good power performance. Our approach may also be used to develop

tests for other common features (Engle and Kozicki, 1993). In fact, our paper contains new

results on the J-test in GMM settings that allow partial identification and/or degeneracy

of Jacobian matrices.

There have been extensive studies on the validity of bootstrap schemes (Hall, 1992;

van der Vaart and Wellner, 1996a; Horowitz, 2001). It was realized soon after Efron (1979)

that the bootstrap is not always successful (Bickel and Freedman, 1981); see also Andrews

(2000) for a summary. Babu (1984) provided a simple example of bootstrap failure due

to first order degeneracy, and established the validity of the Babu correction for the spe-

cial case studied there. Shao (1994) showed that m out of n resampling can well serve as

an alternative remedy, while Bertail et al. (1999) provided a two step modified subsam-

pling procedure which involves estimation of the convergence rate in the first stage. Both

methods entail the choice of tuning parameters while our proposal often works without such

nuisances when φ is differentiable. Datta (1995) revisited Babu’s example and offered a bias

correction procedure that depends on a first stage shrinkage type estimator. Somewhat sim-
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ilar methods were later proposed in Andrews (2000) and Giurcanu (2012). Interestingly,

bootstrap inconsistency for some U and V statistics can also be attributed to first order

degeneracy (Bickel et al., 1997).

Bootstrap inconsistency arising from nondifferentiability was studied in Dümbgen

(1993), Andrews (2000), and recently in Fang and Santos (2015) who formally established

that differentiability of φ is a necessary as well as sufficient condition for the standard

bootstrap to work under mild regularities. Our work complements theirs by identifying

a different source of bootstrap failure. In the literature, the two sources are often mixed

together, for example, in Romano and Shaikh (2010), Andrews and Soares (2010), Linton

et al. (2010), and Andrews and Shi (2013). The second order analysis of resampling schemes

such as jackknife and bootstrap has been employed in the statistics literature, though the

focus has been on bias and variance estimation where typically the stronger concept of

second order Fréchet differentiability is imposed (Efron, 1979; Beran, 1984; Rao and Wu,

1985; Shao and Wu, 1989; Shao, 1991). The numerical differentiation approach of estimating

derivatives was implicit in Dümbgen (1993)’s rescaled bootstrap, recently employed by Song

(2014), and comprehensively studied by Hong and Li (2015) including discussions on second

order asymptotics. Our work complements Hong and Li (2015) by providing a more general

condition that may be used to verify “consistency” of derivative estimators (not necessarily

constructed via numerical differentiation).

The remainder of this paper is structured as follows. Section 1.2 formalizes the gen-

eral setup, shows the wide applicability of our framework by introducing related examples,

and establishes the asymptotic framework by presenting a mild extension of the second

order Delta method. Section 1.3 characterizes the inherent difficulties caused by first order

degeneracy, extends the Babu correction to our general setup, and offers a flexible modified

bootstrap procedure. Section 1.4 demonstrates that our procedure is robust to local per-

turbations of the distribution of the data under regularity conditions. Section 1.5 develops

a test of common CH features that accommodates partial identification, while Section 1.6

concludes. Proofs are collected in the appendices.
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1.2 Setup and Background

In this section, we formalize the general setup, introduce related examples, and

review notions of differentiability based on which we present the second order Delta method.

1.2.1 General Setup

The treatment in the paper is general in the sense that we allow both the parameter

θ0 and the map φ to take values in infinite dimensional spaces, though attention is confined

to real-valued φ when studying tests. In particular, we assume θ0 ∈ Dφ ⊂ D and φ : Dφ → E,

where D and E are normed spaces with norms ‖·‖D and ‖·‖E respectively. Moreover, the data

generating process is general as well in that the model can be parametric, semiparametric

and nonparametric and that the data {Xi}ni=1 need not be i.i.d.. However, we do impose i.i.d.

assumption in our local analysis, but only for simplicity. The results there can presumably

be extended to general asymptotically normal experiments (van der Vaart and Wellner,

1990).

The common probability space on which all (random) maps are defined is the

canonical one. For example, in the simplest i.i.d. setup, we think of the data {Xi}ni=1

as the coordinate projections on the first n coordinates in the product probability space

(
∏∞
i=1 X ,

⊗∞
i=1A,

∏∞
i=1 P ) where (X ,A) is the sample space each Xi lives in and P is

the common Borel probability measure that governs each Xi. In the presence of bootstrap

weights, we further think of the product space as the “first ∞” coordinates of the even

“larger” product space
(
(
∏∞
i=1 X ) × W , (

⊗∞
i=1A) ⊗W, (

∏∞
i=1 P ) × Q

)
, where (W ,W, Q)

governs the infinite sequence of bootstrap weights.

Given the generality of our setup, weak convergence throughout the paper is meant

in the Hoffmann-Jørgensen sense (van der Vaart and Wellner, 1996a). Expectations and

probabilities should therefore be interpreted as outer expectations and outer probabili-

ties respectively defined relative to the canonical probability space, though we obviate the



9

distinction in the notation. The notation is made explicit in the appendices whenever

differentiating between inner and outer expectations is necessary.

1.2.2 Related Examples

To fix ideas, we now turn to related examples that serve to illustrate the wide

applicability of our framework. The first example is taken from Babu (1984), which provides

an easy illustration of bootstrap inconsistency in the presence of first order degeneracy even

if the transformation φ is smooth.

Example 1.2.1 (Wald Functional: Squared Mean). Let X ∈ R be a random variable, and

suppose that we are interested in conducting inference on

φ(θ0) = (E[X])2 . (1.7)

Here, θ0 = E[X], D = E = R, and φ : R→ R is defined by φ(θ) = θ2. In fact, φ is a special

case of the more general quadratic functionals of the form ‖Wθ‖2 for θ ∈ Rk and W a k×k

weighting matrix. This seemingly toy example also arises in VAR models for inference on

impulse responses (Benkwitz et al., 2000) and in some nonseparable models with structural

measurement errors (Hoderlein and Winter, 2010).

The second example is a special case of the unconditional moment inequality models

studied in Chernozhukov et al. (2007), Romano and Shaikh (2008, 2010), Andrews and

Guggenberger (2009b), and Andrews and Soares (2010).

Example 1.2.2 (Unconditional Moment Inequalities). Let X ∈ R be a scalar random

variable and suppose we want to test the moment inequality E[X] ≤ 0. The modified

method of moments approach is based on estimating the functional

φ(θ0) = (max{θ0, 0})2 , (1.8)
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where θ0 = E[X], D = E = R, and φ : R → R is defined by φ(θ) = (max{θ, 0})2. The

functional φ can be easily adapted to handle general moment inequality models.

The third example concerns the classical Cramér-von Mises functional employed to

test goodness of fit (Darling, 1957; van der Vaart, 1998), which has been widely adopted in

economics and statistics.

Example 1.2.3 (Cramér-von Mises Functional). Suppose that we are interested in testing

if the distribution function of a random vector X ∈ Rdx is a given function F0. The

Cramér-von Mises approach considers the functional

φ(θ0) =

∫
(F − F0)2 dF0 .

Here, θ0 = F , D = `∞(Rdx), E = R, and φ : `∞(Rdx) → R is defined to be φ(θ) =∫
(θ − F0)2 dF0. More generally, it is possible to test if F belongs to a parametric family

{Fγ : γ ∈ Γ} by studying φ(θ0) = infγ∈Γ

∫
(θ0 − Fγ)2 dFγ .

The fourth example, closely related to but significantly different from Example 1.2.3,

is based on Linton et al. (2010) for testing stochastic dominance.

Example 1.2.4 (Stochastic Dominance). Let X = (X(1), X(2))ᵀ ∈ R2 be continuously

distributed, and define the marginal cdfs F (j)(u) ≡ P (X(j) ≤ u) for j ∈ {1, 2}. For a

positive integrable weighting function w : R→ R+ ≡ {x ∈ R : x ≥ 0}, Linton et al. (2010)

estimate

φ(θ0) =

∫
R

max{F (1)(u)− F (2)(u), 0}2w(u)du , (1.9)

to construct a test of whether X(1) first order stochastically dominates X(2). In this ex-

ample, we set θ0 = (F (1), F (2)), D = `∞(R) × `∞(R), E = R and φ(θ) =
∫

max{θ(1)(u) −

θ(2)(u), 0}2w(u)du for any θ ≡ (θ(1), θ(2)) ∈ `∞(R)× `∞(R). We note that the Cramér-von

Mises type functionals in Andrews and Shi (2013, 2014) shares the common structure of

the functional φ in (1.9) and hence can be taken care of by our framework as well.
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The fifth example is a special case of the Kolmogorov-Smirnov type functionals for

inference on conditional moment inequalities studied by Andrews and Shi (2013).

Example 1.2.5 (Conditional Moment Inequalities). Let Z ∈ R2 and W ∈ Rdw be ran-

dom vectors satisfying E[Z(1)|W ] ≤ 0 and E[Z(2)|W ] = 0. For a suitably chosen class of

nonnegative functions F on Rdw , the above conditional moment inequality is equivalent to

E[Z(1)f(W )] ≤ 0 and E[Z(2)f(W )] = 0 for all f ∈ F . Andrews and Shi (2013) propose

testing the above restriction by estimating the functional

φ(θ0) = sup
f∈F
{[max(E[Z(1)f(W )], 0)]2 + (E[Z(2)f(W )])2} . (1.10)

Here, θ0 ∈ `∞(F)× `∞(F) satisfies θ0(f) = E[Zf(W )] for all f ∈ F , D = `∞(F)× `∞(F),

E = R, and φ : D→ E is given by φ(θ) = supf∈F{[max(θ(1)(f), 0)]2 + [θ(2)(f)]2}.

Our final example provides new results on the J-test of overidentification in GMM

settings proposed by Sargan (1958, 1959) and further developed in Hansen (1982). The

novelty here lies in the accommodation of partial identification and Jacobian matrices not

of full column rank.

Example 1.2.6 (Overidentification Test). Let X ∈ Rdx be a random vector and consider

the model defined by the moment restriction E[g(X, γ0)] = 0 for some γ0 ∈ Γ ⊂ Rk where

g : Rdx × Γ → Rm is a known function with m > k. The conventional J-test can be

recast by estimating the functional φ defined as: for some known m×m symmetric positive

definite matrix W ,

φ(θ0) = inf
γ∈Γ

E[g(X, γ)]ᵀWE[g(X, γ)] . (1.11)

Here, θ0 ∈
∏m
j=1 `

∞(Γ) is defined by θ0(γ) = E[g(X, γ)], D =
∏m
j=1 `

∞(Γ), E = R, and

φ :
∏m
j=1 `

∞(Γ) → R is defined by φ(θ) = infγ∈Γ θ(γ)ᵀWθ(γ). The bootstrap for the J

statistic has been studied by Hall and Horowitz (1996) and Andrews (2002). Note that θ0

is always identified even though γ0 is potentially partially identified.
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1.2.3 Concepts of Differentiability

All examples in the previous subsection exhibit first order degeneracy, i.e., there

exist points θ in D such that the first order derivative φ′θ is 0 and in some cases φ is not

even differentiable at θ, which can be seen from Examples 1.2.1 and 1.2.2 respectively.

As such, we resort to a second order expansion that handles first order degeneracy and

meanwhile accommodates potential nondifferentiability of φ. Let us proceed by recalling

notions of first order differentiability (Shapiro, 1990; Fang and Santos, 2015)

Definition 1.2.1. Let D and E be normed spaces equipped with norms ‖ · ‖D and ‖ · ‖E

respectively, and φ : Dφ ⊆ D→ E.

(i) The map φ is said to be Hadamard differentiable at θ ∈ Dφ tangentially to a set

D0 ⊆ D, if there is a continuous linear map φ′θ : D0 → E such that:

lim
n→∞

‖φ(θ + tnhn)− φ(θ)

tn
− φ′θ(h)‖E = 0 , (1.12)

for all sequences {hn} ⊂ D and {tn} ⊂ R such that tn → 0, hn → h ∈ D0 as n → ∞

and θ + tnhn ∈ Dφ for all n.

(ii) The map φ is said to be Hadamard directionally differentiable at θ ∈ Dφ tangentially

to a set D0 ⊆ D, if there is a continuous map φ′θ : D0 → E such that:φ′θ : D→ E such

that:1

lim
n→∞

‖φ(θ + tnhn)− φ(θ)

tn
− φ′θ(h)‖E = 0 , (1.13)

for all sequences {hn} ⊂ D and {tn} ⊂ R+ such that tn ↓ 0, hn → h ∈ D0 as n→∞

and θ + tnhn ∈ Dφ for all n.

Inspecting Definition 1.2.1, we see that the main difference between Hadamard dif-

ferentiability and directional differentiability lies in the linearity of the derivative. This

turns out to be the exact gap between these two notions of differentiability. In particular,

1We note that the “tangential set” in Shapiro (1991) refers to the domain of φ (i.e., Dφ in our context),
whereas here it refers to the domain D0 of the derivative φ′θ.
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(1.13) ensures that the Hadamard directional derivative φ′θ is necessarily continuous and

positively homogeneous of degree one, though potentially nonlinear (Shapiro, 1990).

Given the introduced notions of differentiability and in view of the remarkable fact

that Delta method is valid under even Hadamard directional differentiability in terms of

deriving asymptotic distributions (Shapiro, 1991; Dümbgen, 1993), it seems a natural next

step to invoke the Delta method. However, in the presence of first order degeneracy, the

resulting limiting distribution is degenerate at zero, rendering substantial challenges for

inferential purposes.

In essence, the Delta method is a stochastic version of Taylor expansion. There-

fore, one could go one step further to explore the quadratic term when the linear term is

degenerate. We thus follow Shapiro (2000) and define

Definition 1.2.2. Let φ : Dφ ⊆ D→ E be a map as in Definition 1.2.1.

(i) Suppose that φ : Dφ → E is Hadamard differentiable tangentially to D0 ⊂ D such

that the derivative φ′θ : D0 → E is well defined on D. We say that φ is second

order Hadamard differentiable at θ ∈ Dφ tangentially to D0 if there is a bilinear map

Φ′′θ : D0 × D0 → E such that: for φ′′θ(h) ≡ Φ′′θ(h, h),

lim
n→∞

‖
φ(θ + tnhn)− φ(θ)− tnφ′θ(hn)

t2n
− φ′′θ(h)‖E = 0 , (1.14)

for all sequences {hn} ⊂ D and {tn} ⊂ R+ such that tn → 0, hn → h ∈ D0 as n→∞

and θ + tnhn ∈ Dφ for all n.

(ii) Suppose that φ : Dφ → E is Hadamard directionally differentiable tangentially to

D0 ⊂ D such that the derivative φ′θ : D0 → E is well defined on D. We say that φ

is second order Hadamard directionally differentiable at θ ∈ Dφ tangentially to D0 if
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there is a map φ′′θ : D0 → E such that:2

lim
n→∞

‖
φ(θ + tnhn)− φ(θ)− tnφ′θ(hn)

t2n
− φ′′θ(h)‖E = 0 , (1.15)

for all sequences {hn} ⊂ D and {tn} ⊂ R+ such that tn ↓ 0, hn → h ∈ D0 as n→∞

and θ + tnhn ∈ Dφ for all n.

The second order derivative φ′′θ in both cases is necessarily continuous on D0, which

can be shown in a straightforward manner as in the proof of Proposition 3.1 in Shapiro

(1990). Similar in spirit to Definition 1.2.1, the key difference between the above two notions

of second order differentiability is that the former is a quadratic form corresponding to a

bilinear map while the latter is in general only positively homogeneous of degree two, i.e.,

φ′′θ(th) = t2φ′′θ(h) for all t ≥ 0 and all h ∈ D0. The definition of second order Hadamard

(resp. directional) differentiability is defined given first order Hadamard (resp. directional)

differentiability. However, it is possible that φ is first order Hadamard differentiable but

only second order Hadamard directionally differentiable (see Example 1.2.2). It is also

possible that φ is first order Hadamard directional differentiable and yet its second order

derivative is a bilinear map.3 In all our examples, φ is first order Hadamard differentiable

though φ′θ may be degenerate; see Subsection 1.2.3.1. We stress that requiring φ′θ to be well

defined on the entirety of D does not demand differentiability on D. Instead, it just means

that φ′θ can take elements potentially not in D0 as arguments. Finally, we note that first

and second order (directional) derivatives share the same domain D0.

Clearly, the second order is not the end of the story. If φ′′θ in turn is degenerate,

one can go beyond the second order; see Remark 1.2.1. We do not pursue this possibility

at length in the current paper.

Remark 1.2.1. Suppose that φ : Dφ ⊆ D→ E is (p− 1)-th order Hadamard directionally

differentiable tangentially to D0 ⊂ D such that the derivative φ
(j)
θ : D0 → E is well defined

on D for all j = 1, . . . , p − 1, where p ≥ 2. Then we say that φ is pth order Hadamard

2Compared with Shapiro (2000), we omitted 1
2

in the denominator for notational compactness.
3For example, consider the map φ : R→ R defined by φ(θ) = max{θ, 0}.
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directionally differentiable at θ ∈ Dφ tangentially to D0 if there is a map φ
(p)
θ : D0 → E such

that:

φ(θ + tnhn) = φ(θ) +

p−1∑
j=1

tjnφ
(j)
θ (hn) + tpnφ

(p)
θ (h) + o(tpn) , (1.16)

for all sequences {hn} ⊂ D and {tn} ⊂ R+ such that tn ↓ 0, hn → h ∈ D0 as n → ∞ and

θ + tnhn ∈ Dφ for all n.

1.2.3.1 Examples Revisited

We now turn to the examples introduced in Section 1.2.2 and demonstrate how they

fit into the scope of our analysis by calculating the derivatives. From now on, we shall focus

on Examples 1.2.1, 1.2.4 and 1.2.6 exclusively for conciseness; Examples 1.2.2, 1.2.3 and

1.2.5 will be treated in Appendix 1.8.2.

Example 1.2.1 (Continued). In this example, the functional involved is second order

Hadamard differentiable. Trivially we have

φ′θ(h) = 2θh , φ′′θ(h) = h2 . (1.17)

Note that the first order derivative φ′θ is degenerate when θ = 0, whereas φ′′θ is everywhere

nondegenerate. The bilinear map Φ′′θ : R2 → R here is given by Φ′′θ(h, g) = hg.

Examples 1.2.4 involves a functional whose domain is infinite dimensional.

Example 1.2.4 (Continued). By Lemma 1.8.4, φ is first order Hadamard differentiable

at any θ ∈ `∞(R)×`∞(R) with φ′θ : `∞(R)×`∞(R)→ R satisfying for any h = (h(1), h(2)) ∈

`∞(R)× `∞(R)

φ′θ(h) = 2

∫
B+(θ)

[θ(1)(u)− θ(2)(u)][h(1)(u)− h(2)(u)]w(u)du ,

where B+(θ) ≡ {u ∈ R : θ(1)(u) > θ(2)(u)}. Note that φ′θ(h) = 0 if B+(θ) has Lebesgue
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measure zero, i.e., θ(1) ≤ θ(2) almost everywhere. Moreover, φ is second order Hadamard

directionally differentiable at any θ ∈ `∞(R) × `∞(R) with the derivative φ′′θ : `∞(R) ×

`∞(R)→ R satisfying

φ′′θ(h) =

∫
B0(θ)

max{h(1)(u)− h(2)(u), 0}2w(u)du+

∫
B+(θ)

[h(1)(u)− h(2)(u)]2w(u)du ,

for any h = (h(1), h(2)) ∈ `∞(R) × `∞(R), where B0(θ) ≡ {u ∈ R : θ(1)(u) = θ(2)(u)}

is referred to as the contact set of θ(1) and θ(2). If θ(1) ≤ θ(2), then φ′′θ(h) simplifies to

φ′′θ(h) =
∫
B0(θ) max{h(1)(u) − h(2)(u)}2w(u)du. If in addition the contact set B0(θ) has

Lebesgue measure zero, then φ′′θ in turn is degenerate, corresponding to the degenerate

limits obtained in Theorem 1 of Linton et al. (2010).

In Example 1.2.6, the domain D0 of the derivative φ′′θ0 is a strict subset of D.

Example 1.2.6 (Continued). Consider θ ∈
∏m
j=1 `

∞(Γ) such that θ(γ) = 0 for some

γ ∈ Γ. Then φ is Hadamard differentiable at θ and φ′θ(h) = 0 for all h ∈
∏m
j=1 `

∞(Γ).

Suppose further that Γ is compact and that Γ0(θ) ≡ {γ ∈ Γ : θ(γ) = 0} is in the interior

of Γ. For C1(Γ) the space of continuously differentiable functions on Γ, if θ ∈
∏m
j=1C

1(Γ),

then by Lemma 1.8.6, under additional regularity conditions, φ is second order Hadamard

directionally differentiable at θ tangentially to
∏m
j=1C(Γ) with the derivative given by: for

any h ∈
∏m
j=1C(Γ),

φ′′θ(h) = min
γ0∈Γ0(θ)

min
v∈Rk

{h(γ0)− J(γ0)v}ᵀW{h(γ0)− J(γ0)v} ,

where J(γ0) ≡ dθ(γ)
dγᵀ

∣∣
γ=γ0

is the Jacobian matrix. When γ0 is point identified and J(γ0) is

of full column rank, φ becomes second order Hadamard differentiable with

φ′′θ(h) = h(γ0)ᵀM(γ0)WM(γ0)h(γ0) ,

where M(γ0) = Im−J(γ0)[J(γ0)ᵀJ(γ0)]−1J(γ0)ᵀ with Im the identity matrix of size m. We

note that Γ0(θ) being in the interior of Γ is not essential and can be relaxed by introducing
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relevant notions of cones (Bonnans and Shapiro, 2000).

1.2.4 Second Order Delta Method

The Delta method for potentially directionally differentiable maps as well as dif-

ferentiable ones has proven powerful in asymptotic analysis (van der Vaart, 1998; Shapiro,

1991; Fang and Santos, 2015; Hansen, 2015). Unfortunately, it is insufficient to handle

substantial challenges for inference arising from first order degeneracy. Heuristically, if

rn{θ̂n − θ0}
L−→ G and φ′θ0 = 0, then the Delta method implies that

rn{φ(θ̂n)− φ(θ0)} L−→ φ′θ0(G) ≡ 0 .

For real-valued φ, the usual confidence interval for φ(θ0) at asymptotic level 1− α is

[φ(θ̂n)−
c1−α/2

rn
, φ(θ̂n)−

cα/2

rn
] = {φ(θ̂n)} , (1.18)

where the cα is the α-th quantile of φ′θ0(G) ≡ 0 and is zero for all α ∈ (0, 1). Clearly,

P (φ(θ0) ∈ {φ(θ̂n)}) = 0 if, for example, φ(θ̂n) is a continuous random variable.

To circumvent the above difficulty, we resort to higher order expansions and aim

to establish a mild extension of Theorem 2.3 in Shapiro (2000) by accommodating weak

convergence in the Hoffmann-Jørgensen sense and dispensing with the convexity of Dφ and

separability of D. We proceed by imposing the following assumptions.

Assumption 1.2.1. (i) D and E are normed spaces with norms ‖·‖D and ‖·‖E respectively;

(ii) φ : Dφ ⊂ D → E is second order Hadamard directionally differentiable at θ0 ∈ Dφ

tangentially to D0 ⊂ D.

Assumption 1.2.2. (i) There is θ̂n : {Xi}ni=1 → Dφ such that rn{θ̂n − θ0}
L−→ G in D for

some rn ↑ ∞; (ii) G is tight and P (G ∈ D0) = 1.

Assumption 1.2.3. (i) φ′′θ can be continuously extended to D; (ii) D0 is closed under vector

addition, i.e., h1 + h2 ∈ D0 whenever h1, h2 ∈ D0; (iii) φ′θ0(h) = 0 for all h ∈ D0.
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Assumption 1.2.1 formalizes the requirement that φ : Dφ → E is second order

Hadamard directionally differentiable at θ0, which allows us to conduct higher order expan-

sions. By definition, this necessitates first order Hadamard directional differentiability of

φ at θ0 tangentially to D0 and that φ′θ0 is well defined on the entirety of D. Assumption

1.2.2(i) characterizes another key ingredient: there is an estimator θ̂n for θ0 that admits

a weak limit G at a potentially non-
√
n rate rn; see Remark 1.3.1. Assumption 1.2.2(ii)

ensures that the support of G is included in the domain of the derivative φ′′θ0 so that φ′′θ0(G)

is well defined, while tightness of G is only a minimal requirement.4 Assumption 1.2.3(i)

allows us to view the map φ′′θ0 as well defined and continuous on the entire space D, and

is automatically satisfied whenever D0 is closed (Dugundji, 1951, Theorem 4.1). We em-

phasize, however, that Assumption 1.2.3(i) does not require differentiability of φ : Dφ → E

tangentially to D, i.e., the extension of φ′′θ0 need not satisfy (1.15) for h ∈ D \D0. Assump-

tion 1.2.3(ii) imposes that D0 be closed under addition which, since D0 is necessarily a cone,

is equivalent to demanding that D0 be convex.5 This mild requirement is only employed in

some of our results and helps ensure that, when multiple extensions of φ′′θ0 exist, the choice

of extension has no impact in our arguments. Finally, Assumption 1.2.3(iii) formalizes the

defining feature of the paper, i.e., first order degeneracy of φ.

Given Assumptions 1.2.1 and 1.2.2, we are able to establish a second order Delta

method. Assumption 1.2.3(i) is needed to obtain a strengthening in which φ′′θ0 takes elements

potentially in D \ D0 as arguments.

Theorem 1.2.1. If Assumptions 1.2.1 and 1.2.2 hold, then

r2
n{φ(θ̂n)− φ(θ0)− φ′θ0(θ̂n − θ0)} L−→ φ′′θ0(G) . (1.19)

If in addition Assumption 1.2.3(i) holds, then

r2
n{φ(θ̂n)− φ(θ0)− φ′θ0(θ̂n − θ0)} = φ′′θ0(rn{θ̂n − θ0}) + op(1) . (1.20)

4The support of G0 is the set of all x ∈ D having the property that P (G0 ∈ U) > 0 for each open set
U ⊂ D containing x.

5We note that convexity of D0 is only needed for the stronger version of the Delta method in (1.20).
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The essence of Theorem 1.2.1 is in complete accord with that underlying the first

order Delta method. In particular, the definition of second order Hadamard directional

differentiability is engineered so that the second order Delta method is nothing more than

a stochastic version of the Taylor expansion of order two, i.e.,

φ(θ0 + tnhn) = φ(θ0) + tnφ
′
θ0(hn) + t2nφ

′′
θ0(h) + o(t2n) ,

where tn corresponds to r−1
n , and hn to rn{θ̂n − θ0}. Note that Theorem 1.2.1 is valid

regardless of the nature of the differentiability (i.e., fully differentiable or directionally

differentiable) and the presence of first order degeneracy. When φ′θ0 is degenerate, the

convergence (1.19) simplifies to

r2
n{φ(θ̂n)− φ(θ0)} L−→ φ′′θ0(G) . (1.21)

Finally, we note that higher order versions of the Delta method can be developed along the

lines of Remark 1.2.1; see Remark 1.2.2.

Remark 1.2.2. Suppose that Assumptions 1.2.1(i) and 1.2.2 hold and that φ is p-th order

Hadamard directionally differentiable at θ0 ∈ Dφ tangentially to D0. It follows that

rpn
[
φ(θ̂n)− {φ(θ0) +

p−1∑
j=1

φ
(j)
θ0

(θ̂n − θ0)}
] L−→ φ

(p)
θ0

(G) .

If in addition φ
(p)
θ0

can be continuously extended to D, then

rpn
[
φ(θ̂n)− {φ(θ0) +

p−1∑
j=1

φ
(j)
θ0

(θ̂n − θ0)}
]

= φ
(p)
θ0

(rn{θ̂n − θ0}) + op(1) .

1.3 The Bootstrap

Establishing asymptotic distributions as in Theorem 1.2.1 is the first step towards

conducting statistical inference on φ(θ0), the usefulness of which relies on our ability to
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accurately estimate the limiting law. In this section, we discuss how first order degeneracy

of φ can complicate inference using the standard bootstrap based on first and especially

second order asymptotics, and provide alternative consistent resampling schemes.

1.3.1 Bootstrap Setup

Throughout, we let θ̂∗n denote a “bootstrapped version” of θ̂n, which is defined as

a function mapping the data {Xi}ni=1 and random weights {Wi}ni=1 that are independent

of {Xi}ni=1 into the domain Dφ of φ. This general definition allows us to include diverse

resampling schemes such as nonparametric, Bayesian, block, score, more generally multiplier

and exchangeable bootstrap as special cases. We shall assume the limiting distribution G

of rn{θ̂n − θ0} can be consistently estimated by the law of rn{θ̂∗n − θ̂n} conditional on the

data.

Next, making sense of bootstrap consistency necessitates a metric that quantifies

distances between probability measures. As is standard in the literature, we employ the

bounded Lipschitz metric dBL formalized by Dudley (1966, 1968): for two Borel probability

measures L1 and L2 on D, define

dBL(L1, L2) ≡ sup
f∈BL1(D)

|
∫
f dL1 −

∫
f dL2| ,

where we recall that BL1(D) denotes the set of Lipschitz functionals whose absolute level

and Lipschitz constant are bounded by one, i.e.,

BL1(D) ≡ {f : D→ R : sup
t∈D
|f(t)|+ sup

t1,t2∈D,t1 6=t2

|f(t1)− f(t2)|
‖t1 − t2‖D

≤ 1} .

Since weak convergence in the Hoffmann-Jørgensen sense to separable limits can be

metrized by dBL (Dudley, 1990; van der Vaart and Wellner, 1990), we may now measure

the distance between the “law” of Ĝ∗n ≡ rn{θ̂∗n − θ̂n} conditional on {Xi} and the limiting
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law of rn{θ̂n − θ0} by

dBL(Ĝ∗n,G) = sup
f∈BL1(D)

|EW [f(rn{θ̂∗n − θ̂n})]− E[f(G)]| , (1.22)

where EW denotes expectation with respect to the bootstrap weights {Wi}ni=1 holding the

data {Xi}ni=1 fixed. Employing the distribution of rn{θ̂∗n − θ̂n} conditional on the data as

an approximation to the distribution of G is then asymptotically justified if their distance,

equivalently (1.22), converges in probability to zero.

We formalize the above discussion by imposing the following assumptions on θ̂∗n.

Assumption 1.3.1. (i) θ̂∗n : {Xi,Wi}ni=1 → Dφ with {Wi}ni=1 independent of {Xi}ni=1; (ii)

θ̂∗n satisfies supf∈BL1(D) |EW [f(rn{θ̂∗n − θ̂n})]− E[f(G)]| = op(1).

Assumption 1.3.2. (i) E[f(rn{θ̂∗n − θ̂n})∗]− E[f(rn{θ̂∗n − θ̂n})∗]→ 0 for all f ∈ BL1(D)

where f(rn{θ̂∗n− θ̂n})∗ and f(rn{θ̂∗n− θ̂n})∗ denote minimal measurable majorant and max-

imal measurable minorant (with respect to {Xi,Wi}ni=1 jointly) respectively; (ii) f(rn{θ̂∗n −

θ̂n}) is a measurable function of {Wi}ni=1 outer almost surely in {Xi}ni=1 for any continuous

and bounded f : D→ R.

Assumption 1.3.1(i) formally defines the bootstrap analog θ̂∗n of θ̂n, while Assump-

tion 1.3.1(ii) simply imposes the consistency of the “law” of rn{θ̂∗n− θ̂n} conditional on the

data for the law of G, i.e., the bootstrap “works” for the estimator θ̂n. Assumption 1.3.2 is

of technical concern. In particular, Assumption 1.3.2(i) can often be established as a result

of bootstrap consistency (van der Vaart and Wellner, 1996a), while Assumption 1.3.2(ii) is

easy to verify for particular resampling schemes. For example, if {Wi}ni=1 7→ f(rn{θ̂∗n− θ̂n})

is continuous, then Assumption 1.3.2(ii) is fulfilled. When θ0 is Euclidean-valued, i.e.,

D = Rk with k ∈ N, one can dispense with Assumption 1.3.2.



22

1.3.2 Failures of the Standard Bootstrap

We now turn to the challenges for inferences using the standard bootstrap caused

by first order degeneracy. As is well known in the literature, the law of

rn{φ(θ̂∗n)− φ(θ̂n)} (1.23)

conditional on the data provides a consistent estimator of the law of φ′θ0(G) provided φ is

Hadamard differentiable (van der Vaart and Wellner, 1996a), which in particular includes

the case when φ′θ0 = 0. In other words, the standard bootstrap, meaning the law of (1.23)

conditional on the data, is consistent for the law of φ′θ0(G) regardless of the presence of first

order degeneracy.

Substantial difficulties, however, arise from using (1.23) for inferential purposes

when first order degeneracy does occur. Ignoring the first order degeneracy or perhaps as a

way to avoid ridiculous confidence intervals such as (1.18), one might consider the following

confidence interval for real-valued φ(θ0):

[φ(θ̂n)−
c̃1−α/2

rn
, φ(θ̂n)−

c̃α/2

rn
] , (1.24)

where c̃1−α is the (1− α)-th bootstrapped quantile for α ∈ (0, 1) defined as

c̃1−α ≡ inf{c ∈ R : PW (rn{φ(θ̂∗n)− φ(θ̂n)} ≤ c) ≥ 1− α} .

However, establishing the validity of (1.24) as a level 1− α confidence interval for φ(θ0) is

problematic because c̃1−α
p−→ 0 for all α ∈ (0, 1) and 0 is a discontinuity point of the cdf of

the limit (see Lemma 1.8.1).

In fact, simple algebra reveals that (1.24) is numerically identical to

[φ(θ̂n)−
c̄1−α/2

r2
n

, φ(θ̂n)−
c̄α/2

r2
n

] , (1.25)



23

where c̄α is defined as

c̄1−α ≡ inf{c ∈ R : PW (r2
n{φ(θ̂∗n)− φ(θ̂n)} ≤ c) ≥ 1− α} .

In other words, c̄α is the α-th bootstrapped quantile of the standard bootstrap based on

second order asymptotics:

r2
n{φ(θ̂∗n)− φ(θ̂n)} . (1.26)

As illustrated by Babu (1984) for the squared mean example, the law of (1.26) conditional

on the data is inconsistent for the law of φ′′θ0(G) when θ0 = 0, the point at which first

order degeneracy arises. We next demonstrate that the bootstrap failure is not peculiar to

this example by generalizing it to our general setup. As the following theorem shows, for

centered Gaussian G, the second order standard bootstrap is consistent if and only if φ′′θ0 is

degenerate.

Theorem 1.3.1. Suppose that Assumptions 1.2.1, 1.2.2, 1.2.3, 1.3.1 and 1.3.2 hold, and

that G is centered Gaussian. Then φ′′θ0 = 0 on the support of G if and only if

sup
f∈BL1(E)

|EW [f(r2
n{φ(θ̂∗n)− φ(θ̂n)})]− E[f(φ′′θ0(G))]| = op(1) . (1.27)

If, in addition, φ is second order Hadamard differentiable, then the conclusion holds without

requiring G be centered Gaussian.

The sufficiency part of the theorem is somewhat expected and not a deep result,

while the necessity is perhaps surprising and has far-reaching implications for statistical

inference as we shall detail shortly. The proof of the latter consists of two steps: in the

first step, we show that bootstrap consistency as in (1.27) implies existence of a bilinear

map Φ′′θ0 corresponding to φ′′θ0 , in similar fashion as the proof of Theorem 3.1 in Fang and

Santos (2015); in the second step, we establish that Φ′′θ0 and hence φ′′θ0 is necessarily degen-

erate. Both steps involve the insights of equating distributions through their characteristic
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functionals as in van der Vaart (1991) and Hirano and Porter (2012).

Theorem 1.3.1 implies that, in the presence of first order degeneracy, if the second

order derivative φ′′θ0 is nondegenerate, then the standard bootstrap based on second order

asymptotics is necessarily inconsistent whenever G is centered Gaussian. If φ′′θ0 is degenerate,

we have a degenerate limiting distribution that can not be directly used for inference. We

thus conclude that bootstrap failure is an inherent implication of models with first order

degeneracy.

Heuristically, the reason why the standard bootstrap fails is that even though

r2
nφ
′
θ0

(θ̂n − θ0) = 0 in the “real world”, its bootstrap counterpart is non-negligible. To

see this, consider the squared mean example. If θ0 = 0, then

nφ′
θ̂n

(θ̂∗n − θ̂n) = n2θ̂n · {θ̂∗n − θ̂n} = 2
√
n{θ̂n − θ0} ·

√
n{θ̂∗n − θ̂n} = Op(1) .

This is an emphatic reflection of Efron (1979)’s caveat that the bootstrap, as well as other

resampling schemes, provides frequency approximations rather than likelihood approxima-

tions. These heuristics suggest that the standard bootstrap might work if the first order

term r2
nφ
′
θ̂n

(θ̂∗n − θ̂n) is included, which turns out to be true for sufficiently smooth maps;

see Theorem 1.3.2.

It is worth noting that Theorem 1.3.1 holds even if φ is smooth. Consequently,

first order degeneracy is a source of bootstrap inconsistency completely different from that

discussed in Fang and Santos (2015), i.e., nondifferentiability of φ. In addition, we note

that, without the qualifier that G is centered Gaussian, bootstrap consistency (1.27) holds if

and only if φ′′θ0(G+h)−φ′′θ0(h)
d
= φ′′θ0(G) for all h ∈ Supp(G) under mild support conditions;

see Theorem A.1 in Fang and Santos (2015).

1.3.3 The Babu Correction

We now extend the Babu correction under our more general setup. We proceed by

imposing the following assumption.



25

Assumption 1.3.3. (i) The map φ : Dφ ⊂ D→ E is second order Hadamard differentiable

at θ0 ∈ Dφ tangentially to D0; (ii) φ is first order Hadamard differentiable at every point in

some neighborhood of θ0 tangentially to D0 such that 6

lim
n→∞

‖
φ′θ0+tngn

(hn)− φ′θ0(hn)

tn
− 2Φ′′θ0(g, h)‖E = 0 , (1.28)

for all sequences {gn, hn} ⊂ D and {tn} ⊂ R+ such that tn ↓ 0, (gn, hn)→ (g, h) ∈ D0×D0

as n→∞ and θ+ tngn, θ+ tnhn ∈ Dφ for all sufficiently large n, where Φ′′θ0 : D0 ×D0 → E

is the bilinear map underlying φ′′θ0.

Assumption 1.3.3(i) defines the scope of our current discussion: the Babu correction

shall be applied to smooth maps. Assumption 1.3.3(ii) is stronger than φ being simply sec-

ond order Hadamard differentiable, in that it requires the existence of first order derivative

at all points in a neighborhood of θ0 such that (1.3.3) holds. Assumption 1.3.3 is fulfilled

for the setup considered in Babu (1984) and for Examples 1.2.1 and 1.2.3, but violated for

the remaining examples.

Under Assumption 1.3.3, the corrected bootstrap

r2
n{φ(θ̂∗n)− φ(θ̂n)− φ′

θ̂n
(θ̂∗n − θ̂n)} (1.29)

is consistent for the law of φ′′θ0(G) regardless of the degeneracy of φ′θ0 .

Theorem 1.3.2. Suppose that Assumptions 1.2.1(i), 1.2.2, 1.2.3(ii), 1.3.1, 1.3.2 and 1.3.3

holds. If the bilinear form Φ′′θ0 can be continuously extended to D× D, then

sup
f∈BL1(E)

|EW [f(r2
n{φ(θ̂∗n)− φ(θ̂n)− φ′

θ̂n
(θ̂∗n − θ̂n)})]− E[f(φ′′θ0(G))]| = op(1) . (1.30)

Theorem 1.3.2 generalizes Babu (1984) considerably in that it accommodates semi-

parametric and nonparametric models, and allows wider resampling schemes beyond the

nonparametric bootstrap of Efron (1979). The Babu correction works nicely with smooth

6The appearance of the factor 2 is due to omission of the factor 1/2 in Definition 1.2.2.
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maps in the sense of Assumption 1.3.3, but unfortunately is inadequate to handle nons-

mooth ones. This is because when φ is only second order directionally differentiable, often

times the derivative φ′′θ0 is not “continuous” in θ0, implying that the Babu correction (1.29)

is unable to estimate φ′′θ0 properly and in this way results in inconsistent estimates. For this

reason, we next provide yet another resampling method which accommodates nondifferen-

tiable maps.

1.3.4 A Modified Bootstrap

In this subsection, we shall present a modified bootstrap following Fang and Santos

(2015) that is consistent for the law of φ′′θ0(G), and adaptive to both the presence of first

order degeneracy and nondifferentiability of φ.

The heuristics underlying our proposal, however, are connected to those in Fang

and Santos (2015) in a subtle way. In the context of first order asymptotics where φ is

only directionally differentiable, inconsistency of the standard bootstrap arises from its

inability to properly estimate the directional derivative φ′θ0 . In our setup, however, there

are examples in which the derivative φ′′θ0 is a known map; see Examples 1.2.1 and 1.2.3

which are all differentiable maps. The standard bootstrap in these settings fails because

there is a non-negligible term being neglected. However, in all other examples where φ is

not smooth enough, Fang and Santos (2015)’s arguments will come into play as well.

In any case, the second order weak limit φ′′θ0(G) is a composition of the derivative

φ′′θ0 and the limit G of θ̂n, as is the first order limit φ′θ0(G). Thus, the law of φ′′θ0(G) can

be estimated by composing a suitable estimator φ̂′′n for φ′′θ0 with a consistent bootstrap

approximation for the law of G, in exactly the same fashion as the resampling scheme

proposed by Fang and Santos (2015). That is, we propose employing the law of

φ̂′′n(rn{θ̂∗n − θ̂n}) (1.31)

conditional on the data as an approximation for the law of φ′′θ0(G), where φ̂′′n : D → E is a
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suitable estimator of φ′′θ0 . In cases when φ′′θ0 is a known map, we may simply set φ̂′′n = φ′′θ0

for all n ∈ N.

Certainly, we would like φ̂′′n to converge to φ′′θ0 in some sense as n → ∞. This can

be made precise as follows.

Assumption 1.3.4. φ̂′′n : D→ E is a function of {Xi}ni=1 satisfying that for every sequence

{hn} ⊂ D and every h ∈ D0 such that hn → h as n→∞,

φ̂′′n(hn)
p−→ φ′′θ0(h) . (1.32)

Assumption 1.3.4 says that φ̂′′n converges in probability to φ′′θ0 along any convergent

sequence hn → h as n → ∞. It is worth noting that Assumption 1.3.4 is equivalent to

requiring: for every compact set K ⊂ D0 and every ε > 0,

lim
δ↓0

lim sup
n→∞

P
(

sup
h∈Kδ

‖φ̂′′n(h)− φ′′θ0(h)‖E > ε
)

= 0 , (1.33)

where Kδ ≡ {a ∈ D : infb∈K ‖a−b‖D < δ}; see Lemma 1.8.2. Condition (1.33) was employed

in Fang and Santos (2015) who also provided several sufficient conditions for it to hold. For

example, if φ̂′′n : D → E is Lipschitz continuous, then pointwise consistency of φ̂′′n suffices

for (1.33). Unfortunately, second order derivatives often lack uniform continuity and hence

those sufficient conditions are inapplicable. Nonetheless, condition (1.32) is straightforward

to verify in all our examples.

Given the equivalence of conditions (1.32) and (1.33), consistency of our modified

bootstrap (1.31) follows from Theorem 3.2 in Fang and Santos (2015).

Theorem 1.3.3. Under Assumptions 1.2.1, 1.2.2, 1.2.3(i), 1.3.1, 1.3.2 and 1.3.4, it follows

that

sup
f∈BL1(E)

|EW [f(φ̂′′n(rn{θ̂∗n − θ̂n}))]− E[f(φ′′θ0(G))]| = op(1) . (1.34)

Theorem 1.3.3 shows that the law of φ̂′′n(rn{θ̂∗n−θ̂n}) conditional on the data is indeed
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consistent for the law of φ′′θ0(G), regardless of the degree of smoothness of φ and degeneracy

of φ′θ0 . Interestingly, the resampling scheme in Theorem 1.3.3 is a mixture of the classical

bootstrap and analytical asymptotic approximations. Finally, we note that Assumption

1.3.4 allows us to think of Theorem 1.3.3 as a variant of the extended continuous mapping

theorem.

We now briefly compare the Babu correction, the above composition procedure

and the recentered bootstrap (Hall and Horowitz, 1996; Horowitz, 2001). In some cases (for

instance, Example 1.2.1 and the regular J-test), they coincide with each other. However, the

Babu correction applies to general smooth functionals, rather than just quadratic forms, and

hence can be thought of as a generalization of the recentered bootstrap. The composition

procedure, which works for an even larger class of functionals, is a direct approach by

exploiting the structure of the limits, and hence is more tractable.

Remark 1.3.1. Examples where the convergence rate is not
√
n include inference on the

means of kernel density estimators (Hall, 1992),7 smoothed maximum score estimators

(Horowitz, 2002), and cointegration regressions (Chang et al., 2006). For nonstandard con-

vergence rates, however, the bootstrap process rn{θ̂∗n− θ̂n} can fail to consistently estimate

the law of G, violating Assumption 1.3.1(ii). Fortunately, as far as Theorem 1.3.3 is con-

cerned, any consistent estimator, which need not satisfy Assumption 1.3.1(ii), will do. For

example, in cube-root estimation problems, one could instead employ some smoothed boot-

strap rn{θ̃∗n− θ̃n} where θ̃∗n and θ̃n are some smoothed estimators, or m out of n resampling

(or subsampling) mn{θ̂∗mn− θ̂n} where θ̂∗mn is a bootstrap estimator based on subsamples of

size mn. In the context of estimating nonincreasing density functions, see Kosorok (2008b)

and Sen et al. (2010); for bootstrapping the maximum score estimators, see Delgado et al.

(2001) and Patra et al. (2015).

7We stress that our assumptions on the primitive parameter θ0 exclude cases where θ0 is equal to a
density function evaluated at a particular point due to the bias term.
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1.3.5 Estimation of the Derivative

Given the posited bootstrap consistency for the law of G, the remaining crucial

piece towards consistent bootstrap for the law of φ′′θ0(G) based on Theorem 1.3.3 is then an

estimator φ̂′′n of the derivative φ′′θ0 that satisfies Assumption 1.3.4. There are two general

approaches for estimation of φ′′θ0 : one by exploiting the structure of φ′′θ0 , and the other one

based on numerical differentiation as we describe now.

When first order degeneracy occurs, we have

φ′′θ0(h) = lim
n→∞

φ(θ0 + tnh)− φ(θ0)

t2n
. (1.35)

Following Song (2014) and Hong and Li (2015), we may then estimate φ′′θ0 via numerical

differentiation as follows: for any h ∈ D,

φ̂′′n(h) =
φ(θ̂n + tnh)− φ(θ̂n)

t2n
. (1.36)

If tn tends to zero at a suitable rate, the sense of which is made precise by the following

assumption, then φ̂′′n is a good estimator for φ′′θ0 in the sense of Assumption 1.3.4.

Assumption 1.3.5. {tn}∞n=1 is a sequences of scalars such that tn ↓ 0 and rntn →∞.

The next proposition confirms the validity of the numerical estimator (1.36).

Proposition 1.3.1. If Assumptions 1.2.1, 1.2.2, 1.2.3(iii) and 1.3.5 hold, then the numer-

ical estimator φ̂′′n in (1.36) satisfies Assumption 1.3.4.

We note that numerical differentiation can also be employed to estimate the deriva-

tive when φ′θ0 is degenerate only at points in a proper subset of the parameter space; see

Remark 1.3.2. Proposition 1.3.1 provides a tractable way of estimating the derivative φ′′θ0 .

On the other hand, the expression of φ′′θ0 itself often suggests an obvious estimator as we

elaborate in next subsection.
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Remark 1.3.2. If φ′θ0 is possibly nondegenerate, then we may estimate φ′′θ0 by: for h ∈ D,

φ̂′′n(h) =
φ(θ̂n + tnh)− φ(θ̂n)− tnφ̂′n(h)

t2n
, (1.37)

where φ̂′n(h) is given by:

φ̂′n(h) =
φ(θ̂n + snh)− φ(θ̂n)

sn
, (1.38)

and {tn, sn} are tuning parameters that tend to zero. We emphasize that sn should not be

taken to be equal to tn because otherwise we have φ̂′′n(h) = 0 numerically for all h ∈ D. In

fact, in order for φ̂′n and φ̂′′n to possess desired estimation properties, we need put restrictions

on the rate at which sn, tn approach zero.

1.3.5.1 Examples Revisited

We now demonstrate how to exploit the structure of the derivative for the purpose

of derivative estimation. Examples 1.2.1 is trivial since φ′′θ0 is a known map and hence one

can simply set φ̂′′n = φ′′θ0 .

Example 1.2.4 (Continued). Let B̂0(θ0) be an estimator of B0(θ0). Then we may

estimate φ′′θ0 by

φ̂′′n(h) =

∫
B̂0(θ)

max{h(1)(u)− h(2)(u), 0}2w(u)du . (1.39)

It is a simple exercise to verify that Assumption 1.3.4 is satisfied provided

∫
R

1{u ∈ B̂0(θ0)4B0(θ0)}w(u)du
p−→ 0 , (1.40)

where A4B denotes the set difference between sets A and B. Such a construction corre-

sponds to the bootstrap procedure studied in Linton et al. (2010).

Example 1.2.6 (Continued). In the classical case when Γ0(θ) is singleton, we may esti-
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mate φ′′θ0 based on the GMM estimator γ̂n and the estimated Jacobian matrix Ĵn. Generally,

there are two unknown objects involved in the second order derivative: the identified set

Γ0(θ) and J(γ0). Let Mm×k be the space of m × k matrices. Suppose that Γ̂n ⊂ Γ is a

dH -consistent estimator for Γ0(θ), and Ĵn : Γ → Mm×k an estimator for J : Γ → Mm×k

such that supγ∈Γ ‖Ĵn(γ)− J(γ)‖ p−→ 0. Then we may estimate φ′′θ0 by

φ̂′′n(h) = min
γ0∈Γ̂n

min
v∈Bn
{h(γ0)− Ĵn(γ0)v}ᵀW{h(γ0)− Ĵn(γ0)v} , (1.41)

where Bn ≡ {v ∈ Rk : ‖v‖ ≤ t−1
n } for tn ↓ 0 satisfying tn

√
n → ∞. Consistency of Γ̂n can

be established by appealing to Chernozhukov et al. (2007), while uniform consistency of

Ĵn can be derived using Glivenko-Cantelli type arguments. Following the proof of Lemma

1.8.9, it is straightforward to show that φ̂′′n satisfies Assumption 1.3.4.

1.4 Hypothesis Testing

Resampling methods such as bootstrap have many powerful applications in statisti-

cal analysis. For instance, jackknife and bootstrap initially were intended primarily as tools

for bias reduction and variance estimation (Efron, 1979). If, however, φ is nondifferentiable,

biases can not be fully eliminated and bias reduction can cause large variances (Hirano and

Porter, 2012; Fang, 2016). In this section, we instead study the hypothesis

H0 : φ(θ0) = 0 H1 : φ(θ0) > 0 . (1.42)

Under first order degeneracy, as is the case in all our examples, we propose using r2
nφ(θ̂n)

as the test statistic, which, according to Theorems 1.3.2 and 1.3.3, provides pointwise size

control by rejecting H0 if r2
nφ(θ̂n) > ĉ1−α where ĉ1−α is the critical value constructed from

the Babu correction or our proposed bootstrap, i.e.,

ĉ1−α = inf{c ∈ R : PW (r2
n{φ(θ̂∗n)− φ(θ̂n)− φ′

θ̂n
(θ̂∗n − θ̂n)} ≤ c) ≥ 1− α} , (1.43)
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or

ĉ1−α = inf{c ∈ R : PW (φ̂′′n(rn{θ̂∗n − θ̂n}) ≤ c) ≥ 1− α} . (1.44)

Note that ĉ1−α is generally infeasible in that it is constructed based on the “exact”

distribution of φ̂′′n(rn{θ̂∗n − θ̂n}) conditional on the data. Nonetheless, it can be estimated

by Monte Carlo simulation which in turn invites additional random error but can be made

presumably arbitrarily small by choosing the number of bootstrap samples (Efron, 1979;

Hall, 1992; Horowitz, 2001). Thus, as standard in the bootstrap literature, we think of ĉ1−α

as known in what follows.

In fact, under additional restrictions, our test can provide local size control. This

property is particularly attractive because of the irregularity arising from nondifferentiabil-

ity of φ. In this case, pointwise asymptotic approximations can be misleading (Imbens and

Manski, 2004; Andrews and Guggenberger, 2009a). Interestingly, it turns out that there

is another source of irregularity due to second order asymptotics (see Lemma 1.4.1). We

next proceed to investigate the behaviors of our procedure under local perturbations to the

underlying distribution of the data, as characterized in next subsection.

1.4.1 Local Perturbations

We first introduce relevant concepts following Bickel et al. (1998). In what follows we

specialize our setup to the the i.i.d. setting for simplicity.8 In particular, the data {Xi}ni=1

is presumed to have a common probability measure P ∈ P, where P is a collection of Borel

probability measures that possibly generate the data. Further, we think of the parameter

θ0 as a map θ : P → Dφ, i.e., θ0 = θ(P ). Formally, we impose the following:

Assumption 1.4.1. (i) {Xi}ni=1 is an i.i.d. sequence with each Xi ∈ Rdx distributed ac-

cording to P ∈ P; (ii) θ0 ≡ θ(P ) for some known map θ : P → Dφ and φ(θ0) = 0.

8Generally, we may consider models that are locally asymptotically quadratic (van der Vaart, 1998;
Ploberger and Phillips, 2012).
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Given the model P defined in Assumption 1.4.1, we now formalize the notion of

local perturbations to the true probability measure P . Intuitively, a local perturbation can

be thought as a sequence of probability measures contained in P that approaches P . Since

the set of probability measures is not a vector space, an appropriate embedding is needed to

make precise sense of this idea. This is simplified by considering one dimensional parametric

models containing P and contained in P (Stein, 1956).

Definition 1.4.1. A function t 7→ Pt mapping a neighborhood (−ε, ε) of zero into P is

called a differentiable path passing through P if P0 = P and for some h : Rdx → R,

lim
t→0

∫ [
dP

1/2
t − dP 1/2

t
− 1

2
h dP 1/2

]2

= 0 . (1.45)

Intuitively, a differentiable path is just a parametric model in P and indexed by

t ∈ (−ε, ε) such that it is getting close to P sufficiently fast as t → 0. The function h is

referred to as the score function of P and satisfies
∫
h dP = 0 and h ∈ L2(P ).

The perturbations on P are fundamental in that they affect everything that is built

on the model, which in particular includes the parameter θ : P → Dφ and the estimator

θ̂n : {Xi}ni=1 → Dφ. In this paper, we shall only consider θ and θ̂n that are well behaved

with respect to these local perturbations. This is formalized by the following assumption.

Assumption 1.4.2. (i) For every differentiable path {Pt} in P with score function h,

θ : P → Dφ is regular in the sense that there exists θ′0(h) ∈ D0 such that ‖θ(Pt) − θ(P ) −

tθ′0(h)‖D = o(t) (as t→ 0); (ii) θ̂n is a regular estimator for θ(P ).9

Assumption 1.4.2(i) is a smoothness condition on the parameter θ : P → Dφ, while

Assumption 1.4.2(ii) means that θ̂n is asymptotically invariant to local perturbations. As-

sumption 1.4.2(i) and (ii) in fact are closely related, though themselves alone do not imply

one another. In particular, regularity of θ̂n plus a mild condition implies regularity of

θ : P → Dφ, and vice versa (van der Vaart, 1991; Hirano and Porter, 2012).

9Formally, θ̂n is a regular estimator if for every differentiable path {Pt} in P with score function h, we

have rn{θ̂n − θ(Pn)} Ln→ G, where Pn ≡ P1/rn and Ln denotes the law under
∏n
i=1 Pn.
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Given the above regularity conditions, we now proceed to characterize local behav-

iors of our test statistic.

Lemma 1.4.1. Let {Pt} be a differentiable path with score function h. Suppose that As-

sumptions 1.2.1, 1.2.2, 1.2.3(ii)(iii), 1.4.1 and 1.4.2 hold. Then,

r2
nφ(θ̂n)

Ln−−→ φ′′θ0(G + θ′0(h)) , (1.46)

where Ln denotes the law under
∏n
i=1 Pn with Pn ≡ P1/rn by abuse of notation.

Lemma 1.4.1 indicates that the asymptotic distribution of r2
nφ(θ̂n) varies as a func-

tion of the score h, and in this sense exhibits second order irregularity, even if the map φ

is both first and second order differentiable and θ̂n is regular. This is perhaps surprising ex

ante and yet somewhat expected ex post. One important implication of Lemma 1.4.1 is that

one should carefully evaluate how sensitive the statistical procedures under consideration

is, in the presence of first order degeneracy.

1.4.2 Local Size and Power

Having derived the asymptotic distributions of r2
nφ(θ̂n) under local perturbations,

we are now in a position to establish local power performance and local size control of our

test. We consider differentiable paths {Pt} in P that also belong to the set

H ≡ {{Pt} : (i) φ(θ(Pt)) = 0 if t ≤ 0, and (ii) φ(θ(Pt)) > 0 if t > 0} .

Thus, a path {Pt} ∈ H is such that {Pt} satisfies the null hypothesis whenever t ≤ 0,

but switches to satisfying the alternative hypothesis at all t > 0. One can think of H as

a simple device to study local size and power in a compact way. Further, we denote the

power function at sample size n for the test that rejects whenever r2
nφ(θ̂n) > ĉ1−α by

πn(Pη/rn) ≡ Pnn (r2
nφ(θ̂n) > ĉ1−α) ,
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where we write Pn ≡ Pη/rn and Pnn ≡
∏n
i=1 Pn. The following additional assumption ensures

local size control of our test.

Assumption 1.4.3. (i) E = R; (ii) The cdf of φ′′θ0(G) is strictly increasing and continuous

at its (1−α)-th quantile c1−α; (iii) There exists a strictly increasing function τ : φ′′θ0(D0)→

R such that τ(0) = 0 and τ ◦ φ′′θ0 : D0 → R is subadditive.

Assumption 1.4.3(i) formalizes the requirement that φ be scalar valued. Assumption

1.4.3(ii) requires strict monotonicity of the cdf of φ′′θ0(G) at c1−α which ensures consistency of

the critical value ĉ1−α, and continuity which ensures the test controls size at least pointwise

in P . Subadditivity of τ ◦φ′′θ0 as required in Assumption 1.4.3(iii) is crucial for establishing

local size control of our test. This condition was imposed directly on the first order derivative

in Fang and Santos (2015). In our setup, φ′′θ0 itself often violates subadditivity because it

is closely related to quadratic forms. Nonetheless, in all but Example 1.2.6, τ ◦ φ′′θ0 is

subadditive for τ : R+ → R+ given by τ(ν) =
√
ν.10

The following theorem derives the asymptotic limits of the power function πn(Pη/rn).

Theorem 1.4.1. Let Assumptions 1.2.1, 1.2.2, 1.2.3, 1.3.1, 1.3.2, 1.3.4, 1.4.1, 1.4.2 and

1.4.3(i)-(ii) hold. It then follows that for any differentiable path {Pt} in H with score

function h, and every η ∈ R we have

lim inf
n→∞

πn(Pη/rn) ≥ P (φ′′θ0(G + θ′0(ηh)) > c1−α) . (1.47)

If in addition Assumption 1.4.3(iii) also holds, then we can conclude that for any η ≤ 0

lim sup
n→∞

πn(Pη/rn) ≤ α . (1.48)

The first claim of the theorem establishes a lower bound for the power function

under local perturbations to the null which includes in particular local alternatives. In fact,

10For Example 1.2.6, it turns out that
√
φ′′θ0(·) is subadditive when γ0 is point identified, though the main

motivation for us being general there is to accommodate partial identification as well as the Jacobian matrix
being degenerate.
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the lower bound is sharp whenever c1−α is a continuity point of the cdf of φ′′θ0(G+ ηθ′0(h)),

in which case (1.47) holds with equality. The role of Assumption 1.4.3(iii) can be seen from

(1.47) and the inequalities

P (φ′′θ0(G + ηθ′0(h)) > c1−α) = P (τ ◦ φ′′θ0(G + θ′0(ηh)) > τ(c1−α))

≤ P (τ ◦ φ′′θ0(G0) + τ ◦ φ′′θ0(θ′0(ηh)) > τ(c1−α))

= P (τ ◦ φ′′θ0(G0) > τ(c1−α))

= P (φ′′θ0(G0) > c1−α) ≤ α ,

where the second equality is due to φ′′θ0(θ′0(ηh)) = 0 and τ(0) = 0.11

To conclude this section, we note that it is possible to develop a testing procedure

adaptive to potential first order degeneracy, that is, in settings where φ is not always first

order degenerate under the null. We emphasize that r2
nφ(θ̂n) fails to be a valid statistic

since it diverges to infinity at those nondegenerate points, and so does

r2
n{φ(θ̂n)− φ′θ0(θ̂n − θ0)} ,

because θ0 might not be identified given φ(θ0) = 0. By introducing an appropriate selection

rule, we can combine first and second order asymptotics to provide a more general testing

procedure; see Remark 1.4.1. Development of adaptiveness not only serves to maintain

generality of our theory, but also is necessary when constructing confidence sets for φ(θ0);

see Remark 1.4.2.

Remark 1.4.1. If φ′θ0 is only degenerate at some but not all points under the null, then

one may employ the statistic

Tn ≡ rnφ(θ̂n) · 1{rnφ(θ̂n)

κn
> 1}+ r2

nφ(θ̂n) · 1{rnφ(θ̂n)

κn
≤ 1} ,

where κn ↓ 0 satisfying κnrn → ∞ as n → ∞. Heuristically, if φ′θ0 is nondegenerate,

11This is because φ′′θ0(ηθ′0(h)) = limn→∞ n{φ(θ(Pn))−φ(θ(P ))} = 0 by Assumption 1.2.1 and {Pn} being
a local perturbation under the null.



37

then rnφ(θ̂n)/κn = Op(1)/op(1)
p−→ ∞ and thus with probability approaching one Tn =

rnφ(θ̂n) which has nondegenerate weak limit φ′θ0(G). If φ′θ0 is degenerate, then rnφ(θ̂n)/κn =

r2
nφ(θ̂n)/κnrn = Op(1)/κnrn

p−→ 0 and therefore with probability approaching one Tn =

r2
nφ(θ̂n) which has nondegenerate weak limit φ′′θ0(G). Accordingly we may construct the

corresponding critical value as

ĉ∗1−α ≡ c̃1−α · 1{
rnφ(θ̂n)

κn
> 1}+ ĉ1−α · 1{

rnφ(θ̂n)

κn
≤ 1} , (1.49)

where for α ∈ (0, 1) and some estimator φ̂′n of φ′θ0 ,

c̃1−α ≡ inf{c ∈ R : PW (φ̂′n(rn{θ̂∗n − θ̂n}) ≤ c) ≥ 1− α} .

The indicator functions above serve as a rule for selecting proper statistics based on degen-

eracy of (a finite sample analogue of) φ′θ0 .

Remark 1.4.2. Confidence regions for ν0 ≡ φ(θ0) ∈ E can be constructed by test inversion

based on the statistic

Tn(ν0) ≡ rnψ(θ̂n) · 1{rnψ(θ̂n)

κn
> 1}+ r2

nψ(θ̂n) · 1{rnψ(θ̂n)

κn
≤ 1} , (1.50)

where ψ : Dφ → R is given by ψ(θ) ≡ ‖φ(θ) − ν0‖E. Critical values can be constructed

in a similar fashion as in Remark 1.4.1. By the chain rule (Shapiro, 1990, Proposition

3.6), it is straightforward to see that ψ′θ0 = ‖φ′θ0‖E and so φ′θ0 = 0 if and only if ψ′θ0 = 0.

Moreover, ψ′′θ0 = ‖φ′′θ0‖E when ψ′θ0 = 0. In general, confidence regions thus constructed are

less conservative than the plug-in type confidence regions φ(Cn,θ) with Cn,θ some level 1−α

confidence region for θ0.

1.5 Application: Testing for Common CH Features

In this section, we apply our framework to develop a robust test of common condi-

tionally heteroskedastic (CH) factor structure by allowing partial identification. Let {Yt}Tt=1



38

be a k-dimensional time series. According to Engle and Kozicki (1993), a feature that is

present in each component of Yt is said to be common to Yt if there exists a linear combina-

tion of Yt that fails to have the feature.12 A canonical example is the notion of cointegration

developed by Engle and Granger (1987) in order to characterize the common feature of

stochastic trend.

1.5.1 The Setup

Following Engle et al. (1990) and Dovonon and Renault (2013), suppose that the

k-dimensional process {Yt} satisfies

Var(Yt+1|Ft) = ΛDtΛ
ᵀ + Ω , (1.51)

where Λ is a k × p matrix of full column rank with p < k, Dt a p× p diagonal matrix with

diagonal (random) elements σ2
jt for j = 1, . . . , p, Ω a k×k positive semidefinite matrix, and

{Ft}∞t=1 a filtration to which {Yt}∞t=1 and {σ2
jt : j = 1, . . . , p}∞t=1 are adapted. By Engle and

Kozicki (1993), we say that {Yt} has a common CH feature if there exists some nonzero

γ ∈ Rk such that Var(γᵀYt|Ft) is constant. The conditional covariance structure (1.51) has

some attractive properties that help to understand, for example, asset excess returns in a

parsimonious way (Engle et al., 1990). Thus, tests of common CH features can be used

to detect the underlying common factor structures that simplify capturing interrelations of

economic and financial variables under consideration.

With the help of instrumental variables, a common CH feature can be reformu-

lated by unconditional moments that fit into the classical GMM framework. The following

assumption is taken directly from Dovonon and Renault (2013).

Assumption 1.5.1. (i) Λ is of full column rank; (ii) Var(σ2
t ) is nonsingular for σ2

t ≡

(σ2
1t, . . . , σ

2
pt)
ᵀ; (iii) E[Yt+1|Ft] = 0; (iv) Zt is an m × 1 Ft-measurable random vector

12A feature has to satisfy three axioms (Engle and Kozicki, 1993): (i) if Yt has (resp. does not have) the
feature, then γYt will have (resp. not have) the feature for any γ 6= 0; (ii) if neither Xt nor Yt have the
feature, then Xt + Yt does not have the feature; (iii) if Xt has the feature but Yt does not, then Xt + Yt will
have the feature.
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such that Var(Zt) is nonsingular; (v) Cov(Zt, σ
2
t ) has full column rank p; (vi) {Yt, Zt} is

stationary and ergodic such that E[‖Zt‖2] <∞ and E[‖Yt‖4] <∞.

Assumption 1.5.1(i)-(ii) ensure that there are exactly k − p linearly independent

vectors γ, spanning the null space of Λᵀ, such that Var(γᵀYt|Ft) is constant. In other words,

the common CH features γ are nonzero solutions of the equation Λᵀγ = 0. Assumption

1.5.1(iii) is a normalization condition that helps to simplify the exposition. Assumption

1.5.1(iv) defines the instrument Zt formed from the information set Ft, while Assumption

1.5.1(v) implicitly requires that the number of instruments is no less than that of factors.

Assumption 1.5.1(vi) further specifies the data generating process. We refer the readers to

Dovonon and Renault (2013) for further details of discussions on Assumption 1.5.1.

Assumption 1.5.1 allows us to characterize common CH features as nonzero γ sat-

isfying the vector of unconditional moment equalities (Dovonon and Renault, 2013):

E[Zt{(γᵀYt+1)2 − c(γ)}] = 0 , (1.52)

where c(γ) = E[(γᵀYt+1)2]. It is then tempting to employ Hansen’s J statistic to test the

existence of common CH features (Engle and Kozicki, 1993). Unfortunately, as noted by

Dovonon and Renault (2013), the Jacobian matrix evaluated at the truth is zero, rendering

standard theory inapplicable. In fact, with the help of second order analysis, Dovonon

and Renault (2013) showed that the asymptotic distribution of the J statistic is highly

nonstandard. Nonetheless, Dovonon and Gonçalves (2014) developed a corrected bootstrap

that can consistently estimate the limiting law when the bootstrap of Hall and Horowitz

(1996) fails to do so.

However, a key assumption in previous studies on test of common CH features is

that there exists a unique nonzero γ such that (1.52) is satisfied, ensured by normalization

(Dovonon and Renault, 2013; Dovonon and Gonçalves, 2014; Lee and Liao, 2014). This is

undesirable for the following reasons. First, it is unknown a priori how many CH features

are common to the series under consideration. Second, as pointed out by Engle et al. (1990)
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in the context of asset pricing, empirical work often considers large numbers of assets and

the numbers of common CH features are expected to be large as well. Third, exclusion

restrictions and normalization condition that are intended to ensure uniqueness of γ as

in Dovonon and Renault (2013) might in fact lead to no γ satisfying (1.52) and hence

misleading conclusions. For example, suppose that k = 2 and Λ = [1, 1]ᵀ. Then by Lemma

2.1 in Dovonon and Renault (2013), any common CH feature γ must satisfy γ(1) +γ(2) = 0,

contradicting the linear normalization γ(1) + γ(2) = 1 proposed in Dovonon and Renault

(2013). These arguments motivate us to modify the J-test in a way that accommodates

partial identification as well as degenerate Jacobian matrices.

1.5.2 A Modified J Test

To exclude zero solution, we employ the following normalization

γ ∈ Sk ≡ {γ′ ∈ Rk : ‖γ′‖ = 1} . (1.53)

Note that if γ is a common feature, so is −γ. Thus, under normalization (1.53), the set of

common CH features is never a singleton. Next, to map the current setup into our developed

framework, define a function φ :
∏m
j=1 `

∞(Sk)→ R by

φ(θ) ≡ inf
γ∈Sk
‖θ(γ)‖2 . (1.54)

Then in view of the moment conditions (1.52), the hypothesis that there exists at least one

common CH feature can be reformulated as

H0 : φ(θ0) = 0 H1 : φ(θ0) > 0 , (1.55)

where θ0 : Sk → Rm is defined as θ0(γ) ≡ E[Zt{(γᵀYt+1)2 − c(γ)}]. In this formulation,

we have taken the identity matrix Im as the weighting matrix not only for simplicity, but

more importantly because, as pointed out by Dovonon and Renault (2013), the rate of
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convergence of the GMM estimator varies as the weighting matrix changes and hence the

conventional notion of optimal weighting does not make sense.

As expected, under the null φ is Hadamard differentiable with degenerate derivative,

and second order Hadamard directionally differentiable at θ0 tangentially to
∏m
j=1C(Sk)

with the derivative given by: for any h ∈
∏m
j=1C(Sk),

φ′′θ0(h) = min
γ∈Γ0

min
v∈Rk

‖h(γ) +G vec(vvᵀ)‖2 , (1.56)

where Γ0 = {γ ∈ Sk : θ0(γ) = 0} is the identified set of γ, and G ∈ Mm×k2
with the jth

row given by vec(∆j)
ᵀ and

∆j = E[Z
(j)
t (Yt+1Y

ᵀ
t+1 − E[Yt+1Y

ᵀ
t+1])] .

Note that partial identification of γ invites irregularity through the first minimization prob-

lem in (1.56), in addition to the irregularity caused by the second minimization having

multiple minimizers.

Next, let θ̂T : Sk → Rm be defined by θ̂T (γ) = 1
T

∑T
t=1 Zt{(γᵀYt+1)2 − ĉ(γ)} with

ĉ(γ) = 1
T

∑T
t=1(γᵀYt+1)2. Given the established differentiability of φ, the asymptotic distri-

bution of φ(θ̂T ) is then an immediate consequence of Theorem 1.2.1 provided θ̂T converges

weakly. Towards this end, we impose the following assumption as in Dovonon and Renault

(2013).

Assumption 1.5.2. Zt, vec(YtY
ᵀ
t ) and vec(YtY

ᵀ
t )⊗ Zt fulfill CLT.13

Assumptions 1.5.1 and 1.5.2 together imply that

√
T{θ̂T − θ0}

L−→ G in
m∏
j=1

`∞(Sk) , (1.57)

where G is a zero mean Gaussian process with the covariance functional satisfying: for any

13The symbol ⊗ denotes Kronecker product.
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γ1, γ2 ∈ Γ0 and µz ≡ E[Zt],

E[G(γ1)G(γ2)] = E[(Zt − µz)(Zt − µz)ᵀ{(γᵀ1Yt+1)2 − c(γ1)}{(γᵀ2Yt+1)2 − c(γ2)}] .

The proposition below delivers the limiting distribution of test statistic Tφ(θ̂T ).

Proposition 1.5.1. Let Assumptions 1.5.1 and 1.5.2 hold. Then we have under H0

T min
γ∈Sk
‖θ̂T (γ)‖2 L→ min

γ∈Γ0

min
v∈Rk

‖G(γ) +G vec(vvᵀ)‖2 . (1.58)

The asymptotic distribution in (1.58) is a nonlinear functional of the Gaussian pro-

cess G. As shown by Dovonon and Gonçalves (2014), however, the recentered bootstrap of

Hall and Horowitz (1996) fails to consistently estimate this limit. The bootstrap proposed

by Dovonon and Gonçalves (2014) is not directly applicable because their identification

assumption is violated.

We next demonstrate how our bootstrap works. First, let {Y ∗t+1, Z
∗
t }Tt=1 be a boot-

strap sample, which can be obtained by block bootstrap, nonoverlapping or overlapping

(Carlstein, 1986; Kunsch, 1989). But the limiting process {G(γ) : γ ∈ Γ0} is determined

by a martingale difference sequence indexed by γ ∈ Γ0, the dependence structure of the

data does not enter into the limit and we may thus employ Efron (1979)’s nonparametric

bootstrap or more general bootstrap schemes. In any case, we set

θ̂∗T (γ) =
1

T

T∑
t=1

Z∗t {(γᵀY ∗t+1)2 − ĉ∗(γ)} , ĉ∗(γ) =
1

T

T∑
t=1

(γᵀY ∗t+1)2 . (1.59)

To accommodate diverse resampling schemes, we simply impose the high level condition

that θ̂∗T satisfies Assumptions 1.3.1 and 1.3.2 (Dehling et al., 2002).

It remains to estimate the derivative (1.56). The numerical differentiation approach
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can be implemented as in the beginning of Section 1.3.5. That is, we estimate φ′′θ0 by

φ̂′′T (h) =
infγ∈Sk ‖θ̂T (γ) + κTh(γ)‖2 −minγ∈Sk ‖θ̂T (γ)‖2

κ2
T

, (1.60)

where κT satisfies Assumption 1.3.5. We now describe how to estimate φ′′θ0 by exploiting

its structure. Let BT = {v ∈ Rk : ‖v‖ ≤ κ
−1/4
T } where κT is to be specified. Then we may

estimate φ′′θ0(h) by

φ̂′′T (h) = inf
γ∈Γ̂T

min
v∈BT

‖h(γ) + Ĝ vec(vvᵀ)‖2 , (1.61)

where Γ̂T = {γ ∈ Sk : ‖θ̂T (γ)‖2 − φ(θ̂T ) ≤ κT },14 and Ĝ ∈ Mm×k2
with its jth row given

by vec(∆̂j)
ᵀ for

∆̂j =
1

T

T∑
t=1

Z
(j)
t Yt+1Y

ᵀ
t+1 −

1

T

T∑
t=1

Z
(j)
t

1

T

T∑
t=1

Yt+1Y
ᵀ
t+1 .

In fact, we may further restrict the bounded set BT to reduce the computation burden for

φ̂′′T ; see Remark 1.5.1.

Remark 1.5.1. The derivative (1.56) can be rewritten as:

φ′′θ0(h) = min
γ∈Γ0

min
v∈Γ⊥0

‖h(γ) +G vec(vvᵀ)‖2 , (1.62)

where Γ⊥0 ≡ {λ ∈ Rk : λᵀγ = 0 , ∀ γ ∈ Γ0} denotes the orthogonal complement of Γ0. Then

for Γ̂T,⊥ = {γ ∈ Rk : supλ∈Γ̂T
|γᵀλ| ≤ κ1/4

T }, we may estimate φ′′θ0(h) by

φ̂′′T (h) = inf
γ∈Γ̂T

min
v∈Γ̂T,⊥∩BT

‖h(γ) + Ĝ vec(vvᵀ)‖2 .

Clearly, the sequence {κT } should tend to zero at a suitable rate as T → ∞. This

is made precise as follows.

Assumption 1.5.3. {κT } satisfies (i) κT ↓ 0, and (ii)
√
TκT →∞ if φ̂′′T is given by (1.60)

14One can theoretically ignore φ(θ̂T ) in the expression of Γ̂T . As pointed out by Chernozhukov et al.
(2007), however, such a modification helps avoid an empty set of solutions and improve power.
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or TκT →∞ if φ̂′′T is given by (1.61).

Combining the bootstrap θ̂∗T in (1.59) and the derivative estimator, we are then able

to consistently estimate the law of the weak limit in (1.58) following Theorem 1.3.3, which

in turn allows us to construct critical values. Specifically, let ĉ1−α be the 1− α quantile of

φ̂′′T (
√
T{θ̂∗T − θ̂T }) conditional on the data:15

ĉ1−α ≡ inf{c ∈ R : PW (φ̂′′T (
√
T{θ̂∗T − θ̂T }) ≤ c) ≥ 1− α} . (1.63)

The following proposition confirms that the test of rejecting existence of common

CH features when Tφ(θ̂T ) > ĉ1−α is valid.

Proposition 1.5.2. Suppose Assumptions 1.3.1, 1.3.2, 1.5.1, 1.5.2, and 1.5.3 hold. If

the cdf of the limit in (1.58) is continuous and strictly increasing at its 1 − α quantile for

α ∈ (0, 1), then we have under H0,

lim
T→∞

P (T min
γ∈Sk
‖θ̂T (γ)‖2 > ĉ1−α) = α .

Proposition 1.5.2 implies our test has pointwise asymptotic exact size α and thus

is not conservative (in the pointwise sense). Establishing local size control, unfortunately,

is challenging in this case, because φ′′θ0 fails to be subadditive in general when there exist

more than one common CH features. In fact, the problem of developing (at least) locally

valid and non-conservative overidentification tests is prevalent in the literature of partial

identification (Chernozhukov et al., 2007; Andrews and Soares, 2010).

1.5.3 Simulation Studies

In this section, we examine the finite sample performance of our inference framework

based on Monte Carlo simulations and show how the identification assumption in Dovonon

15As usual, PW denotes the probability taken with respect to the bootstrap weights {WT }, though in the
current setup they are implicitly defined. Alternatively, one can think of PW as the probability with respect
to the bootstrap sample {Z∗t , Y ∗t+1} holding data fixed.
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and Renault (2013) and Dovonon and Gonçalves (2014) can suffer from their imposed linear

normalization.

As in Dovonon and Renault (2013) and Dovonon and Gonçalves (2014), we consider

the following CH factor model:

Yt = ΛFt + ut , (1.64)

where Yt is a k × 1 vector that can be thought of asset returns, Ft is a p× 1 vector of CH

factors, Λ is a k × p matrix of factor loadings, and ut is a vector of idiosyncratic shocks

independent of Ft. The model (1.64) is essentially the factor model that underpins the

arbitrage pricing theory (Ross, 1976).

Following Dovonon and Renault (2013) and Dovonon and Gonçalves (2014), we let

{Ut} be an i.i.d. sequence from N(0, Ik/2), and the jth component fj,t+1 of Ft+1 follow a

Gaussian-GARCH(1,1) model such that

fj,t+1 = σj,tεj,t+1 , σ
2
j,t = ωj + αjf

2
j,t + βjσ

2
j,t−1 ,

where ωj , αj , βj > 0, {εk,t} ∼ N(0, 1) i.i.d. across both i and t, and {σj0} are independent

across j and of {εk,t}. It follows that {fj,t} are independent across j for each t. The

remaining specifications are detailed in Table 1.1. Our designs are the same as those in

Dovonon and Renault (2013) and Dovonon and Gonçalves (2014) except that different

values for Λ are used to illustrate the restrictiveness of the linear normalization. Designs

D1 and D2 generate two assets while Designs D3, D4 and D5 generate three assets. In

Designs D1, D3 and D4, the factor loading matrices Λ ensure the existence of common CH

features and thus serves for investigation of size performance, while no common CH features

exist in Designs D2 and D5, which help us to inspect power performance.

The tests are implemented with m = 2 and instruments Zt = (Y 2
1,t, Y

2
2,t)
ᵀ for De-

signs D1 and D2, and with m = 3 and Zt = (Y 2
1,t, Y

2
2,t, Y

2
3,t)
ᵀ for Designs D3, D4 and

D5. For derivative estimation, we set the tuning parameters κT = T−1/2, T−2/3, T−4/5 and
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Table 1.1: Simulation Designs

Design # of Assets # of Factors GARCH Parameters Factor Loadings

D1 k = 2 p = 1 (ω1, α1, β1) = (0.2, 0.2, 0.6) Λ = (1, 1)ᵀ

D2 k = 2 p = 2
(ω1, α1, β1) = (0.2, 0.2, 0.6)

Λ = I2
(ω2, α2, β2) = (0.2, 0.4, 0.4)

D3 k = 3 p = 1 (ω1, α1, β1) = (0.2, 0.2, 0.6) Λ = (1, 1, 1)ᵀ

D4 k = 3 p = 2
(ω1, α1, β1) = (0.2, 0.2, 0.6)

Λ =

 1 1 1

−1 0 1

ᵀ

(ω2, α2, β2) = (0.2, 0.4, 0.4)

D5 k = 3 p = 3

(ω1, α1, β1) = (0.2, 0.2, 0.6)

Λ = I3(ω2, α2, β2) = (0.2, 0.4, 0.4)

(ω3, α3, β3) = (0.1, 0.1, 0.8)

κT = T−1/4, T−1/3, T−2/5 for the derivative estimator in (1.61) and the numerical deriva-

tive estimator as in (1.60) respectively. The corresponding results are denoted as CF1 and

CF2, respectively. To show the restrictiveness of the linear normalization γ ∈ {γ′ ∈ Rk :∑k
i=1 γ

′
i = 1} as in Dovonon and Renault (2013), Dovonon and Gonçalves (2014) and Lee

and Liao (2014), we report the results based on Dovonon and Gonçalves (2014)’s corrected

and continuously-corrected bootstrap, which are denoted as DG1 and DG2 respectively.

The sample sizes are T = 1, 000, 2, 000, 5, 000, 10, 000, 20, 000, 40, 000 and 50, 000 following

Dovonon and Gonçalves (2014). To minimize the initial value effect, the data are obtained

by generating T + 100 samples and dropping the first 100 samples. The results are based

on 2, 000 Monte Carlo replications with 200 nonparametric bootstrap replications for each

Monte Carlo. The nominal level is 5% throughout.

The results are summarized in Tables 1.2-1.5. Not surprisingly, Dovonon and

Gonçalves (2014)’s resampling methods exhibit substantial size distortion, often times close

to or over 50%, as shown by the columns labeled DG1 and DG2 in Tables 1.2, 1.3 and

1.4. This does not appear to be a finite sample issue as the distortion is especially severe

in large samples. Rather, it is because the linear normalization excludes common CH fea-

tures that actually exists in the data and in this way leads to wrong conclusions. Our tests



47

considerably reduce the null rejection rates for all the chosen tuning parameters, though

both CF1 and CF2 exhibit some degrees of over- and under-rejection, due to the issue of

tuning parameters. Tables 1.5 indicates that our tests are consistent, though CF2 seems to

be superior than CF1 in small samples. Another interesting finding is that our bootstrap

based on numerical differentiation appears to be more sensitive to the choice of tuning pa-

rameters, which is somewhat expected because the structural method (CF1) exploits more

information of the derivative. We leave a thorough comparison between these two methods

of derivative estimation for future study.

1.6 Conclusion

In this paper, we developed a general statistical framework for conducting infer-

ence on functionals exhibiting first order degeneracy, i.e., the first order derivative of the

parameter is zero. Our first contribution implies that the standard bootstrap necessarily

fails to work in these settings. In light of this failure, we provided two general solutions:

one generalizes the Babu correction, and the other one is a modified bootstrap following

Fang and Santos (2015). Our framework includes many existing results as special cases.

To further demonstrate the applicability of our theory, we developed a test of common CH

features studied by Dovonon and Renault (2013) but under weaker assumptions that allow

the existence of more than one common CH features.
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Table 1.2: Rejection rates under the null: Design D1

T\Tests
CF1 CF2 DG

T−1/2 T−2/3 T−4/5 T−1/4 T−1/3 T−2/5 DG1 DG2

1000 0.0850 0.0640 0.0420 0.0395 0.0185 0.0100 0.3975 0.4015

2000 0.0940 0.0715 0.0530 0.0550 0.0320 0.0120 0.5060 0.5045

5000 0.1010 0.0740 0.0515 0.0505 0.0290 0.0075 0.6215 0.6185

10000 0.1010 0.0820 0.0585 0.0550 0.0285 0.0090 0.6375 0.6270

20000 0.1005 0.0725 0.0525 0.0495 0.0285 0.0115 0.6750 0.6705

40000 0.1180 0.0900 0.0670 0.0700 0.0410 0.0165 0.6865 0.6845

50000 0.1070 0.0830 0.0660 0.0665 0.0410 0.0145 0.6895 0.6870

Table 1.3: Rejection rates under the null: Design D3

T\Tests
CF1 CF2 DG

T−1/2 T−2/3 T−4/5 T−1/4 T−1/3 T−2/5 DG1 DG2

1000 0.0605 0.0390 0.0285 0.0660 0.0605 0.0430 0.2300 0.2400

2000 0.0645 0.0385 0.0280 0.0655 0.0570 0.0380 0.3425 0.3470

5000 0.0520 0.0385 0.0315 0.0505 0.0455 0.0275 0.3970 0.3965

10000 0.0690 0.0565 0.0450 0.0830 0.0665 0.0320 0.4385 0.4415

20000 0.0660 0.0600 0.0490 0.0850 0.0660 0.0335 0.4765 0.4790

40000 0.0520 0.0460 0.0390 0.0645 0.0475 0.0225 0.5030 0.5065

50000 0.0745 0.0670 0.0585 0.0920 0.0635 0.0395 0.5255 0.5290
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Table 1.4: Rejection rates under the null: Design D4

T\Tests
CF1 CF2 DG

T−1/2 T−2/3 T−4/5 T−1/4 T−1/3 T−2/5 DG1 DG2

1000 0.0715 0.0445 0.0265 0.1305 0.0915 0.0415 0.4795 0.4870

2000 0.0895 0.0515 0.0380 0.1485 0.0935 0.0330 0.6380 0.6515

5000 0.1055 0.0720 0.0545 0.1590 0.0960 0.0300 0.7810 0.7820

10000 0.1135 0.0615 0.0485 0.1440 0.0750 0.0290 0.8055 0.8030

20000 0.1155 0.0715 0.0555 0.1530 0.0960 0.0290 0.8495 0.8485

40000 0.1280 0.0810 0.0640 0.1655 0.0900 0.0300 0.8650 0.8670

50000 0.1150 0.0775 0.0660 0.1650 0.0855 0.0260 0.8610 0.8590

Table 1.5: Rejection rates under the alternative

T\Tests

Design D2 Design D5

CF1 CF2 CF1 CF2

T−1/2 T−2/3 T−4/5 T−1/4 T−1/3 T−2/5 T−1/2 T−2/3 T−4/5 T−1/4 T−1/3 T−2/5

1000 0.6450 0.5915 0.5050 0.7255 0.6890 0.5570 0.1240 0.0740 0.0630 0.3990 0.3645 0.3000

2000 0.9410 0.9185 0.8805 0.9530 0.9365 0.8785 0.3520 0.2710 0.2300 0.6975 0.6675 0.5570

5000 0.9975 0.9975 0.9960 0.9995 0.9990 0.9950 0.8250 0.7710 0.7255 0.9610 0.9460 0.8885

10000 0.9980 0.9980 0.9975 0.9985 0.9985 0.9985 0.9865 0.9850 0.9755 0.9995 0.9985 0.9955

20000 0.9985 0.999 0.9985 0.9995 0.9995 0.9985 0.9980 0.9970 0.9955 1.0000 1.0000 1.0000

40000 0.9995 0.9995 0.9995 1.0000 1.0000 1.0000 1.0000 1.0000 0.9985 1.0000 1.0000 1.0000

50000 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9995 0.9990 1.0000 1.0000 1.0000
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1.8 Appendix

1.8.1 Proofs of Main Results

Proof of Theorem 1.2.1: For each n ∈ N, let Dn ≡ {h ∈ D : θ0 +h/rn ∈ Dφ} and define

gn : Dn → E by

gn(hn) ≡ r2
n{φ(θ0 + r−1

n hn)− φ(θ0)− r−1
n φ′θ0(hn)} for any hn ∈ Dn .

By Assumption 1.2.1, ‖gn(hn) − φ′′θ0(h)‖E → 0 whenever hn → h ∈ D0. Moreover, G ∈ D0

(almost surely) is separable since it is tight by Assumption 1.2.2(ii). The first claim of the

theorem then follows by Theorem 1.11.1(i) in van der Vaart and Wellner (1996a).

As for the second claim, define fn : Dn × D→ E× E by

fn(hn, h) ≡ (gn(hn), φ′′θ0(h)) for any (hn, h) ∈ Dn × D .

Assumption 1.2.1 and 1.2.3(i) allow us to conclude again by Theorem 1.11.1(i) in van der

Vaart and Wellner (1996a) that


r2
n{φ(θ̂n)− φ(θ0)− φ′θ0(θ̂n − θ0)}

φ′′θ0(rn{θ̂n − θ0})

 L−→


φ′′θ0(G)

φ′′θ0(G)

 in E× E . (1.65)

By the continuous mapping theorem applied to result (1.65), we have

r2
n{φ(θ̂n)− φ(θ0)− φ′θ0(θ̂n − θ0)} − φ′′θ0(rn{θ̂n − θ0})

L−→ 0 . (1.66)

The second claim then follows from result (1.66) and Lemma 1.10.2(iii) in van der Vaart

and Wellner (1996a).

Proof of Theorem 1.3.1: Inspecting the structure of the problem, we see that the
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bootstrap consistency (1.27) is equivalent to φ′′θ0(G + h) − φ′′θ0(h)
d
= φ′′θ0(G) for all h ∈

Supp(G) by exactly the same arguments as the proof of Theorem A.1 in Fang and Santos

(2015). Thus, it boils down to showing that φ′′θ0(G+h)−φ′′θ0(h)
d
= φ′′θ0(G) for all h ∈ Supp(G)

if and only if φ′′θ0(h) = 0 for G-almost h in D0. One direction is immediate since if latter

holds, then both φ′′θ0(G + h) − φ′′θ0(h) and φ′′θ0(G) are degenerate at 0 for all h ∈ Supp(G),

and hence are equal in distribution.

The converse consists of two steps. To begin with, note that by Assumption 1.2.2(ii),

G being centered Gaussian and Lemma A.7 in Fang and Santos (2015), we may assume

without loss of generality that the support of G is D and that D is separable. Since D is

separable, it follows that the Borel σ-algebra, the σ-algebra generated by the weak topology,

and the cylindrical σ-algebra coincide by Theorem 2.1 in Vakhania et al. (1987). Further-

more, by Theorem 7.1.7 in Bogachev (2007), P is Radon with respect to the Borel σ-algebra,

and hence also with respect to the cylindrical σ-algebra. Finally, let P be the probability

measure on D induced by G.

Step 1: Show that φ′′θ0 corresponds to a bilinear map if φ′′θ0(G + h) − φ′′θ0(h)
d
= φ′′θ0(G) for

all h ∈ Supp(G).

For completeness, we introduce additional notation following Section 3.7 in Davydov

et al. (1998). First, let D∗ denote the dual space of D, and 〈x, x∗〉D = x∗(x) for any x ∈ D

and x∗ ∈ D∗. Similarly denote the dual space of E by E∗ and the corresponding bilinear

form by 〈·, ·〉E. Since G is Gaussian, D∗ ⊂ L2(P ) (Bogachev, 1998, p.42). We may thus

embed D∗ into L2(P ). Denote by D′P the closure of D∗, viewed as a subset of L2(P ). By

some abuse of notation write x′(x) = 〈x′, x〉D for any x′ ∈ D′P and x ∈ D. Finally, for

each h ∈ D we let P h denote the law of G + h, write P h � P whenever P h is absolutely

continuous with respect to P , and define the set:

HP ≡ {h ∈ D : P rh � P for all r ∈ R} .

Since P is Radon with respect to the cylindrical σ-algebra of D, it follows by Theorem
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7.1 in Davydov et al. (1998) that there exists a continuous linear map I : HP → D′P satisfying

for every h ∈ HP :

dP h

dP
(x) = exp

{
〈x, Ih〉D −

1

2
σ2(h)

}
σ2(h) ≡

∫
D
〈x, Ih〉2D P (dx) . (1.67)

Fix an arbitrary e∗ ∈ E∗ and h ∈ HP . Since φ′′θ0(G + h) − φ′′θ0(h)
d
= φ′′θ0(G) for all

h ∈ Supp(G), it follows that 〈e∗, φ′′θ0(G + rh) − φ′′θ0(rh)〉E and 〈e∗, φ′′θ0(G)〉E must be equal

in distribution for all r ∈ R.16 In particular, their characteristic functions must equal each

other, and hence for all r ≥ 0 and t ∈ R:

E[exp{it〈e∗, φ′′θ0(G)〉E}] = E[exp{it{〈e∗, φ′′θ0(G + rh)− φ′′θ0(rh)〉E}}]

= exp{−itr2〈e∗, φ′′θ0(h)〉E}E[exp{it〈e∗, φ′′θ0(G + rh)〉E}] , (1.68)

where in the second equality we have exploited φ′′θ0 being positively homogenous of degree

two. Setting C(t) ≡ E[exp{it〈e∗, φ′′θ0(G)〉E}], we have by (1.68) that

exp{itr2〈e∗, φ′′θ0(h)〉E}C(t) = E[exp{it〈e∗, φ′′θ0(G + rh)〉E}] , (1.69)

for all r ≥ 0 and t ∈ R.

We next aim to equate second order right derivatives of both sides in the identity

(1.69). The second order right derivative of the left hand side at r = 0 is given by

2itC(t)〈e∗, φ′′θ0(h)〉E . (1.70)

On the other hand, exploiting result (1.67), linearity of I : HP → D′P and that h ∈ HP

implies rh ∈ HP for all r ∈ R and in particular for all r ∈ [0, 1], we may rewrite the right

16The proof of Lemma A.3 in Fang and Santos (2015) never exploits that φ′θ0 is a first order derivative
beyond continuity of φ′θ0 and φ′θ0(0) = 0 which are satisfied by φ′′θ0 .
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hand side of (1.69) as

E[exp{it〈e∗, φ′′θ0(G + rh)〉E}] =

∫
D

exp{it〈e∗, φ′′θ0(x)〉E}
dP rh

dP
(x)P (dx)

=

∫
D

exp
{
it〈e∗, φ′′θ0(x)〉E + r〈x, Ih〉D −

r2

2
σ2(h)

}
P (dx) . (1.71)

The integrand on the right hand side of (1.71) is differentiable with respect to r for all r ∈

[0, 1] and the resulting derivative is dominated by exp{|〈x, Ih〉D|}×{|〈x, Ih〉D|+σ2(h)} which

is integrable against P since 〈G, Ih〉D ∼ N(0, σ2(h)) by Proposition 2.10.3 in Bogachev

(1998) and Ih ∈ D′P . Thus by Theorem 2.27(ii) in Folland (1999), the first order derivative

of the right hand side in (1.71) at r ∈ [0, 1] exists and is given by

∫
D

exp
{
it〈e∗, φ′′θ0(x)〉E + r〈x, Ih〉D −

r2

2
σ2(h)

}
{〈x, Ih〉D − rσ2(h)}P (dx) . (1.72)

In turn, result (1.72) allows us to conclude that the second order right derivative of the

right hand side in (1.71) at r = 0 exists and is given by

∫
D

exp{it〈e∗, φ′′θ0(x)〉E}[〈x, Ih〉2D − σ2(h)]P (dx) . (1.73)

Since the equation (1.69) holds for all r ≥ 0 and t ∈ R, it follows from (1.70) and (1.73)

that for all t ∈ R:

2itC(t)〈e∗, φ′′θ0(h)〉E =

∫
D

exp{it〈e∗, φ′′θ0(x)〉E}[〈x, Ih〉2D − σ2(h)]P (dx) . (1.74)

Note that t 7→ C(t) is the characteristic function of 〈e∗, φ′′θ0(G0)〉E and hence it is

continuous. Thus, since C(0) = 1 there exists a t0 > 0 such that C(t0)t0 6= 0. For such t0

it follows from (1.74) that

〈e∗, φ′′θ0(h)〉E = −
iE[exp{it0〈e∗, φ′′θ0(G)〉E}{〈G, Ih〉2D − σ2(h)}]

2t0C(t0)
. (1.75)
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Define a map Φ′′θ0 : D× D→ E by

Φ′′θ0(h, g) ≡ 1

4
[φ′′θ0(h+ g)− φ′′θ0(h− g)] . (1.76)

It then follows from (1.75) that, for any e∗ ∈ E∗ and any g, h ∈ D,

〈e∗,Φ′′θ0(g, h)〉E = −
iE[exp{it0〈e∗, φ′′θ0(G)〉E}{〈G, Ig〉D〈G, Ih〉D − σ(g, h)}]

2t0C(t0)
, (1.77)

where σ(g, h) ≡ E[〈G, Ig〉〈G, Ih〉]. Since I : HP → D′P is linear, (h, g) 7→ 〈e∗,Φ′′θ0(g, h)〉E is

bilinear on HP ×HP . Moreover, (h, g) 7→ 〈e∗,Φ′′θ0(g, h)〉E is continuous on HP ×HP due to

continuity of φ′′θ0 (and hence Φ′′θ0) and e∗ ∈ E∗. We thus conclude from HP being a dense

subspace of D by Proposition 7.4(ii) in Davydov et al. (1998) that (h, g) 7→ 〈e∗,Φ′′θ0(g, h)〉E

is continuous and bilinear on D×D. Since e∗ ∈ E∗ is arbitrary, it follows from Lemma A.2

in van der Vaart (1991) that Φ′′θ0 : D×D→ E is bilinear and continuous. By identity (1.76),

we have φ′′θ0(h) = Φ′′θ0(h, h) for all h ∈ D. Hence, φ′′θ0 is a quadratic form corresponding to

the bilinear map Φ′′θ0 .

Step 2: Conclude that φ′′θ0 = 0 on the support of G. Note that if φ is second order

Hadamard differentiable, then one can directly start with Step 2.

By Lemma A.3 in Fang and Santos (2015), for all h ∈ D,

φ′′θ0(G)
d
= φ′′θ0(G + h)− φ′′θ0(h)

= Φ′′θ0(G + h,G + h)− Φ′′θ0(h, h)

= Φ′′θ0(G,G) + 2Φ′′θ0(G, h) = φ′′θ0(G) + 2Φ′′θ0(G, h) , (1.78)

where the third equality exploited bilinearity of Φ′′θ0 . Fix an arbitrary e∗ ∈ E∗. By result

(1.78), we have for all r ∈ R and h ∈ D,

E[exp{it〈e∗, φ′′θ0(G)〉E}] = E[exp{it〈e∗, φ′′θ0(G) + 2Φ′′θ0(G, rh)〉E}]

= E[exp{it〈e∗, φ′′θ0(G)〉E} exp{2irt〈e∗,Φ′′θ0(G, h)〉E}] , (1.79)
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where the last step used linearity of Φ′′θ0 in its second argument. We now equate second

derivatives of both sides at r = 0. The second derivative of the left hand side is trivially zero,

while that of the right hand side, by the recursive use of dominated convergence arguments,

is given by E[exp{it〈e∗, φ′′θ0(G)〉E}{2it〈e∗,Φ′′θ0(G, h)〉E}2]. Thus we have for all t ∈ R,

E[exp{it〈e∗, φ′′θ0(G)〉E}{2it〈e∗,Φ′′θ0(G, h)〉E}2] = 0 ,

which in turn implies that for all t ∈ R \ {0},

E[exp{it〈e∗, φ′′θ0(G)〉E}〈e∗,Φ′′θ0(G, h)〉2E] = 0 . (1.80)

Picking a sequence tn ↓ 0, replacing t with tn in (1.80) and letting n→∞ leads to, by the

dominated convergence theorem: for all e∗ ∈ E∗ and all h ∈ D,

E[〈e∗,Φ′′θ0(G, h)〉2E] = 0 . (1.81)

Consequently, 〈e∗,Φ′′θ0(g, h)〉E = 0 for all h ∈ D and P -almost surely g ∈ D. Since e∗ is

arbitrary, we conclude by Lemma 6.10 in Aliprantis and Border (2006) that Φ′′θ0(g, h) = 0

for all h ∈ D and P -almost g ∈ D. Hence, φ′′θ0(h) = 0 for P -almost h ∈ D.

Finally, denote by Ω the collection of all h ∈ D such that φ′′θ0(h) = 0. Then we

have P (Ω) = 1 by Assumption 1.2.2(ii) and the above discussion. We claim that Ω is

dense in the support of P . To see this, suppose otherwise and then there must exist some

h0 ∈ Supp(P ) and some δ > 0 such that B(h0, δ) ∩ Ω = ∅. Note that i) P (B(h0, δ)) > 0

since h0 ∈ Supp(P ), and ii) φ′′θ0(h) 6= 0 for all h ∈ B(h0, δ) by the definition of Ω. These

contradict the fact P (Ω) = 1. Since φ′′θ0 is continuous on D0 by Assumption 1.2.3(i), it is

also continuous on the support of P as a subset of D0 by Assumption 1.2.2(ii) and Theorem

II.2.1 in Parthasarathy (1967). In turn, we may conclude from Ω being dense in Supp(P )

and φ′′θ0 = 0 on Ω that φ′′θ0 = 0 on Supp(P ).

Proof of Theorem 1.3.2: Let Dn ≡ {h ∈ D : θ0 +h/rn ∈ Dφ} and define for each n ∈ N
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the map Ψn : Dn × Dn → E by

Ψn(gn, hn) ≡
φ(θ0 + r−1

n hn)− φ(θ0 + r−1
n gn)− φ′

θ0+r−1
n gn

(r−1
n {hn − gn})

r−2
n

.

If {gn, hn}∞n=1 ⊂ Dn satisfies (gn, hn)→ (g, h) ∈ D0 ×D0 as n→∞, then Assumption 1.3.3

allows us to conclude that

Ψn(gn, hn) ≡
φ(θ0 + r−1

n hn)− φ(θ0 + r−1
n gn)− φ′

θ0+r−1
n gn

(r−1
n {hn − gn})

r−2
n

=
{φ(θ0 + r−1

n hn)− φ(θ0)− r−1
n φ′θ0(hn)} − {φ(θ0 + r−1

n gn)− φ(θ0)− r−1
n φ′θ0(gn)}

r−2
n

−
{φ′

θ0+r−1
n gn

(hn)− φ′θ0(hn)} − {φ′
θ0+r−1

n gn
(gn)− φ′θ0(gn)}

r−1
n

→ Φ′′θ0(h, h)− Φ′′θ0(g, g)− 2Φ′′θ0(g, h) + 2Φ′′θ0(g, g)

= Ψ(g, h) ≡ Φ′′θ0(h, h) + Φ′′θ0(g, g)− 2Φ′′θ0(g, h) . (1.82)

Since φ′′θ0 admitting a continuous extension on D, by corresponding extension of Φ′′θ0 accord-

ing to equation 1.76, it follows from (1.82) that

Ψn(gn, hn)−Ψ(gn, hn) = Ψn(gn, hn)−Ψ(g, h)− {Ψ(gn, hn)−Ψ(g, h)} → 0 . (1.83)

Next, for notational simplicity, let Gn ≡ rn{θ̂n − θ0}, G∗n ≡ rn{θ̂∗n − θ̂n} and

G†n ≡ rn{θ̂∗n − θ0} = G∗n + Gn. By Assumption 1.2.1, 1.2.2, 1.2.3(ii), 1.3.1 and 1.3.2(i),

it follows from Lemma A.2 in Fang and Santos (2015) that for G1,G2 independent dis-

tributed according to G,

(Gn,G∗n)
L−→ (G1,G2) . (1.84)

By the continuous mapping theorem and result (1.84) we have

(Gn,G†n) = (Gn,G∗n + Gn)
L−→ (G1,G1 + G2) . (1.85)
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Combining the separability of G1 and G2 by Assumption 1.2.2(ii), results (1.83) and (1.85),

we conclude by Theorem 1.11.1(i) in van der Vaart and Wellner (1996a) that

Ψn(Gn,G†n)−Ψ(Gn,G†n)
L−→ 0 . (1.86)

By Lemma 1.10.2 in van der Vaart and Wellner (1996a) we have from (1.86) that

Ψn(Gn,G†n)−Ψ(Gn,G†n) = op(1) . (1.87)

Now fix ε > 0. Note that

sup
f∈BL1(E)

|E∗W [f(Ψn(Gn,G†n))]− E∗W [f(Ψ(Gn,G†n))]|

≤ ε+ 2P ∗W (‖Ψn(Gn,G†n)−Ψ(Gn,G†n)‖E > ε) . (1.88)

By Lemma 1.2.6 in van der Vaart and Wellner (1996a),

E∗X [P ∗W (‖Ψn(Gn,G†n)−Ψ(Gn,G†n)‖E > ε)] ≤ P ∗(‖Ψn(Gn,G†n)−Ψ(Gn,G†n)‖E > ε) .

(1.89)

Results (1.87), (1.88) and (1.89), together with ε being arbitrary, then yield

sup
f∈BL1(E)

|E∗W [f(Ψn(Gn,G†n))]− E∗W [f(Ψ(Gn,G†n))]| = op(1) . (1.90)

Result (1.85) and Assumption 1.2.2(ii) implies that (Gn,G†n) is asymptotically mea-

surable and asymptotically tight. In turn, Lemmas 1.4.3 and 1.4.4 in van der Vaart and

Wellner (1996a) implies that (Gn,G†n,G1,G1 + G2) is asymptotically tight and asymptoti-

cally measurable. Fix an arbitrary subsequence {nk}. Then Theorem 1.3.9 in van der Vaart

and Wellner (1996a) implies that (Gn,G†n,G1,G1+G2) converges weakly along a further sub-

sequence of {nk} to a tight Borel law in
∏4
j=1 D, which is equal to (G1,G1+G2,G1,G1+G2)

by marginal convergence. This is a weak limit where the dependence structure between the
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first two components and last two components is known and in fact unique. Since nk is

arbitrary, it follows that

(Gn,G†n,G1,G1 + G2)
L−→ (G1,G1 + G2,G1,G1 + G2) . (1.91)

Since Ψ : D × D → E and hence (Ψ,Ψ) :
∏4
j=1 D →

∏2
j=1 E is continuous, it follows from

result (1.91) and the continuous mapping theorem that

(Ψ(Gn,G†n),Ψ(G1,G1 + G2))
L−→ (Ψ(G1,G1 + G2),Ψ(G1,G1 + G2)) . (1.92)

Combination of the continuous mapping theorem and Lemma 1.10.2(iii) in van der Vaart

and Wellner (1996a) yields that

Ψ(Gn,G†n)−Ψ(G1,G1 + G2) = op(1) . (1.93)

By the triangle inequality, we have

sup
f∈BL1(E)

|E∗W [f(Ψ(Gn,G†n))]− E[f(Ψ(G1,G1 + G2))]|

≤ ε+ 2P ∗W (‖Ψ(Gn,G†n)−Ψ(G1,G1 + G2)‖E > ε) . (1.94)

By Lemma 1.2.6 in van der Vaart and Wellner (1996a) and result (1.93)

E∗XP
∗
W (‖Ψ(Gn,G†n)−Ψ(G1,G1 + G2)‖E > ε)

≤ P ∗(‖Ψ(Gn,G†n)−Ψ(G1,G1 + G2)‖E > ε) = o(1) . (1.95)

Combination of (1.90), (1.94), (1.95) and the triangle inequality leads to

sup
f∈BL1(E)

|E∗W [f(Ψn(Gn,G†n))]− E[f(Ψ(G1,G1 + G2))]| = op(1) . (1.96)
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The theorem follows by combining (1.90) and (1.96) and noticing that

Ψn(Gn,G†n) = r2
n{φ(θ̂∗n)− φ(θ̂n)− φ′

θ̂n
(θ̂∗n − θ̂n)} and Ψ(G1,G1 + G2) = φ′′θ0(G2) ,

where the second equality is due to bilinearity of Φ′′θ0 .

Proof of Theorem 1.3.3: Inspecting the proof of Theorem 3.2 in Fang and Santos

(2015), we see that φ′θ0 being a first order derivative is actually never exploited there. The

conclusion of the theorem then follows in view of Lemma 1.8.2 when combined with exactly

the same arguments in Fang and Santos (2015).

Proof of Proposition 1.3.1: Let {hn} ⊂ D and h ∈ D0 such that hn → h. By

Assumption 1.2.3(iii) φ′θ0 = 0, so we may rewrite φ̂′′n(hn):

φ̂′′n(hn) =
φ(θ̂n + tnhn)− φ(θ̂n)− tnφ′θ0(hn)

t2n

=
φ(θ0 + tngn)− φ(θ0)− tnφ′θ0(gn)

t2n
−
r2
n{φ(θ̂n)− φ(θ0)− φ′θ0(θ̂n − θ0)}

(rntn)2
, (1.97)

where gn ≡ (tnrn)−1rn{θ̂n − θ0} + hn. By Assumptions 1.2.2(i), 1.3.5, Lemma 1.10.2 in

van der Vaart and Wellner (1996a) and hn → h, we have gn
p−→ h. By Assumptions 1.2.1,

1.2.2(ii) and Theorem 1.11.1(ii) in van der Vaart and Wellner (1996a), it then follows that

φ(θ0 + tngn)− φ(θ0)− tnφ′θ0(gn)

t2n

p−→ φ′′θ0(h) . (1.98)

By Assumption 1.2.1 and 1.2.2, it follows from Theorem 1.2.1 and rntn →∞ that

r2
n{φ(θ̂n)− φ(θ0)− φ′θ0(θ̂n − θ0)}

(rntn)2

p−→ 0 . (1.99)

Combining results (1.97), (1.98) and (1.99) we thus arrive at the desired conclusion.

Proof of Lemma 1.4.1: By Assumptions 1.2.2, 1.4.1 and 1.4.2, we have for Pn ≡ P1/rn ,

rn{θ̂n − θ(P )} = rn{θ̂n − θ(Pn)}+ rn{θ(Pn)− θ(P )} Ln−−→ G + θ′0(h) . (1.100)
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Combination of Assumptions 1.2.1, 1.2.3(ii), φ(θ(P )) = φ′θ0 = 0, and result (1.100) allows

us to invoke the second order Delta method to conclude that

r2
nφ(θ̂n) = r2

n{φ(θ̂n)− φ(θ(P ))− φ′θ0(θ̂n − θ(P ))} Ln−−→ φ′′θ0(G + θ′0(h)) . (1.101)

This completes the proof of the lemma.

Proof of Theorem 1.4.1: Under the assumptions in Theorem 1.3.3 and Assumptions

1.4.3(i)(ii), we can show following the proof of Corollary 3.2 in Fang and Santos (2015) that

ĉ1−α
p−→ c1−α under Pn. By Theorem 12.2.3 and Corollary 12.3.1 in Lehmann and Romano

(2005), Pnn and Pn are mutually contiguous. It follows that

ĉ1−α
p−→ c1−α under Pnn . (1.102)

Lemma 1.4.1, Assumption 1.4.3(i)(ii) and result (1.102) allow us to conclude by the port-

manteau theorem that

lim inf
n→∞

πn(Pη/rn) ≥ P (φ′′θ0(G + θ′0(ηh)) > c1−α) . (1.103)

This establishes the first claim of the theorem.

For the second claim, note that if η ≤ 0, then

0 = lim
n→∞

r2
n{φ(θ(Pn))− φ(θ(P ))} = φ′′θ0(θ′0(ηh)) , (1.104)
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where we exploited φ(θ(P )) = φ(θ(Pn) = 0 for all n and Assumption 1.2.3(iii). Hence,

lim sup
n→∞

πn(Pη/rn) ≡ lim sup
n→∞

Pnn (r2
nφ(θ̂n) > ĉ1−α)

≤ lim sup
n→∞

Pnn (r2
nφ(θ̂n) ≥ ĉ1−α)

≤ P (φ′′θ0(G + θ′0(ηh)) ≥ c1−α)

= P (τ ◦ φ′′θ0(G + θ′0(ηh)) ≥ τ(c1−α))

≤ P (τ ◦ φ′′θ0(G) + τ ◦ φ′′θ0(θ′0(ηh)) ≥ τ(c1−α))

= P (φ′′θ0(G) ≥ c1−α) = α , (1.105)

where the second inequality is due to the Lemma 1.4.1, result (1.102) and the portmanteau

theorem, the second equality is by τ being strictly increasing, the third inequality is by

τ ◦ φ′′θ0 being subadditive, and the third equality is due to result (1.104), τ(0) = 0 and τ

being strictly increasing. This proves the second claim of the theorem.

Lemma 1.8.1. Suppose that Assumptions 1.2.2 and 1.3.1(ii) hold, and that φ : Dφ ⊂

D → E ≡ R is Hadamard differentiable at θ0 ∈ Dφ tangentially to D0 with φ′θ0 satisfying

Assumption 1.2.3(iii). Then ĉ1−α
p−→ 0, where for α ∈ (0, 1),

ĉ1−α ≡ inf{c ∈ R : PW (rn{φ(θ̂∗n)− φ(θ̂n)} ≤ c) ≥ 1− α} .

Proof: This lemma is somewhat similar to Lemma 5 in Andrews and Guggenberger (2010)

and we include the proof here only for completeness. Fix α ∈ (0, 1) and let c1−α ≡ inf{c ∈

R : P (φ′θ0(G) ≤ c) ≥ 1 − α}. Note that c1−α = 0 for all α ∈ (0, 1). Since φ is Hadamard

differentiable at θ0 ∈ Dφ tangentially to D0, it follows by Theorem 3.9.15 in van der Vaart

and Wellner (1996a) that

sup
f∈BL1(D)

|EW [f(rn{φ(θ̂∗n)− φ(θ̂n)})]− E[f(φ′θ0(G))]| p−→ 0 . (1.106)
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This, together with Lemma 10.11 in Kosorok (2008a), give us: for all t ∈ R \ {0},

PW (rn{φ(θ̂∗n)− φ(θ̂n)} ≤ t) p−→ P (φ′θ0(G) ≤ t) . (1.107)

Fix ε > 0. Clearly, c1−α± ε ∈ R\{0} for all ε > 0 and all α ∈ (0, 1). It follows from (1.107)

that

PW (rn{φ(θ̂∗n)− φ(θ̂n)} ≤ c1−α − ε)
p−→ P (φ′θ0(G) ≤ c1−α − ε) = 0 < 1− α ,

PW (rn{φ(θ̂∗n)− φ(θ̂n)} ≤ c1−α + ε)
p−→ P (φ′θ0(G) ≤ c1−α + ε) = 1 > 1− α .

(1.108)

By definition of ĉ1−α, it follows from (1.108) that

P (−ε ≤ ĉ1−α ≤ ε) = P (c1−α − ε ≤ ĉ1−α ≤ c1−α + ε)→ 1 . (1.109)

Since ε is arbitrary, the conclusion of the lemma then follows from result (1.109).

Lemma 1.8.2. Let Assumptions 1.2.1 and 1.2.3(i) hold, and φ̂′′n : D → E be an estimator

depending on {Xi}ni=1. Then the following are equivalent:

(i) For every compact set K ⊂ D0 and every ε > 0,

lim
δ↓0

lim sup
n→∞

P
(

sup
h∈Kδ

‖φ̂′′n(h)− φ′′θ0(h)‖E > ε
)

= 0 . (1.110)

(ii) For every compact set K ⊂ D0, every δn ↓ 0 and every ε > 0,

lim sup
n→∞

P
(

sup
h∈Kδn

‖φ̂′′n(h)− φ′′θ0(h)‖E > ε
)

= 0 . (1.111)

(iii) For every sequence {hn} ⊂ D and every h ∈ D0 such that hn → h as n→∞,

φ̂′′n(hn)
p−→ φ′′θ0(h) . (1.112)

Proof: The equivalence between (i) and (ii) is intuitive and straightforward to establish.
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Suppose that (i) holds. Fix a compact set K ⊂ D0, a sequence {δn} with δn ↓ 0, and

ε, η > 0. We want to show that there exists some N0 > 0 such that for all n ≥ N0,

P
(

sup
h∈Kδn

‖φ̂′′n(h)− φ′′θ0(h)‖E > ε
)
≤ η . (1.113)

But from (i) we know that there is some δ0 > 0 such that

lim sup
n→∞

P
(

sup
h∈Kδ0

‖φ̂′′n(h)− φ′′θ0(h)‖E > ε
)
< η , (1.114)

which in turn implies that there is some N1 satisfying for all n ≥ N1

P
(

sup
h∈Kδ0

‖φ̂′′n(h)− φ′′θ0(h)‖E > ε
)
< η . (1.115)

Since δn ↓ 0, there exists some N2 such that δn ≤ δ0 for all n ≥ N2 and hence

P
(

sup
h∈Kδn

‖φ̂′′n(h)− φ′′θ0(h)‖E > ε
)
≤ P

(
sup
h∈Kδ0

‖φ̂′′n(h)− φ′′θ0(h)‖E > ε
)
. (1.116)

Setting N0 ≡ max{N1, N2}, we see that (1.113) follows from (1.115) and (1.116).

Conversely, suppose that (ii) holds, fix a compact set K ⊂ D0 and ε > 0, and we

aim to establish (i) or equivalently, there exists some δ0 > 0 such that (1.115) holds. Pick

a sequence δn ↓ 0. Then there exists some N0 such that (1.113) holds with “≤” replaced by

“<”. Setting δ0 ≡ δN0 , we may then conclude (1.115) from (1.113).

Now suppose (ii) (and hence (i)) holds again and let {hn} ⊂ D such that hn → h ∈

D0. Fix δ > 0. There must be some N1 such that ‖hn − h‖D < δ for all n ≥ N1. By the

triangle inequality we have: for all n ≥ N1,

‖φ̂′′n(hn)− φ′′θ0(h)‖E ≤ ‖φ̂′′n(hn)− φ′′θ0(hn)‖E + ‖φ′′θ0(hn)− φ′′θ0(h)‖E

≤ sup
h∈Kδ

‖φ̂′′n(h)− φ′′θ0(h)‖E + ‖φ′′θ0(hn)− φ′′θ0(h)‖E . (1.117)

Part (iii) then follows from (1.117), part (i) and Assumption 1.2.3(i).
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Finally, suppose that (iii) holds. Fix a compact set K ⊂ D0 and ε > 0. Let δn ↓ 0.

Note that if suph∈Kδn ‖φ̂′′n(h) − φ′′θ0(h)‖E > ε, then there must exist some hn ∈ Kδn such

that ‖φ̂′′n(hn)− φ′′θ0(hn)‖E > ε and this is true for all n ∈ N. It follows that

P
(

sup
h∈Kδn

‖φ̂′′n(h)− φ′′θ0(h)‖E > ε
)
≤ P (‖φ̂′′n(hn)− φ′′θ0(hn)‖E > ε) . (1.118)

Note that hn ∈ Kδn is possibly random and satisfies d(hn,K) ≡ infa∈K ‖hn−a‖D ≤ δn → 0

as n → ∞. Fix an arbitrary subsequence {nk}. Since K is compact, it follows by Lemma

A.6 in Fang (2016) that there exists a further subsequence {nkj} and some deterministic

h ∈ K such that hnkj
p−→ h as j →∞. By the triangle inequality,

P (‖φ̂′′n(hn)− φ′′θ0(hn)‖E > ε) ≤P (‖φ̂′′n(hn)− φ′′θ0(h)‖E >
ε

2
)

+ P (‖φ′′θ0(hn)− φ′′θ0(h)‖E >
ε

2
) . (1.119)

Since hnkj
p−→ h as j → ∞, the first term on the right hand side above tends to zero along

{nkj} by (iii) and Lemma 1.8.3, while the second term tends to zero along {nkj} by Theorem

1.9.5 in van der Vaart and Wellner (1996a) and Assumption 1.2.3(i). Since {nk} is arbitrary,

combination of results (1.118) and (1.119) then leads to (ii).

Lemma 1.8.3 (Extended Continuous Mapping Theorem). Let D and E be metric spaces

equipped with metrics d and ρ respectively, gn : Dn ⊂ D → E a possibly random map for

each n ∈ N, and g : D0 ⊂ D→ E a nonrandom map. Suppose that gn(xn)
p−→ g(x) whenever

xn → x for xn ∈ Dn and x ∈ D0. If Xn
p−→ X such that X is Borel measurable, separable

and satisfies P (X ∈ D0) = 1, then gn(Xn)
p−→ g(X).

Proof: We closely follow the proof of Proposition A.8.6 in Bickel et al. (1998) (see also

van der Vaart and Wellner (1990)). Fix ε > 0 throughout. First, we show that g : D0 → E

is continuous. By assumption, for each x ∈ D0 we have

lim
δ↓0

lim sup
n→∞

P (Oscgn(B(x, δ)) > ε) = 0 , (1.120)
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where Oscgn(B(x, δ)) ≡ supy,z∈B(x,δ) ρ(gn(y), gn(z)) for B(x, δ) ≡ {y ∈ Dn : d(y, x) < δ}.

This can be easily seen by the triangle inequality:

lim
δ↓0

lim sup
n→∞

P (Oscgn(B(x, δ)) > ε) ≤ lim
δ↓0

lim sup
n→∞

P ( sup
y∈B(x,δ)

ρ(gn(y), g(x)) >
ε

2
)

+ lim
δ↓0

lim sup
n→∞

P ( sup
z∈B(x,δ)

ρ(gn(z), g(x)) >
ε

2
)

= 0 .

Notice that again by assumption, the triangle inequality and result (1.120) we have

ρ(g(y), g(x)) ≤ ρ(g(y), gn(y)) + ρ(g(x), gn(x)) + ρ(gn(y), gn(x))

≤ ρ(g(y), gn(y)) + ρ(g(x), gn(x)) + Oscgn(B(x, d(x, y)))

p−→ 0 , (1.121)

as n → ∞ followed by d(x, y) → ∞. Since g is a nonrandom function, we must have

ρ(g(y), g(x))→ 0 as d(y, x)→ 0 and hence g is continuous on D0.

Next, for x ∈ D0 define

k(x, ε) ≡ min{k : for ∀ y with d(y, x) <
1

k
and all n ≥ k, P (ρ(gn(y), g(x)) ≤ ε) ≥ 1− ε} .

This is well defined by a simple reductio ad absurdum argument as in Bickel et al. (1998).

We now show that k(·, ε) : D0 → N is measurable. This is done by proving that k(·, ε) is

lower semicontinuous, i.e., xm → x for {x, xm} ⊂ D0 implies

lim inf
m→∞

k(xm, ε) ≥ k(x, ε) . (1.122)

Fix x ∈ D0 and {xm} ⊂ D0 such that xm → x as m → ∞. Then there must exist some

subsequence {m′} of {m} such that lim infm→∞ k(xm, ε) = limm′→∞ k(xm′ , ε). Since k(·, ε)

is integer valued, we further have lim infm→∞ k(xm, ε) = k(xm′ , ε) ≡ k′ for all m′ sufficiently

large. If k′ = ∞, then the inequality (1.122) follows trivially. Otherwise, suppose that
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k′ <∞. For any y with d(x, y) < 1/k′, there exists an m0 such that d(xm′ , y) < 1/k′ for all

m′ ≥ m0. By definition of k(x, ε), it follows that for all n ≥ k′,

P (ρ(gn(y), g(xm′)) ≤ ε) ≥ 1− ε . (1.123)

Letting m′ ↑ ∞, we have by xm′ → x and continuity of g and P that for all n ≥ k′,

P (ρ(gn(y), g(x)) ≤ ε) ≥ 1− ε . (1.124)

Thus we must have k(x, ε) ≤ k′ = lim infm→∞ k(xm, ε) and hence k(·, ε) is Borel measurable.

Since P (X ∈ D0) = 1, we may assume without loss of generality that X takes values

in D0. In turn, it follows that k(X, ε) is a Borel N-valued random variable. Thus there

exists some k0 ≡ k0(ε) such that

P (k(X, ε) > k0) < ε . (1.125)

Since Xn
p−→ X, there exists some n0 ≡ n0(ε) such that for all n ≥ n0(ε),

P (d(Xn, X) >
1

k0
) < ε . (1.126)

Now define

Bn ≡ {ρ(gn(Xn), g(X)) > ε} , Cn ≡ {d(Xn, X) >
1

k0
} , D ≡ {k(X, ε) > k0} .

It follows that for all n ≥ max{n0, k0},

P (Bn) ≤ P (Bn ∩ (Ccn ∩Dc)) + P (Bn ∩ (Ccn ∩Dc)c)

≤ P (Bn ∩ (Ccn ∩Dc)) + P (Cn) + P (D) ≤ 3ε ,

by definition of k(x, ε), results (1.125) and (1.126), and we are done since ε is arbitrary.



67

1.8.2 Results for Examples 1.2.1 - 1.2.6

Example 1.2.2: Moment Inequalities

In this example, it is a simple exercise to show that

φ′θ(h) =


2θh if θ > 0

0 if θ ≤ 0

, φ′′θ(h) =


h2 if θ > 0

(max{h, 0})2 if θ = 0

0 if θ < 0

. (1.127)

Thus, φ is Hadamard differentiable with the derivative φ′θ degenerate at θ ≤ 0 and in

particular at the “least favorable point” θ = 0. Moreover, φθ is second order Hadamard

directionally differentiable. The derivative φ′′θ is nondegenerate at 0, though degenerate

whenever θ < 0.

Exploiting the structure in (1.127), we may easily estimate the derivative by

φ̂′′n(h) =


h2 if Xn > κn

(max{h, 0})2 if |Xn| ≤ κn

0 if Xn < κn

, (1.128)

where κn ↓ 0 satisfies
√
nκn ↑ ∞, and Xn ≡ 1

n

∑n
i=1Xi. Interestingly, construction of φ̂′′n

as above amounts to the generalized moment selection procedure as in Andrews and Soares

(2010) for conducting inference in moment inequalities models.

Example 1.2.3: Cramer-von Mises Functionals

Cramer-von Mises functionals can be viewed as generalized Wald functionals. It

is straightforward to show that φ is first and second Hadamard differentiable at any θ ∈
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`∞(Rdx) with derivatives satisfying:

φ′θ(h) = 2

∫
(θ − F0)h dF0 , φ

′′
θ(h) =

∫
h2 dF0 ,

for all h ∈ `∞(Rdx). Note that first order derivative φ′θ is degenerate when θ = F0,

while second order derivative φ′′θ is nowhere degenerate. The corresponding bilinear map

Φ′′θ : `∞(Rdx)× `∞(Rdx)→ R is given by Φ′′θ(h, g) =
∫
hg dF0. In this example, there is no

need for derivative estimation because φ′′θ0 is a known map.

Example 1.2.4: Stochastic Dominance

Lemma 1.8.4. Let w : R → R+ satisfy
∫
Rw(u)du < ∞ and φ : `∞(R) × `∞(R) → R

be given by φ(θ) =
∫
R max{θ(1)(u) − θ(2)(u), 0}2w(u)du for any θ = (θ(1), θ(2)) ∈ `∞(R) ×

`∞(R). Then it follows that

(i) φ is first order Hadamard differentiable at any θ ∈ `∞(R)× `∞(R) with φ′θ : `∞(R)×

`∞(R)→ R satisfying for any h = (h(1), h(2)) ∈ `∞(R)× `∞(R)

φ′θ(h) = 2

∫
B+(θ)

[θ(1)(u)− θ(2)(u)][h(1)(u)− h(2)(u)]w(u)du ,

where B+(θ) ≡ {u ∈ R : θ(1)(u) > θ(2)(u)}.

(ii) φ is second order Hadamard directionally differentiable at any θ ∈ `∞(R) × `∞(R)

and the derivative φ′′θ : `∞(R) × `∞(R) → R is given by: for any h = (h(1), h(2)) ∈

`∞(R)× `∞(R)

φ′′θ(h) =

∫
B0(θ)

max{h(1)(u)− h(2)(u), 0}2w(u)du+

∫
B+(θ)

[h(1)(u)− h(2)(u)]2w(u)du ,

where B0(θ) ≡ {u ∈ R : θ(1)(u) = θ(2)(u)}.

Proof: Fix θ ∈ `∞(R)× `∞(R). Further, let tn ↓ 0, {hn} = {(h(1)
n , h

(2)
n )} be a sequence in

`∞(R)× `∞(R) satisfying ‖h(1)
n −h(1)‖∞ ∨‖h(2)

n −h(2)‖∞ = o(1) for some h = (h(1), h(2)) ∈
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`∞(R)× `∞(R), and

B−(θ) ≡ {u ∈ R : θ(1)(u) < θ(2)(u)} .

Observe that since θ(1)(u) − θ(2)(u) < 0 for all u ∈ B−(θ), and ‖h(1)
n − h(2)

n ‖∞ = O(1) due

to ‖h(1) − h(2)‖∞ <∞, the dominated convergence theorem yields that:

lim
n→∞

1

tn

∫
B−(θ)

max{(θ(1)(u)− θ(2)(u)) + tn(h(1)
n (u)− h(2)

n (u)), 0}2w(u)du = 0 , (1.129)

lim
n→∞

1

tn

∫
B0(θ)

max{(θ(1)(u)− θ(2)(u)) + tn(h(1)
n (u)− h(2)

n (u)), 0}2w(u)du = 0 , (1.130)

and

lim
n→∞

1

tn

[ ∫
B+(θ)

max{(θ(1)(u)− θ(2)(u)) + tn(h(1)
n (u)− h(2)

n (u)), 0}2w(u)du

−
∫
B+(θ)

(θ(1)(u)− θ(2)(u))2w(u)du
]

= lim
n→∞

∫
B+(θ)

1

tn

[
max{(θ(1)(u)− θ(2)(u)) + tn(h(1)

n (u)− h(2)
n (u)), 0}2

− (θ(1)(u)− θ(2)(u))2
]
w(u)du

= 2

∫
B+(θ)

[θ(1)(u)− θ(2)(u)][h(1)(u)− h(2)(u)]w(u)du . (1.131)

Combining results (1.129) - (1.131) yields

φ′θ(h) ≡ lim
n→∞

φ(θ + tnhn)− φ(θ)

tn
= 2

∫
B+(θ)

[θ(1)(u)− θ(2)(u)][h(1)(u)− h(2)(u)]w(u)du ,

which establishes the first claim of the lemma.

Next fix θ ∈ `∞(R)× `∞(R) and let {hn} and {tn} be as before. Therefore, by the
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dominated convergence theorem we have

lim
n→∞

∫
B−(θ)

1

t2n
max{(θ(1)(u)− θ(2)(u)) + tn(h(1)

n (u)− h(2)
n (u)), 0}2w(u)du = 0 , (1.132)

lim
n→∞

∫
B0(θ)

1

t2n
max{(θ(1)(u)− θ(2)(u)) + tn(h(1)

n (u)− h(2)
n (u)), 0}2w(u)du

=

∫
B0(θ)

max{h(1)(u)− h(2)(u), 0}2w(u)du , (1.133)

and

lim
n→∞

1

t2n

[ ∫
B+(θ)

max{(θ(1)(u)− θ(2)(u)) + tn(h(1)
n (u)− h(2)

n (u)), 0}2w(u)du

−
∫
B+(θ)

(θ(1)(u)− θ(2)(u))2w(u)du− tn2

∫
B+(θ)

[θ(1)(u)− θ(2)(u)][h(1)
n (u)− h(2)

n (u)]w(u)du
]

→
∫
B+(θ)

[h(1)(u)− h(2)(u)]2w(u)du . (1.134)

It follows from results (1.132)-(1.134) that

φ′′θ(h) ≡ lim
n→∞

φ(θ + tnhn)− φ(θ)− tnφ′θ(hn)

t2n

=

∫
B0(θ)

max{h(1)(u)− h(2)(u), 0}2w(u)du+

∫
B+(θ)

[h(1)(u)− h(2)(u)]2w(u)du .

This competes the proof of the second claim and we are done.

Example 1.2.5: Conditional Moment Inequalities

Lemma 1.8.5. Let φ : `∞(F)×`∞(F)→ R be given by φ(θ) = supf∈F{[max(θ(1)(f), 0)]2+

[θ(2)(f)]2} where F is compact under some metric d. Then it follows that:

(i) φ is Hadamard differentiable at any θ ∈ `∞(F) × `∞(F) satisfying θ(1) ≤ 0 and

θ(2) = 0, and its derivative φ′θ(h) = 0 for any h ∈ `∞(F)× `∞(F)

(ii) φ is second order Hadamard directionally differentiable at any θ ∈ C(F) × C(F)

satisfying θ(1) ≤ 0 and θ(2) = 0 tangentially to C(F) × C(F), and the derivative is
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given by: for any h ∈ C(F)× C(F),

φ′′θ(h) = max{ sup
f∈F0

{max(h(1)(f), 0)2 + [h(2)(f)]2}, sup
f∈F\F0

[h(2)(f)]2} ,

where F0 ≡ {f ∈ F : θ(1)(f) = 0}, and sup ∅ ≡ 0.

Remark 1.8.1. Note that if F0 = ∅, then φ′′θ simplifies to φ′′θ(h) = supf∈F [h(2)(f)]2.

Proof: Let θ ∈ `∞(F) × `∞(F) satisfying θ(1) ≤ 0 and θ(2) = 0, {hn} ⊂ `∞(F) × `∞(F)

such that hn → h ∈ `∞(F) × `∞(F), and tn ↓ 0. Combining θ(1) ≤ 0, θ(2) = 0 and the

triangle inequality, we have

|φ(θ + tnhn)− φ(θ)| =
∣∣ sup
f∈F
{[max(θ(1)(f) + tnh

(1)
n (f), 0)]2 + [θ(2)(f) + tnh

(2)
n (f)]2}

∣∣
≤ sup

f∈F
[max(θ(1)(f) + tnh

(1)
n (f), 0)]2 + t2n sup

f∈F
[h(2)
n (f)]2

≤ sup
f∈F

[max(tnh
(1)
n (f), 0)]2 + t2n sup

f∈F
[h(2)
n (f)]2 = o(tn) , (1.135)

as desired in part (i), where in the last step we used the fact that h
(1)
n = h

(2)
n = O(1).

As for the second claim, let θ ∈ C(F) × C(F) satisfying θ(1) ≤ 0 and θ(2) = 0,

{hn} ⊂ `∞(F) × `∞(F) such that hn → h ∈ C(F) × C(F), and tn ↓ 0. By θ(1) ≤ 0 and

θ(2) = 0, Lipschtiz continuity of the sup operator and the triangle inequality we have

|φ(θ + tnhn)−φ(θ + tnh)|

= | sup
f∈F
{max(θ(1)(f) + tnh

(1)
n (f), 0)2 + [tnh

(2)
n (f)]2}

− sup
f∈F
{max(θ(1)(f) + tnh

(1)(f), 0)2 + [tnh
(2)(f)]2}|

≤ sup
f∈F
|max(θ(1)(f) + tnh

(1)
n (f), 0)2 −max(θ(1)(f) + tnh

(1)(f), 0)2|

+ sup
f∈F
|[tnh(2)

n (f)]2 − [tnh
(2)(f)]2| . (1.136)



72

Since ‖hn − h‖∞ = o(1) and θ(1) ≤ 0, it follows that

sup
f∈F
|max(θ(1)(f) + tnh

(1)
n (f), 0)2 −max(θ(1)(f) + tnh

(1)(f), 0)2|

≤ sup
f∈F
|max(θ(1)(f) + tnh

(1)
n (f), 0)−max(θ(1)(f) + tnh

(1)(f), 0)|

× sup
f∈F
|max(θ(1)(f) + tnh

(1)
n (f), 0) + max(θ(1)(f) + tnh

(1)(f), 0)|

≤ sup
f∈F
|tnh(1)

n (f)− tnh(1)(f)| sup
f∈F
{max(tnh

(1)
n (f), 0) + max(tnh

(1)(f), 0)}

= o(tn)O(tn) = o(t2n) , (1.137)

and that

sup
f∈F
|[tnh(2)

n (f)]2 − [tnh
(2)(f)]2| = o(t2n) . (1.138)

Combination of results (1.136), (1.137) and (1.138) leads to

|φ(θ + tnhn)− φ(θ + tnh)| = o(t2n) . (1.139)

Next, fix δ > 0. By definition of Fδ0 , compactness of F and continuity of θ(1), we see

that supf∈F\Fδ0
θ(1)(f) < 0. Since also tnh

(1) = o(1) and h(1) ∈ C(F), it follows that

θ(1)(f) + tnh
(1)(f) < 0 for all f ∈ f ∈ F \ Fδ0 and for all n large. In turn we have

lim
δ↓0

lim
n→∞

t−2
n sup

f∈F\Fδ0
{max(θ(1)(f)+tnh

(1)(f), 0)2 + [tnh
(2)(f)]2}

= lim
δ↓0

sup
f∈F\Fδ0

[h(2)(f)]2 = sup
f∈F\F0

[h(2)(f)]2 , (1.140)
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where the last step is due to h(2) ∈ C(F). On the other hand, we have,

lim
δ↓0

lim sup
n→∞

t−2
n

∣∣∣ sup
f∈Fδ0
{max(θ(1)(f) + tnh

(1)(f), 0)2 + [tnh
(2)(f)]2}

− t2n sup
f∈F0

{max(h(1)(f), 0)2 + [h(2)(f)]2}
∣∣∣

≤ lim
δ↓0

lim sup
n→∞

t−2
n sup

f∈Fδ0
{max(tnh

(1)(f), 0)2 + [tnh
(2)(f)]2}

− sup
f∈F0

{max(tnh
(1)(f), 0)2 + [tnh

(2)(f)]2}

≤ lim
δ↓0

lim sup
n→∞

t−2
n sup

f,g∈F :d(f,g)≤δ
|max(tnh

(1)(f), 0)2 −max(tnh
(1)(g), 0)2|

≤ lim
δ↓0

sup
f,g∈F :d(f,g)≤δ

|max(h(1)(f), 0)2 −max(h(1)(g), 0)2| = 0 , (1.141)

where the first inequality is due to θ(f) = 0 for all f ∈ F0 and θ(1) ≤ 0, the second inequality

exploits the definition and compactness of Fδ0 , and the equality is due to uniform continuity

of h(1) on F since h(1) ∈ C(F) and F is compact.

Finally, combining results (1.140), (1.141), and φ(θ) = 0 we have:

lim sup
n→∞

t−2
n {φ(θ + tnh)− φ(θ)} = lim sup

n→∞
t−2
n φ(θ + tnh)

= lim sup
n→∞

t−2
n sup

f∈F
{max(θ(1)(f) + tnh

(1)(f), 0)2 + [tnh
(2)(f)]2}

= lim
δ↓0

lim sup
n→∞

t−2
n max

{
sup
f∈Fδ0
{max(θ(1)(f) + tnh

(1)(f), 0)2 + [tnh
(2)(f)]2},

sup
f∈F\Fδ0

{max(θ(1)(f) + tnh
(1)(f), 0)2 + [tnh

(2)(f)]2}
}

= max
{

sup
f∈F0

{max(h(1)(f), 0)2 + [h(2)(f)]2}, sup
f∈F\F0

[h(2)(f)]2
}
. (1.142)

It follows from φ′θ = 0, (1.139) and (1.142) that

lim
n→∞

φ(θ + tnhn)− φ(θ)− tnφ′θ(hn)

t2n

= max
{

sup
f∈F\F0

[h(2)(f)]2, sup
f∈F0

{max(h(1)(f), 0)2 + [h(2)(f)]2}
}
, (1.143)
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as desired for the second claim of the lemma.

Suppose that F̂0 and F̂0,c are estimators of F0 ≡ {f ∈ F : θ
(1)
0 (f) = 0} and F \ F0

that satisfy17

dH(F̂0,F0;L2(W )) = op(1) and dH(F̂0,c,F \ F0;L2(W )) = oP (1) . (1.144)

Based on F̂0 and F̂0,c and in view of Lemma B.3 in Fang and Santos (2015), we may estimate

the derivative as follows:

φ̂′′n(h) = max{ sup
f∈F̂0

{max(h(1)(f), 0)2 + [h(2)(f)]2}, sup
f∈F̂0,c

[h(2)(f)]2} . (1.145)

The estimation of F0 and F \F0 is in accordance with the generalized moment selection in

Andrews and Shi (2013); see also Kaido and Santos (2014).

Example 1.2.6: Overidentification Test

Lemma 1.8.6. Let Γ ⊂ Rk be a compact set, and φ :
∏m
j=1 `

∞(Γ) → R be given by

φ(θ) = infγ∈Γ θ(γ)ᵀWθ(γ) where θ ∈
∏m
j=1 `

∞(Γ) and W is a m × m symmetric positive

definite matrix. Then we have

(i) φ is Hadamard differentiable at any θ ∈
∏m
j=1 `

∞(Γ) satisfying θ(γ) = 0 for some

γ ∈ Γ with the derivative given by φ′θ(h) = 0 for all h ∈
∏m
j=1 `

∞(Γ).

(ii) If Γ0(θ) ≡ {γ ∈ Γ : θ(γ) = 0} is in the interior of Γ, θ ∈
∏m
j=1C

1(Γ) satisfies

φ(θ) = 0, and for some small ε > 0, infγ∈Γ\Γ0(θ)ε ‖θ(γ)‖ ≥ Cεκ for some κ ∈ (0, 1]

and some C > 0, then φ is second order Hadamard directionally differentiable at θ

tangentially to
∏m
j=1C(Γ) with the derivative given by: for any h ∈

∏m
j=1C(Γ)

φ′′θ(h) = min
γ0∈Γ0(θ)

min
v∈Rk

{h(γ0)− J(γ0)v}ᵀW{h(γ0)− J(γ0)v} ,

17We note that for two generic sets A and B in a metric space, neither dH(A,B) controls dH(Ac, Bc) nor
dH(Ac, Bc) controls dH(A,B) (Lemenant et al., 2014).
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where J : Γ0(θ)→Mm×k is the Jacobian matrix defined by J(γ0) ≡ dθ(γ)
dγᵀ

∣∣
γ=γ0

.

Proof: Fix θ ∈
∏m
j=1 `

∞(Γ) and let tn ↓ 0 and {hn, h} ⊂
∏m
j=1 `

∞(Γ) such that hn → h.

For a vector a ∈ Rm, define the norm ‖a‖W =
√
aᵀWa. It follows that

|φ(θ + tnhn)−φ(θ)| = inf
γ∈Γ
‖θ(γ) + tnhn(γ)‖2W

≤ inf
γ∈Γ0(θ)

‖θ(γ) + tnhn(γ)‖2W ≤ t2n inf
γ∈Γ0(θ)

‖hn(γ)‖2W = o(tn) , (1.146)

where the second inequality is because θ(γ) = 0 for all γ ∈ Γ0(θ) and the last step is due

to hn = O(1) by assumption. This establishes part (i).

For part (ii), fix θ ∈
∏m
j=1C

1(Γ) with φ(θ) = 0 and let tn ↓ 0 and {hn} ⊂
∏m
j=1 `

∞(Γ)

such that hn → h ∈
∏m
j=1C(Γ). First of all, note that for γ0 ∈ Γ0(θ),

|φ(θ + tnhn)− φ(θ + tnh)| =
∣∣ inf
γ∈Γ
‖θ(γ) + tnhn(γ)‖2W − inf

γ∈Γ
‖θ(γ) + tnh(γ)‖2W

∣∣
=
∣∣ inf
γ∈Γ
‖θ(γ) + tnhn(γ)‖W − inf

γ∈Γ
‖θ(γ) + tnh(γ)‖W

∣∣
×
∣∣ inf
γ∈Γ
‖θ(γ) + tnhn(γ)‖W + inf

γ∈Γ
‖θ(γ) + tnh(γ)‖W

∣∣
≤ tn‖hn − h‖∞{‖θ(γ0) + tnhn(γ0)‖W + ‖θ(γ0) + tnh(γ0)‖W }

≤ t2n‖hn − h‖∞{‖hn(γ0)‖W + ‖h(γ0)‖W } = o(t2n) , (1.147)

where the first inequality is due to the Lipschitz continuity of the inf operator and the

triangle inequality, and the last inequality follows from hn → h and θ(γ0) = 0 for γ0 ∈ Γ0(θ).

Next, for each fixed a ≥ (2C−1 maxγ∈Γ ‖h(γ)‖W )1/κ, by assumption and the triangle
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inequality we have: for all n sufficiently large so that tκn ≥ tn,

inf
γ∈Γ\Γ0(θ)atn

‖θ(γ) + tnh(γ)‖W ≥ inf
γ∈Γ\Γ0(θ)atn

‖θ(γ)‖W − tn sup
γ∈Γ\Γ0(θ)atn

‖h(γ)‖W

≥ C(atn)κ − tn max
γ∈Γ
‖h(γ)‖W ≥ 2tκn max

γ∈Γ
‖h(γ)‖W − tn max

γ∈Γ
‖h(γ)‖W

≥ 2tn max
γ∈Γ
‖h(γ)‖W − tn max

γ∈Γ
‖h(γ)‖W ≥ tn min

γ∈Γ0(θ)
‖h(γ)‖W

= min
γ∈Γ0(θ)

‖θ(γ) + tnh(γ)‖W ≥
√
φ(θ + tnh) , (1.148)

which implies that for all n large,

φ(θ + tnh) = min
γ∈Γ0(θ)atn

‖θ(γ) + tnh(γ)‖2W . (1.149)

Now for γ0 ∈ Γ0(θ), set Vn,γ0(a) ≡ {v ∈ Rk : γ0 + tnv ∈ Γ, ‖v‖ ≤ a} and V (a) ≡

{v ∈ Rk : ‖v‖ ≤ a}. Note that
⋃
γ0∈Γ0(θ) Vn,γ0(a) = Γ0(θ)atn . Since θ and h are continuous,

it then follows that

φ(θ + tnh) = min
γ0∈Γ0(θ)

min
v∈Vn,γ0 (a)

‖θ(γ0 + tnv) + tnh(γ0 + tnv)‖2W . (1.150)

In turn, notice that

∣∣φ(θ + tnh)− min
γ0∈Γ0(θ)

min
v∈Vn,γ0 (a)

‖θ(γ0 + tnv) + tnh(γ0)‖2W
∣∣

≤ 2tn‖h(γ0)‖W · tn max
γ0∈Γ0(θ)

max
v∈Vn,γ0 (a)

‖h(γ0 + tnv)− h(γ0)‖W

≤ 2t2n max
γ1,γ2∈Γ:‖γ1−γ2‖≤atn

‖h(γ1)− h(γ2)‖W = o(t2n) , (1.151)

where the first inequality follows from the formula |b2−c2| ≤ |b+c||b−c| and that γ0 is any

fixed element in Γ0(θ), and the last step follows from uniform continuity of h on Γ because

h is continuous on Γ and Γ is compact.
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Since θ ∈
∏m
j=1C

1(Γ), we further have,

∣∣ min
γ0∈Γ0(θ)

min
v∈Vn,γ0 (a)

‖θ(γ0 + tnv) + tnh(γ0)‖2W

− min
γ0∈Γ0(θ)

min
v∈Vn,γ0 (a)

‖θ(γ0) + J(γ0)tnv + tnh(γ0)‖2W
∣∣

≤ 2tn max
γ0∈Γ0(θ)

‖h(γ0)‖W · max
γ0∈Γ0(θ)

max
v∈Vn,γ0 (a)

‖θ(γ0 + tnv)− θ(γ0)− J(γ0)tnv‖W . (1.152)

By the mean value theorem applied entry-wise to θ(γ0 + tnv)− θ(γ0), there exist γ̃
(1)
n (γ0, v),

. . . , γ̃
(m)
n (γ0, v) all between θ0 and θ0 + tnv such that

‖θ(γ0 + tnv)− θ(γ0)− J(γ0)tnv‖ = ‖J(γ̃n)tnv − J(γ0)tnv‖ , (1.153)

where by abuse of notation we write

J(γ̃n) ≡



dθ(1)

dγᵀ

∣∣
γ=γ̃

(1)
n (γ0,v)

...

dθ(m)

dγᵀ

∣∣
γ=γ̃

(m)
n (γ0,v)


.

Since θ ∈
∏m
j=1C

1(Γ) and Γ is compact, J(·) is uniformly continuous on Γ and hence

max
γ0∈Γ0(θ)

max
v∈Vn,γ0 (a)

‖J(γ̃n)tnv − J(γ0)tnv‖

≤ tn max
γ0∈Γ0(θ)

max
v∈Vn,γ0 (a)

{‖J(γ̃n)− J(γ0)‖‖v‖} = o(tn) . (1.154)

Since all norms in finite dimensional spaces are equivalent, it follows from results (1.151),

(1.152), (1.153), (1.154) and θ(γ0) = 0 for all γ0 ∈ Γ0(θ) that

∣∣φ(θ + tnh)− min
γ0∈Γ0(θ)

min
v∈Vn,γ0 (a)

‖J(γ0)tnv + tnh(γ0)‖2W
∣∣ = o(t2n) . (1.155)

By assumption, Γ0(θ) is in the interior of Γ and so Vn,γ0(a) = V (a) for all n suffi-
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ciently large. It follows that

min
γ0∈Γ0(θ)

min
v∈Vn,γ0 (a)

‖J(γ0)tnv + tnh(γ0)‖2W = t2n min
γ0∈Γ0(θ)

min
v∈V (a)

‖h(γ0)− J(γ0)v‖2W . (1.156)

For each γ0 ∈ Γ0(θ), by the projection theorem there is some v∗ ∈ Rk such that

min
v∈Rk

‖h(γ0)− J(γ0)v‖2W = ‖h(γ0)− J(γ0)v∗‖2W . (1.157)

Thus, by choosing a large if necessary so that v∗ ∈ V (a), we have from results (1.155),

(1.156) and (1.157) that

∣∣φ(θ + tnh)− t2n min
γ0∈Γ0(θ)

min
v∈Rk

‖h(γ0)− J(γ0)v‖2W
∣∣ = o(t2n) . (1.158)

Combining (1.158), φ(θ) = 0 and part (i), we then arrive at part (ii).

1.8.3 Proofs for Section 1.5

Lemma 1.8.7. Let φ :
∏m
j=1 `

∞(Sk)→ R be given by φ(θ) = infγ∈Sk ‖θ(γ)‖2. Then

(i) φ is Hadamard differentiable at any θ ∈
∏m
j=1 `

∞(Sk) satisfying θ(γ0) = 0 for some

γ0 ∈ Sk and the derivative satisfies φ′θ(h) = 0 for all h ∈
∏m
j=1 `

∞(Sk).

(ii) φ is second order Hadamard directionally differentiable at any θ0(γ) ≡ E[Zt{(γᵀYt+1)2

−c(γ)}] under Assumption 1.5.1 tangentially to
∏m
j=1C(Sk) with the derivative given

by: for all h ∈
∏m
j=1C(Sk),

φ′′θ0(h) = min
γ∈Γ0

min
v∈Rk

‖h(γ) +G vec(vvᵀ)‖2 , (1.159)

where Γ0 = {γ ∈ Sk : θ0(γ) = 0} is the (nonempty) identified set of γ, and G ∈Mm×k2

with the jth row given by vec(∆j)
ᵀ and

∆j = E[Z
(j)
t (Yt+1Y

ᵀ
t+1 − E[Yt+1Y

ᵀ
t+1])] .
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Proof: Fix θ ∈
∏m
j=1 `

∞(Sk) satisfying θ(γ0) = 0 for some γ0 ∈ Sk, {hn} ⊂
∏m
j=1 `

∞(Sk)

such that hn → h ∈
∏m
j=1 `

∞(Sk), and tn ↓ 0. It follows that

|φ(θ + tnhn)− φ(θ)| = inf
γ∈Sk
‖θ(γ) + tnhn(γ)‖2

≤ ‖θ(γ0) + tnhn(γ0)‖2 = t2n‖hn(γ0)‖2 = o(tn).

where in the last step we used the fact that supγ∈Sk ‖hn(γ)‖ = O(1). So φ′θ(h) = 0 for any

h ∈
∏m
j=1 `

∞(Sk), as desired for the first claim of the lemma.

Now consider θ0(γ) ≡ E[Zt{(γᵀYt+1)2 − c(γ)}] and suppose that Assumption 1.5.1

holds. Pick {hn} ⊂
∏m
j=1 `

∞(Sk) such that hn → h ∈
∏m
j=1C(Sk), and tn ↓ 0. Note that

φ(θ0) = 0 under Assumption 1.5.1. Then first, we have

|φ(θ0 + tnhn)− φ(θ0 + tnh)| = | inf
γ∈Sk
‖θ0(γ) + tnhn(γ)‖2 − inf

γ∈Sk
‖θ0(γ) + tnh(γ)‖2|

≤ | inf
γ∈Sk
‖θ0(γ) + tnhn(γ)‖+ inf

γ∈Sk
‖θ0(γ) + tnh(γ)‖|

· tn sup
γ∈Sk
‖hn(γ)− h(γ)‖

≤ tn| inf
γ∈Γ0

‖θ0(γ) + tnhn(γ)‖+ inf
γ∈Γ0

‖θ0(γ) + tnh(γ)‖|

· sup
γ∈Sk
‖hn(γ)− h(γ)‖

= o(t2n) . (1.160)

Next, let Γε0 ≡ {γ ∈ Sk : mins∈Γ0 ‖s− γ‖ ≤ ε} and Γε1 ≡ {γ ∈ Sk : mins∈Γ0 ‖s− γ‖ ≥ ε}. By

Equation (7) in Dovonon and Renault (2013), θ0(γ) = Cov(Zt, σ
2
t )Diag(ΛᵀγγᵀΛ)), where

for a p × p matrix A, Diag(A) denotes the p × 1 vector consisting of diagonal entries.

Also, let λmin(·) and λ+
min(·) denote the smallest and the smallest positive singular values,

respectively. We then have: for C ≡ p−1/2λ+
min(Λᵀ)λmin(Cov(Zt, σ

2
t ))/2,

min
γ∈Γε1
‖θ0(γ)‖ ≥ min

γ∈Γε1
‖Diag(ΛᵀγγᵀΛ)‖λmin(Cov(Zt, σ

2
t ))

≥ min
γ∈Γε1
‖Λᵀγ‖2p−1/2λmin(Cov(Zt, σ

2
t )) ≥ Cε2 ,
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where the first inequality follows from a simple application of the singular value decomposi-

tion of Cov(Zt, σ
2
t ), the second inequality exploits the generalized mean inequality, and last

inequality is by Lemma 1.8.10. Note that λmin(Cov(Zt, σ
2
t )) > 0 by Assumption 1.5.1(v).

Let ∆ ≡ [3C−1 maxγ∈Sk ‖h(γ)‖]1/2 > 0 for the nontrivial case maxγ∈Sk ‖h(γ)‖ > 0. Then it

follows by the triangle inequality that: for n sufficient large such that tn ≤
√
tn,

min
γ∈Γ

√
tn∆

1

‖θ0(γ) + tnh(γ)‖ ≥ min
γ∈Γ

√
tn∆

1

‖θ0(γ)‖ − tn max
γ∈Sk
‖h(γ)‖

≥ 3tn max
γ∈Sk
‖h(γ)‖ − tn max

γ∈Sk
‖h(γ)‖

> tn min
γ∈Γ0

‖h(γ)‖ ≥
√
φ(θ0 + tnh) ,

and therefore

φ(θ0 + tnh) = min
γ∈Γ

√
tn∆

0

‖θ0(γ) + tnh(γ)‖2 .

For γ ∈ Γ0, let V ∆
n,γ ≡ {v ∈ Rk : γ +

√
tnv ∈ Sk and ‖v‖ ≤ ∆} and V ∆

γ ≡ {v ∈ Rk : γᵀv = 0

and ‖v‖ ≤ ∆}. Then we have

φ(θ0 + tnh) = min
γ∈Γ0

min
v∈V ∆

n,γ

‖θ0(γ +
√
tnv) + tnh(γ +

√
tnv)‖2

= min
γ∈Γ0

min
v∈V ∆

n,γ

‖θ0(γ +
√
tnv) + tnh(γ)‖2 + o(t2n) , (1.161)

where the first equality follows by the definition of Γ
√
tn∆

0 and the second equality follows

by noting that

|min
γ∈Γ0

min
v∈V ∆

n,γ

‖θ0(γ +
√
tnv) + tnh(γ +

√
tnv)‖2 − min

γ∈Γ0

min
v∈V ∆

n,γ

‖θ0(γ +
√
tnv) + tnh(γ)‖2|

≤ 2tn‖h(γ0)‖ · tn max
γ∈Γ0

max
v∈V ∆

n,γ

‖h(γ +
√
tnv)− h(γ)‖

≤ 2t2n‖h(γ0)‖ max
γ1,γ2∈Sk,‖γ1−γ2‖≤

√
tn∆
‖h(γ1)− h(γ2)‖ = o(t2n) ,

where γ0 in the first inequality is any fixed element in Γ0, the last equality follows by the

uniform continuity of h over Sk. By θ0(γ) = G vec(γγᵀ) (Dovonon and Renault, 2013) and



81

the definition of Γ0, we have

min
γ∈Γ0

min
v∈V ∆

n,γ

‖θ0(γ +
√
tnv)+tnh(γ)‖2 = t2n min

γ∈Γ0

min
v∈V ∆

n,γ

‖G vec(vvᵀ) + h(γ)‖2

= t2n min
γ∈Γ0

min
v∈V ∆

γ

‖G vec(vvᵀ) + h(γ)‖2 + o(t2n)

= t2n min
γ∈Γ0

min
v∈Rk

‖G vec(vvᵀ) + h(γ)‖2 + o(t2n) , (1.162)

where the second equality follows by the fact that V ∆
n,γ converges to V ∆

γ uniformly in γ ∈ Γ0

with respect to the Hausdorff metric by Lemma 1.8.11 and Lemma B.3 in Fang and Santos

(2015), and the third equality by the facts that G vec(vuᵀ) = 0 for all v ∈ Γ0 and all u ∈ Rk

and that the inside minimum can be attained in V ∆
γ for all ∆ large enough. Combining

(1.160), (1.161) and (1.162) yields

φ′′θ0(h) = lim
n→∞

φ(θ0 + tnhn)

t2n
= min

γ∈Γ0

min
v∈Rk

‖h(γ) +G vec(vvᵀ)‖2,

which establishes the second result.

Lemma 1.8.8. Under Assumptions 1.5.1 and 1.5.2, we have

√
T{θ̂T − θ0}

L→ G in
m∏
j=1

`∞(Sk) ,

where G is a zero mean Gaussian process with the covariance functional satisfying: for any

γ1, γ2 ∈ Γ0 and µz = E[Zt],

E[G(γ1)G(γ2)] = E[(Zt − µz)(Zt − µz)ᵀ{(γᵀ1Yt+1)2 − c(γ1)}{(γᵀ2Yt+1)2 − c(γ2)}] .

Proof: By elementary rearrangements we have

√
T{θ̂T (γ)− θ0(γ)} =

√
TGT (γ)−

√
T (µ̂z − µz){ĉ(γ)− c(γ)} ,
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where µ̂z = 1
T

∑T
t=1 Zt, ĉ(γ) = 1

T

∑T
t=1(γᵀYt+1)2, and

GT (γ) =
1√
T

T∑
t=1

(Zt − µz){(γᵀYt+1)2 − c(γ)} − E[(Zt − µz){(γᵀYt+1)2 − c(γ)}] .

By Assumptions 1.5.1(vi) and 1.5.2, and the law of large numbers for stationary and ergodic

sequences and the compactness of Sk, we have

√
T (µ̂z − µz)(ĉ− c) = op(1) in

m∏
j=1

`∞(Sk) .

Once again by Assumptions 1.5.1(vi) and 1.5.2, together with GT (γ) =
√
TG̃ vec(γγᵀ)

where G̃ ∈Mm×k2
having its jth row given by (vec(∆̃j))

ᵀ for

∆̃j =
1

T

T∑
t=1

(Z
(j)
t − µ(j)

z ){Yt+1Y
ᵀ
t+1 − E(Yt+1Y

ᵀ
t+1)}

− E[(Z
(j)
t − µ(j)

z ){Yt+1Y
ᵀ
t+1 − E(Yt+1Y

ᵀ
t+1)}] ,

we have by the compactness of Sk,

GT
L→ G in

m∏
j=1

`∞(Sk)

for some Gaussian process G(γ). In particular, for γ ∈ Γ0 the summand in GT (γ) is a

martingale difference sequence, so for any γ1, γ2 ∈ Γ0, the covariance functional satisfies

E[G(γ1)G(γ2)] = E[(Zt − µz)(Zt − µz)ᵀ{(γᵀ1Yt+1)2 − c(γ1)}{(γᵀ2Yt+1)2 − c(γ2)}] .

This completes the proof of the lemma.

Lemma 1.8.9. Suppose Assumptions 1.5.1, 1.5.2 and 1.5.3 hold. Let φ̂′′T be constructed as

in (1.61). Then we have: whenever hT → h as T →∞ for a sequence {hT } ⊂
∏m
j=1 `

∞(Sk)
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and h ∈
∏m
j=1C(Sk), it follows that

φ̂′′T (hT )
p→ φ′′θ0(h) .

Proof: Pick a sequence {hT } ⊂
∏m
j=1 `

∞(Sk) and h ∈
∏m
j=1C(Sk) such that hT → h as

T →∞. Define

φ̃′′T (h) = min
γ∈Γ̂n

min
v∈BT

‖h(γ) +G vec(vvᵀ)‖2 .

Then we have

|φ̂′′T (hT )− φ̃′′T (h)|

≤
∣∣ inf
γ∈Γ̂n

min
v∈BT

‖hT (γ) + Ĝ vec(vvᵀ)‖+ inf
γ∈Γ̂n

min
v∈BT

‖h(γ) +G vec(vvᵀ)‖
∣∣

·
∣∣ inf
γ∈Γ̂n

min
v∈BT

‖hT (γ) + Ĝ vec(vvᵀ)‖ − inf
γ∈Γ̂n

min
v∈BT

‖h(γ) +G vec(vvᵀ)‖
∣∣

≤ ( sup
γ∈Sk
‖hT (γ)‖+ sup

γ∈Sk
‖h(γ)‖) sup

γ∈Sk
‖hT (γ)− h(γ)‖ sup

v∈BT
‖ vec(vvᵀ)‖‖Ĝ−G‖

. sup
v∈BT

T−1/2‖v‖2‖
√
T{Ĝ−G}‖ ≤ T−1/2κ

−1/2
T ‖

√
T{Ĝ−G}‖

= op(1) , (1.163)

where “.” follows from hT → h, and the last step is by Assumptions 1.5.2 and 1.5.3.

Next, under Assumptions 1.5.1, 1.5.2 and 1.5.3, we have by Theorem 3.1 in Cher-

nozhukov et al. (2007) that dH(Γ̂n,Γ0)
p−→ 0 as T → ∞, with aT = T , bT =

√
T , and

ĉ = TκT . Let

φ̄′′T (h) = min
γ∈Γ0

min
v∈BT

‖h(γ) +G vec(vvᵀ)‖2 .
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Since h ∈
∏m
j=1C(Sk) and Sk is compact, together with dH(Γ̂n,Γ0)

p−→ 0, it follows that

|φ̃′′T (h)− φ̄′′T (h)|

≤ sup
‖γ1−γ2‖D≤dH(Γ̂n,Γ0)

∣∣ min
v∈BT

‖h(γ1) +G vec(vvᵀ)‖2 − min
v∈BT

‖h(γ2) +G vec(vvᵀ)‖2
∣∣

≤ sup
‖γ1−γ2‖D≤dH(Γ̂n,Γ0)

‖h(γ1)− h(γ2)‖ = op(1) . (1.164)

Since φ̄′′T (h) is monotonically decreasing as T ↑ ∞, we further have

φ̄′′T (h)→ min
γ∈Γ0

min
v∈Rk

‖h(γ) +G vec(vvᵀ)‖2 = φ′′θ0(h) . (1.165)

The lemma then follows from results (1.163), (1.164) and (1.165).

Proof of Proposition 1.5.2: By Lemmas 1.8.8 and 1.8.9, Assumptions 1.3.1 and 1.3.2,

and the cdf of the weak limit being strictly increasing at c1−α, we have ĉ1−α
p→ c1−α

following exactly the same proof of Corollary 3.2 in Fang and Santos (2015).18 Then under

H0, the conclusion follows from combining Proposition 1.5.1, Slutsky thoerem, c1−α being

a continuity point of the weak limit and the portmanteau theorem.

Lemma 1.8.10. Let Λ and Γε1 be given as in the proof of Lemma 1.8.7. Then under

Assumption 1.5.1 and H0, for all sufficiently small ε > 0, we have

min
γ∈Γε1
‖Λᵀγ‖ ≥ ε√

2
σ+

min(Λᵀ) ,

where σ+
min(Λᵀ) denotes the smallest positive singular value of Λᵀ.

Proof: To begin with, note that i) Γ0 = arg minγ∈Sk ‖Λᵀγ‖ by Assumption 1.5.1, ii) Γ0 6= ∅

under the null, iii) σ+
min(Λᵀ) is well-defined by Assumption 1.5.1(i) so that Γ0 $ Sk. Let

Λᵀ = PΣQᵀ be the singular value decomposition of Λᵀ, where P ∈ Mp×p and Q ∈ Mk×k

are orthonormal, and Σ ∈ Mp×k is a diagonal matrix with diagonal entries in descending

18Note that φ′′θ0 trivially admits a continuous extension on
∏m
j=1 `

∞(Sk) with the first min replaced by
inf.
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order. Since Λ is of full column rank, σ+
min(Λᵀ) is equal to the pth diagonal entry of Σ with

p < k.

Fix γ ∈ Γε1. Let aγ ≡ Qᵀγ and write aγ = [a
(1)ᵀ
γ , a

(2)ᵀ
γ ]ᵀ for a

(1)
γ ∈ Rp and a

(2)
γ ∈

Rk−p. Suppose first that ‖a(2)
γ ‖ 6= 0. Then we have

‖[0, a(2)ᵀ
γ ]ᵀ/‖a(2)

γ ‖ − aγ‖ = ‖Q[0, a(2)ᵀ
γ ]ᵀ/‖a(2)

γ ‖ − γ‖ ≥ min
s∈Γ0

‖s− γ‖ ≥ ε , (1.166)

since Q[0, a
(2)ᵀ
γ ]ᵀ/‖a(2)

γ ‖ ∈ Γ0 by direct calculations. In turn, result (1.166) implies

‖a(1)
γ ‖2 + (1− ‖a(2)

γ ‖)2 ≥ ε2 . (1.167)

Moreover, we know from Q ∈Mk×k being orthonormal and γ ∈ Sk that

‖a(1)
γ ‖2 + ‖a(2)

γ ‖2 = 1 . (1.168)

Combining results (1.166) and (1.167) we may thus conclude that

2‖a(1)
γ ‖2 = ‖a(1)

γ ‖2 + 1− ‖a(2)
γ ‖2 ≥ ‖a(1)

γ ‖2 + (1− ‖a(2)
γ ‖)2 ≥ ε2 , (1.169)

implying that ‖a(1)
γ ‖ ≥ ε√

2
. This also holds for all sufficiently small ε > 0 when ‖a(2)

γ ‖ = 0

in which case ‖a(1)
γ ‖ = 1 in view of (1.168). Consequently, we have

min
γ∈Γε1
‖Λᵀγ‖ = min

γ∈Γε1
‖PΣQᵀγ‖ = min

γ∈Γε1
‖Σaγ‖

≥ λ+
min(Λᵀ) min

γ∈Γε1
‖a(1)

γ ‖ ≥ λ+
min(Λᵀ)

ε√
2
, (1.170)

for all sufficiently small ε > 0. This completes the proof of the lemma.

Lemma 1.8.11. Let V ∆
n,γ and V ∆

γ be defined as in the proof of Lemma 1.8.7. Then

dH(V ∆
n,γ , V

∆
γ )→ 0 uniformly in γ ∈ Γ0 as n→∞.

Proof: First, note that V ∆
n,γ = {v ∈ Rk : γ +

√
tnv ∈ Sk and ‖v‖ ≤ ∆}. For u ∈ V ∆

n,γ , set
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u∗ ≡ u− (γᵀu)γ. It is a simple exercise to verify that u∗ ∈ V ∆
γ . It follows that

min
v∈V ∆

γ

‖u− v‖ ≤ ‖u− u∗‖ ≤ 1

2

√
tn∆2 . (1.171)

In turn, result (1.171) implies that: for all γ ∈ Γ0,

max
u∈V ∆

n,γ

min
v∈V ∆

γ

‖u− v‖ ≤ 1

2

√
tn∆2 . (1.172)

On the other hand, for v ∈ V ∆
γ , set v∗ = v− bnγ for bn = (1−

√
1− tn‖v‖)/

√
tn if ‖v‖ < ∆,

and v∗ = anv−bnγ for an = 1−
√
tn and bn = (1−

√
1− tn(1−

√
tn)2‖v‖2)/

√
tn if ‖v‖ = ∆.

In any case, v∗ ∈ V ∆
n,γ by direct calculations. Therefore,

min
v∈V ∆

γ

max
u∈V ∆

n,γ

‖u− v‖ ≤ min
v∈V ∆

γ

‖v − v∗‖ = O(
√
tn) , (1.173)

uniformly in γ ∈ Γ0, where we exploited the facts that bn = O(
√
tn) uniformly in γ ∈ Γ0

and that V ∆
γ is bounded. The lemma then follows from results (1.172) and (1.173).



Chapter 2

Improved Inference on the Rank of

a Matrix with Applications to IV

and Cointegration Models

Abstract

This chapter develops new methods for examining a “no greater than” inequality of

the rank of a matrix and for rank determination in a general setup, which improve upon

existing methods. Existing rank tests assume a priori that the rank is no less than the

hypothesized value, which is often unrealistic. These tests when directly applied may fail

to control the asymptotic null rejection rate, and the multiple testing method based on

them can be conservative with the asymptotic null rejection rate strictly below the nominal

level whenever the rank is less than the hypothesized value. We prove that our proposed

tests have the asymptotic null rejection rate that is exactly equal to the nominal level under

minimal assumptions regardless of whether the rank is less than or equal to the hypothesized

value. As our simulation results show, these characteristics lead to an improved power

property in general. In application to a context with stationary and nonstationary data,
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respectively, our tests yield improved tests for identification in linear IV models and for the

existence of stochastic trend and/or cointegration with or without VAR specification. In

addition, our simulation results show that the improved power property of our tests leads

to an improved accuracy of the sequential testing procedure for rank determination.
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2.1 Introduction

The rank of a matrix plays a fundamental role in numerous economic and statis-

tical settings, including identification of structural parameters (Fisher, 1966), existence of

common features (Engle and Kozicki, 1993) with the canonical example being that of coin-

tegration (Engle and Granger, 1987), the rank of a (consumer) demand system (Gorman,

1981; Lewbel, 1991), specification of factor models (Ross, 1976), dimension reduction in

regression analysis (Li, 1991; Bura and Yang, 2011), and model specification in time series

(Aoki, 1990; Gill and Lewbel, 1992). These problems reduce to examining the following

hypotheses: for an unknown matrix Π0 of size m× k with m ≥ k,

H0 : rank(Π0) ≤ r v.s. H1 : rank(Π0) > r , (2.1)

where r ∈ {0, . . . , k− 1} is some prespecified value and rank(Π0) denotes the rank of Π0. If

r = k − 1, then (2.1) is simply a testing problem of whether Π0 has full rank.

Despite a rich set of results in the literature, previous studies instead focus on the

following hypotheses

H
(r)
0 : rank(Π0) = r v.s. H

(r)
1 : rank(Π0) > r . (2.2)

In effect, this is a different testing problem and assumes a priori that rank(Π0) is no less

than r. Unfortunately, in the aforementioned problems, it is unrealistic to make such an

assumption. As shown in Section 2.2.2, when in fact rank(Π0) < r, directly applying existing

rank tests to (2.1) may fail to control the asymptotic null rejection rate, since the asymptotic

distributions of test statistics can be very different from those when rank(Π0) = r. As we

shall prove (see Lemma 2.7.4), when rank(Π0) < r, the problem (2.1) becomes irregular

in the sense that a functional characterizing the problem admits a degenerate first order

derivative and is second order nondifferentiable. A general inferential framework for such

functionals was not available until very recently (Fang and Santos, 2015; Chen and Fang,
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2015). To the best of our knowledge, no direct tests for (2.1) exist in the literature.

Our method builds on the insight that (2.1) can be equivalently reformulated as

H0 : φ(Π0) = 0 v.s. H1 : φ(Π0) > 0 , (2.3)

where φ(Π0) ≡
∑k

j=r+1 σ
2
j (Π0) is the sum of the k − r smallest squared singular values

σ2
j (Π0) of Π0 (i.e., the sum of the k−r smallest eigenvalues of Πᵀ0Π0). For a given estimator

Π̂n of Π0, we then employ the plug-in estimator τ2
nφ(Π̂n) as our test statistic, where τn

is the rate at which Π̂n admits an asymptotic distribution. Towards invoking the Delta

method, we prove, however, that the first order derivative of the map Π 7→ φ(Π) is null at

Π = Π0 under H0, necessitating a second order analysis. Since the asymptotic distributions

(under the composite null) implied by the second order Delta method (Shapiro, 2000) are

highly nonstandard, we appeal to the bootstrap procedure recently developed by Fang and

Santos (2015) and Chen and Fang (2015) in order to obtain valid critical values and conduct

inference. We also extend the results to accommodate the case when the convergence rates

of Π̂n are not homogenous across its columns as in VAR models with stochastic trend and

cointegration (see Appendix 2.7.2).

There are several attractive features of our tests. First, since we rely on the Delta

method, the theory is conceptually simple and requires minimal assumptions. Essentially,

all we need are a matrix estimator Π̂n that converges weakly and a consistent bootstrap

analog Π̂∗n. As a matter of fact, our tests apply to various data generating processes.

Second, implementation of the procedure is computationally easy, only involving calculation

of singular value decompositions. Finally, since construction of the critical values is based

on bootstrapping the asymptotic distributions pointwise in Π0, the resulting tests have the

asymptotic null rejection rate that is exactly equal to the nominal level regardless of whether

rank(Π0) = r or rank(Π0) < r. As our simulation results show, these characteristics lead to

good power properties of our tests in general. In application to a context with stationary and

nonstationary data, respectively, our tests yield new and powerful tests for identification in

linear IV models (Fisher, 1966) and for the existence of stochastic trend and/or cointegration
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with or without VAR specification (Engle and Granger, 1987).

As an alternative to the direct application, one may instead adapt existing rank

tests into multiple testing procedures, since H0 holds if and only if H
(q)
0 holds for some

0 ≤ q ≤ r. Specifically, the multiple testing method rejects H0 if and only if all H
(q)
0 are

rejected and otherwise fails to reject. However, as demonstrated in Sections 2.2.2 and 2.4.1,

the method can be severely conservative when rank(Π0) > r and Π0 is close to a matrix

with rank strictly less than r, with the asymptotic null rejection rate strictly below the

nominal level when rank(Π0) < r. This is in sharp contrast to our tests, which by design

achieve asymptotic null rejection rates exactly equal to the nominal level and hence improve

the power properties. In an application to testing for identification in stochastic discount

factor models, compared to the multiple testing method based the Kleibergen and Paap

(2006) test, our tests suggest much weaker evidence of non-identification of the risk premia

parameters.

In some settings such as the rank of a demand system, specification of factor models

and model specification in time series, the main concern boils down to determining the

true rank of a matrix. To determine rank(Π0), one may implement the sequential testing

procedure, following Johansen (1995), based on rank tests for (2.1) or (2.2). Interestingly,

efficient rank determination does not require the ability of detecting whether rank(Π0) is

strictly less than a hypothesized value. This explains the prevalence of existing rank tests

in rank determination. Nevertheless, the power of detecting whether rank(Π0) is strictly

greater than hypothesized values plays an important role in the procedure. Our simulation

results show that the improved power property of our tests leads to an improved accuracy

of the sequential testing procedure for rank determination.

As mentioned previously, the literature has been mostly concerned with the hypothe-

ses (2.2). In the context of multivariate regression, Anderson (1951) proposed a likelihood

ratio test based on canonical correlations. This test is restrictive in the sense that it crucially

depends on a Kronecker product structure of the covariance matrix of a matrix estimator.

Building on the LDU decomposition approach in Gill and Lewbel (1992), Cragg and Donald
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(1996) proposed a test with the test statistic being a quadratic form of the vectorization of

a submatrix in the LDU decomposition that is sensitive to variable ordering. In Cragg and

Donald (1997), the authors provided a test based on a constrained minimum χ2 distance

criterion, which is computationally intensive because it involves minimization over the set

of all matrices with rank r. Moreover, both tests rely on the condition that the asymptotic

covariance matrix of the vectorization of the matrix estimator is nonsingular, which we do

not require in our analysis. Motivated by the need to relax this nonsingularity condition,

Robin and Smith (2000) developed a test based on functionals of the characteristics of a

suitably transformed matrix. However, their test depends on a rank condition that is “em-

pirically nonverifiable”. All these rank tests may fail to control the asymptotic null rejection

rate when directly applied to the hypotheses (2.1).

Moreover, Kleibergen and Paap (2006) proposed a test based on singular value

decomposition of a transformed matrix with the test statistic having the χ2((m− r)(k− r))

asymptotic distribution under H
(r)
0 . Despite overcoming many of the deficiencies of previous

tests, this test still requires some covariance matrix nonsingular because it is based on a

Wald statistic, which we do not require in our analysis. More importantly, this rank test

also has the aforementioned drawback when directly applied to the hypotheses (2.1). There

are, nonetheless, a few exceptions that study (2.1), notably Cragg and Donald (1993) who

considered a special case of Cragg and Donald (1997). However, the asymptotic distribution

of the test statistic when rank(Π0) < r is not available, though Cragg and Donald (1993)

established that the asymptotic null distribution when rank(Π0) = r is least favorable

under somewhat restrictive conditions. Thus, when rank(Π0) > r and Π0 is close to a

matrix with rank strictly less than r, their test can be conservative. We refer the reader to

Camba-Mendez and Kapetanios (2009a), Portier and Delyon (2014) and Al-Sadoon (2015)

for further discussions of the literature.

The remainder of the chapter is organized as follows. Section 2.2 presents related

examples to illustrate the importance of the problem, and demonstrates the drawback of

existing rank tests and the conservativeness of the multiple testing method. Section 2.3
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develops the test statistic, establishes its asymptotic distribution, and proposes a bootstrap

procedure for inference. Section 2.4 presents Monte Carlo studies, applies our method to

study identification in stochastic discount factor models, and demonstrates the accuracy

improvement of the sequential testing procedure for rank determination based on our tests.

Section 2.5 briefly concludes. All the proofs are collected in the appendices.

2.2 Examples and Motivation

In this section, we first present related examples in which the testing problem (2.1)

is of importance. In order to motivate the development of our tests, we then demonstrate

that existing rank tests when directly applied to (2.1) can fail to control the asymptotic

null rejection rate, and that the multiple testing method can be conservative.

2.2.1 Examples

The first example is what motivated this paper in the first place.

Example 2.2.1 (Identification). Let Y ∈ R and Z ∈ Rk be random variables satisfying

Y = Zᵀβ0 + u . (2.4)

Let W ∈ Rm be instrument variables such that E[Wu] = 0 with m ≥ k. Then identifi-

cation of the coefficient β0 reduces to whether E[WZᵀ] is of full rank. Thus, testing for

identification of β0 reduces to examining the hypotheses (2.1) with

Π0 = E[WZᵀ] and r = k − 1 . (2.5)

We cannot restrict ourselves to examine the hypotheses (2.2), since it is unrealistic to

assume rank(Π0) ≥ k− 1 unless k = 1. More generally, (local) identification in parametric,

semiparametric and nonparametric models can often be expressed in terms of some matrices

being of full rank (Fisher, 1961; Rothenberg, 1971; Roehrig, 1988; Chesher, 2003; Matzkin,
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2008; Chen et al., 2014b). For identification in DSGE models, see, for example, Canova and

Sala (2009) and Komunjer and Ng (2011). In addition, when W = Z, then Π0 is a positive

semidefinite matrix and the concern becomes the existence of perfect multicolinearity among

Z.

The next example concerns the existence of stochastic trend and/or cointegration

in a vector autoregression (VAR) system (Engle and Granger, 1987; Johansen, 1991).

Example 2.2.2 (VAR Trend/Cointegration). Let {Yt} be a k × 1 time series such that

each component of Yt is integrated of order 0 or 1, that is, each component is a stationary

or unit root process. Assume the entire vector is a VAR(1) process

Yt = Φ0Yt−1 + ut , (2.6)

where ut are white noise with nonsingular covariance matrix Σ. The error-correction rep-

resentation of (2.6) is given by (Hamilton, 1994, p.580):

∆Yt = (Φ0 − Ik)Yt−1 + ut . (2.7)

Then the existence of stochastic trend for Yt means that Φ0 − Ik is not of full rank. Thus,

testing for the existence of stochastic trend reduces to examining the hypotheses (2.1) with

Π0 = Φ0 − Ik and r = k − 1 . (2.8)

It is unrealistic to assume that there is at most one linearly independent stochastic trend

(i.e., rank(Π0) ≥ k−1) unless k = 1, so we cannot instead focus on examining the hypothe-

ses (2.2). In addition, the existence of cointegrating relations for Yt means that Φ0 − Ik is

nonzero.1 Thus, testing for the existence of cointegration reduces to examining the hypothe-

ses (2.1) with r = 0. We confine our attention to the class of VAR(1) models with white

noise errors for simplicity, but our framework applies more broadly to VAR(p) processes

1Recall that Yt is said to be cointegrated if there exists nonzero λ ∈ Rk such that λᵀYt is stationary.
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with dependent and heteroskedastic errors.

Our results allow us to study stochastic trend and cointegration nonparametrically.

The following example concerns the existence of stochastic trend and/or cointegration with-

out a VAR specification (Engle and Granger, 1987; Bierens, 1997; Shintani, 2001).

Example 2.2.3 (Nonparametric Trend/Cointegration). Let {Yt} be a k × 1 time series

such that each component of Yt is integrated of order 0 or 1, that is, each component is a

stationary or unit root process. Let the first difference of Yt follow a linear process

∆Yt = C(L)ut ≡
∞∑
j=0

Cjut−j , (2.9)

where ut are white noise with nonsingular covariance matrix Σ, and C0 = Ik. Since the

long run covariance matrix of ∆Yt is equal to C(1)ΣC(1)ᵀ, then existence of cointegrating

relations for Yt means that the long run covariance matrix of ∆Yt is not of full rank. Thus,

testing for the existence of cointegration reduces to examining the hypotheses (2.1) with

Π0 =
∞∑

t=−∞
E[∆Yt∆Y0] and r = k − 1 . (2.10)

We cannot restrict ourselves to examine the hypotheses (2.2), since it is unrealistic to assume

there is at most one linearly independent cointegration vectors (i.e., rank(Π0) ≥ k−1) unless

k = 1. In addition, the existence of stochastic trend for Yt means that Φ0 − Ik is nonzero.

Thus, testing for the existence of stochastic trend reduces to examining the hypotheses (2.1)

with r = 0.

Cointegration is just one particular example of the more general notion of common

features (Engle and Kozicki, 1993). Our fourth example pertains to the existence of general

common features.

Example 2.2.4 (Common Features). Let {Yt} be a k × 1 time series. According to Engle

and Kozicki (1993), a feature that is present in each component of Yt is said to be common
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to Yt if there exists a nonzero linear combination of Yt that fails to have the feature. Suppose

that {Yt} is generated according to

Yt = Γᵀ0Zt + Ξᵀ0Wt + ut , (2.11)

where Wt can be thought of as control variables, and Zt is an m × 1 vector reflecting the

feature under consideration with m ≥ k. For example, testing for the existence of common

serial correlation would set Zt to be lags of Yt, and testing for the existence of common

conditionally heteroskedastic factors would set Zt to be relevant factors. We refer to Engle

and Kozicki (1993), Engle and Susmel (1993) and Dovonon and Renault (2013) for details

of these and other examples. By the definition of common feature and the specification of

(2.11), existence of common features means that Γ0 is not of full rank. Thus, testing for

the existence of common features reduces to examining the hypotheses (2.1) with

Π0 = Γ0 and r = k − 1 . (2.12)

Since the number of common features is unknown a priori, we cannot restrict ourself to

examine the hypotheses (2.2) by assuming rank(Π0) ≥ k − 1 unless k = 1.

The concerns in the remaining examples reduce to determining the true rank of a

matrix, which relies on examining a sequence of hypotheses (2.1) or (2.2). Our fifth example

is directly related to the rank of demand systems, a notion developed by Gorman (1981)

for exactly aggregable demand systems and generalized by Lewbel (1991) to all demand

systems.

Example 2.2.5 (Consumer Demand). An Engel curve is the function describing the allo-

cation of an individual’s consumption expenditures with the prices of all goods fixed, and

the rank of a demand system is the dimension of the space spanned by the Engel curves of

the system (Lewbel, 1991). Suppose that there are k goods in the system and the Engel



97

curve is given by

Y = Γ0G(Z) + u , (2.13)

where Y is a k× 1 vector of budget shares on the k goods, Z is total expenditure, G(·) is a

r0×1 vector of unknown function with r0 ≤ k, and u is a vector zero mean random variables

independent of Z. Assume Γ0 is of full rank, then the rank r0 of the demand system is

equal to the rank of Γ0. Let Q(·) be a m× 1 vector of known functions with m ≥ k. Then

the rank of Γ0 is equal to the rank of

Π0 = E[Q(Z)Y ᵀ] , (2.14)

if E[Q(Z)G(Z)ᵀ] is of full rank. Thus, determining the rank r0 of the demand system

reduces to determining the rank of Π0. The rank of the demand system provides evidence

on consistency of consumer behaviors with utility maximization, and has implications for

welfare comparisons and aggregation across goods and across consumers (Lewbel, 1991,

2006; Barnett and Serletis, 2008).

Factor analysis has been widely used in modeling variations, covariance and dy-

namics of time series (Anderson, 2003; Lam and Yao, 2012). Our next example shows the

importance of matrix rank determination in identifying the number of factors in factor

analysis.

Example 2.2.6 (Factor Analysis). Let Y ∈ Rp be generated by the following model

Y = µ0 + Λ0F + u , (2.15)

where F is a r0×1 vector of unobserved common factors with E[F ] = 0 and r0 ≤ p, and u is

an idiosyncratic error term with E[u] = 0. Assume Var(F ) is of full rank, then the number

r0 of common factors is equal to the rank of Var(F ). Let us write Y = [Y ᵀ1 , Y
ᵀ

2 , Y
ᵀ

3 ]ᵀ for

Y1 ∈ Rm, Y2 ∈ Rk and Y2 ∈ Rp−k−m for some r0 ≤ k ≤ m < p and m + k ≤ p. Write
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Λ0 = [Λᵀ0,1,Λ
ᵀ
0,2,Λ

ᵀ
0,3]ᵀ with Λ0,1 and Λ0,2 having m and k rows. Given the mild condition

that u is independent of F and E[uu′] is diagonal, the rank of Var(F ) is equal to the rank

of

Π0 = Cov(Y1, Y2) , (2.16)

if Λ0,1 and Λ0,1 are of full rank. Thus, determining the number r0 of these common factors

reduces to determining the rank of Π0. Such a question also arises in the interbattery factor

analysis (Gill and Lewbel, 1992), the dynamic analysis of time series (Lam and Yao, 2012),

and finance and macroeconomics (Bai and Ng, 2002, 2007).

Our final example is taken from Gill and Lewbel (1992), and manifests how matrix

rank determination is useful in model selection for ARMA processes and state space models.

Example 2.2.7 (Model Selection). Let {Yt} be a p×1 weakly stationary time series, which

has the following state space representation:

Yt = Γ0Zt + ut , Zt = Λ0Zt−1 + εt , (2.17)

where Zt is a r0 × 1 vector of state variables, and ut and εt are error terms. It turns out

that the number r0 of state variables is equal to the rank of the Hankel matrix

Π0 = E(



Yt+1

...

Yt+b


[
Y ᵀt · · · Y ᵀt−b+1

]
) , (2.18)

for b sufficiently large (Aoki, 1990, p.52). Consequently, determining the number of state

variables r0 to model Yt reduces to determining the rank of Π0. When Yt is a scalar and

follows an ARMA(p1, p2) model, then Yt has a state space representation with the number

r0 of state variables equal to max(p1, p2) (Aoki, 1990). Thus, determining the rank of the
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Hankel matrix is crucial for model specification in these contexts.

2.2.2 Motivation

To proceed, we let α ∈ (0, 1) be the nominal level and φ
(r)
n be any one of the existing

rank tests designed for the hypotheses (2.2), which are reviewed in the introduction.2 It

has been well established in the literature that limn→∞ P (φ
(r)
n = 1) = α under H

(r)
0 and

limn→∞ P (φ
(r)
n = 1) = 1 under H

(r)
1 .

When rank(Π0) < r, the asymptotic distributions of test statistics have not been

established and can be very different from those when rank(Π0) = r. On the one hand, φ
(r)
n

may fail to control the asymptotic rejection rate. In Appendix 2.7.3, we prove that this is

true for the Kleibergen and Paap (2006) version of φ
(r)
n . Therefore, φ

(r)
n cannot be directly

applied to test for the hypotheses (2.1). On the other hand, the asymptotic rejection rate

of φ
(r)
n can be strictly below the nominal level, i.e, limn→∞ P (φ

(r)
n = 1) < α. In Appendix

2.7.3, we also prove that this is true for the Kleibergen and Paap (2006) version of φ
(r)
n . By

Theorem 2 of Cragg and Donald (1993), this is also true for the Cragg and Donald (1997)

version of φ
(r)
n . In view of this, φ

(r)
n may alternatively be conservative when directly applied

to the hypotheses (2.1). Thus, the critical value may be adjusted to improve the power of

φ
(r)
n for detecting H1 when Π0 is close to a matrix with rank strictly less than r.

Given that H0 being false is equivalent to H
(q)
0 being false for all 0 ≤ q ≤ r, one

may then consider implementing multiple existing rank tests in order to obtain tests for the

hypotheses (2.1) such that the asymptotic null rejection rate is controlled. The multiple

testing method is based on the decision rule φn =
∏r
q=0 φ

(q)
n , which means that H0 is rejected

if and only if H
(q)
0 is rejected for all 0 ≤ q ≤ r. In VAR models (see, for instance, Example

2.2.2), Johansen (1995, Chapter 12) used this method to test for inequality of cointegration

rank. In stochastic discount factor models, Kleibergen and Paap (2006) employed this

method to test for identification of the risk premia parameters. Indeed, the asymptotic null

2Rejection means φ
(r)
n = 1 and acceptance means φ

(r)
n = 0.
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rejection rate of this method is controlled, since under H0,

lim
n→∞

P (φn = 1) = lim
n→∞

P (φ(0)
n = 1, . . . , φ(r)

n = 1) ≤ lim
n→∞

P (φ(rank(Π0))
n = 1) = α , (2.19)

where the first inequality holds since P (A) ≤ P (B) for A ⊂ B. Moreover, this method is

consistent, since under H1,

lim
n→∞

P (φn = 1) = lim
n→∞

P (φ(0)
n = 1, . . . , φ(r)

n = 1) ≥ 1−
r∑
q=0

(1− lim
n→∞

P (φ(q)
n = 1)) = 1 ,

where the inequality holds by the Boole’s inequality.

Unfortunately, the multiple testing method can be conservative. When rank(Π0) <

r, the inequality of (2.19) becomes strict whenever limn→∞ P (φ
(r)
n = 1) < α. This is because

lim
n→∞

P (φn = 1) = lim
n→∞

P (φ(0)
n = 1, . . . , φ(r)

n = 1) ≤ lim
n→∞

P (φ(r)
n = 1) < α , (2.20)

where the first inequality holds since P (A) ≤ P (B) for A ⊂ B. As mentioned above, this

is true for the Cragg and Donald (1997) and Kleibergen and Paap (2006) version of φ
(r)
n .

Thus, the critical value of each φ
(q)
n may be adjusted to improve the power of the multiple

testing method for detecting H1 when Π0 is close to a matrix with rank strictly less than

r. Furthermore, due to the dependence among {φ(q)
n }rq=0 the inequality in both (2.19) and

(2.20) may become strict. In view of this, power loss may occur in a complicated way.

To show the drawback of existing rank tests and the conservativeness of the mul-

tiple testing method, we focus on the Kleibergen and Paap (2006) test and present some

simulation evidence.3 We assume that

Zᵀi = W ᵀ
i Π0 + uᵀi , i = 1, . . . , n , (2.21)

3Two main reasons for the focus are: the Kleibergen and Paap (2006) test is preferred in terms of assump-
tions and computation, and has the most citations (over 1, 000) among the existing rank tests according to
Google Scholar.
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with Wi
i.i.d.∼ N(0, I6), ui

i.i.d.∼ N(0, I6) and n = 1, 000. Let

Π0 = diag(16−d,0d) + δI6 for δ ≥ 0 and d = 1, . . . , 6 , (2.22)

where 16−d denotes a (6− d)× 1 vector of ones and 0d denotes a d× 1 vector of zeros. We

examine the hypotheses (2.1) with r = 5, that is, we test whether Π0 has full rank. The

design of Π0 implies H0 is true if and only if δ = 0. In particular, rank(Π0) = 6− d under

H0, so rank(Π0) < r when d 6= 1 and rank(Π0) = r when d = 1. Thus, d 6= 1 represents

the case when Π0 is close to a matrix with rank strictly less than r, while d = 1 represents

the regular case. From the above argument, it shall be expected that when d 6= 1, the

Kleibergen and Paap (2006) test may over-reject H0 when δ = 0 or may be inefficient in

detecting H1 when δ > 0. Moreover, the multiple testing method may be inefficient in

detecting H1 when δ > 0. The value of δ represents how strong H1 deviates away from H0.

To implement the Kleibergen and Paap (2006) test and the multiple testing method,

we estimate Π0 by Π̂n = 1
n

∑n
i=1WiZ

ᵀ
i . See Appendix 2.7.3 for a review on the Kleibergen

and Paap (2006) test. By the central limit theorem, the asymptotic distribution of Π̂n is

zero mean Gaussian with convergence rate
√
n and all assumptions in Kleibergen and Paap

(2006) are satisfied. Let the nominal level be 5%. The rejection rates, which are based on

10, 000 simulation replications, are plotted in Figures 2.1 and 2.2. We use KP-D to denote

the Kleibergen and Paap (2006) test when directly applied and KP-M to denote the multiple

testing method. First, as expected, the rejection rates of KP-M are no greater than the 5%

nominal level when δ = 0 and tend to one as δ increases for all cases. When d = 1, the

null rejection rate is close to the 5% nominal level. When d 6= 1, however, the null rejection

rates are far below the 5% nominal level. This suggests that KP-M may be conservative

when d 6= 1. Indeed, the power curve shifts to right and more parts fall below the 5%

nominal level as d increases. This hints a method of power improvement by dragging the

curves to the left such that all of them are above the 5% nominal level. Similarly, as Figure

2.2 shows, KP-D has the same issue under the considered model. Note that the difference

between the two methods in Figure 2.2 is negligible, despite the fact that KP-D is more
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powerful.

Figure 2.1: The rejection rate of the multiple testing method based on the Kleibergen and
Paap (2006) test with 5% nominal level

2.3 Asymptotic Analysis

We can express the hypotheses (2.1) more tractably in terms of singular values.

To see this, let σ1(Π0) ≥ · · · ≥ σk(Π0) ≥ 0 be singular values of Π0.4 Then the rank

of Π0 is equal to the number of nonzero singular values of Π0; see, for example, Problem

3.1.2 in Horn and Johnson (1991). It follows that the hypotheses (2.1) can be equivalently

reformulated as

H0 :

k∑
j=r+1

σ2
j (Π0) = 0 v.s. H1 :

k∑
j=r+1

σ2
j (Π0) > 0 . (2.23)

Given the reformulation in (2.23), it is convenient to study the differential properties of the

map Π0 7→
∑k

j=r+1 σ
2
j (Π0). By leveraging the existing Delta method, we in turn establish

the asymptotic distributions of the plug-in statistic
∑k

j=r+1 σ
2
j (Π̂n) under the null for a given

4Recall that σ2
1(Π0), . . . , σ2

k(Π0) are numerically identical to eigenvalues of Πᵀ
0Π0.
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Figure 2.2: Comparison between the Kleibergen and Paap (2006) test and the multiple
testing method based on it with 5% nominal level

estimator Π̂n of Π0. Since the resulting asymptotic distributions are highly nonstandard,

we resort to the resampling procedure developed by Fang and Santos (2015) and Chen and

Fang (2015) in order to obtain critical values.

2.3.1 Differential Properties

For ease of exposition, define φ : Mm×k → R by

φ(Π) ≡
k∑

j=r+1

σ2
j (Π) , (2.24)

where we recall that σj(Π) is the jth largest singular value of Π. To derive the differentia-

bility of φ, it shall prove useful to establish the following representation.

Lemma 2.3.1. Let Sk×q ≡ {U ∈Mk×q : UᵀU = Iq} for q = 1, . . . , k. Then we have

φ(Π) = min
U∈Sk×(k−r)

‖ΠU‖2 . (2.25)

Lemma 2.3.1 shows that φ(Π) can be represented as a quadratic minimum over the
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space of orthonormal matrices in Mm×(k−r). The special case when r = k − 1 – a test of

Π having full rank – is a well known implication of the classical Courant-Fischer theorem,

i.e., σ2
k(Π) = min‖U‖=1 ‖ΠU‖2. Note that the minimum in (2.25) is achieved and hence well

defined.

We are now in a position to analyze the differential properties of φ. It turns out

that φ is not fully differentiable but belongs to a class of directionally differentiable maps.

For completeness, we next introduce the appropriate notions of differentiability.

Definition 2.3.1. Let Mm×k be equipped with the norm ‖ · ‖ and ϕ : Mm×k → R.

(i) The map ϕ is said to be Hadamard directionally differentiable at Π ∈Mm×k if there

is a map ϕ′Π : Mm×k → R such that:

lim
n→∞

ϕ(Π + tnMn)− ϕ(Π)

tn
= ϕ′Π(M) , (2.26)

for all sequences {Mn} ⊂ Mm×k and {tn} ⊂ R+ such that tn ↓ 0, and Mn → M ∈

Mm×k as n→∞.

(ii) Suppose that ϕ : Mm×k → R is Hadamard directionally differentiable at Π ∈Mm×k.

We say that ϕ is second order Hadamard directionally differentiable at Π ∈Mm×k if

there is a map ϕ′′Π : Mm×k → R such that:

lim
n→∞

ϕ(Π + tnMn)− ϕ(Π)− tnφ′Π(Mn)

t2n
= ϕ′′Π(M) , (2.27)

for all sequences {Mn} ⊂ Mm×k and {tn} ⊂ R+ such that tn ↓ 0, and Mn → M ∈

Mm×k as n→∞.

Compared with Hadamard full differentiability (van der Vaart, 1998) which requires

continuity and linearity of the derivative, the directional derivative is generally nonlinear

though necessarily continuous. In fact, linearity is the exact gap between these two notions

of differentiability. Remarkably, the Delta method remains valid even if φ is only Hadamard
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directionally differentiable. We refer the readers to Shapiro (1990, 1991), Dümbgen (1993),

and a recent review by Fang and Santos (2015) for further details. Unfortunately, as shall

be proved, the asymptotic distribution of our statistic φ(Π̂n) implied by the Delta method

is degenerate under the null, which creates substantial challenges for inference. This mo-

tivates the second order Hadamard directional differentiability. Compared with second

order Hadamard full differentiability which requires a quadratic form of the derivative cor-

responding to a bilinear map, the directional derivative φ′′θ is generally nonquadratic though

continuous. In fact, quadratic form structure is the exact gap between these two notions of

differentiability. Similarly, the second order Delta method remains valid even if φ is only

second order Hadamard directionally differentiable. We refer the readers to Shapiro (2000)

and a recent review by Chen and Fang (2015) for further details.

The following proposition establishes the differentiability of φ.

Proposition 2.3.1. Let φ : Mm×k → R be defined as in (2.24).

(i) φ is first order Hadamard directionally differentiable at any Π ∈ Mm×k with the

derivative φ′Π : Mm×k → R given by

φ′Π(M) = min
U∈Ψ(Π)

2tr(UᵀΠᵀMU) , (2.28)

where Ψ(Π) ≡ arg minU∈Sk×(k−r) ‖ΠU‖2.

(ii) φ is second order Hadamard directionally differentiable at any Π ∈ Mm×k satisfying

φ(Π) = 0 with the derivative φ′′Π : Mm×k → R given by

φ′′Π(M) = min
U∈Ψ(Π)

min
V ∈Mk×(k−r)

‖MU + ΠV ‖2 . (2.29)

Proposition 2.3.1 implies that φ is Hadamard directionally differentiable at any

Π ∈ Mm×k. In particular, when rank(Π) ≤ r, it exhibits a degenerate derivative, i.e.,

φ′Π(M) = 0 for all M ∈Mm×k. Moreover, Proposition 2.3.1 implies that φ is second order

Hadamard directionally differentiable at any Π ∈ Mm×k with rank(Π) ≤ r. In general, φ



106

is not second order fully Hadamard differentiable at Π ∈ Mm×k with rank(Π) ≤ r unless

rank(Π) = r, see Lemma 2.7.4. Thus, the accommodation of rank(Π) < r causes the

irregularity of φ.

To conclude this section, we provide a simplified analytical expression for φ′′Π. Let

Π = PΣQᵀ be a singular value decomposition of Π, where P ∈ Sm×m and Q ∈ Sk×k, and

Σ ∈Mm×k is diagonal with diagonal entries in descending order. Let r∗ ≡ rank(Π). Write

P = [P1, P2] and Q = [Q1, Q2] for P1 ∈ Mm×r∗ and Q1 ∈ Mk×r∗ , respectively. Thus, the

columns of P2 and Q2 are the left-singular vectors and right-singular vectors of Π associated

with the zero singular values, respectively. Then the following proposition gives a simplified

analytical expression of φ′′Π.

Proposition 2.3.2. Suppose r∗ ≤ r and let φ′′Π : Mm×k → R be given as in Proposition

2.3.1. Then for M ∈Mm×k,

φ′′Π(M) =
k−r∗∑

j=r−r∗+1

σ2
j (P

ᵀ
2MQ2) . (2.30)

Proposition 2.3.2 implies φ′′Π(M) is the sum of the k − r smallest squared singular

values of transformed matrix P ᵀ2MQ2. Observe that P2 and Q2 are from singular value

decomposition, so calculation of the derivative requires no more than calculation of singular

value decomposition as in the test statistic. As we will see later, this facilitates the compu-

tation of our test statistic and makes our test procedure attractive. Note P2 and Q2 can be

chosen up to postmultiplication by (m− r∗)× (m− r∗) and (k− r∗)× (k− r∗) orthonormal

matrices, respectively, but the term on the right hand side of (2.30) is invariant to the

choice of P2 and Q2.

2.3.2 The Asymptotic Distributions

Given the established differentiability of φ and null first order derivative, the asymp-

totic distribution of φ(Π̂n) can be easily obtained by the second order Delta method
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(Shapiro, 2000), provided Π̂n converges weakly. Towards this end, we impose the following

assumption.

Assumption 2.3.1. Let Π0 ∈ Mm×k and there are Π̂n : {Xi}ni=1 → Mm×k such that

τn(Π̂n −Π0)
L→M for some τn ↑ ∞ and random matrix M∈Mm×k.

Assumption 2.3.1 imposes that the estimator Π̂n for Π0 admits a weak limit M ∈

Mm×k at a scalar rate τn. The estimator Π̂n is defined as a function of the data {Xi}ni=1

into Mm×k, and the weak convergence “
L→” is understood with respect to the joint law

of {Xi}ni=1, which need not be i.i.d.. In particular, τn is allowed to be any parametric or

nonparametric rate that covers all the above examples.

Let Π0 = P0Σ0Q
ᵀ
0 be a singular value decomposition of Π0, where P0 ∈ Sm×m

and Q0 ∈ Sk×k, and Σ0 ∈ Mm×k is diagonal with diagonal entries in descending order.

Let r0 ≡ rank(Π0). Write P0 = [P0,1, P0,2] and Q0 = [Q0,1, Q0,2] for P0,1 ∈ Mm×r0 and

Q0,1 ∈Mk×r0 , respectively. Thus, the columns of P0,2 and Q0,2 are the left-singular vectors

and right-singular vectors of Π0 associated with the zero singular values, respectively. The

following proposition delivers the asymptotic distributions of φ(Π̂n).

Proposition 2.3.3. Suppose Assumption 2.3.1 holds. Then we have

τn(φ(Π̂n)− φ(Π0))
L→ min

U∈Ψ(Π0)
2tr(UᵀΠᵀ0MU) , (2.31)

and under H0,

τ2
nφ(Π̂n)

L→
k−r0∑

j=r−r0+1

σ2
j (P

ᵀ
0,2MQ0,2) . (2.32)

Proposition 2.3.3 implies that τnφ(Π̂n) converges in distribution to a degenerate

limit at 0 under H0. This prevents us from making inference based on the first order

framework (Chen and Fang, 2015). Proposition 2.3.3 also implies that τ2
nφ(Π̂n) converges in

distribution to a generally nondegenerate limit under H0. This enables us to make inference

based on the second order framework. The limit is a nonlinear function of the weak limit
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M and remarkably nonstandard especially when r0 < r. In general, an analytical (pivotal)

distribution is not available. Note that P0,2 and Q0,2 are identified up to postmultiplication

by (m− r0)× (m− r0) and (k − r0)× (k − r0) orthonormal matrices, respectively, but the

term on the right hand side of (2.32) is invariant to the choice of P2,0 and Q2,0.

In order to see how our results apply to various settings, we now turn to examples

introduced in Section 2.2.1. We shall focus on Examples 2.2.1 and 2.2.3 exclusively for

conciseness; Examples 2.2.2 and 2.2.4-2.2.7 will be treated in Appendix 2.7.2. In particular,

Assumption 2.3.1 is not well satisfied in Example 2.2.2 since the convergence rates of Π̂n

are not homogenous across its columns, and we extend the result in Proposition 2.3.3 for

it.

Example 2.2.1 (Continued). Suppose {Wi, Zi}ni=1 is a sequence of data from Example

2.2.1. Let Π̂n be the method of moment estimator

Π̂n =
1

n

n∑
i=1

WiZ
ᵀ
i . (2.33)

Under certain weak dependence and moment condition, the central limit theorem implies

that Assumption 2.3.1 is satisfied with τn =
√
n andM being a zero mean Gaussian. When

r0 < k − 1, the asymptotic distribution of nφ(Π̂n) can be highly nonstandard.

Example 2.2.3 (Continued). Suppose {Yt}nt=1 is a sequence of data from Example 2.2.3.

Let Π̂n be a kernel HAC estimator

Π̂n =

n−1∑
j=−n+1

k(
j

bn
)Γ̂n(j) , (2.34)

where Γ̂n(j) ≡ 1
n

∑n−j
t=1 ∆Yt∆Y

ᵀ
t+j for j ≥ 0, Γ̂n(j) = Γ̂n(−j)ᵀ for j < 0, k(·) is a kernel

function, and bn is a bandwidth parameter. Under certain weak dependence and moment

conditions, Π̂n is asymptotically normal at the rate
√
n/bn. For example, see Hannan

(1970), Brillinger (1981), Priestley (1981) and Berkes et al. (2016). So, Assumption 2.3.1 is

satisfied with τn =
√
n/bn andM being a zero mean Gaussian. In testing for the existence

of cointegration, when r0 < k − 1, the asymptotic distribution of nφ(Π̂n)/bn can be highly
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nonstandard.

We now discuss the result of Proposition 2.3.3 when r0 = r and its relation to the

literature. In this case, P ᵀ0,2MQ0,2 has k−r columns and
∑k−r0

j=r−r0+1 σ
2
j (P

ᵀ
0,2MQ0,2) is equal

to the Frobenius norm of P ᵀ0,2MQ0,2. Thus, the asymptotic distribution in (2.32) becomes

‖P ᵀ0,2MQ0,2‖2 = vec(P ᵀ0,2MQ0,2)ᵀvec(P ᵀ0,2MQ0,2) . (2.35)

WhenM is a zero mean Gaussian, the limit is a weighted sum of independent χ2(1) random

variables. Thus, Proposition 2.3.3 includes Robin and Smith (2000) as a special case. If,

in addition, the covariance matrix of vec(P ᵀ0,2MQ0,2) is nonsingular, Kleibergen and Paap

(2006) proved that a normalized version of τ2
nφ(Π̂n) has a χ2((m − r)(k − r)) asymptotic

distribution under H
(r)
0 . The asymptotic distribution is not a χ2-type distribution any more

if r0 < r. This suggests that the Robin and Smith (2000) test when directly applied to (2.1)

may fail to control the asymptotic null rejection rate.

2.3.3 The Bootstrap

Given the nonstandard asymptotic distribution in Proposition 2.3.3, no analytical

critical values can be employed for inference. We may resort to the standard bootstrap

method (Efron, 1979) to consistently estimate the asymptotic distribution. Unfortunately,

the consistency of this method fails due to the degeneracy of φ′Π0
under the null (Chen and

Fang, 2015). Moreover, the recentered bootstrap does not necessarily correct the inconsis-

tency due to the nondifferentiability of φ. As such, we resort to the procedure developed

by Chen and Fang (2015) for construction of critical values. See the discussion on m out of

n bootstrap and subsampling in Remark 2.3.1.

Recall that the asymptotic distribution is a composition of M and φ′′Π0
. Our pro-

posed procedure consists of first estimating M by bootstrap and then estimating φ′′Π0
. For

the former, let Π̂∗n denote a “bootstrapped version” of Π̂n, which is defined as a function of

the data {Xi}ni=1 and random weights {Wi}ni=1 that are independent of {Xi}ni=1 into Mm×k.
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This general definition allows us to include special cases such as nonparametric, Bayesian,

block, score, more generally multiplier and exchangeable bootstrap. To accommodate di-

verse resampling schemes, we simply impose the following high level condition.

Assumption 2.3.2. (i) Π̂∗n : {Xi,Wi}ni=1 →Mm×k with {Wi}ni=1 independent of {Xi}ni=1;

(ii) τn(Π̂∗n − Π̂n)
L∗→ M almost surely, where

L∗→ denotes weak convergence with respect to

the joint law of {Wi}ni=1 conditional on {Xi}ni=1.

Assumption 2.3.2(i) defines the bootstrap analog Π̂∗n of Π̂n, while Assumption

2.3.2(ii) simply imposes the consistency of the law of τn(Π̂∗n − Π̂n) conditional on the data

{Xi}ni=1 for the law of M, i.e., the bootstrap works for the estimator Π̂n.

Next we examine Assumption 2.3.2 in Examples 2.2.1 and 2.2.3; Examples 2.2.2 and

2.2.4-2.2.7 will be treated in Appendix 2.7.2. In particular, Assumption 2.3.2 is not well

satisfied in Example 2.2.2, and we extend the result in Theorem 2.3.1 for it.

Example 2.2.1 (Continued). Let {Z∗i ,W ∗i }ni=1 be obtained by nonparametric boot-

strapping {Zi,Wi}ni=1 when {Zi,Wi}ni=1 is a sequence of i.i.d. data, and by block boot-

strapping {Zi,Wi}ni=1 when {Zi,Wi}ni=1 is a sequence of dependent data. Under certain

weak dependence and moment condition, Assumption 2.3.2 is satisfied with

Π̂∗n =
1

n

n∑
i=1

W ∗i Z
∗ᵀ
i . (2.36)

Multiplier and exchangeable bootstrap may also be employed for i.i.d. data.

Example 2.2.3 (Continued). Since Π̂n only depends on {∆Yt}nt=1, it suffices to resample

{∆Yt}nt=1. Note that {∆Yt}nt=1 is stationary. Let {∆Y ∗t }nt=1 be obtained by block bootstrap-

ping {∆Yt}nt=1. Under certain weak dependence and moment condition, Assumption 2.3.2

is satisfied with

Π̂∗n =
n−1∑

j=−n+1

k(
j

bn
)Γ̂∗n(j) , (2.37)
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where Γ̂∗n(j) ≡ 1
n

∑n−j
t=1 ∆Y ∗t ∆Y ∗ᵀt+j for j ≥ 0, Γ̂∗n(j) = Γ̂∗n(−j)ᵀ for j < 0, k(·) and bn are

the same kernel function and bandwidth parameter. See Politis and Romano (1992, 1993)

and Politis et al. (1992) for other bootstrap procedures.

There are two main methods for estimating φ′′Π0
: the structure-exploiting approach

and the numerical differentiation approach. For the former, we describe how to estimate

φ′′Π0
according to (2.30). Let Π̂n = P̂nΣ̂nQ̂

ᵀ
n be a singular value decomposition of Π̂n,

where P̂n ∈ Sm×m and Q̂n ∈ Sk×k, and Σ̂n ∈ Mm×k is diagonal with diagonal entries in

descending order. Let r̂n ≡ min{r,#{1 ≤ j ≤ k : σj(Π̂n) ≥ κn}}, where κn ↓ 0 is a tuning

parameter that is required to satisfy certain conditions below.5 Write P̂n = [P̂1,n, P̂2,n] and

Q̂n = [Q̂1,n, Q̂2,n] for P̂1,n ∈ Mm×r̂n and Q̂1,n ∈ Mk×r̂n , respectively. By (2.30), we may

estimate φ′′Π0
by

φ̂′′n(M) =

k−r̂n∑
j=r−r̂n+1

σ2
j (P̂

ᵀ
2,nMQ̂2,n) . (2.38)

Note that P̂2,n and Q̂2,n can be chosen up to postmultiplication by (m− r̂n)× (m− r̂n) and

(k− r̂n)× (k− r̂n) orthonormal matrices, respectively, but the term on the right hand side

of (2.38) is invariant to the choice of P̂2,n and Q̂2,n. For the latter, we estimate φ′′Π0
by

φ̂′′n(M) =
φ(Π̂n + κnM)− φ(Π̂n)

κ2
n

. (2.39)

Remark 2.3.1. In effect, m out of n bootstrap and subsampling amounts to estimating

M based on subsamples (with and without replacement, respectively) and φ′′Π0
via the

numerical differentiation approach, in which case the tuning parameters for choosing sub-

samples and estimation of the derivative coincide. Thus, our bootstrap procedure can be

more efficient in two ways. First, our bootstrap procedure makes efficient use of the data

in estimating M, since it is based on full samples. Second, our bootstrap procedure also

provides alternative method of estimating φ′′Π0
by exploiting more structural information of

5We use #A to denote the cardinality of a set A. One can theoretically ignore r in the expression of r̂n.
However, taking minimum in the expression of r̂n is a way of imposing the information under the null to
ensure that the estimator in (2.38) is well defined and improve power.
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the data .

Given a suitable condition on κn ↓ 0, we are then able to prove that the law of the

weak limit in (2.32) is consistently estimated by the law of φ̂′′n(τn{Π̂∗n − Π̂n}) conditional

on the data. It in turn suggests employing the 1 − α quantile ĉ1−α of φ̂′′n(τn{Π̂∗n − Π̂n})

conditional on the data:6

ĉ1−α ≡ inf{c ∈ R : PW (φ̂′′n(τn{Π̂∗n − Π̂n}) ≤ c) ≥ 1− α} . (2.40)

Note that ĉ1−α is generally infeasible in that it is constructed based on the “exact” distri-

bution of φ̂′′n(τn{Π̂∗n − Π̂n}) conditional on the data. Nonetheless, it can be estimated by

Monte Carlo simulation and the estimation error can be made arbitrarily small by choosing

the number of bootstrap replications (Efron, 1979; Hall, 1992; Horowitz, 2001).

For each realization of τn{Π̂∗n − Π̂n}, the computation of φ̂′′n(τn{Π̂∗n − Π̂n}) requires

no more than calculating singular value decompositions with φ̂′′n in (2.38) and (2.39). When

φ̂′′n is given in (2.38), it is only necessary to calculate the singular value decomposition of

P̂ ᵀ2,nτn{Π̂∗n − Π̂n}Q̂2,n. When φ̂′′n is given in (2.39), it is only necessary to calculate the

singular value decomposition of Π̂n + κnτn{Π̂∗n − Π̂n}. Thus, the computation of simulated

critical values is as simple as the computation of the test statistic. Comparisons between

the estimators in (2.38) and (2.39) will be investigated in Monte Carlo studies.

The following theorem establishes that the test of rejecting H0 when τ2
nφ(Π̂n) > ĉ1−α

controls the asymptotic null rejection rate and is consistent.

Theorem 2.3.1. Suppose Assumptions 2.3.1 and 2.3.2 hold. Let κn ↓ 0 and τnκn → ∞.

Let ĉ1−α be given in (2.40) with φ̂′′n in (2.38) or (2.39). If the cdf of the limit distribution in

(2.32) is continuous and strictly increasing at its 1 − α quantile for α ∈ (0, 1), then under

H0,

lim
n→∞

P (τ2
nφ(Π̂n) > ĉ1−α) = α .

6PW denotes the probability with respect to the joint law of the random weights {Wi}ni=1.
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Furthermore, under H1,

lim
n→∞

P (τ2
nφ(Π̂n) > ĉ1−α) = 1 .

Theorem 2.3.1 implies that our tests have the asymptotic null rejection rate that

is exactly equal to the nominal level, regardless of whether r0 = r or r0 < r. This stems

from the design of our bootstrap that estimates the asymptotic distribution pointwise in

Π0. In contrast to existing rank tests and the multiple testing method that may have the

asymptotic null rejection rate strictly below the nominal level when r0 < r, this distinct

feature shall make our tests more powerful. In particular, when Π0 is close to a matrix with

rank strictly less than r, our tests shall be more powerful in detecting H1 than existing rank

tests and the multiple testing method. In addition, in contrast to existing rank tests that

may fail to control the asymptotic null rejection rate when r0 < r, our tests control the

asymptotic null rejection rate regardless of whether r0 = r or r0 < r. Theorem 2.3.1 also

implies that our tests are consistent.

Several simple, new and powerful tests are immediate from Theorem 2.3.1. First,

applying Theorem 2.3.1 to Examples 2.2.1 yields tests for identification in linear IV models.

Second, applying Theorem 2.3.1 to Examples 2.2.2 and 2.2.3 yields tests for the existence

of stochastic trend and/or cointegration with or without VAR specification, respectively.

Third, applying Theorem 2.3.1 to Examples 2.2.4 yields tests for the existence of common

features.

We now discuss the quantile requirement on the limit distribution in (2.32) imposed

in Theorem 2.3.1. A necessary condition for that requirement to hold is P ᵀ0,2MQ0,2 6= 0

with positive probability, that is,

P (R(M) ∩N (Πᵀ0) 6= ∅) > 0 and P (R(Mᵀ) ∩N (Π0) 6= ∅) > 0 ,

where R(A) denotes the range of a matrix A and N (A) denotes the null space of a matrix

A. When M is zero mean Gaussian and r0 = r, the limit in (2.32) is a weighted sum of

independent χ2(1) random variables as shown in (2.35). This implies the limit distribution
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is continuous, unless the covariance matrix of vec(P ᵀ0,2MQ0,2) is zero. Thus, in this special

case, the sufficient and necessary condition for the requirement to hold is nonzero of the

covariance matrix of vec(P ᵀ0,2MQ0,2). In contrast, Kleibergen and Paap (2006) requires

nonsingularity of the covariance matrix of vec(P ᵀ0,2MQ0,2). In view of this, our tests rely

on much weaker conditions than Kleibergen and Paap (2006).

Remark 2.3.2. The requirement on the limit distribution in (2.32) imposed in Theorem

2.3.1 may not be satisfied in testing for perfect multicollinearity in Example 2.2.1. When

Π̂n = 1
n

∑n
i=1 ZiZ

ᵀ
i , then the limit in (2.32) is degenerate at zero, which can be best seen

from (2.32) sinceMQ0,2 = 0. Heuristically, if the smallest singular value of Π0 is zero, then

λᵀZi is constantly zero for some constant λ ∈ Sk and the smallest singular value of Π̂n is

constantly zero. Nevertheless, one can easily prove that the properties of size control and

consistency continue to hold.

2.4 Simulations and Applications

In this section, we first conduct Monte Carlo studies to examine the finite sample

performance of our tests, and show how existing rank tests when directly applied to (2.1)

and the multiple testing method may be conservative. We then apply our tests to study

identification in stochastic discount factor models (Jagannathan and Wang, 1996). Lastly,

we demonstrate how our tests can improve the accuracy of the sequential testing procedure

for rank determination.

2.4.1 Simulation Studies

We start with the performance of our tests for the problem in Section 2.2.2. To

implement our tests, we use the same estimator Π̂n as in Section 2.2.2 and the same nominal

level 5%. The rejection rates, which are based on 10, 000 simulation replications with 500

nonparametric i.i.d. bootstrap replications for each Monte Carlo, are plotted in Figure 2.3.

Clearly, Assumptions 2.3.1 and 2.3.2 are satisfied. The result is based on the derivative
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estimator in (2.38) with κn = n−1/4, while the result for the derivative estimator in (2.38)

with κn = n−1/3 is similar and available upon request. For ease of comparison, we combine

Figures 2.1 and 2.3 to yield Figure 2.4, where CF denotes our tests and KP-M is defined

in Section 2.2.1. In contrast to KP-M, the null rejection rates of CF are close to the 5%

nominal level for all d as shown in Figure 2.3. As expected from Theorem 2.3.1, CF are

more powerful than KP-M uniformly over d 6= 1 and all δ > 0 as shown in Figure 2.4. In

particular, in contrast to KP-M, all power curves of CF lie above the 5% nominal level line.

Note the power curves do not coincide since the data generating process (DGP) is varied

for different d. Figure 2.4 also shows that the greater the value of d is, the greater the

power improvement is. In addition, when d = 1, CF are as powerful as KP-M. Thus, these

findings confirm that KP-M are too conservative, and CF provide power improvement over

KP-M. Given Figure 2.2, the comparison between CF and KP-D is the same.

Figure 2.3: The rejection rate of our tests with 5% nominal level

We next investigate the finite sample performance of our tests, the Kleibergen and

Paap (2006) test when directly applied, and the multiple testing method in more compli-

cated DGPs with heteroskedasticity, dependence and different sample sizes. We consider
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Figure 2.4: Comparison between our tests and the multiple testing method based on the
Kleibergen and Paap (2006) test with 5% nominal level

two types of DGPs. For the first DGP (DGP1), we assume

Zᵀt = W ᵀ
t Π0 +W1,tu

ᵀ
t with ut = vt −

1

4
141

ᵀ
4vt−1, t = 1, . . . , T,

where vt
i.i.d.∼ N(0, I4), Wt

i.i.d.∼ N(0, I4) and W1,t is the first element of Wt. Note the errors

now are heteroskedastic and autocorrelated. Let

Π0 = diag(12,02) + ρI4 for ρ ≥ 0 .

For the second DGP (DGP2), following Kleibergen and Paap (2006) we assume

Rt = Π0Ft + εt with εt = vt + Γvt−1, t = 1, . . . , T,

where vt
i.i.d.∼ N(0,Σv) and Ft

i.i.d.∼ N(0,ΣF ) with Γ ∈M10×10, Σv ∈M10×10 and ΣF ∈M4×4

given in Appendix 2.7.4. Let

Π0 = βαᵀ + ρΠ1 for ρ ≥ 0 ,
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where α ∈ R4, β ∈ R10 and Π1 ∈ M10×4 are given in Appendix 2.7.4. These values are

estimates based on the real data used in Section 2.4.2. In view of this, we use DGP2 to

mimic possible scenarios in Section 2.4.2 as in Kleibergen and Paap (2006).

We examine the hypotheses (2.1) with r = 2 and r = 3 for DGP1, and the hypotheses

(2.1) with r = 3 for DGP2. The design of Π0 implies that H0 is true if and only if δ = 0 for

both cases. In particular, for DGP1 r0 = 2 under H0, and for DGP2 r0 = 1 under H0. So

r = 3 for both DGPs represents the case when Π0 is close to a matrix with rank strictly less

than r, while r = 2 for DGP1 represents the regular case. Given the findings in Figure 2.4,

for the hypotheses with r = 3 for both DGPs, it shall be expected that our tests are more

powerful than the Kleibergen and Paap (2006) test when directly applied and the multiple

testing method.

To implement all tests, we estimate Π0 by Π̂T = 1
T

∑T
t=1WtZ

ᵀ
t for DGP1 and by

Π̂T =
∑T

t=1RtF
ᵀ
t (
∑T

t=1 FtF
ᵀ
t )−1 for DGP2. It is clear that the asymptotic distributionM

of Π̂T is zero mean Gaussian with convergence rate
√
T , so Assumption 2.3.1 is satisfied. As

the data exhibits first order autocorrelation, we adopt the simple block bootstrap (Lahiri,

2003) to resample the data with block size b = 2 for implementing our tests. For derivative

estimation in (2.38) and (2.39), we set the tuning parameter κT = T−1/4 and T−1/3. It is

also clear that all assumptions in Kleibergen and Paap (2006) are satisfied. We use HACC

matrix estimator with one lag (West, 1997) for the long run covariance matrix estimator.

See Appendix 2.7.3 for a review on the Kleibergen and Paap (2006) test.

We let ρ = 0, 0.1, · · · , 0.5 for DGP1 and ρ = 0, 0.01, · · · , 0.1 for DGP2, where ρ

represents how strong H1 deviates away from H0. We consider T = 50, 100, 300, 1000 for

DGP1 and T = 330 for DGP2. The rejection rates, which are based on 5, 000 simulation

replications with 500 bootstrap replications, are reported in Tables 2.1-2.3. We use CF1

and CF2 to denote our tests using derivative estimator in (2.38) and (2.39), respectively,

and KP-D and KP-M to denote the Kleibergen and Paap (2006) test when directly applied

and the multiple testing method, respectively. The nominal level is 5% throughout.

The main findings are summarized as follows. First, CF1 exhibits good finite sample



118

performance for all cases, even when T = 50. Interestingly, as Tables 2.1 and 2.3 show, the

rejection rates of CF1 for r = 2 under DGP1 and r = 3 under DGP2 are invariant to the

choice of κT in most of cases. The rejection rates of CF1 for r = 3 under DGP1 are not

quite sensitive to the choice of κT . Second, the performance of CF2 is not as satisfactory

as that of CF1 in small samples. In particular, CF2 is over rejected for all cases with ρ = 0

when T = 50 or 100. This indicates that good performance of CF2 may require a larger

T than CF1 does. This may be explained by the fact that the structural method (CF1)

exploits more information of the derivative. For large T , CF2 seems to be more powerful

than CF1 under DGP1 when T = 300 or 1, 000, while CF1 seems to be more powerful

than CF2 under DGP2. We leave a thorough comparison between these two methods of

derivative estimation for future study. Third, the performance of KP-M and KP-D is less

satisfactory than our tests. As Table 2.1 shows, KP-M and KP-D over-reject the null for

r = 2 under DGP1 with ρ = 0 when T = 50 or 100. This indicates that good performance

of KP-M and KP-D may require a large T . On other other hand, as Tables 2.2 and 2.3

show, KP-M and KP-D under-reject the null for r = 3 under DGP1 and DGP2 with ρ = 0.

This is consistent with the finding in Figure 2.1. Moreover, as expected, CF1 and CF2

are uniformly more powerful than KP-M and KP-D as shown in Tables 2.2 and 2.3.7 In

addition, in our designed simulation, the rejection rates of KP-M and KP-D are similar

with insignificant difference, although the latter is slightly more powerful.

2.4.2 Testing for Identification in SDF Models

Following Jagannathan and Wang (1996), the stochastic discount factor (SDF)

model based on the conditional capital asset pricing model is specified as

E[Rt+1F
ᵀ
t+1γ0|It] = 1m , (2.41)

7In Table 2.2, the rejection rates of KP-M and KP-D under the alternatives are size adjusted ones.
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Table 2.1: Rejection rates for r = 2 under DGP1

ρ = 0
CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.0380 0.0374 0.2764 0.2078 0.1276 0.1658
T = 100 0.0402 0.0402 0.1958 0.1232 0.0930 0.0952
T = 300 0.0450 0.0450 0.1218 0.0512 0.0606 0.0606
T = 1000 0.0472 0.0472 0.0752 0.0368 0.0526 0.0526

ρ = 0.1
CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.0812 0.0812 0.3520 0.2676 0.0720 0.0828
T = 100 0.1210 0.1210 0.3356 0.2314 0.1262 0.1316
T = 300 0.3458 0.3458 0.5144 0.3600 0.3961 0.3962
T = 1000 0.8976 0.8976 0.9238 0.8784 0.9784 0.9152

ρ = 0.2
CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.2248 0.2248 0.5714 0.4880 0.1904 0.2078
T = 100 0.4254 0.4254 0.6950 0.5750 0.4410 0.4520
T = 300 0.9350 0.9350 0.9694 0.9366 0.9526 0.9526
T = 1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρ = 0.3
CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.4776 0.4776 0.7852 0.7208 0.3682 0.4142
T = 100 0.8044 0.8044 0.9348 0.8906 0.7964 0.8102
T = 300 0.9992 0.9992 0.9980 1.0000 1.0000 1.0000
T = 1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρ = 0.4
CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.7220 0.7220 0.9236 0.8896 0.5380 0.6212
T = 100 0.9618 0.9618 0.9954 0.9832 0.9456 0.9586
T = 300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
T = 1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρ = 0.5
CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.8872 0.8872 0.9786 0.9658 0.6696 0.7846
T = 100 0.9960 0.9960 0.9994 0.9992 0.9840 0.9946
T = 300 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
T = 1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 2.2: Rejection rates for r = 3 under DGP1

ρ = 0
CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.0594 0.0388 0.1410 0.1248 0.0072 0.0156
T = 100 0.0556 0.0328 0.1156 0.0944 0.0066 0.0110
T = 300 0.0486 0.0324 0.0766 0.0564 0.0050 0.0062
T = 1000 0.0550 0.0484 0.0656 0.0544 0.0044 0.0056

ρ = 0.1
CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.0874 0.0534 0.1770 0.1600 0.0168 0.0270
T = 100 0.1114 0.0626 0.1936 0.1624 0.0270 0.0344
T = 300 0.2926 0.1562 0.3628 0.3068 0.0926 0.0994
T = 1000 0.8070 0.5948 0.8226 0.7730 0.5396 0.5428

ρ = 0.2
CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.1804 0.1182 0.3334 0.3030 0.0698 0.0910
T = 100 0.3162 0.2060 0.4882 0.4342 0.1692 0.1806
T = 300 0.7774 0.6724 0.8872 0.8426 0.6644 0.6666
T = 1000 0.9988 0.9986 0.9960 0.9994 0.9982 0.9982

ρ = 0.3
CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.3254 0.2538 0.5566 0.5166 0.1906 0.2432
T = 100 0.5678 0.4986 0.7886 0.7414 0.4856 0.4962
T = 300 0.9602 0.9576 0.9940 0.9874 0.9602 0.9602
T = 1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρ = 0.4
CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.4916 0.4460 0.7488 0.7110 0.3544 0.4434
T = 100 0.7758 0.7626 0.9422 0.9120 0.7552 0.7656
T = 300 0.9972 0.9972 0.9998 0.9996 0.9974 0.9974
T = 1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ρ = 0.5
CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

T = 50 0.6432 0.6288 0.8798 0.8442 0.5182 0.6290
T = 100 0.9146 0.9138 0.9880 0.9766 0.9016 0.9116
T = 300 0.9998 0.9998 1.0000 1.0000 0.9998 0.9998
T = 1000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 2.3: Rejection rates for r = 3 under DGP2 when T = 330

CF1 CF2 KP

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3 KP-M KP-D

ρ = 0.00 0.0514 0.0514 0.0468 0.0406 0.0006 0.0008

ρ = 0.01 0.2834 0.2834 0.1770 0.1104 0.0460 0.0482

ρ = 0.02 0.4228 0.4228 0.1648 0.0864 0.0956 0.1018

ρ = 0.03 0.5850 0.5850 0.2192 0.1242 0.2044 0.2166

ρ = 0.04 0.7526 0.7526 0.3268 0.2388 0.3562 0.3768

ρ = 0.05 0.8706 0.8706 0.4944 0.4010 0.5314 0.5598

ρ = 0.06 0.9500 0.9500 0.6622 0.5796 0.6898 0.7294

ρ = 0.07 0.9822 0.9606 0.8064 0.7388 0.7994 0.8464

ρ = 0.08 0.9932 0.9852 0.9032 0.8628 0.8748 0.9276

ρ = 0.09 0.9982 0.9936 0.9582 0.9368 0.9144 0.9670

ρ = 0.10 0.9998 0.9984 0.9842 0.9754 0.9306 0.9852

where Rt ∈ Rm is a vector of returns on m assets at time t, Ft ∈ Rk is a vector of common

factors at time t, It is the information set at time t, and γ0 ∈ Rk is a vector of risk premia.

The risk premia γ0 can be estimated by the generalized method of moments (Hansen, 1982),

see, for example, Jagannathan et al. (2002). The GMM estimator of γ0 is consistent if

E[Rt+1F
ᵀ
t+1|It] (2.42)

is of full rank at time t, see, for example, Hansen (1982) and Newey and McFadden (1994).

Therefore, it is of importance to test for the full rank of (2.42) to indicate whether γ0 is

identifiable.

When the conditional expectation of Rt+1F
ᵀ
t+1 does not depend on It and Rt satisfies

a linear factor model

Rt = Π0Ft + εt (2.43)

with E[Ftεt] = 0 and E[FtF
ᵀ
t ] being nonsingular, then testing for the full rank of (2.42) is

equivalent to testing for the full rank of Π0. Following Kleibergen and Paap (2006), instead
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of testing for the full rank of (2.42), we opt to test whether Π0 is of full rank. Thus, this

amounts to examining the hypotheses (2.1) with r = k − 1. We cannot restrict ourself to

examine the hypotheses (2.2) since it is unrealistic to assume r0 ≥ k − 1 unless k = 1.

We use the same set of data as in Kleibergen and Paap (2006). There are returns

Rt on 10 portfolios and 4 factors in Ft with observations from July 1963 to December 1990,

so m = 10, k = 4 and T = 330. The factors in Ft consist of constant, the return on a

value-weighted portfolio, a corporate bond yield spread and a measure of per capita labor

income growth. We estimate Π0 by

Π̂T =

T∑
t=1

RtF
ᵀ
t (

T∑
t=1

FtF
ᵀ
t )−1 . (2.44)

As demonstrated in Kleibergen and Paap (2006), the data on returns Rt exhibits first order

autocorrelation. To compute the test statistics of Kleibergen and Paap (2006) test, we

use HACC matrix estimator with one lag (West, 1997) for the long run covariance matrix

estimator. To implement our tests, we adopt the simple block bootstrap (Lahiri, 2003) to

resample the data with block size b = 1, 2, 3, 4. For derivative estimation in (2.39) and

(2.38), we set the tuning parameter κT = T−1/4 and T−1/3.

The results, which are based on 1, 000 bootstrap replications, are reported in Table

2.4. We use CF1 and CF2 to denote our tests using derivative estimator in (2.38) and

(2.39), respectively, and KP-D and KP-M to denote the Kleibergen and Paap (2006) test

when directly applied and the multiple testing method based on it, respectively. As Panel

A of Table 2.4 indicates, all our tests fail to reject the non-full rank of Π0 with 5% nominal

level, which is consistent with the finding in Kleibergen and Paap (2006). However, the

p values of our tests are uniformly smaller than 15% with some smaller than 10%, while

the p values of the two conventional tests are larger than 90%. This implies that our tests

reject the non-full rank of Π0 in some cases at the 10% level, while the conventional tests

never reject the non-full rank of Π0 at any conventional significance level. In this sense, the

evidence for non-identification of γ0 from our tests is very weak, while the evidence from
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the conventional tests is very strong. Given the drawback of the conventional tests, the

conclusion from our tests is more reliable.

Table 2.4: p values for different tests

Panel A: our tests

CF1 CF2

κT = T−1/4 κT = T−1/3 κT = T−1/4 κT = T−1/3

b = 1 0.079 0.079 0.118 0.121

b = 2 0.094 0.094 0.113 0.119

b = 3 0.103 0.103 0.128 0.140

b = 4 0.082 0.082 0.137 0.138

Panel B: conventional tests

KP-M KP-D

0.9063 0.9063

The p value for KP-M is given by the smallest significance level such that the null
hypothesis is rejected, which is equal to the maximum p value of all Kleibergen and
Paap (2006)’s tests implemented by the multiple testing method.

2.4.3 Rank Determination

Testing for the hypotheses (2.1) only tells whether r0 satisfies the inequality or not.

In many cases, however, we still want to know what r0 is. In addition to employing the

multiple testing method to test for inequality of cointegration rank, Johansen (1995, Chapter

12) also proposed a sequential testing procedure to determine the rank of cointegration in

VAR models (see, for instance, Example 2.2.2). More examples that concern the true rank

of a matrix can be found in Examples 2.2.5-2.2.7. In this section, we demonstrate how our

tests can improve the accuracy of the sequential testing procedure for rank determination.

We first characterize the sequential testing procedure for rank determination in our

general framework following Johansen (1995, Chapter 12). For α ∈ (0, 1), let ψ
(r)
n be a

test for the hypotheses (2.1) or (2.2) such that limn→∞ P (ψ
(r)
n = 1) = α when r0 = r, and

limn→∞ P (ψ
(r)
n = 1) = 1 when r0 > r. For example, it can be any one of existing rank tests

or our tests. The sequential testing procedure starts with q = 0 and carries out ψ
(q)
n with

progressively larger q. The rank estimator r̂∗n is defined as the threshold value q∗ when ψ
(q∗)
n
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does not reject the null hypothesis for the first time, and r̂∗n = k if such q∗ does not exist.

Formally, r̂∗n = k if ψ
(q)
n = 1 for all 0 ≤ q ≤ k − 1 and otherwise

r̂∗n = min{0 ≤ q ≤ k − 1 : ψ(q)
n = 0} . (2.45)

Remark 2.4.1. Clearly, r̂∗n > r is equivalent to ψ
(q)
n = 1 for all 0 ≤ q ≤ r. Thus, for

given existing rank tests {ψ(q)
n }rq=1, rejecting H0 by the multiple testing method based on

{ψ(q)
n }rq=1 is equivalent to r̂∗n > r where r̂∗n is based on {ψ(q)

n }rq=1. In fact, Kleibergen and

Paap (2006) relied on this relation for r = k− 1 to test for identification of the risk premia

parameters in stochastic discount factor models.

The following theorem establishes that r̂∗n is a good estimator for r0.

Theorem 2.4.1. For α ∈ (0, 1), let ψ
(r)
n be a test for the hypotheses (2.1) or (2.2) such

that limn→∞ P (ψ
(r)
n = 1) = α when r0 = r, and limn→∞ P (ψ

(r)
n = 1) = 1 when r0 > r.

Then limn→∞ P (r̂∗n < r0) = 0,

lim
n→∞

P (r̂∗n = r0) = 1− α if r0 < k and 1 if r0 = k ,

and

lim
n→∞

P (r̂∗n > r0) = α if r0 < k and 0 if r0 = k .

Theorem 2.4.1 implies that the true rank is correctly chosen with probability no

smaller than 1− α asymptotically, a smaller rank is chosen with probability going to zero,

and a larger rank is chosen with probability no larger than α asymptotically. In short,

{r̂∗n} provides a confidence set for r0 with asymptotic coverage probability no smaller than

1−α. Interestingly, Theorem 2.4.1 does not rely on the behavior of ψ
(q)
n when q > r0, since

the sequential testing procedure carries out ψ
(q)
n progressively from q = 0 to larger q and

terminates before q = r0 with probability no smaller than 1 − α asymptotically. That is,

efficient rank determination does not require the ability of detecting whether rank(Π0) is

strictly less than a hypothesized value. This explains why the hypotheses (2.2) has become
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prevalent.

However, the procedure crucially depends on the behavior of ψ
(q)
n when q < r0, that

is, the power of detecting whether rank(Π0) is strictly greater than hypothesized values. In

particular, the probability of ensuring a no smaller rank crucially depends on the probability

of accepting r0 > q for q = 0, . . . , r0−1, which is the power of ψ
(q)
n for q = 0, . . . , r0−1. This

suggests that our tests may be leveraged for accuracy improvement in the sequential testing

procedure for rank determination, provided the improved power property of our tests over

existing rank tests as shown in Sections 2.2.2 and 2.4.1.

To show how the sequential testing procedure based on our tests can be more accu-

rate than that based on existing rank tests, we focus on the case of the Kleibergen and Paap

(2006) test and present some simulation evidence. We use the same DGP given in (2.21)

and (2.22) with δ = 0.1 and 0.12. The design of Π0 implies that r0 = 6 for both δ’s and

all d = 1, . . . , 6. The Kleibergen and Paap (2006) test and our tests are implemented as in

Section 2.2.1 and 2.4.1. The probability distributions of r̂∗n, which are based on 5, 000 simu-

lation replications are reported in Figures 2.5 and 2.6. We use CF to denote the sequential

testing procedure based on our tests and KP to denote the one based on the Kleibergen

and Paap (2006) test. The result is based on κn = n−1/4 and the derivative estimator in

(2.38). The result for κn = n−1/3 is similar and is available upon request. As shown in

both figures, CF yields more accurate rank estimators than KP uniformly over d = 1, . . . , 6

for both δ’s. In particular, KP tends to underestimate the true rank when d increases. The

coverage probability of the resulting rank estimator is 5.46% when d = 6 and δ = 0.1, and

25.3% when d = 6 and δ = 0.12. The coverage probabilities of CF’s rank estimator are

greater than those of KP’s rank estimator.

Remark 2.4.2. To obtain a consistent estimator for r0, Cragg and Donald (1997) and

Robin and Smith (2000) make an adjustment dependent on n to the nominal level α. The

consistency of r̂∗n can be obtained when the adjusted nominal level αn → 0 as n→∞ and

satisfies certain rate requirement. In fact, the estimator r̂n used in (2.38) provides a simple
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Figure 2.5: Comparison between the sequential testing procedures based on our tests and
the Kleibergen and Paap (2006) test with δ = 0.1

Figure 2.6: Comparison between the sequential testing procedures based on our tests and
the Kleibergen and Paap (2006) test with δ = 0.12
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and consistent estimator for r0, see Lemma 2.7.6.

2.5 Conclusion

In this paper, we developed a more powerful method for examining a “no greater

than” inequality of the rank of a matrix and a more accurate procedure for rank deter-

mination in a general setup. We proved that our tests have the asymptotic null rejection

rate that is exactly equal to the nominal level regardless of whether the rank is less than

or equal to the hypothesized value. Our simulation results showed that our tests are often

more powerful than the multiple testing method, and improve the accuracy of the sequential

testing procedure for rank determination. We illustrated our methods in several examples,

including testing for identification and testing for the existence of stochastic trend and/or

cointegration, to show the wide applicability of our methods.
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2.7 Appendix

2.7.1 Proofs of Main Results

Proof of Lemma 2.3.1: The proof is based on a simple application of the representation

of extremal partial trace. Recall that σ2
1(Π), . . . , σ2

k(Π) are eigenvalues of ΠᵀΠ in descending
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order. Let d ≡ k − r. It follows by Proposition 1.3.4 in Tao (2012) that

φ(Π) =
k∑

j=r+1

σ2
j (Π) = inf

u1,...,ud

d∑
j=1

uᵀjΠ
ᵀΠuj , (2.46)

where the infimum is taken over all u1, . . . , ud ∈ Rk that are orthonormal. Let U ≡

[u1, . . . , ud]. Clearly, U ∈ Sk×d. By (2.46) and the definition of Frobenius norm, we further

have

φ(Π) = inf
U∈Sk×d

tr(UᵀΠᵀΠU) = inf
U∈Sk×d

‖ΠU‖2 . (2.47)

The infimum in (2.47) is in fact achieved on Sk×d because U 7→ ‖ΠU‖2 is clearly continuous,

and Sk×d is compact since it is closed and bounded. This completes the proof of the lemma.

Proof of Proposition 2.3.1: Recall that d = k − r. Define φ1 : Mm×k → C(Sk×d)

by φ1(Π)(U) = ‖ΠU‖2, and φ2 : C(Sk×d) → R by φ2(f) = min{f(U) : U ∈ Sk×d}, thus

φ = φ2 ◦ φ1 by Lemma 2.3.1. For part (i), we proceed by verifying first order Hadamard

directional differentiability of φ1 and φ2, and then conclude by the chain rule.

Let {Mn} ⊂Mm×k be such that Mn →M ∈Mm×k and tn ↓ 0 as n→∞. For each

n ∈ N, define gn : Sk×d → R by

gn(U) =
‖(Π + tnMn)U‖2 − ‖ΠU‖2

tn
=
‖ΠU + tnMnU‖2 − ‖ΠU‖2

tn
,

and g : Sk×d → R by g(U) = 2tr((ΠU)ᵀMU). Then by simple algebra we have

sup
U∈Sk×d

|gn(U)− g(U)| = sup
U∈Sk×d

|2tr((ΠU)ᵀ(Mn −M)U) + tn‖MnU‖2|

≤ sup
U∈Sk×d

{2‖ΠU‖‖(Mn −M)U‖+ tn‖MnU‖2} , (2.48)

where the inequality follows by the triangle inequality and the Cauchy-Schwarz inequality
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for the trace operator. For the right hand side of (2.48), we have

sup
U∈Sk×d

{2‖ΠU‖‖(Mn −M)U‖+ tn‖MnU‖2}

≤ sup
U∈Sk×d

{2‖Π‖‖U‖‖Mn −M‖‖U‖+ tn‖Mn‖2‖U‖2} = o(1) , (2.49)

where we exploited the sub-multiplicativity of Frobenius norm and the fact that ‖U‖ =
√
d

and that Mn → M as well as tn ↓ 0 as n → ∞. We thus conclude from (2.48) and (2.49)

that gn → g uniformly in C(Sk×d), or equivalently φ1 is first order Hadamard directionally

differentiable at Π with derivative φ′1,Π : Mm×k → C(Sk×d) given by

φ′1,Π(M)(U) = 2tr((ΠU)ᵀMU) . (2.50)

On the other hand, Theorem 3.1 in Shapiro (1991) implies that φ2 : C(Sk×d) → R

is first order Hadamard directionally differentiable at any f ∈ C(Sk×d) with derivative

φ′2,f : C(Sk×d)→ R given by

φ′2,f (h) = min
U∈Ψ(f)

h(U) , (2.51)

where, by abuse of notation, Ψ(f) ≡ arg minU∈Sk×d f(U). Combining (2.50), (2.51) and the

chain rule (Shapiro, 1990, Proposition 3.6), we may now conclude that φ : Mm×k → R

is first order Hadamard directionally differentiable at any Π ∈ Mm×k with the derivative

φ′Π : Mm×k → R given by

φ′Π(M) = φ′2,φ1(Π) ◦ φ
′
1,Π(M) = min

U∈Ψ(Π)
2tr((ΠU)ᵀMU) .

This completes the proof of part (i) of the proposition.

For part (ii), note that φ(Π) = 0 implies that ΠU = 0 for all U ∈ Ψ(Π) and hence

φ′Π(M) = 0 for all M ∈ Mm×k. Recall that {Mn} ⊂ Mm×k with Mn → M ∈ Mm×k and
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tn ↓ 0 as n→∞. By Lemma 2.3.1 we have

|φ(Π + tnMn)− φ(Π + tnM)| ≤ | min
U∈Sk×d

‖(Π + tnMn)U‖ − min
U∈Sk×d

‖(Π + tnM)U‖|

× ( min
U∈Sk×d

‖(Π + tnMn)U‖+ min
U∈Sk×d

‖(Π + tnM)U‖) , (2.52)

where the inequality follows by the formula a2 − b2 = (a+ b)(a− b). For the first term on

the right hand side of (2.52), we have

| min
U∈Sk×d

‖(Π + tnMn)U‖ − min
U∈Sk×d

‖(Π + tnM)U‖| ≤ tn
√
d‖Mn −M‖ = o(tn) , (2.53)

where the inequality follows by the Lipschitz continuity of the infimum operator, the triangle

inequality, the sub-multiplicativity of Frobenius norm and ‖U‖ =
√
d for U ∈ Sk×d. For the

second term on the right hand side of (2.52), we have

min
U∈Sk×d

‖(Π + tnMn)U‖+ min
U∈Sk×d

‖(Π + tnM)U‖ ≤ ‖(Π + tnMn)U∗‖

+ ‖(Π + tnM)U∗‖ ≤ tn‖Mn‖‖U∗‖+ tn‖M‖‖U∗‖ = O(tn) , (2.54)

where the first inequality follows by letting U∗ be an element from Ψ(Π), and the second

inequality follows by ΠU∗ = 0, the sub-multiplicativity of Frobenius norm and the fact that

‖U∗‖ =
√
d and that Mn →M as n→∞. Combining (2.52)-(2.54), we thus obtain

|φ(Π + tnMn)− φ(Π + tnM)| = o(t2n) . (2.55)

Next, for ε > 0, let Ψ(Π)ε ≡ {U ∈ Sk×d : minU ′∈Ψ(Π) ‖U ′ − U‖ ≤ ε} and Ψ(Π)ε1 ≡

{U ∈ Sk×d : minU ′∈Ψ(Π) ‖U ′ − U‖ ≥ ε}. In what follows we consider the nontrivial case

Π 6= 0 and M 6= 0. In this case, Ψ(Π) $ Sk×d in view of Proposition 1.3.4 in Tao (2012) and

hence Ψ(Π)ε1 6= ∅ for ε sufficiently small. Let σ+
min(Π) denote the smallest positive singular

value of Π which exists since Π 6= 0, and ∆ ≡ 3
√

2[σ+
min(Π)]−1 maxU∈Sk×d ‖MU‖ > 0 since
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M 6= 0. Then it follows that for all n sufficiently large

min
U∈Ψ(Π)tn∆

1

‖(Π + tnM)U‖ ≥ min
U∈Ψ(Π)tn∆

1

‖ΠU‖ − tn max
U∈Sk×d

‖MU‖

≥
√

2

2
tnσ

+
min(Π)∆− tn max

U∈Sk×d
‖MU‖ > tn max

U∈Sk×d
‖MU‖

≥ min
U∈Ψ(Π)

‖(Π + tnM)U‖ ≥
√
φ(Π + tnM) , (2.56)

where the first inequality follows by the Lipschitz continuity of the infimum operator, the

triangle inequality and the fact that Ψ(Π)tn∆
1 ⊂ Sk×d, the second inequality follows by

Lemma 2.7.1, the third inequality follows by the definition of ∆, and the fourth inequality

holds by the fact that ΠU = 0 for U ∈ Ψ(Π). By (2.56), we thus obtain that for all n

sufficiently large

φ(Π + tnM) = min
U∈Ψ(Π)tn∆

‖(Π + tnM)U‖2 . (2.57)

Now, for fixed U ∈ Ψ(Π), ∆ > 0 and t ∈ R, let Γ∆ ≡ {V ∈ Mk×d : ‖V ‖ ≤ ∆}

and Γ∆
U (t) ≡ {V ∈ Γ∆ : U + tV ∈ Sk×d} = {V ∈ Γ∆ : V ᵀU + UᵀV = −tV ᵀV }. Define a

correspondence ϕ : R � Sk×d × Γ∆ by ϕ(t) = {(U, V ) : U ∈ Ψ(Π), V ∈ Γ∆
U (t)}. Then the

right hand side of (2.57) can be written as

min
U∈Ψ(Π)tn∆

‖(Π + tnM)U‖2 = min
(U,V )∈ϕ(tn)

‖(Π + tnM)(U + tnV )‖2

= t2n min
(U,V )∈ϕ(tn)

‖ΠV +MU‖2 + o(t2n) , (2.58)

where the second equality follows by the fact that ΠU = 0 for all U ∈ Ψ(Π) and ‖MV ‖ ≤

‖M‖∆ for all V ∈ Γ∆. By Lemma 2.7.2, ϕ(t) is continuous at t = 0. Moreover, ϕ is

obviously compact-valued. We may then obtain by Theorem 17.31 in Aliprantis and Border
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(2006) that

min
(U,V )∈ϕ(tn)

‖ΠV +MU‖2 = min
(U,V )∈ϕ(0)

‖ΠV +MU‖2 + o(1)

= min
U∈Ψ(Π)

min
V ∈Mk×d

‖ΠV +MU‖2 + o(1) , (2.59)

where the second equality holds by letting ∆ sufficiently large in view of Lemma 2.7.3.

Combining (2.55), (2.57), (2.58) and (2.59) then yields part (ii) of the proposition.

Proof of Proposition 2.3.2 Recall that d = k − r and let d∗ ≡ k − r∗. Noting that the

column vectors in Q2 form a orthonormal basis for the null space of Π0, we may rewrite

Ψ(Π) as Ψ(Π) = {Q2V : V ∈ Sd∗×d}. This together with the projection theorem implies

φ′′Π(M) = min
V ∈Sd∗×d

‖(I −Π(ΠᵀΠ)−Πᵀ)MQ2V ‖2 , (2.60)

where A− denotes the Moore-Penrose inverse of a generic matrix A. By the singular value

decomposition of Π, we have

(I −Π(ΠᵀΠ)−Πᵀ)P = P − PΣQᵀ(QΣᵀP ᵀPΣQᵀ)−QΣᵀP ᵀP

= P − PΣQᵀQ(ΣᵀP ᵀPΣ)−QᵀQΣᵀP ᵀP = P − PΣ(ΣᵀΣ)−Σᵀ = [0, P2] , (2.61)

where the second equality exploited Theorem 20.5.6 in Harville (2008), the third equality

follows from P and Q being orthonormal, and the fourth equality is obtained by carrying out

the Moore-Penrose inverse by Exercise 2.7.4 in Magnus and Neudecker (2007) and noting

that Σ is diagonal. In view of (2.61), we have

min
V ∈Sd∗×d

‖(I −Π(ΠᵀΠ)−Πᵀ)MQ2V ‖2 = min
V ∈Sd∗×d

‖[0, P2]P ᵀMQ2V ‖2

= min
V ∈Sd∗×d

‖P2P
ᵀ
2MQ2V ‖2 = min

V ∈Sd∗×d
‖P ᵀ2MQ2V ‖2 =

k−r∗∑
j=r−r∗+1

σ2
j (P

ᵀ
2MQ2) , (2.62)

where the third equality follows from P ᵀ2 P2 = Im−r∗ and the final equality follows from

Lemma 2.3.1. Combining (2.60) and (2.62) concludes the proof of the proposition.



133

Proof of Proposition 2.3.3: The first and second results are straightforward application

of Theorem 2.1 in Fang and Santos (2015) and Chen and Fang (2015) by noting that

φ′Π0
= 0 under H0, respectively. In particular, Assumptions 2.1(i)-(ii) are satisfied in view

of Proposition 2.3.1 and Assumption 2.2 is satisfied by Assumption 2.3.1.

Proof of Theorem 2.3.1: By Lemma 2.7.5 and the maintained assumptions, each of the

two derivative estimators are consistent for φ′′Π0
in the sense that they satisfy Assumption

3.4 in Chen and Fang (2015). This, together with Lemma A.2 in Chen and Fang (2015),

Assumption 2.3.2, Proposition 2.3.3, and the cdf of the limit distribution being strictly

increasing at its 1− α quantile c1−α, implies that ĉ1−α
p−→ c1−α, following exactly the same

proof of Corollary 3.2 in Fang and Santos (2015). Then under H0, the first claim of the

theorem follows from combining Proposition 2.3.3, Slutsky’s lemma, c1−α being a continuity

point of the limit distribution and the portmanteau theorem.

For the second part of the theorem, let G∗n ≡ τn{Π̂∗n − Π̂n}. By the definition of

ĉ1−α, if PW (φ̂′′n(G∗n) ≤ τ2
nφ(Π̂n)) ≥ 1− α , then we must have ĉ1−α ≤ τ2

nφ(Π̂n) and hence

P (τ2
nφ(Π̂n) ≥ ĉ1−α) ≥ PX(PW (φ̂′′n(G∗n) ≤ τ2

nφ(Π̂n)) ≥ 1− α) . (2.63)

We shall show that the right side of (2.63) tends to one as n → ∞ for each of the two

derivative estimators. First, consider the numerical estimator (2.39). Note that

PW (φ̂′′n(G∗n) ≤ τ2
nφ(Π̂n)) = PW (

φ(Π̂n + κnτn{Π̂∗n − Π̂n})− φ(Π̂n)

κ2
n

≤ τ2
nφ(Π̂n))

≥ PW (
φ(Π̂n + κnτn{Π̂∗n − Π̂n})

κ2
n

≤ τ2
nφ(Π̂n))

= PW (φ(Π̂n + κnτn{Π̂∗n − Π̂n}) ≤ (κnτn)2φ(Π̂n)) . (2.64)

Since Π̂n
p−→ Π0 and φ is continuous at Π0, the continuous mapping theorem implies that:

under H1,

φ(Π̂n)
p−→ φ(Π0) > 0 . (2.65)
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By Assumptions 2.3.1 and 2.3.2, together with the assumption that κn = o(1) as n→∞ and

continuity of φ, we have φ(Π̂n + κnτn{Π̂∗n − Π̂n}) = OPW (1) with probability approaching

one. Consequently, by κnτn →∞, with probability approaching one,

PW (φ(Π̂n + κnτn{Π̂∗n − Π̂n}) ≤ (κnτn)2φ(Π̂n))→ 1 > 1− α . (2.66)

By the dominated convergence theorem, we may conclude from results (2.64), (2.65) and

(2.66) that

PX(PW (φ̂′′n(G∗n) ≤ τ2
nφ(Π̂n)) ≥ 1− α)→ 1 . (2.67)

This implies the second claim of the theorem holds when φ̂′′n is the numerical derivative

estimator. Second, consider the derivative estimator (2.38). Recall that d̂n = k − r̂n and

d = k − r. By Lemma 2.3.1, we have

PW (φ̂′′n(G∗n)) ≤ τ2
nφ(Π̂n) = PW ( min

U∈Sd̂n×d
‖P̂ ᵀ2,nτn{Π̂

∗
n − Π̂n}Q̂2,nU‖2 ≤ τ2

nφ(Π̂n))

≥ PW (‖τn{Π̂∗n − Π̂n}‖2mkd ≤ τ2
nφ(Π̂n)) ,

where the second inequality exploited ‖P̂ ᵀ2,n‖2‖Q̂2,n‖2 ≤ mk and ‖U‖2 = d. The second

claim of the theorem then follows by analogous arguments as above.

Proof of Theorem 2.4.1: We prove the results for three different cases: when r0 = k,

when 1 ≤ r0 ≤ k − 1 and when r0 = 0. It suffices to show the first two results. First, we

show the second result. When r0 = k, we have

lim
n→∞

P (r̂∗n = r0)= lim
n→∞

P (ψ(0)
n = 1, · · · , ψ(k−1)

n = 1) ≥ 1−
k−1∑
q=0

(1− lim
n→∞

P (ψ(q)
n = 1)) = 1 ,
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where the inequality follows by the Boole’s inequality. When 1 ≤ r0 ≤ k − 1, we have

lim
n→∞

P (r̂∗n = r0) = lim
n→∞

P (ψ(0)
n = 1, · · · , ψ(r0−1)

n = 1, ψ(r0)
n = 0)

≤ 1− lim
n→∞

P (ψ(r0)
n = 1) = 1− α , (2.68)

where the inequality follows by the fact that P (A) ≤ P (B) for A ⊂ B, and

lim
n→∞

P (r̂∗n = r0) = lim
n→∞

P (ψ(0)
n = 1, · · · , ψ(r0−1)

n = 1, ψ(r0)
n = 0)

≥ 1−
r0−1∑
q=0

(1− lim
n→∞

P (ψ(q)
n = 1))− lim

n→∞
P (ψ(r0)

n = 1) = 1− α , (2.69)

where the inequality follows by the Boole’s inequality. Combining results (2.68) and (2.69)

gives the result when 1 ≤ r0 ≤ k − 1. When r0 = 0, we have

lim
n→∞

P (r̂∗n = r0) = lim
n→∞

P (ψ(0)
n = 0) = 1− lim

n→∞
P (ψ(0)

n = 1) = 1− α .

Next, we show the first result. When r0 = k, we have

lim
n→∞

P (r̂∗n < r0) ≤
k−1∑
q=0

(1− lim
n→∞

P (ψ(q)
n = 1)) = 0 ,

where the inequality holds by the Boole’s inequality. When 1 ≤ r0 ≤ k − 1, we have

lim
n→∞

P (r̂∗n < r0) ≤
r0−1∑
q=0

(1− lim
n→∞

P (ψ(q)
n = 1)) = 0 ,

where the inequality holds by the Boole’s inequality. When r0 = 0, obviously P (r̂∗n < r0) =

0. This completes the proof of the theorem.

Lemma 2.7.1. Suppose Π ∈Mm×k with Π 6= 0 and rank(Π) ≤ r. For ε > 0, let Ψ(Π)ε1 be

given in the proof of Proposition 2.3.1. Let σ+
min(Π) be the smallest positive singular value
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of Π. Then for all sufficiently small ε > 0, we have

min
U∈Ψ(Π)ε1

‖ΠU‖ ≥
√

2

2
σ+

min(Π)ε .

Proof: Let Π = PΣQᵀ be a singular value decomposition of Π, where P ∈ Sm×m and

Q ∈ Sk×k are orthonormal, and Σ ∈Mm×k is diagonal with diagonal entries in descending

order. Recall that d = k − r and let r∗ ≡ rank(Π). For U ∈ Sk×d, let UQ ≡ QᵀU and write

UᵀQ = [U
(1)ᵀ
Q , U

(2)ᵀ
Q ] such that U

(1)
Q ∈Mr∗×d. Then we have that for U ∈ Sk×d,

‖ΠU‖ = ‖PΣQᵀU‖ = ‖ΣUQ‖ ≥ σ+
min(Π)‖U (1)

Q ‖ , (2.70)

where the second equality follows by P ᵀP = Im, and the inequality follows by the fact that

Σ is diagonal with diagonal entries in descending order and σ+
min(Π) = σr∗(Π) is the smallest

positive entry. Let U
(2)
Q = P

(2)
U Σ

(2)
U Q

(2)ᵀ

U be a singular value decomposition of U
(2)
Q where

Q
(2)
U ∈ Sd×d, P (2)

U ∈ S(k−r∗)×(k−r∗) and Σ
(2)
U ∈ M(k−r∗)×d a diagonal matrix with diagonal

entries in descending order. Note that k− r∗ ≥ d since r∗ ≤ r. It follows that for U ∈ Sk×d,

‖U (2)
Q ‖

2 =
d∑
j=1

σ2
j (U

(2)
Q ) ≤

d∑
j=1

σj(U
(2)
Q ) = tr([Id,0r−r∗ ]Σ

(2)
U ) , (2.71)

where the inequality follows by the fact that σj(U
(2)
Q ) ∈ [0, 1] as singular values of U

(2)
Q due

to U
(2)ᵀ
Q U

(2)
Q + U

(1)ᵀ
Q U

(1)
Q = Id, and the second equality follows by noting that the diagonal

entries of Σ
(2)
U are singular values of U

(2)
Q . Since ‖U (1)

Q ‖2 + ‖U (2)
Q ‖2 = ‖UQ‖2 = d, thus

combining (2.70) and (2.71) yields that for U ∈ Sk×d,

‖ΠU‖ ≥ σ+
min(Π)

√
d− tr([Id,0r−r∗ ]Σ

(2)
U ) . (2.72)

Since ‖U (1)
Q ‖2+‖Σ(2)

U ‖2 = ‖U (1)
Q ‖2+‖U (2)

Q ‖2 = d and ‖[Id,0r−r∗ ]ᵀ‖2 = d, then simple algebra

yields that for U ∈ Sk×d,

2(d− tr([Id,0d−r∗ ]Σ
(2)
U )) = ‖U (1)

Q ‖
2 + ‖Σ(2)

U − [Id,0r−r∗ ]
ᵀ‖2 . (2.73)
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Write Q = [Q1, Q2] such that Q1 ∈Mk×r∗ . Since Qᵀ1Q1 = Ir∗ , Q
ᵀ
2Q2 = Ik−r∗ and Qᵀ1Q2 = 0

as well as P
(2)
U and Q

(2)
U are orthonormal, we then have that for U ∈ Sk×d,

‖U (1)
Q ‖

2 +‖Σ(2)
U − [Id,0r−r∗ ]

ᵀ‖2 =‖Q1U
(1)
Q +Q2P

(2)
U (Σ

(2)
U − [Id,0r−r∗ ]

ᵀ)Q
(2)ᵀ
U ‖2 . (2.74)

Since U
(1)
Q = Qᵀ1U and U

(2)
Q = Qᵀ2U by construction and Q1Q

ᵀ
1U+Q2Q

ᵀ
2U = U by QQᵀ = Ik,

we then have that for U ∈ Sk×d,

|Q1U
(1)
Q +Q2P

(2)
U (Σ2− [Id,0r−r∗ ]

ᵀ)Q
(2)ᵀ
U ‖2 = ‖U−Q2P

(2)
U [Id,0r−r∗ ]

ᵀQ
(2)ᵀ
U ‖2 . (2.75)

Clearly, Q2P
(2)
U [Id,0r−r∗ ]

ᵀQ
(2)ᵀ
U ∈ Ψ(Π), so combining (2.73)- (2.75) yields that for U ∈ Sk×d,

2(d− tr([Id,0r−r∗ ]Σ
(2)
U )) ≥ min

U ′∈Ψ(Π)
‖U − U ′‖2 . (2.76)

Since Π 6= 0, then Ψ(Π)ε1 6= ∅ for all sufficiently small ε > 0 by Proposition 1.3.4 in Tao

(2012). Fix such an ε. By the definition of Ψ(Π)ε1, combining (2.72) and (2.76) yields that

for all U ∈ Ψ(Π)ε1,

‖ΠU‖ ≥
√

2

2
σ+

min(Π) min
U ′∈Ψ(Π)

‖U − U ′‖ ≥
√

2

2
σ+

min(Π)ε . (2.77)

Then the lemma follows by applying minimum over Ψ(Π)ε1 to both sides of (2.77) and noting

that the result continues to hold for all sufficiently small ε > 0.

Lemma 2.7.2. Let the correspondence ϕ be as in the proof of Proposition 2.3.1. Then ϕ(t)

is continuous at t = 0.

Proof: Fix U0 ∈ Ψ(Π), and define the correspondence ϕ̄ : R� Γ∆ given by ϕ̄(t) = Γ∆
U0

(t),

where Ψ(Π), Γ∆ and Γ∆
U0

(t) are given in the proof of Proposition 2.3.1. Recall that d = k−r.

For each {tn} satisfying tn ↓ 0 and each V0 ∈ ϕ̄(0), consider the function f : Γ∆ → Mk×d
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given by

f(V ) = V0 −
tn
2
U0V

ᵀV .

Since f is continuous and Γ∆ is compact, f is a compact map in the sense of Granas and

Dugundji (2003). It follows from Theorem 0.2.3 in Granas and Dugundji (2003) that one of

the following two cases must happen: i) f has a fixed point V1n ∈ Γ∆, and ii) there exists

some V2n ∈ Γ∆ such that ‖V2n‖ = ∆ and V2n = λnf(V2n) with λn ≡ ∆
‖f(V2n)‖ ∈ (0, 1). In

case i), since U0 ∈ Ψ(Π), V0 ∈ ϕ̄(0) and f(V1n) = V1n, then by simple algebra we have

V ᵀ1nU0 + Uᵀ0V1n = (V0−
tn
2
U0V

ᵀ
1nV1n)ᵀU0 + Uᵀ0 (V0−

tn
2
U0V

ᵀ
1nV1n) = −tnV ᵀ1nV1n . (2.78)

This together with V1n ∈ Γ∆ implies that V1n ∈ ϕ̄(tn). Moreover, since f(V1n) = V1n,

‖U0‖ =
√
d and V1n ∈ Γ∆, then by the sub-multiplicativity of Frobenius norm we have

‖V1n − V0‖ = ‖ tn
2
U0V

ᵀ
1nV1n‖ ≤

tn
2

√
d∆2 . (2.79)

In case ii), since U0 ∈ Ψ(Π), λ2
nV0 ∈ ϕ̄(0) and λnV2n = λ2

nf(V2n), then by analogous

calculations as in (2.78), we have

(λnV2n)ᵀU0 + Uᵀ0 (λnV2n) = −tn(λnV2n)ᵀ(λnV2n) .

This together with λnV2n ∈ Γ∆ due to λn ∈ (0, 1) and V2n ∈ Γ∆ implies that λnV2n ∈ ϕ̄(tn).

Moreover, since λnV2n = λ2
nf(V2n), then by analogous calculations as in (2.79), we have

‖λnV2n − V0‖ ≤ ‖λ2
nf(V2n)− λ2

nV0‖+ |λ2
n − 1|‖V0‖ ≤

tn
2

√
d∆2 + |λ2

n − 1|∆ , (2.80)

where the first inequality follows the triangle inequality and the second inequality follows

since λn ∈ (0, 1). Now, for each n ∈ N, define V ∗n to be V1n if case (i) happens and λnV2n

otherwise. Let δn ≡ 1 if case (i) happens and δn ≡ λn otherwise. Then V ∗n ∈ Γ∆
U0

(tn) for all
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n ∈ N, and combination of (2.79) and (2.80) yields

‖V ∗n − V0‖ ≤
tn
2

√
d∆2 + |δ2

n − 1|∆→ 0 ,

where we exploited the fact that if V2n exists infinitely often, δn = λn = ∆
‖f(V2n)‖ → 1 due

to f(V2n) → V0 as n → ∞ and ‖V0‖ ≤ ∆, and tn → 0 as n → ∞. It follows that ϕ̄(t) is

lower hemicontinuous at t = 0 by Theorem 17.21 in Aliprantis and Border (2006).

The lower hemicontinuity of ϕ(t) at t = 0 follows easily from that of ϕ̄(t) again by

Theorem 17.21 in Aliprantis and Border (2006). To see this, let tn → 0 and (U0, V0) ∈ ϕ(0).

Define (U∗n, V
∗
n ) to be U∗n = U0 and V ∗n be as in previous construction for all n ∈ N. Clearly,

(U∗n, V
∗
n ) → (U0, V0), implying that ϕ(t) is lower hemicontinuous at t = 0. Since ϕ(t) is

contained in the compact set Sk×d × Γ∆ for all t, ϕ(t) is upper hemicontinuous at t = 0

by Theorem 17.20 in Aliprantis and Border (2006). We have therefore showed that ϕ(t) is

continuous at t = 0.

Lemma 2.7.3. Suppose Π ∈ Mm×k with Π 6= 0 and rank(Π) ≤ r, and M ∈ Mm×k with

M 6= 0. Let Ψ(Π) given in the proof of Proposition 2.3.1. For U ∈ Ψ(Π) and ∆ > 0, let

Γ∆
U (0) be as in the proof of Proposition 2.3.1. Recall that d = k− r. When ∆ is sufficiently

large, then for all U ∈ Ψ(Π),

min
V ∈Γ∆

U (0)
‖ΠV +MU‖2 = min

V ∈Mk×d
‖ΠV +MU‖2 .

Proof: Recall that Π = PΣQᵀ is a singular value decomposition of Π, where P ∈ Sm×m and

Q ∈ Sk×k are orthonormal, and Σ ∈Mm×k is diagonal with diagonal entries in descending

order. Recall that r∗ = rank(Π) < r. We may write Σ = [Σ1, 0] such that Σ1 ∈Mm×r∗ is

of full rank with r∗ < r. It follows that

min
V ∈Mk×d

‖ΠV +MU‖2 = min
V ∈Mr∗×d

‖[PΣ1V +MU‖2 . (2.81)

By the projection theorem, the minimum on the right hand side of (2.81) is attained at
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some point, say V ∗1 ∈ Mr∗×d. Moreover, V ∗1 is uniformly bounded over U ∈ Ψ(Π). Let

V ∗ ≡ Q[V ∗ᵀ1 , 0]ᵀ ∈ Mk×d, then the minimum on the left hand side of (2.81) is attained

at V ∗. Recall that Q = [Q1, Q2], where Q1 ∈ Mk×r∗ . Then V ∗ = Q1V
∗

1 ∈ Γ∆
U (0) for all

U ∈ Ψ(Π), when ∆ is sufficiently large. It implies that the minimum on the right hand side

of (2.81) is attained within Γ∆
U (0) as well for all U ∈ Ψ(Π), when ∆ is sufficiently large.

This implies that when ∆ is sufficiently large,

min
V ∈Γ∆

U (0)
‖ΠV +MU‖2 ≤ min

V ∈Mk×d
‖ΠV +MU‖2

for all U ∈ Ψ(Π). The reverse inequality is simply true since Γ∆
U (0) ⊂Mk×d all U ∈ Ψ(Π)

and all ∆ > 0. This completes the proof of the lemma.

Lemma 2.7.4. Suppose rank(Π) ≤ r and let φ′′Π : Mm×k → R be given in Proposition

2.3.1. If rank(Π) = r, there exists a bilinear map Φ′′Π : Mm×k ×Mm×k → R such that

φ′′Π(M) = Φ′′Π(M,M) for all M ∈Mm×k; if rank(Π) < r, such a Φ′′Π does not exist.

Proof: Recall that Π = PΣQᵀ is a singular value decomposition of Π, where P ∈ Sm×m and

Q ∈ Sk×k are orthonormal, and Σ ∈Mm×k is diagonal with diagonal entries in descending

order. Recall that d = k−r. If rank(Π) = r, then Proposition 2.3.2 and Lemma 2.3.1 imply

φ′′Π(M) = min
V ∈Sd×d

‖P ᵀ2MQ2V ‖2 = ‖P ᵀ2MQ2‖2 ,

for allM ∈Mm×k, which is a quadratic form corresponding to the bilinear form Φ′′Π(M1,M2)

≡ tr(Qᵀ2M
ᵀ
1P2P

ᵀ
2M2Q2) for M1 ∈Mm×k and M2 ∈Mm×k.

Next, suppose that rank(Π) < r0 and assume that there exists a bilinear map Φ′′Π

corresponding to φ′′Π. In turn, bilinearity of Φ′′Π implies that

φ′′Π(M1) + φ′′Π(M2) =
φ′′Π(M1 +M2) + φ′′Π(M1 −M2)

2
(2.82)

for all M1 ∈Mm×k and M2 ∈Mm×k. Recall that r∗ = rank(Π). If M = P2HQ
ᵀ
2 for some
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H ∈M(m−r∗)×(k−r∗), then Proposition 2.3.2 and Lemma 2.3.1 imply

φ′′Π(M) = σ2
r−r∗+1(H) + · · ·+ σ2

k−r∗(H) . (2.83)

Now, let H1 ∈ M(m−r∗)×(k−r∗) be diagonal with the (j, j)th entry equal to 1 for j =

1, . . . , k − r∗ and H2 ∈M(m−r∗)×(k−r∗) be diagonal with the (j, j)th entry equal to −1 for

j = 1 and 1 for j = 2, . . . , k− r∗. Set Mi = P2HiQ
ᵀ
2 for i = 1, 2, the result in (2.83) implies

φ′′Π(M1) = φ′′Π(M2) = k− r, φ′′Π(M1 +M2) = 4(k− r)− 4 and φ′′Π(M1 −M2) = 0. It follows

that

2(k − r) = φ′′Π(M1) + φ′′Π(M2) 6=
φ′′Π(M1 +M2) + φ′′Π(M1 −M2)

2
= 2(k − r)− 2 ,

which contradicts the result (2.82). Thus, the second result of the lemma follows.

Lemma 2.7.5. Suppose Assumption 2.3.1 holds, κn ↓ 0 and τnκn → ∞. Let φ̂′′n be con-

structed as in (2.39) or (2.38). Then we have under H0,

φ̂′′n(Mn)
p−→ φ′′Π0

(M)

whenever Mn →M as n→∞ for {Mn} ⊂Mm×k and M ∈Mm×k.

Proof: When φ̂′′n is constructed as in (2.39), the result of the lemma follows by Proposition

3.1 of Chen and Fang (2015). Next we consider the derivative estimator (2.38). Recall that

d = k − r and let d̂n ≡ k − r̂n. By Lemma 2.3.1, we have

|φ̂′′n(Mn)− φ̂′′n(M)| ≤ | min
U∈Sd̂n×d

‖P̂ ᵀ2,nMnQ̂2,nU‖ − min
U∈Sd̂n×d

‖P̂ ᵀ2,nMQ̂2,nU‖|

× ( min
U∈Sd̂n×d

‖P̂ ᵀ2,nMnQ̂2,nU‖+ min
U∈Sd̂n×d

‖P̂ ᵀ2,nMQ̂2,nU‖) , (2.84)

where the inequality follows by the formula (a2− b2) = (a+ b)(a− b). For the first term on
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the right hand side of (2.84), we have

| min
U∈Sd̂n×d

‖P̂ ᵀ2,nMnQ̂2,nU‖ − min
U∈Sd̂n×d

‖P̂ ᵀ2,nMQ̂2,nU‖| ≤
√
kmd‖Mn −M‖ = op(1) , (2.85)

where the inequality follows by the Lipschitz continuity of the infimum operator, the triangle

inequality and ‖P̂2,n‖ ≤
√
m, ‖Q̂2,n‖ ≤

√
k and ‖U‖ =

√
r for all U ∈ Sd̂n×d, and the

equality follows since Mn → M . For the second term on the right hand side of (2.84), we

have

min
U∈Sd̂n×d

‖P̂ ᵀ2,nMnQ̂2,nU‖+ min
U∈Sd̂n×d

‖P̂ ᵀ2,nMQ̂2,nU‖ ≤
√
kmd‖Mn‖+

√
kmd‖M‖ , (2.86)

where the inequality follows by the sub-multiplicability of the Frobenius norm, ‖P̂2,n‖ ≤
√
m, ‖Q̂2,n‖ ≤

√
k and ‖U‖ =

√
r for all U ∈ Sd̂n×d. Combining (2.84)-(2.86), then we

obtain

|φ̂′′n(Mn)− φ̂′′n(M)| = op(1) . (2.87)

Recall that φ′′Π0
(M) =

∑k−r0
j=r−r0+1 σ

2
j (P

ᵀ
0,2MQ0,2). By (2.87), Lemma 2.3.1 and 2.7.6, it

suffices to show that given r̂n = r0,

|
k−r̂n∑

j=r−r̂n+1

σ2
j (P̂

ᵀ
2,nMQ̂2,n)−

k−r0∑
j=r−r0+1

σ2
j (P

ᵀ
0,2MQ0,2)| = op(1) . (2.88)

Let r̂n = r0. Let q̂j be the jth column of Q̂2,n. Since Q0 ∈ Sk×k, we may write q̂j = Q0ûj

for some (random) ûj ∈ Sk×1. Noting that q̂j is the eigenvector of Π̂ᵀnΠ̂n associated with

the eigenvalue σ2
r0+j(Π̂n) due to r̂n = r0, we then have

[Π̂ᵀnΠ̂n −Πᵀ0Π0 − (σ2
r0+j(Π̂n)− σ2

r0+j(Π0))Ik + Πᵀ0Π0 − σ2
r0+j(Π0)Ik]Q0ûj

= [Π̂ᵀnΠ̂n − σ2
r0+j(Π̂n)Ik]q̂j = 0 . (2.89)

Noting that ‖Π̂ᵀnΠ̂n−Πᵀ0Π0‖ = op(1) and |σ2
r0+j(Π̂n)−σ2

r0+j(Π0)| = op(1) by the continuous
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mapping theorem, the Weyl inequality (Tao, 2012, Exercise 1.3.22(iv)) and Assumption

2.3.1, we then conclude from (2.89) that

op(1) = [Πᵀ0Π0 − σ2
r0+j(Π0)Ik]Q0ûj = Q0Σᵀ0Σ0ûj , (2.90)

where we exploited the singular value decomposition Π0 = P0Σ0Q
ᵀ
0, and the fact that

σ2
r0+j(Π0) = 0. Since the first r0 diagonal elements of the diagonal matrix Σᵀ0Σ0 are positive

and Q0 being nonsingular, we may conclude from result (2.90) that the first r0 elements of

ûj are op(1) and moreover by the definition of q̂j that for some random U2 ∈ S(k−r0)×(k−r0),

Q̂2,n = Q0,2U2 + op(1) , (2.91)

By an analogous argument, we have that for some random V2 ∈ S(m−r0)×(m−r0),

P̂2,n = P0,2V2 + op(1) . (2.92)

Combining results (2.91) and (2.92) and the continuous mapping theorem yields that given

r̂n = r0,

‖P̂ ᵀ2,nMQ̂2,n − V ᵀ2 P
ᵀ
0,2MQ0,2U2‖ = op(1) . (2.93)

Thus, (2.88) is obtained by (2.93), the continuous mapping theorem and the fact that the

singular values of V ᵀ2 P
ᵀ
0,2MQ0,2U2 are equal to those of P ᵀ0,2MQ0,2. This completes the

proof of the lemma.

Lemma 2.7.6. Suppose Assumption 2.3.1 holds, κn ↓ 0 and τnκn → ∞. Let r̂n =

min{r,#{1 ≤ j ≤ k : σj(Π̂n) ≥ κn}}. Then we have under H0,

lim
n→∞

P (r̂n = r0) = 1 .
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Proof: Noting that r̂n > r0 implies σr0+1(Π̂n) ≥ κn and that σr0+1(Π0) = 0, we then have

lim sup
n→∞

P (r̂n > r0) ≤ lim sup
n→∞

P (|σr0+1(Π̂n)− σr0+1(Π0)| ≥ κn)

≤ lim sup
n→∞

P (‖τn(Π̂n −Π0)‖ ≥ τnκn) = 0 , (2.94)

where the first inequality follows by P (A) ≤ P (B) for A ⊂ B, the second inequality

follows by the Weyl inequality (Tao, 2012, Exercise 1.3.22(iv)), and the equality follows by

Assumption 2.3.1 and τnκn →∞. Noting that r̂n < r0 implies σr0(Π̂n) < κn, we then have

lim sup
n→∞

P (r̂n < r0) ≤ lim sup
n→∞

P (|σr0(Π̂n)− σr0(Π0)| > −κn + σr0(Π0))

≤ lim sup
n→∞

P (‖τn(Π̂n −Π0)‖ ≥ τnσr0(Π0)(1− κn/σr0(Π0)) = 0 , (2.95)

where the first inequality follows by P (A) ≤ P (B) for A ⊂ B, the second inequality

follows by the Weyl inequality (Tao, 2012, Exercise 1.3.22(iv)), and the equality follows by

Assumption 2.3.1, σr0(Π0) > 0, τn →∞ and κn ↓ 0. Combining (2.94) and (2.95) yields

lim sup
n→∞

P (r̂n 6= r0) ≤ lim sup
n→∞

P (r̂n < r0) + lim sup
n→∞

P (r̂n > r0) = 0 .

This completes the proof of the lemma by noting that limn→∞ P (r̂n = r0) = 1 − limn→∞

P (r̂n 6= r0) = 1.

2.7.2 Results for Examples 2.2.1-2.2.7

Example 2.2.2 (Continued). Suppose {Yt}nt=1 is a sequence of data from Example 2.2.2.

Let Π̂n be the least squares estimator

Π̂n =
1

n

n∑
t=2

∆YtY
ᵀ
t−1(

1

n

n∑
t=2

Yt−1Y
ᵀ
t−1)−1 . (2.96)

Let Dn ≡ diag(
√
n1r0 , n1k−r0) and B0 ≡ [Q0,1, P0,2]ᵀ, where r0, Q0,1 and P0,2 are given in

Proposition 2.3.3. By Lemma A.2 of Liao and Phillips (2015), if Φ0 has eigenvalues on or
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inside the unit circle, then

(Π̂n −Π0)B−1
0 DnB0

L−→M =M1 +M2 , (2.97)

where M1 ∈ Mk×k with vec(M1) ∼ N(0,Σ ⊗ (Q0,1Σ−1
1 Qᵀ0,1)) and Σ1 ≡ Var(Qᵀ0,1Yt), and

M2 ∈Mk×k with

M2 ∼ Σ1/2

∫ 1

0
dBk(t)Bk(t)

ᵀΣ1/2P0,2(P ᵀ0,2Σ1/2

∫ 1

0
Bk(t)Bk(t)

ᵀdtΣ1/2P0,2)−1P ᵀ0,2

and Bk(t) is a k × 1 Brownian motion defined on the unit interval with identity covariance

matrix at time t. Given that Assumption 2.3.1 is not satisfied since the rates in Dn are

not homogenous unless r0 = 0 or r0 = k, we extend Proposition 2.3.3 to accommodate this

case. Next we focus on the nontrivial case of testing for the existence of stochastic trend.

By Proposition 2.7.2, the asymptotic distribution of n2φ(Π̂n) under H0 is given by

k−r0∑
j=r−r0+1

σ2
j (Σ

1/2
r0

∫ 1

0
dBk−r0(t)Bk−r0(t)ᵀ(

∫ 1

0
Bk−r0(t)Bk−r0(t)ᵀdt)−1Σ−1/2

r0 P ᵀ0,2Q0,2) , (2.98)

where Σr0 = P ᵀ0,2ΣP0,2 and Q0,2 is given in Proposition 2.3.3. When r0 < k − 1, the

asymptotic distribution can be highly nonstandard. Note that P0,2 and Q0,2 are identified

up to postmultiplication by (k− r0)× (k− r0) orthonormal matrices, so the weak limits in

(2.97) and (2.98) are invariant to the choice of P2,0 and Q2,0.

Another distinct feature of this example is that M depends on Π0, in particular,

on r0. This presents a challenge for estimating M by bootstrap. We propose a residual

based bootstrap following Swensen (2006) and Cavaliere et al. (2012). To this end, we need

a consistent estimator for r0, that can be obtained by various methods, for example, the

estimator r̂n used in (2.38). We propose the following bootstrap algorithm.

1. Given the consistent estimator r̂n of r0, calculate the reduced rank estimate Π̂r,n

and the corresponding residuals ûr,t, for example, following Johansen (1991). Let

ûcr,t ≡ ûr,t − n−1
∑n

t=1 ûr,t, i.e., ûcr,t are recentered residuals of ûr,t.
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2. Check that det|(1 − z)Ik − Π̂r,nz| has k − r̂n roots equal to one and all other roots

outside the unit circle. If so, proceed to the next step.

3. Construct the bootstrap sample {Y ∗t }nt=1 recursively from (2.7) with the initial value

Y0, Π0 = Π̂r,n, and u∗t being generated from {ûcr,t}nt=1 by the nonparametric bootstrap.

Calculate the least squares estimator

Π̂∗n =
1

n

n∑
t=2

∆Y ∗t Y
∗ᵀ
t−1(

1

n

n∑
t=2

Y ∗t−1Y
∗ᵀ
t−1)−1 . (2.99)

Let B̂n is the analog of B0 and D̂n is the analog of Dn by letting Π0 = Π̂r,n. It then can be

proved that

(Π̂∗n − Π̂r,n)B̂−1
n D̂nB̂n

L∗→M (2.100)

almost surely, where
L∗→ denotes the weak convergence conditional on the data. That is, the

law of the weak limit M is consistently estimated by the proposed bootstrap. Note that

Assumption 2.3.2 is not satisfied.

Given that Assumptions 2.3.1 and 2.3.2 are not satisfied, we extend Theorem 2.3.1

to accommodate this case. Let κn ↓ 0, nκn →∞, and φ̂′′n be given in (2.38). We note that

the same argument in the proof of Theorem 3.2 of Fang and Santos (2015) and Theorem 3.3

of Chen and Fang (2015) can be applied to prove that the law of the weak limit in (2.98) is

consistently estimated by the law of

φ̂′′n((Π̂∗n − Π̂r,n)B̂−1
n D̂nB̂n) (2.101)

conditional on the data. Let ĉ1−α be the 1− α quantile of (2.101) conditional on the data.

Then the same argument in the proof of Theorem 2.3.1 can be applied to prove that the

test of rejecting H0 when n2φ(Π̂n) > ĉ1−α controls the asymptotic null rejection rate and

is consistent.

Example 2.2.4-2.2.7 (Continued). The analysis here is similar to Example 2.2.1. Sup-
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pose the data is generated in Examples 2.2.4-2.2.7. In Example 2.2.4, let Π̂n be the least

squares estimator of Γ0 from regressing Yt on Zt and Wt based on (2.11). In Examples

2.2.5-2.2.7, let Π̂n be the method of moment estimators based on (2.14), (2.16) and (2.18),

respectively. Then, under certain weak dependence and moment condition, Assumption

2.3.1 is satisfied by all of four examples with τn =
√
n and M bing a zero mean Gaus-

sian. Specifically, in Example 2.2.4 the Gaussian limit follows by the standard result of

linear regression, and Examples 2.2.5-2.2.7 the Gaussian limit follows by the central limit

theorem.

Let the resampled data be generated by the nonparametric bootstrap when the

original data is a sequnce of i.i.d. data, and by a block bootstrap when the original data is

a sequence of dependent data. Then, under certain weak dependence and moment condition,

in Example 2.2.4 Assumption 2.3.2 is satisfied with Π̂∗n being be the least squares estimator

of Γ0 from regressing Y ∗t on Z∗t and W ∗t based on (2.11), and in Examples 2.2.5-2.2.7

Assumption 2.3.2 is satisfied with Π̂∗n being the method of moment estimators based on

(2.14), (2.16) and (2.18), respectively.

Proposition 2.7.1. Let φ : Mk×k → R be defined as in (2.24). For Π ∈Mk×k satisfying

φ(Π) = 0, let r∗, P2, Q1 and Q2 be given in Proposition 2.3.2. Let B∗ ≡ [Q1, P2]ᵀ. Then

for Π ∈Mk×k satisfying φ(Π) = 0, we have

lim
n→∞

φ(Π +MnT
∗
nB
∗)

t4n
=

k−r∗∑
j=r−r∗+1

σ2
j (P

ᵀ
2MQ2) with T ∗n ≡ diag(tn1r∗ , t

2
n1k−r∗) ,

for all sequences {Mn} ⊂Mk×k and {tn} ⊂ R+ such that tn ↓ 0, MnB
∗ →M ∈Mm×k as

n→∞.

Proof: Let {Mn} ⊂ Mk×k be such that MnB
∗ → M ∈ Mk×k and tn ↓ 0 as n → ∞.

Write Mn = [Mn,1,Mn,2] such that Mn,1 ∈Mk×r∗ , and M = M1 +M2 with Mn,1Q
ᵀ
1 →M1

and Mn,2P
ᵀ
2 → M2. Clearly, M1U = 0 for all U ∈ Ψ(Π). Recall that d = k − r. For

ε > 0, let Ψ(Π)ε and Ψ(Π)ε1 be given in the proof of Proposition 2.3.1. In what follows

we consider the nontrivial case with Π 6= 0 and M2 6= 0. In this case, Ψ(Π) $ Sk×d in
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view of Proposition 1.3.4 in Tao (2012) and hence Ψ(Π)ε1 6= ∅ for ε sufficiently small. Let

σ+
min(Π) be the smallest positive singular value of Π, which exists since Π 6= 0. Let ∆ ≡

5
√

2[σ+
min(Π)]−1(maxU∈Sk×d ‖M2U‖ + maxU∈Sk×d ‖M1U‖) > 0, which holds since M2 6= 0.

Then it follows that for all n sufficiently large

min
U∈Ψ(Π)tn∆

1

‖(Π +MnT
∗
nB
∗)U‖ ≥ min

U∈Ψ(Π)tn∆
1

‖ΠU‖ − max
U∈Sk×d

‖MnT
∗
nB
∗U‖

≥
√

2

2
tnσ

+
min(Π)∆− tn max

U∈Sk×d
‖Mn,1Q

ᵀ
1U‖ − t

2
n max
U∈Sk×d

‖Mn,2P
ᵀ
2U‖

> t2n max
U∈Sk×d

‖Mn,2P
ᵀ
2U‖ ≥ min

U∈Ψ(Π)
‖(Π +MnT

∗
nB
∗)U‖ ≥

√
φ(Π +MnT ∗nB

∗) , (2.102)

where the first inequality follows by the Lipschitz continuity of the infimum operator, the

triangle inequality and the fact that Ψ(Π)tn∆
1 ⊂ Sk×d, the second inequality follows by

Lemma 2.7.1 and the triangle inequality, the third inequality follows by the definition of ∆,

tn ↓ 0, Mn,1Q
ᵀ
1 →M1 and Mn,2P

ᵀ
2 →M2 as n→∞, the fourth inequality holds by the fact

that ΠU = 0 and Qᵀ1U = 0 for U ∈ Ψ(Π), and the last inequality follows by Lemma 2.3.1.

Let Γ∆ and the correspondence ϕ : R � Sk×d × Γ∆ be given in the proof of Proposition

2.3.1. Then it follows that

max
U∈Ψ(Π)tn∆

‖MnT
∗
nB
∗U‖ ≤ tn max

(U,V )∈ϕ(tn)
‖(Mn,1Q

ᵀ
1)(U + tnV )‖+ t2n max

U∈Sk×d
‖Mn,2P

ᵀ
2U‖

≤ t2n max
V ∈Γ∆

‖Mn,1Q
ᵀ
1V ‖+ t2n max

U∈Sk×d
‖Mn,2P

ᵀ
2U‖ , (2.103)

where the first inequality follows by the triangle inequality and the fact that Ψ(Π)tn∆ ⊂

Sk×d, and the second inequality follows by the fact that Qᵀ1U = 0 for U ∈ Ψ(Π) and

ϕ(tn) ⊂ Ψ(Π)× Γ∆. By analogous arguments in (2.102), we have for all n sufficiently large

min

U∈Ψ(Π)
t
3/2
n ∆

1 ∩Ψ(Π)tn∆

‖(Π +MnT
∗
nB
∗)U‖ ≥ min

U∈Ψ(Π)
t
3/2
n ∆

1

‖ΠU‖ − max
U∈Ψ(Π)tn∆

‖MnT
∗
nB
∗U‖

≥
√

2

2
t3/2n σ+

min(Π)∆− t2n max
V ∈Γ∆

‖Mn,1Q
ᵀ
1V ‖ − t

2
n max
U∈Sk×d

‖Mn,2P
ᵀ
2U‖

> t2n max
U∈Sk×d

‖Mn,2P
ᵀ
2U‖ ≥ min

U∈Ψ(Π)
‖(Π +MnT

∗
nB
∗)U‖ ≥

√
φ(Π +MnT ∗nB

∗) , (2.104)
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where the first inequality follows by the Lipschitz continuity of the infimum operator, the

triangle inequality and the fact that Ψ(Π)t
3/2
n ∆

1 ∩ Ψ(Π)tn∆ ⊂ Ψ(Π)t
3/2
n ∆

1 and Ψ(Π)t
3/2
n ∆

1 ∩

Ψ(Π)tn∆ ⊂ Ψ(Π)tn∆, the second inequality follows by (2.103) and Lemma 2.7.1, the third

inequality follows by the definition of ∆ and Γ∆, tn ↓ 0, Mn,1Q
ᵀ
1 →M1 and Mn,2P

ᵀ
2 →M2

as n→∞, the fourth inequality holds by the fact that ΠU = 0 and Qᵀ1U = 0 for U ∈ Ψ(Π),

and the last inequality follows by Lemma 2.3.1. By analogous arguments in (2.104), we

have for all n sufficiently large

min
U∈Ψ(Π)

t2n∆
1 ∩Ψ(Π)t

3/2
n ∆

‖(Π +MnT
∗
nB
∗)U‖ >

√
φ(Π +MnT ∗nB

∗) . (2.105)

Combining (2.102), (2.104), (2.105) and Lemma 2.3.1, we thus obtain that for all n suffi-

ciently large

φ(Π +MnT
∗
nB
∗) = min

U∈Ψ(Π)t
2
n∆

‖(Π +MnT
∗
nB
∗)U‖2 . (2.106)

Now, for the right hand side of (2.106), we have

| min
U∈Ψ(Π)t

2
n∆

‖(Π +MnT
∗
nB
∗)U‖2 − min

U∈Ψ(Π)t
2
n∆

‖(Π + tnM1 + t2nM2)U‖2|

≤ (O(t2n) +O(t2n)) max
U∈Ψ(Π)t

2
n∆

‖(tn(M1,nQ
ᵀ
1 −M1) + t2n(M2,nP

ᵀ
2 −M2))U‖ , (2.107)

where the inequality follows by the formula a2− b2 = (a+ b)(a− b), the Lipschitz inequality

of the infimum operator, the triangle inequality, and the fact that min
U∈Ψ(Π)t

2
n∆ ‖(Π +

MnT
∗
nB
∗)U‖ = O(t2n) and min

U∈Ψ(Π)t
2
n∆ ‖(Π + MT ∗nB

∗)U‖ = O(t2n). For the second term
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on the right hand side of (2.107), we have

max
U∈Ψ(Π)t

2
n∆

‖(tn(M1,nQ
ᵀ
1 −M1) + t2n(M2,nP

ᵀ
2 −M2))U‖

≤ tn max
(U,V )∈ϕ(t2n)

‖(Mn,1Q
ᵀ
1 −M1)(U + t2nV )‖+ t2n max

U∈Ψ(Π)t
2
n∆

‖(Mn,2P
ᵀ
2 −M2)U‖

≤ max
V ∈Γ∆

t3n‖(Mn,1Q
ᵀ
1 −M1)V ‖+ t2n max

U∈Ψ(Π)t
2
n∆

‖(Mn,2P
ᵀ
2 −M2)U‖ = o(t2n) , (2.108)

where the first inequality follows by the triangle inequality and the definition of ϕ(t2n),

the second inequality follows by the fact that Qᵀ1U = 0 and M1U = 0 for U ∈ Ψ(Π)

and ϕ(t2n) ⊂ Ψ(Π) × Γ∆, and the equality follows by applying the sub-multiplicativity of

Frobenius norm and the fact that Mn,1Q
ᵀ
1 →M1 and Mn,2P

ᵀ
2 →M2 as n→∞. Combining

(2.106), (2.107) and (2.108), we then obtain

φ(Π +MnT
∗
nB
∗) = min

U∈Ψ(Π)t
2
n∆

‖(Π + tnM1 + t2nM2)U‖2 + o(t4n) . (2.109)

Next, the first term on the right hand side of (2.109) can be written as

min
U∈Ψ(Π)t

2
n∆

‖(Π + tnM1 + t2nM2)U‖2 = min
(U,V )∈ϕ(t2n)

‖(Π + tnM1 + t2nM2)(U + t2nV )‖2

= t4n min
(U,V )∈ϕ(t2n)

‖ΠV +MU‖2 + o(t4n) , (2.110)

where the second equality follows by the fact that ΠU = 0 and M1U = 0 for U ∈ Ψ(Π) and

‖V ‖ ≤ ∆ for all V ∈ Γ∆. By analogous arguments in (2.59), we have

min
(U,V )∈ϕ(t2n)

‖ΠV +MU‖2 = min
U∈Ψ(Π)

min
V ∈Mk×d

‖ΠV +MU‖2 + o(1) . (2.111)

Combining (2.109), (2.110) and (2.111), we may conclude that

lim
n→∞

φ(Π +MnT
∗
nB
∗)

t4n
= min

U∈Ψ(Π)
min

V ∈Mk×d
‖ΠV +MU‖ =

k−r∗∑
j=r−r∗+1

σ2
j (P

ᵀ
2MQ2) , (2.112)

where the second equality follows by Proposition 2.3.2. This completes the proof of the
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lemma.

Proposition 2.7.2. Suppose Π0 ∈Mk×k, and let r0, Q0,1 and P0,2 be given in Proposition

2.3.3. Suppose there are Π̂n : {Xi}ni=1 → Mk×k such that (Π̂n − Π0)B−1
0 DnB0

L→ M

for some τn ↑ ∞ and random matrix M ∈ Mk×k, where Dn ≡ diag(τn1r0 , τ
2
n1k−r0) and

B0 ≡ [Q0,1, P0,2]ᵀ. Then we have under H0,

τ4
nφ(Π̂n)

L−→
k−r0∑

j=r−r0+1

σ2
j (P

ᵀ
0,2MQ0,2) .

Proof: For each n ∈ N, define gn : Mk×k → R by

gn(M) ≡ τ4
nφ(Π0 +MD−1

n B0) . (2.113)

By Proposition 2.7.1, gn(Mn)→
∑k−r∗

j=r−r∗+1 σ
2
j (P

ᵀ
2MQ2) whenever MnB

∗ →M . Note that

τ4
nφ(Π̂n) = gn((Π̂n − Π0)B−1

0 Dn), then the result of the proposition follows by Theorem

1.11.1(i) in van der Vaart and Wellner (1996a).

2.7.3 Kleibergen and Paap (2006)’s Test

For ease of reference, we review the rank test by Kleibergen and Paap (2006). Let

Π̂n ∈Mm×k be an estimator for Π0 ∈Mm×k that satisfies Assumption 2.3.1 with τn =
√
n

and vec(M) ∼ N(0,Ω) for some positive semidefinite matrix Ω. Let Ω̂n be a consistent

estimator of Ω. Let Π̂n = P̂nΣ̂nQ̂
ᵀ
n be a singular value decomposition of Π̂n, where P̂n ∈

Sm×m and Q̂n ∈ Sk×k, and Σ̂n ∈ Mm×k is diagonal with diagonal entries in descending

order. Write P̂n = [Ân, B̂n] and Q̂n = [Ĉn, D̂n] for Ân ∈Mm×r and Ĉn ∈Mk×r, and let Ŝn

be the right bottom (m − r) × (k − r) block submatrix of Σ̂n. Then the test statistic for

the hypotheses (2.2) is given by

rk(r) = nvec(Ŝn)ᵀ[(D̂n ⊗ B̂n)ᵀΩ̂n(D̂n ⊗ B̂n)]−1vec(Ŝn) , (2.114)
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where⊗ denotes the kronecker product. Thus, the rank test with the nominal level α ∈ (0, 1)

rejects the null H
(r)
0 in the hypotheses (2.2) whenever rk(r) > χ2((m − r)(k − r), 1 − α).

Note that B̂n and D̂n can be chosen up to postmultiplication by (m − r) × (m − r) and

(k − r)× (k − r) orthonormal matrices, respectively, but rk(r) is invariant to the choice of

B̂n and D̂n.

In order to examine the asymptotic behavior of the rank test when rank(Π0) < r,

we consider the case with Π0 = 02×2, Ω is positive definite and r = 1. Let M = PWQ be

a singular value decomposition of M, where P ∈ S2×2 and Q ∈ S2×2, and W ∈ M2×2 is

diagonal with diagonal entries in descending order. Write P = [P1,P2] and Q = [Q1,Q2]

for P1 ∈ M2×1 and Q1 ∈ M2×1, and let S be (2,2)th entry of W. Then by Lemma 2.7.7,

the asymptotic distribution of rk(1) is given by

rk(1)
L−→ S2

(Q2 ⊗ P2)ᵀΩ(Q2 ⊗ P2)
. (2.115)

Note that P2 andQ2 can be chosen up to a sign, respectively, but the asymptotic distribution

is invariant to the choice of P2 and Q2.

We now plot the distribution function of the weak limit in (2.115) by simulation.

We consider two values of Ω:

Ω1 =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


and Ω2 =



1 0 0 −0.9
√

5

0 1 0.9
√

5 0

0 0.9
√

5 5 0

−0.9
√

5 0 0 5


.

The distribution functions based on 100,000 simulation replications are plotted in Figure

2.7. The weak limit when Ω = Ω1 is first order dominated by the χ2(1) random variable,

and the weak limit when Ω = Ω2 first order dominates the χ2(1) random variable. This

implies that directly applying the test to (2.1) will under-reject the null when Ω = Ω1, and
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will over-reject the null when Ω = Ω2.

Figure 2.7: The distribution function of the weak limit of rk(1) when Π0 = 02×2

Lemma 2.7.7. Let rk(r) be given in (2.114). Suppose Π0 = 02×2 and Ω is positive definite.

Then the asymptotic distribution of rk(1) is given in (2.115).

Proof: For x ∈ R, let sgn(x) ≡ 1{x ≥ 0} − 1{x < 0}. Note that D̂n and Q2 are the

eigenvalue of nΠ̂ᵀnΠ̂n and MᵀM associated with the smallest eigenvalue. By analogous

arguments in Lemma 4.3 of Bosq (2000), we have

‖sgn(D̂ᵀnQ2)D̂n −Q2‖ ≤
2
√

2

σ2
1(M)− σ2

2(M)
‖nΠ̂ᵀnΠ̂n −MᵀM‖ . (2.116)

Similarly, we have

‖sgn(B̂ᵀnP2)B̂n − P2‖ ≤
2
√

2

σ2
1(M)− σ2

2(M)
‖nΠ̂nΠ̂ᵀn −MMᵀ‖ . (2.117)

Note that
√
nŜn = σ2(

√
nΠ̂n) and S = σ2(M). By the fact that singular values are

continuous, (2.116), (2.117) and the continuous mapping theorem, we thus obtain that

(
√
nŜn, sgn(B̂ᵀnP2)B̂ᵀn, sgn(D̂ᵀnQ2)D̂ᵀn)

L−→ (S,Pᵀ2 ,Q
ᵀ
2) . (2.118)
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Note that rk(1) does not change by replacing B̂n and D̂n with sgn(B̂ᵀnP2)B̂n and sgn(D̂ᵀnQ2)D̂n,

respectively, so the result of the lemma follows by (2.118) together with the continuous map-

ping theorem.

2.7.4 Parameters in Section 2.4.1

The values of parameters for DGP2 in the simulation studies in Section 2.4.1 are as

follows:

• The value of ΣF is specified as the sample correlation matrix of {Ft}Tt=1, where {Ft}Tt=1

is the real data in Section 2.4.2;

• The values of α and β are specified as α = (0.0813,−0.0271,−0.6203,−0.0460)ᵀ and

β = (−0.3411,−0.1277,−0.3838,−0.5312,−0.2728,−0.3527,−0.2188,−0.2934,−0.2035,

−0.3427)ᵀ;

• The value of Π1 is specified as Π1=Π̄T − βαᵀ, where Π̄T =
∑T

t=1RtF
ᵀ
t (
∑T

t=1FtF
ᵀ
t )−1

with {Ft, Rt}Tt=1 being the real data in Section 2.4.2;
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• The value of Γ is specified as

Γ =



0.0312 0.0255−0.0185 0.0591 0.0389 0.0953−0.15150.2286−0.0806−0.1659

0.0346−0.0166−0.0608 0.0743 0.0794−0.0043−0.21940.2959−0.0043 0.0016

−0.0304 0.0624−0.1347 0.1054−0.0369−0.0187−0.09890.3571 0.0133−0.1731

−0.0414 0.0951 0.0029−0.0497−0.0586 0.0910−0.09030.1850 0.0616−0.0865

−0.0570−0.0845 0.0606−0.0143−0.1971 0.0528 0.04030.1935−0.0114 0.1141

−0.0649−0.0738 0.0030 0.0335 0.0346−0.0432−0.07870.2199−0.0266−0.0013

−0.0334−0.1163−0.0139−0.0218−0.0390 0.0128−0.06450.1299 0.1105 0.0097

−0.1029 0.0368 0.0737−0.0005−0.1686 0.0254 0.01840.0966−0.0176 0.0596

−0.1153 0.0008 0.0373 0.0185−0.0927 0.1029 0.05460.0529−0.1792 0.0798

−0.0737−0.0669 0.0500 0.1466−0.1359 0.0617 0.10900.0402−0.0659−0.0440



;
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• The value of Σv is specified as

Σv =
1

100



0.19 0.09 0.07 0.05 0.04 0.03 0.02 −0.01 0.00 −0.01

0.09 0.11 0.06 0.05 0.04 0.04 0.03 0.01 0.02 0.01

0.07 0.06 0.10 0.05 0.04 0.04 0.03 0.03 0.02 0.01

0.05 0.05 0.05 0.08 0.04 0.04 0.04 0.03 0.02 0.01

0.04 0.04 0.04 0.04 0.08 0.05 0.05 0.05 0.04 0.03

0.03 0.04 0.04 0.04 0.05 0.08 0.06 0.05 0.05 0.03

0.02 0.03 0.03 0.04 0.05 0.06 0.08 0.06 0.05 0.03

−0.01 0.01 0.03 0.03 0.05 0.05 0.06 0.10 0.07 0.05

0.00 0.02 0.02 0.02 0.04 0.05 0.05 0.07 0.09 0.04

−0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.05 0.04 0.07



.



Chapter 3

Robust and Optimal Estimation

for Partially Linear Instrumental

Variables Models with Partial

Identification

Abstract

This chapter studies robust and optimal estimation of the slope coefficients in a

partially linear instrumental variables model with nonparametric partial identification. We

establish the root-n asymptotic normality of a penalized sieve minimum distance estimator

of the slope coefficients. We show that the asymptotic normality holds regardless of whether

the nonparametric function is point identified or only partially identified. However, in the

presence of nonparametric partial identification, the model is not regular in the sense of

Bickel et al. (1993) and the asymptotic variance matrix may depend on the penalty, so clas-

sical efficiency analysis does not apply. We then develop an optimally penalized estimator

which minimizes the asymptotic variance of a linear functional of the slope coefficients es-

157
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timator through employing an optimal penalty, and propose a feasible two-step procedure.

To conduct inference, a consistent variance matrix estimator is provided. Monte Carlos

simulations examine finite sample performance of our penalized estimators.
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3.1 Introduction

Recently nonparametric identification failure in the nonparametric instrumental

variables (NPIV) model has attracted much attention in the literature. As originally dis-

cussed in Newey and Powell (2003), nonparametric identification requires the so-called com-

pleteness condition that is much stronger than the usual covariance restrictions needed for

parametric identification. Santos (2012) discussed that even with restrictions on the param-

eter space, the completeness condition is still a strong requirement and may fail to hold for

a rich class of models. Moreover, recent work by Canay et al. (2013) showed that the com-

pleteness condition is not directly testable. In light of these, identification, estimation and

inference for the NPIV model allowing for nonparametric partial identification have been

extensively studied. Without nonparametric identification, Severini and Tripathi (2012)

derived necessary and sufficient conditions for the identification of linear functional of the

nonparametric function, a necessary condition for its
√
n estimability, and the associated

efficiency bound. Based on the necessary condition, Santos (2011) developed a feasible

√
n asymptotically normal estimator for the identifiable linear functional. For inference,

Santos (2012) developed methods for hypothesis testing for linear restrictions on the non-

parametric function, which are robust to a lack of nonparametric identification. In addition,

Liao and Jiang (2011) adopted a Bayesian approach to estimate the identified set of the

nonparametric function.

Nonparametric identification failure may occur in semiparametric conditional mo-

ment restriction models (Ai and Chen, 2003, 2007; Chen and Pouzo, 2009) as well. In

particular, Florens et al. (2012) demonstrated that the completeness condition is necessary

to identify the nonparametric function in the partially linear instrumental variables (PLIV)

model while it is not needed for the identification of the slope coefficients. This motivates us

to consider robust and optimal estimation of the parametric components in semiparametric

conditional moment restriction models without nonparametric identification. Our focus is

on robust and optimal estimation while the current literature focuses on robust inference,
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see Chen et al. (2011a), Hong (2012), Tao (2014) and Chernozhukov et al. (2015) for con-

ditional moment restriction models, and Chen et al. (2011b) for the maximum likelihood

setting. It is well known that in a nonstandard setting such as what is considered here, op-

timal estimation and inference have to be considered separately. So our paper complements

the existing literature. An attractive feature of the PLIV model is that nonparametric

identification failure does not affect the identifiability of the parametric component, which

may not be true in general nonlinear models (Chen et al., 2014a). As such, in this paper

we focus on the PLIV model and consider robust and optimal estimation of the parametric

component allowing for nonparametric partial identification. To the best of our knowledge,

this is the first paper studying optimal estimation for semiparametric conditional moment

restriction models without nonparametric identification.

Existing estimation methods for the PLIV model rely on the identification require-

ment of full parameters. Florens et al. (2012) studied the kernel method for estimating the

slope coefficients. Ai and Chen (2003) studied the sieve minimum distance (SMD) estima-

tion of smooth semiparametric conditional moment restriction models with a compactness

assumption, which include the PLIV model as a special case, while Chen and Pouzo (2009)

studied the penalized sieve minimum distance (PSMD) estimation of nonsmooth semipara-

metric conditional moment restriction models without a compactness assumption, allowing

for both well-posed and ill-posed problems. To establish the
√
n asymptotic normality of

the slope coefficients estimators, all existing methods require a strong-norm consistency and

a weak-norm convergence rate faster than n−1/4 of the nonparametric function estimator.

Without nonparametric identification, strong-norm consistency generally fails while the suf-

ficiently fast weak-norm convergence rate can still be guaranteed. In other words, the lack

of identification of the nuisance nonparametric function does not affect
√
n estimability of

the slope coefficients, but presents important technical challenges in deriving the asymp-

totic distribution. As a result, these slope coefficients estimators do not necessarily exhibit

asymptotic normality, which creates substantial challenges for inferential purposes. For

parametric models, Phillips (1989) and Choi and Phillips (1992) showed that the asymp-
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totic distribution of instrumental variables (IV) estimator for the identified coefficients in

partially identified structural equations is a variance matrix mixture of normals.

To fix the problem, we use penalization to select and consistently estimate a unique

element from the identified set of the nuisance nonparametric function, which fortunately

is enough to obtain the asymptotic normality. Specifically, we design a penalty function

that has a unique minimizer over the identified set and add it to the model-based criterion.

When the model-based criterion fails to identify the true nuisance nonparametric function,

the penalty takes effect to select a unique element from the identified set. Given an ap-

propriate penalty tuning parameter, the desired consistency and convergence rate of the

estimator for the selected nuisance nonparametric function follows and then the asymptotic

normality of the slope coefficients estimator is assured. If nonparametric identification is

assumed, the results are consistent with Ai and Chen (2003) and Chen and Pouzo (2009).

When the nonparametric function is only partially identified, the slope coefficients estimator

still enjoys the usual property of being asymptotically normal. For nonparametric models,

the method of achieving identification by penalization has been studied in Florens et al.

(2011) and Chen and Pouzo (2012a) to obtain a consistent estimator of the parameter of

interest. Here our ultimate goal is to obtain an asymptotically normal estimator of the slope

coefficients, rather than a consistent estimator of the nuisance nonparametric function. In

contrast to Chen and Pouzo (2009) that used penalization to deal with the ill-posed problem

arising from discontinuity, we use penalization to deal with the ill-posed problem arising

from noninjectivity (Kress, 2013).

For our penalized estimator of the slope coefficients, the asymptotic variance matrix

may depend on the penalty in the presence of nonparametric partial identification. Heuris-

tically, different penalty functions pin down a different function in the identified set, which

then give arise to a different identification noise defined as the discrepancy between the true

nonparametric function and the function selected by the given penalty. The identification

noise appears as an important part as the error term in the asymptotic variance matrix.

The dependence can be explained by the perhaps expected but unfortunate finding that the
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model with nonparametric partial identification is not regular in the sense of Bickel et al.

(1993), in particular, the slope coefficients are not continuous in the underlying distribution.

This in turn implies that classical efficiency analysis cannot be applied. As such, we study

the optimality in the sense of minimizing the asymptotic variance of a linear functional

of the slope coefficients estimator through employing an optimal penalty, and develop a

two-step feasible optimally penalized estimator. It is worth pointing out that the feasibility

requires only consistency of the penalty estimator, which is in contrast to the sufficiently

fast convergence rate requirement on the weight estimator in the optimally weighted esti-

mation (Ai and Chen, 2003; Chen and Pouzo, 2009). In fact, only a consistent initial slope

coefficients estimator is needed in the two-step procedure and thus is easy to satisfy. With

an optimal weight, our optimally penalized estimator is superior over the estimators in Ai

and Chen (2003) and Chen and Pouzo (2009). When the nonparametric function is point

identified, our estimator gives an efficient estimator. When the nonparametric function is

only partially identified, our estimator exhibits asymptotic normality with locally minimized

variance. To conduct inference, we provide a consistent variance matrix estimator, which

is directly available in the two-step procedure.

The remainder of the chapter is organized as follows. Section 3.2 discusses the mo-

tivation arising from the identification concern. Section 3.3 establishes the strong-norm

consistency, weak-norm convergence rate and asymptotic normality of the penalized esti-

mator. Section 3.4 develops an optimally penalized estimator. In Section 3.5, a consistent

variance matrix estimator is provided, while Monte Carlo simulation studies are presented

in Section 3.6. Section 3.7 briefly concludes. All the proofs are collected in the appen-

dices. For a random vector V , we use its calligraphic version V to denote its support and

L2(V ) ≡ {g : V → R : E[g2(V )] <∞}.
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3.2 The Model

We consider the PLIV model

Y = X ′β0 + φ0(Z) + ε and E[ε|W ] = 0, (3.1)

where (3.1) specifies the structural equation for the dependent variable Y ∈ R, and W ∈

Rdw are IVs that are mean independent of the error term ε ∈ R. The structural function

is partially linear in potentially endogenous variables X ∈ Rdx and Z ∈ Rdz for some

β0 ∈ Rdx and φ0 ∈ L2(Z). This covers the linear IV model and the popular partially

linear regression model (Robinson, 1988) as special cases with φ0 = 0 and X and Z being

exogenous, respectively. As in the partially linear regression model, the slope coefficients β0

are the parameter of interest while the nonparametric function φ0 is the nuisance parameter.

Our concern differs from that in semi-nonparametric models (Blundell et al., 2007), where

the parameter of interest is the nonparametric function.

Let TX : Rdx → L2(W ) be given by TX(β) = E[X ′β|W = ·] and TZ : L2(Z) →

L2(W ) be given by TZ(φ) = E[φ(Z)|W = ·]. Florens et al. (2012) demonstrated that the

identification of φ0 in (3.1) requires the injectivity of TZ , namely the completeness condition

on the joint distribution of (Z,W ), i.e.,

E[φ(Z)|W ] = 0⇒ φ = 0. (3.2)

Santos (2012) discussed that (3.2) fails to hold for a rich class of models even if the parameter

space for φ0 is restricted. Specifically, to ensure (3.2), the parameter space and the null

space of TZ have to have a zero intersection. This is a strong and undesired requirement.

Moreover, Santos (2012) demonstrated that any distribution of (Z,W ) under which (3.2)

holds is arbitrarily closed to a distribution under which (3.2) does not hold. As such,

imposing the identification of φ0 may easily run into the misspecification trouble. On the

other hand, Canay et al. (2013) showed that there does not exist a test for (3.2) with
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nontrival power.

Fortunately, the identification of β0 does not hinge on (3.2). As demonstrated in

Florens et al. (2012), the sufficient and necessary conditions for the identification of β0 are

the injectivity of TX and R(TX) ∩ R(TZ) = {0}, where R(TX) denotes the range of TX .

For the former, the existence of a finite number of IVs satisfying certain rank condition is

sufficient as in the linear IV model, and there are plenty of well developed rank tests in the

literature, see Camba-Mendez and Kapetanios (2009b) for a review. Under the additively

separable structure, the latter is similar to the non-multicolinearity condition. This is not

as strong as (3.2), and a nontrivial test for it can be developed following Santos (2012),

see Remark 3.2.1. See Florens et al. (2012) for more discussions. As such, it is routine to

impose the identification of β0. Motivated by these results, we consider the estimation of

β0 without the completeness condition (3.2).

Remark 3.2.1. One is able to construct a nontrivial test forR(TX)∩R(TZ) = {0} allowing

for a violation of (3.2). The negation is that there exists φ∗ ∈ L2(Z) such that

inf
β∈Sdx

|E[X ′β − φ∗(Z)|W ]| = 0,

where Sdx ≡ {x ∈ Rdx : ‖x‖ = 1}. Let Φ∗ be the parameter space for φ∗. Following Santos

(2012), under contain regularity conditions the negation is equivalent to

inf
β∈Sdx ,φ∈Φ∗

sup
t∈T
|E[(X ′β − φ(Z))ω(t,W )]| = 0

for some ω : T ×W → R, where T ⊂ Rdt is a known compact set. It suggests employing

the following test statistic

Sn = inf
β∈Sdx ,φ∈Φ∗Jn

sup
t∈Tn
| 1√
n

n∑
i=1

(X ′iβ − φ(Zi))ω(t,Wi)|,

where {Xi, Zi,Wi}ni=1 is a set of observations, {Φ∗Jn}
∞
n=1 and {Tn}∞n=1 are sieve spaces that

grow to be dense in Φ∗ and T , respectively. The limiting distribution of Sn can be similarly
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developed as in Theorem 3.1 of Santos (2012) and the bootstrap critical values with size

control and power property can be similarly developed as in Theorem 3.2 and Corollary 3.1

of Santos (2012), respectively.

3.3 Robust Estimation

Without the completeness condition (3.2), the SMD estimator by Ai and Chen

(2003) and the PSMD estimator by Chen and Pouzo (2009) do not necessarily provide a

√
n asymptotically normal estimator of β0. This is illustrated in a simple linear IV model,

see Lemma 3.9.1. In particular, the estimator is still
√
n consistent, but the asymptotic

distribution is highly nonstandard. The failure is due to the inconsistency of the estimator

of φ0. To fix the problem, we use penalization to select and consistently estimate a unique

element from the identified set of φ0, which fortunately is enough to obtain the asymptotic

normality.

To proceed, let B ⊂ Rdx and Φ ⊂ L2(Z) denote the parameter space for β0 and φ0,

respectively. Without the completeness condition (3.2), (β0, φ0) is not necessarily unique

solution to

min
β∈B,φ∈Φ

E[(E[Y −X ′β − φ(Z)|W ])2σ−2(W )] (3.3)

where the weight σ2(·) > 0 is introduced to address potential heteroscedasticity. This

in turn implies that (β0, φ0) can not be consistently estimated by minimizing the sample

analog of a nonparametric version of (3.3) with φ restricted to a sieve space for Φ, which is

the method pursued by Ai and Chen (2003). Nevertheless, to obtain a
√
n asymptotically

normal estimator of β0, it suffices to obtain a consistent estimator of any element from

the identified set of φ0, rather than a consistent estimator of φ0. Let N (TZ) denote the

null space of TZ , N (TZ)⊥ denote the orthogonal complement of N (TZ) and φ⊥0 denote the
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projection of φ0 in N (TZ)⊥. It is observed that (β0, φ
⊥
0 ) is the unique solution to

min
β∈B,φ∈Φ∩N (TZ)⊥

E[(E[Y −X ′β − φ(Z)|W ])2σ−2(W )] (3.4)

provided φ⊥0 ∈ Φ. It suggests that (β0, φ
⊥
0 ) can be consistently estimated by minimizing

the sample analog of a nonparametric version of (3.4) with φ restricted to a sieve space for

Φ ∩ N (TZ)⊥. However, it is not straightforwardly feasible since N (TZ) is unknown and a

sieve space for Φ ∩N (TZ)⊥ is not directly available.

Next we introduce how penalization solves the problem. Let Φ0 denote the identified

set of φ0,

Φ0 ≡ {φ0 + φ ∈ Φ : E[φ(Z)|W ] = 0}. (3.5)

Without the completeness condition (3.2), Φ0 is not necessarily a singleton. Let P : Φ →

[0,∞) be a penalty function that has a unique minimizer over Φ0, which is denoted φP ≡

arg minφ∈Φ0
P (φ). Let (βλn,P , φλn,P ) denote a solution to

min
β∈B,φ∈Φ

E[(E[Y −X ′β − φ(Z)|W ])2σ−2(W )] + λnP (φ) (3.6)

where 0 < λn = o(1) is a penalty tuning parameter. Given the identification of β0, a

significant deviation of β from β0 leads to a significant deviation of the first term from

zero, which dominates the second term for all sufficiently large n since 0 < λn = o(1). A

significant deviation of φ from φP outside Φ0 leads to a significant deviation of the first term

from zero while a significant deviation of φ from φP within Φ0 leads to a significant deviation

of the second term from its minimal over Φ0. Therefore, it follows that (βλn,P , φλn,P )

converges to (β0, φP ) as n goes to infinity. Let {Yi, Xi, Zi,Wi}ni=1 be a set of observations

satisfying (3.1). Display (3.6) suggests that a feasible consistent estimator (β̂P , φ̂P ) for
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(β0, φP ) solves 1

inf
β∈B,φ∈ΦJn

1

n

n∑
i=1

(Ê[Y −X ′β − φ(Z)|Wi])
2σ̂−2(Wi) + λnP̂ (φ), (3.7)

where ΦJn is a sieve space for Φ, Ê[·|W ] is a series estimator for E[·|W ], σ̂2(·) and P̂ (·) are

estimators for σ2(·) and P (·), respectively. In particular, if P (φ) = E[φ2(Z)] and φ⊥0 ∈ Φ,

then φP = φ⊥0 since φ⊥0 has the smallest norm over Φ0. So our penalization method is

equivalent to the nonstraightforwardly feasible method arising from (3.4). In addition, a

variety of penalties can be employed and thus the penalization method applies more broadly.

For completeness, we review how to construct sieve spaces and series estimators

following Chen (2007). Let {qj(·)}∞j=1 denote a sequence of known basis functions (such as

power series, splines, Fourier series, etc.), with the property that its linear combination can

approximate any function in Φ well. Let qJn(z) ≡ (q1(z), . . . , qJn(z))′, then the linear sieve

space ΦJn is given by

ΦJn ≡ {φ ∈ Φ : φ(z) = qJn(z)′β, β ∈ RJn}. (3.8)

Let {pj(·)}∞j=1 denote a sequence of known basis functions (such as power series, splines,

Fourier series, etc.), with the property that its linear combination can approximate any

square integrable real-valued function of w well. Let pkn(w) ≡ (p1(w), . . . , pkn(w))′ and

P ≡ (pkn(W1), . . . , pkn(Wn))′, then the series estimator is given by

Ê[Y −X ′β − φ(Z)|W ] ≡ pkn(W )′(P ′P )−
n∑
i=1

pkn(Wi)(Yi −X ′iβ − φ(Zi)) (3.9)

for any β ∈ B and φ ∈ Φ.

1The estimators are indexed by P to stress the potential dependence of the asymptotic properties of the
slope coefficients estimator and of the probability limit of the nonparametric function estimator on P (·). On
the other hand, the dependence of the asymptotic properties of the slope coefficients estimator on σ2(·) is
suppressed for notational simplicity as it is not our main concern.
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3.3.1 Strong-Norm Convergence

To establish the consistency of (β̂P , φ̂P ) under the strong norm ‖ · ‖ + ‖ · ‖∞,2 we

require Φ to be a set of smooth functions, which ensures both consistency and the uniform

behavior of the empirical process on the parameter space. In particular, we assume Φ is

bounded under the Sobolev norm ‖ · ‖∞,γz . To define ‖ · ‖∞,γz , for λ a dz dimensional vector

of nonnegative integers, let |λ| ≡
∑dz

i=1 λi and Dλφ(z) ≡ ∂|λ|φ(z)/∂zλ1
1 . . . ∂z

λdz
dz

For γz ∈ R,

let γz denote the greatest integer smaller than γz. Then the norm ‖ · ‖∞,γz is given by

‖φ‖∞,γz ≡ max
|λ|≤γz

sup
z∈Z
|Dλφ(z)|+ max

|λ|=γz
sup
z 6=z′

|Dλφ(z)−Dλφ(z′)|
‖z − z′‖γz−γz

(3.10)

A function φ with ‖φ‖∞,γz <∞ has partial derivatives up to order γz uniformly bounded,

and partial derivatives of order γz Hölder continuous with the exponent γz − γz ∈ (0, 1].

Let CγzM (Z) be the set of all continuous functions φ : Z → R with ‖φ‖∞,γz ≤M , then these

properties hold uniformly in φ ∈ CγzM (Z). Specifically, we assume Φ = CγzM (Z) for some

γz > dz/2 and M > 0, and thus Φ is compact under ‖ · ‖∞. Given this, we are able to

establish the consistency of φ̂P under ‖ · ‖∞, though only the consistency under L2 norm is

needed.

Remark 3.3.1. In our setting, there are two possible sources for ill-posedness of TZ , which

are the noninjectivity of TZ and the discontinuity of its inverse correspondence, see Kress

(2013). As the latter is not our main concern, for simplicity we impose compactness of Φ

to circumvent it as in Newey and Powell (2003), Ai and Chen (2003) and Santos (2012).

Alternatively, the second source of ill-posedness can be circumvented by employing a lower

semicompact penalty as in Chen and Pouzo (2009, 2012a), which we do not pursue here.

Therefore, our penalty concentrates on dealing with the first source of ill-posedness.

We proceed by imposing the following assumptions.

Assumption 3.3.1. (i) {Yi, Xi, Zi,Wi}ni=1 is a set of independently and identically dis-

tributed observations satisfying (3.1); (ii) β0 ∈ B ⊂ Rdz that is compact and φ0 ∈ Φ =

2For β ∈ B and φ ∈ Φ, the strong norm of (β, φ) is given by ‖β‖+ ‖φ‖∞.
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CγzM (Z) for some γz > dz/2 and M > 0; (iii) Z is compact and convex with nonempty

interior; (iv) supw∈W E[‖X‖2|W = w] <∞ and supw∈W E(ε2|W = w) <∞; (v) R(TX) ∩

R(TZ) = {0} and TX is injective.

Assumption 3.3.2. (i) {ΦJ : J ≥ 1} is a sequence of nonempty closed subsets such that

ΦJ ⊂ Φ for all J ; (ii) For φ ∈ Φ, there is Πnφ ∈ ΦJn such that ‖Πnφ − φ‖∞ = O(J−αzn )

with αz > 0.

Assumption 3.3.3. (i) supw∈W |σ2(w) − σ̂2(w)| = op(1) for some σ2 : W → (0,∞) with

0 < infw∈W σ2(w) ≤ supw∈W σ2(w) < ∞; (ii) supφ∈Φ |P̂ (φ) − P (φ)| = Op(δP,n) for some

δP,n = o(1) and P : Φ→ [0,∞); (iii) P (·) has a unique minimizer φP over Φ0 and P (·) is

continuous over Φ with respect to ‖ · ‖∞.

Assumption 3.3.4. (i) W is compact and connected with Lipschitz continuous bound-

ary; (ii) The density of W is bounded and bounded away from zero over W; (iii) The

eigenvalues of E[pkn(W )pkn(W )′] are bounded and bounded away from zero for all kn; (iv)

Either knξ
2
n = o(n) or kn log(kn) = o(n) for pkn(w) a polynomial spline sieve, where

ξn ≡ supw∈W ‖pkn(w)‖; (v) There is Πx ∈ Rdx×kn such that supw∈W ‖E[X|W = w] −

Πxp
kn(w)‖ = O(k−αwn ) with αw > 0; (vi) For φ ∈ Φ, there is πφ ∈ Rkn such that

supw∈W |E[φ(Z)|W = w]− pkn(w)′πφ| = O(k−αwn ) uniformly over φ ∈ Φ.

Assumption 3.3.1 specifies the data generating process. Specifically, Assumptions

3.3.1(ii) and (iii) impose the compact parameter spaces; Assumption 3.3.1(iv) imposes fi-

nite moment conditions and Assumption 3.3.1(v) assumes the identification condition for

β0. Assumption 3.3.2 specifies ΦJn and its approximation error. In particular, the polyno-

mial rate of approximation error is satisfied with αz = γz/dz under Assumptions 3.3.1(ii)

and (iii) if ΦJn is a sieve space with tensor-product of power series, splines or Fourier se-

ries. Assumption 3.3.3 specifies the weight and penalty and their estimators. Specifically,

Assumption 3.3.3(i) requires uniform convergence of the weight estimator to a nondegen-

erate and bounded weight, which is obviously satisfied by the identity weight; Assumption

3.3.3(ii) requires uniform convergence of the penalty estimator over Φ, which is obviously
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satisfied if P̂ (·) = P (·); Assumption 3.3.3(iii) requires uniqueness of the minimizer of the

penalty over Φ0 and continuity of P (·) over Φ, which are key to ensure consistency. In par-

ticular, Φ0 is convex and compact under Assumptions 3.3.1(ii) and (iii). Then Assumption

3.3.3(iii) is satisfied by all L2-type penalties, i.e., P (φ) =
∫
Z φ

2(z)dµ(z), where µ is a finite

measure. For P (φ) = E[φ2(Z)], the natural estimator is given by P̂ (φ) = 1
n

∑n
i=1 φ

2(Zi)

and Assumption 3.3.3(ii) is satisfied under Assumptions 3.3.1(i)-(iii), see Lemma 3.9.2. As-

sumption 3.3.4 is standard in the use of series estimators for conditional mean functions,

see Newey (1997), Huang (1998, 2003) and Chen and Pouzo (2009, 2012a). In particular,

the polynomial rate of approximation error can be satisfied under certain smoothness as in

Assumption 3.3.2.

The consistency of (β̂P , φ̂P ) under ‖·‖+‖·‖∞ is established in the following theorem.

Theorem 3.3.1. Suppose Assumptions 3.3.1-3.3.4 hold. Let (β̂P , φ̂P ) be the estimator

in (3.7). If Jn + dx ≤ kn, 0 < λn = o(1) and max{knn , k
−2αw
n , J−2αz

n } = o(λn), then

‖β̂P − β0‖ = op(1) and ‖φ̂P − φP ‖∞ = op(1).

Theorem 3.3.1 shows that (β̂P , φ̂P ) converges in probability to (β0, φP ) under ‖ · ‖+

‖ · ‖∞ provided the penalty tuning parameter λn is appropriately chosen. In particular, it

is required to dominate the estimation error of the series estimator for conditional mean

(knn +k−2αw
n ) and the approximation error of the sieve space for the parameter space (J−2αz

n ).

Heuristically, the penalty is effective in choosing a unique function in Φ0 only when the

estimation error of the model-based criterion and the approximation error of the sieve

space are asymptotically negligible relative to the penalty term. On the other hand, λn is

required to decay to zero so that the penalty term selects a unique element from Φ0 rather

than from Φ. The argument for Theorem 3.3.1 is similar to the proof of Theorem A.1 in

Chen and Pouzo (2012a), though we only penalize part of the parameters. Here we provide

an explicit lower bound for λn, which ensures the possibility of establishing the asymptotic

normality of β̂P , see Assumption 3.3.6 and Remark 3.3.2.
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3.3.2 Weak-Norm Convergence Rate

Following Ai and Chen (2003), we define the weak norm ‖(β1, φ1) − (β2, φ2)‖w for

any (β1, φ1), (β2, φ2) ∈ B×Φ as

‖(β1, φ1)− (β2, φ2)‖2w ≡ E[(E[X ′(β1 − β2)|W ] + E[φ1(Z)− φ2(Z)|W ])2σ−2(W )]. (3.11)

It implies that the identified set {β0}×Φ0 is an equivalence class under ‖·‖w since ‖(β0, φ1)−

(β0, φ2)‖2w = 0 for any φ1, φ2 ∈ Φ0. It turns out that establishing the ‖ · ‖w-convergence

rate of (β̂P , φ̂P ) does not present much technical challenge.

The theorem below establishes the rate of convergence of (β̂P , φ̂P ) under ‖ · ‖w.

Theorem 3.3.2. Suppose Assumptions 3.3.1-3.3.4 hold. Let (β̂P , φ̂P ) be the estimator

in (3.7). If Jn + dx ≤ kn, 0 < λn = o(1) and max{knn , k
−2αw
n , J−2αz

n } = o(λn), then

‖(β̂P , φ̂P )− (β0, φP )‖w = op(
√
λn).

Theorem 3.3.2 shows that (β̂P , φ̂P ) converges in probability to (β0, φP ) under ‖ · ‖w

at a rate faster than
√
λn. A rate faster than n−1/4 requires λn = O(n−1/2). In fact,

the result still holds by replacing (β0, φP ) with any element from {β0} × Φ0 as it is a

equivalent class under ‖ · ‖w as discussed above. Moreover, without Assumptions 3.3.1(v)

and 3.3.3(iii), it can be shown that ‖(β̂P , φ̂P )− (β0, φ0)‖w = Op(
√
λn). So despite the loss

of strong-norm consistency, the weak-norm convergence rate of (β̂P , φ̂P ) is not lost in the

absence of identification. In fact, the argument for Theorem 3.3.2 does not present much

difference from the corresponding results in Chen and Pouzo (2009, 2012a), but the result

can be improved from Op(
√
λn) to op(

√
λn) due to Theorem 3.3.1.

3.3.3 Asymptotic Normality

Given the ‖·‖+‖·‖∞ consistency and ‖·‖w convergence rate of (β̂P , φ̂P ), we are now

able to establish the asymptotic normality of β̂P . We first illustrate why the ‖ · ‖+ ‖ · ‖∞

consistency is crucial for establishing the asymptotic normality.
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For j = 1, . . . , dx, let X(j) be the jth component of X and φ∗j be a solution to

min
φ∈L2(Z)

E[(E[X(j) − φ(Z)|W ])2σ−2(W )], (3.12)

which solves the first order condition

E[E[X(j) − φ∗j (Z)|W ] E[φ(Z)|W ]σ−2(W )] = 0 for all φ ∈ L2(Z). (3.13)

Let Φ∗ ≡ (φ∗1, . . . , φ
∗
dx

)′. Without the completeness condition (3.2), Φ∗ may not be unique,

but E[X − Φ∗(Z)|W ] is unique as the objective function in (3.12) is strictly convex in

E[X(j) − φ(Z)|W ]. Therefore E[X − Φ∗(Z)|W ] and

Γ ≡ E[E[X − Φ∗(Z)|W ](E[X − Φ∗(Z)|W ])′σ−2(W )] (3.14)

are independent of the choice of Φ∗, where the latter is positive definite by Assumption

3.3.1(v). By result (3.13) and the law of iterated expectation, we have the linear represen-

tation

√
n(β̂P − β0) =

√
nΓ−1 E[E[X − Φ∗(Z)|W ](E[X ′(β̂P − β0)|W ]

+ E[φ̂P (Z)− φP (Z)|W ])σ−2(W )]

= −
√
nΓ−1 E[E[X − Φ∗(Z)|W ](Y −X ′β̂P − φ̂P (Z))σ−2(W )]. (3.15)

In the appendix, we prove that

1√
n

n∑
i=1

E[X − Φ∗(Z)|Wi](Yi −X ′iβ̂P − φ̂P (Zi))σ
−2(Wi) = op(1), (3.16)

which can be imagined as the analog of the orthogonality of residuals and regressors in the

least squared regression. In the appendix, we also prove that the class F ≡ {f : R×Rdx ×

Z ×W → R : f(y, x, z, w) = E[X −Φ∗(Z)|W = w](y− x′β − φ(z))σ−2(w), (β, φ) ∈ B×Φ}

is Donsker. By the stochastic equicontinuity of the stochastic process indexed by f ∈ F
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and the ‖ · ‖ + ‖ · ‖∞ consistency of (β̂P , φ̂P ) to (β0, φP ) in Theorem 3.3.1, results (3.15)

and (3.16) imply

√
n(β̂P −β0) = Γ−1 1√

n

n∑
i=1

E[X−Φ∗(Z)|Wi](Yi−X ′iβ0−φP (Zi))σ
−2(Wi) + op(1), (3.17)

which delivers the asymptotic normality by the Central Limit Theorem and the Slutsky

lemma. The usefulness of ‖ · ‖ + ‖ · ‖∞ consistency arises from the application of the

stochastic equicontinuity, while ‖ · ‖w consistency is not enough since the function class F

is not continuous in B×Φ with respect to ‖ · ‖w. The proof procedure is different from Ai

and Chen (2003) and Chen and Pouzo (2009): both rely on nonparametric identification

and the latter in addition demands strong-norm convergence rates.

To formalize the arguments above, we first impose the following assumptions.

Assumption 3.3.5. (i) φ∗j ∈ Φ for all j = 1, . . . , dx; (ii) There exists Π∗σ ∈ Rdx×kn such

that supw∈W ‖E[X − Φ∗(Z)|W = w]σ−2(w)−Π∗σp
kn(w)‖ = O(k−αwn ).

Assumption 3.3.6. (i) n−1
∑n

i=1[σ̂2(Wi)−σ2(Wi)]
2 = Op(δ

2
σ,n) for some δσ,n = o(n−1/4);

(ii) There exists εn = o(n−1/2) such that λn max1≤j≤dx supφ∈Φ |P̂ (φ ± εnΠnφ
∗
j ) − P̂ (φ)| =

op(ε
2
n).

Assumption 3.3.7. β0 is in the interior of B and φP is in the interior of Φ with respect

to ‖ · ‖∞.

Assumption 3.3.5 requires φ∗j to lie in Φ for all j = 1, . . . , dx, and the polynomial

rate of the series approximation error for E[X − Φ∗(Z)|W = w]σ−2(w) as in Assumptions

3.3.4(v) and (vi). In particular, Assumption 3.3.5(i) is only required for one Φ∗ if it is not

unique. Assumption 3.3.6 further restricts the weight and penalty estimators. Specifically,

Assumption 3.3.6(i) requires a sufficiently fast convergence rate of the weight estimator

while Assumption 3.3.6(ii) requires uniform continuity of the penalty estimator, which is

satisfied by all L2-type penalties whenever λn = o(n−1/2). In particular, a uniform con-

vergence rate of the weight estimator (Ai and Chen, 2003; Chen and Pouzo, 2009) is not
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required. Assumption 3.3.7 imposes the standard assumption that the true and the selected

parameters are in the interior of the parameter spaces.

Remark 3.3.2. Assumption 3.3.6(ii) ensures that the estimation error of the penalty term is

not involved in the asymptotic distribution of β̂P . It requires that λn = o(n−1/2). Besides in

the study of general conditional moment models (Chen and Pouzo, 2009), similar assumption

can be found in the study of linear LASSO regression (Knight and Fu, 2000), GMM LASSO

estimation (Caner, 2009) and GMM estimation with moment selection (Liao, 2013; Cheng

and Liao, 2015).

The following theorem confirms the asymptotic normality of β̂P .

Theorem 3.3.3. Suppose Assumptions 3.3.1-3.3.7 hold. Let (β̂P , φ̂P ) be the estimator in

(3.7). If Jn + dx ≤ kn, 0 < λn, max{knn , k
−2αw
n , J−2αz

n } = o(λn) and λn = o(n−1/2), then

√
n(β̂P − β0)

L−→ N(0, VP ),

where VP ≡ Γ−1ΣPΓ−1 with

ΣP ≡ E[E[X − Φ∗(Z)|W ](E[X − Φ∗(Z)|W ])′σ−4(W )σ2
P (W )]

and

σ2
P (W ) ≡ E[(ε+ φ0(Z)− φP (Z))2|W ].

Theorem 3.3.3 demonstrates that
√
n(β̂P−β0) is asymptotically normally distributed

with mean zero and variance matrix VP . In particular, the asymptotic normality of β̂P holds

regardless of whether φ0 is point identified or not. When the completeness condition (3.2)

holds,
√
n(β̂P − β0) has exactly the same asymptotic property as the estimators in Ai and

Chen (2003) and Chen and Pouzo (2009). Leveraging their results in turn implies that VP is

the efficiency bound in the model with the completeness condition (3.2) if σ2(W ) = E[ε2|W ].

When the completeness condition (3.2) does not hold, β̂P still enjoys the usual property of

being asymptotically normal.
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In the present of nonparametric partial identification, VP nevertheless may depend

on the penalty P (·) in addition to the weight σ2(·). Specifically, different P (·)’s pin down

a different φP in Φ0, which gives arise to a different identification noise defined as the

discrepancy between φ0 and φP . In particular, the dependence is through σ2
P (W ), which is

conditional variance of the error term and the identification noise. Thus, different P (·)’s offer

different asymptotic normal distributions. This may be expected from (3.17) as different

φP ’s give different asymptotically linear statistics, or influence functions (Bickel et al., 1993).

It turns out that this can be explained by the finding that the model with nonparametric

partial identification is not regular in the sense of Bickel et al. (1993), in particular, the

slope coefficients are not continuous in the underlying distribution. This is illustrated in a

simple linear IV model, see Lemma 3.9.9.

3.4 Optimal Estimation

Given the irregularity in the presence of nonparametric partial identification, clas-

sical efficiency analysis cannot be applied. However, minimizing VP with respect to the

weight σ2(·) and the penalty P (·) can be pursued as follows. In particular, an optimal σ2(·)

exists to minimize VP for a given P (·) as in the efficiency analysis for the model with the

completeness condition (3.2) (Ai and Chen, 2003; Chen and Pouzo, 2009). Specifically, an

optimal σ2(·) is given by σ2
P (·), see Lemma 3.9.10. So a feasible optimally weighted estima-

tor can be developed as in Ai and Chen (2003) and Chen and Pouzo (2009), and gives an

efficient estimator in the model with the completeness condition (3.2). Unfortunately, in

general an optimal P (·) does not exist to minimize VP for a given σ2(·). In turn, we focus

on the study of optimal P (·) in the sense of minimizing the asymptotic variance of a linear

functional of the slope coefficients estimator for a given σ2(·).
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3.4.1 Optimal Penalty

For 0 6= λ ∈ Rdx , the asymptotic variance of
√
nλ′(β̂P −β0) is given by λ′VPλ. Since

λ′VPλ is strictly convex in φP , the natural penalty for minimizing λ′VPλ is given by Pλ(·)

with

Pλ(φ) = λ′Γ−1Σ(φ)Γ−1λ, (3.18)

where Σ(φ) ≡ E[E[X − Φ∗(Z)|W ](E[X − Φ∗(Z)|W ])′σ−4(W )(Y − X ′β0 − φ(Z))2]. Note

that Pλ(·) is strictly convex and continuous in Φ with respect to ‖ · ‖∞, then there exists a

unique minimizer of Pλ(·) over the convex and compact set Φ0, see Lemma 3.4.1. Obviously,

Pλ(·) offers a solution to minimizing λ′VPλ. However, in the absence of nonparametric

identification, the minimizer φPλ is not necessarily equal to φ0 and may depend on λ, so in

general there does not exist a P ∗(·) such that VP − VP ∗ is positive semidefinite for all P (·)

except some special cases. If σ2
P (W ) does not depend on W or E[ε(φ0(Z)−φP (Z))|W ] = 0

for all φP ∈ Φ0, then VP − VPλ is positive semidefinite for all 0 6= λ ∈ Rdx . For the latter,

the optimal penalty would choose φPλ = φ0 and successfully identify φ0.

Lemma 3.4.1. Suppose Assumptions 3.3.1(i)-(iv), 3.3.3(i) and 3.3.5(i) hold. Let σ2(·) be

fixed and Pλ(·) given in (3.18). Then P (·) = Pλ(·) satisfies Assumption 3.3.3(iii) and the

resulting estimator of λ′β0 has the smallest asymptotic variance.

Remark 3.4.1. Unfortunately, Lemma 3.4.1 does not offer an easy solution to minimize

λ′VPλ globally with respect to both P (·) and σ2(·). By Lemma 3.9.10, minimizing λ′VPλ

evaluated at σ2(·) = σ2
P (·) with respect to P (·) gives the global minimal. However, in general

λ′VPλ evaluated at σ2(·) = σ2
P (·) depends on P (·) in a complicated and intractable way.

In particular, plugging σ2(·) = σ2
P (·) into λ′VPλ yields the asymptotic variance λ′(E[E[X −

Φ∗(Z)|W ](E[X − Φ∗(Z)|W ])′σ−2
P (W )])−1λ, which is not strictly convex in φP since E[X −

Φ∗(Z)|W ] may depend on φP and σ2
P (·) appears as its inverse. Therefore, no straightforward

penalty satisfies Assumption 3.3.3(iii).
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3.4.2 Two-Step Procedure

To obtain a feasible optimally penalized estimator, we have to estimate Pλ(·). We

only need to estimate Γ and Σ(·). Note that a consistent estimator of σ2(·) is given a prior.

The idea is to replace the expectation with the sample average, the conditional mean with

the series estimator and the unknown parameters with their estimators.

To estimate Γ and Σ(·), we have to first estimate Φ∗. For j = 1, . . . , dx, let φ̂∗j solve

min
φ∈ΦJn

1

n

n∑
i=1

[Ê[X(j) − φ(Z)|Wi]]
2σ̂−2(Wi). (3.19)

Let Φ̂∗ ≡ (φ̂∗1, . . . , φ̂
∗
dx

)′. Then Γ can be estimated by

Γ̂ =
1

n

n∑
i=1

Ê[X − Φ̂∗(Z)|Wi](Ê[X − Φ̂∗(Z)|Wi])
′σ̂−2(Wi), (3.20)

and Σ(·) can be estimated by Σ̂(·) with

Σ̂(φ) =
1

n

n∑
i=1

Ê[X − Φ̂∗(Z)|Wi](Ê[X − Φ̂∗(Z)|Wi])
′σ̂−4(Wi)(Yi −X ′iβ̂1 − φ(Zi))

2, (3.21)

where β̂1 is an initial estimator of β0. Thus, Pλ(·) can be estimated by P̂λ(·) with

P̂λ(φ) = λ′Γ̂−1Σ̂(φ)Γ̂−1λ. (3.22)

To establish the consistency of P̂λ(·), we only need consistency of Ê[X − Φ̂∗(Z)|W = ·] to

E[X − Φ∗(Z)|W = ·] that is guaranteed, though Φ̂∗ may not be consistent for Φ∗ without

the completeness condition (3.2).3

To establish the consistency of P̂λ(·), we establish the following proposition.

Proposition 3.4.1. Suppose Assumptions 3.3.1(i)-(iv), 3.3.2, 3.3.3(i), 3.3.4 and 3.3.5(i)

hold and ‖β̂1 − β0‖ = op(1). Let Γ̂ and Σ̂(·) be the estimators in (3.20) and (3.21), respec-

3Alternatively, a penalty term can be attached to the objective function in (3.19) to ensure the consistency
of Φ̂∗ by following the method in Section 3.3.1.
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tively. If Jn ≤ kn and max{knn , k
−2αw
n , J−2αz

n } = o(1), then

sup
φ∈Φ
‖Γ̂−1Σ̂(φ)Γ̂−1 − Γ−1Σ(φ)Γ−1‖ = op(1).

Proposition 3.4.1 implies that supφ∈Φ ‖P̂λ(φ)−Pλ(φ)‖ = op(1), and so P̂λ(·) satisfies

Assumption 3.3.3(ii) for Pλ(·). In addition, for any εn = o(n−1/2), we have supφ∈Φ |P̂λ(φ±

εnΠnφ
∗
j ) − P̂λ(φ)| = Op(εn) by Lemma 3.9.11, Assumptions 3.3.1(i), (ii), (iv), 3.3.3(i) and

3.3.5(i). It implies that Pλ(·) satisfies Assumption 3.3.6(ii) whenever λn = o(n−1/2). It

together with Lemma 3.4.1 yields the following corollary.

Corollary 3.4.1. Suppose the conditions of Theorem 3.3.3 hold and ‖β̂1 − β0‖ = op(1).

Let σ2(·) be fixed. For 0 6= λ ∈ Rdx, let P̂λ(·) be the estimator in (3.22) and (β̂P , φ̂P )

be the estimator in (3.7). Then
√
nλ′(β̂Pλ − β0) has no larger asymptotic variance than

√
nλ′(β̂P − β0) for any P (·).

Corollary 3.4.1 implies that employing the penalty P̂λ(·) leads to the feasible optimal

penalized estimator λ′β̂Pλ with minimum asymptotic variance for a given σ2(·). To imple-

ment the feasible optimally penalized estimator, an initial consistent estimator β̂1 is needed.

As only consistency is required, β̂1 can be the SMD estimator, the PSMD estimator, or our

penalized estimator. The feasible two-step procedure is summarized as follows.

1. For the identity weight, compute β̂1 as the SMD estimator, the PSMD estimator, or

the estimator in (3.7) for P (·) being any L2-type penalty.

2. For a given σ2(·), compute P̂λ(·) according to (3.22) for 0 6= λ ∈ Rdx . For the same

σ2(·), compute (β̂Pλ , φ̂Pλ) according to (3.7).

It is worth pointing out that the feasible penalized estimator only requires a con-

sistent penalty estimator (i.e., Assumption 3.3.3(ii)), which is in contrast to the sufficiently

fast convergence rate requirement on the weight estimator (i.e., Assumption 3.3.6(i)) for

the optimally weighted estimator (Ai and Chen, 2003; Chen and Pouzo, 2009). In fact, the
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optimally penalized estimator only requires an initial consistent estimator of β0, whereas

the optimally weighted estimator requires an initial estimator of (β0, φP ) with sufficiently

fast convergence rate. Thus, the feasibility of the optimally penalized estimator is easier to

achieve. Note that if σ2(·) = σ2
P (·) in Step 2 for a given P (·), then our optimally penalized

estimator not only delivers an efficient estimator for β0 when φ0 is identified but also reduces

the asymptotic variance of the estimator of λ′β0 when φ0 is only partially identified. So our

procedure can provide an estimator that is as efficient as those in Ai and Chen (2003) and

Chen and Pouzo (2009) when φ0 is identified, and an estimator with asymptotic normality

and locally minimized variance for λ′β0 when φ0 is only partially identified.

3.5 Variance Estimation

For the purpose of inference, a consistent estimation of VP is needed. The natural

estimator for VP is given by V̂P ≡ Γ̂−1Σ̂(φ̂P )Γ̂−1 with β̂1 = β̂P . Given Theorem 3.3.1 and

Proposition 3.4.1, the consistency of V̂P immediately follows by the continuous mapping

theorem. This is given in the following corollary.

Corollary 3.5.1. Suppose the conditions of Theorem 3.3.1 and Assumption 3.3.5(i) hold.

Let (β̂P , φ̂P ) be the estimator in (3.7), and Γ̂ and Σ̂(·) be the estimators in (3.20) and (3.21)

with β̂1 = β̂P .. Then ‖V̂P − VP ‖ = op(1).

Corollary 3.5.1 implies V̂
−1/2
P

√
n(β̂P − β0)

L−→ N(0, Idx) provided ΣP is positive

definite, which holds if and only if σ2
P (·) is nonzero. This result can be used for hypothesis

testing and confidence set construction for β0. Note that the variance matrix estimate is

directly available in the two-step procedure for the optimally penalized estimator, so there

is no extra computation cost for obtaining the variance matrix estimate.
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3.6 Simulation Studies

In this section, we conduct small-scale Monte Carlo simulations to examine finite

sample performance of our penalized estimators and show how the distribution of the SMD

estimator in Ai and Chen (2003) deviates from normality.

We assume that (X,Z,W ) ∈ [0, 1]3 are generated according to the density

fX,Z,W (x, z, w) =
2

3
(x+ z + w) for (x, z, w) ∈ [0, 1]3. (3.23)

By construction, E[6Z2− 6Z + 1|X,W ] = 0 which implies the completeness condition (3.2)

is violated by fX,Z,W . Let U be uniformly distributed on [0, 1] independent of (X,Z,W ),

β0 = 1, φ0(Z) = Z2/2 and Y be generated according to the relationship

Y = Xβ0 + φ0(Z) + ε with ε =
U

12

(
1

fZ|X,W (Z|X,W )
− 1

)
. (3.24)

where fZ|X,W is the conditional density of Z given X and W . By construction, E[ε|X,W ]

= 0 and E[ε|Z] = (1− fZ(Z))/(24fZ(Z)). So (X,W ) are exogenous while Z is endogenous.

Note that E[X|X,W ] = X and E[φ(Z)|X,W ] is a function of both X and W for any

φ ∈ L2(Z) by symmetry of fX,Z,W , so Assumption 3.3.1(v) is satisfied.

We employ qj(z) = zj−1 for j = 1, 2, . . . to construct ΦJn and p1(x,w) = x and

{pk(x,w)}∞k=2 being orthonormal polynomials of w for series estimators.4 In constructing

ΦJn , we impose ‖φ‖∞,2 ≤ 100. We let σ2(·) = 1. To investigate the effect of the penalty, we

implement our penalized estimation for four L2-type penalties, which differ in the assigned

probability measure, and the optimal penalty in Corollary 3.4.1, which is denoted as P1(·).

Specifically, the four L2-type penalties are given by P (φ) =
∫ 1

0 φ
2(z)ν(z)dz, with ν(z) =

fZ(z), 1, 2z, 1/((1+z) ln 2) being density functions. We use the SMD estimator as the initial

estimator in our optimal penalized estimation. It is easy to show that all rate requirements

4The results for {qj}∞j=1 being splines of order 4 with equally spaced knots and {pk}∞k=1 being splines of
order 2 with equally spaced knots are similar and are available upon request.
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are satisfied by letting (kn, Jn, λn) satisfy the conditions of Theorem 3.3.3. However, the

theory offers little guidance as to how to select (kn, Jn, λn). For simplicity, we let kn = n
1
5 +1

and Jn = kn − 1 and λn = n−
2
3 , n−

4
5 and n−

8
9 to investigate the sensitivity of the results

with respect to λn. The results are reported for n = 100, 500, 1000 and 2000 based on

1000 Monte Carlo replications. Figures 3.1-3.4 show the distribution of the SMD estimator

and our penalized estimators.5 For each case, the normal distribution with mean zero and

identical variance is plotted for comparison. Tables 3.1 and 3.2 report the bias and standard

deviation of our penalized estimators.

The top left graph in Figures 3.1-3.4 shows that the SMD estimator does not exhibit

normality even for n = 2000. In particular, the shape of the graph is similar to shape of

the graph in Figure 1 of Choi and Phillips (1992), so the distribution of the SMD estimator

appears to be a mixture of normals. It suggests the necessity of penalization. The remaining

graphs in Figures 3.1-3.4 show that the distribution of our penalized estimators with λn =

n−4/5 is close to normal for all n’s and P (·). The results for λn = n−2/3 and λn = n−8/9

are similar and are available upon request. Table 3.1 implies that the bias of our penalized

estimators is sensitive to the choice of λn when n = 100 and n = 500, and the sensitivity

becomes less severe as n increases uniformly over all P (·). In particular, the bias is small and

close to zero when n = 2000. Table 3.2 shows that the standard deviation of
√
n(β̂P −β0) is

not sensitive to the choice of λn, but significantly sensitive to the choice of P (·). It confirms

the theoretical finding in Theorem 3.3.3 and suggests the necessity of optimal penalization.

The last row of Table 3.2 shows that using P1(·) yields smaller variances than using the

other four L2 penalties for all cases except for n = 100. Overall, the performance of our

penalized and optimally penalized estimators is encouraging in finite samples.

5The scale of y-axis in Figure 3.1 is different from those in Figures 3.2-3.4.
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Plot (1,1) is for the SMD estimator (i.e., P (·) = 0) while plots (1,2)-(3,2) are for our penalized estimators,
whose order is the same as in Tables 3.1 and 3.2.

Figure 3.1: The distribution of
√
n(β̂P −β0) for various P (·) when λn = n−4/5 and n = 100

Plot (1,1) is for the SMD estimator (i.e., P (·) = 0) while plots (1,2)-(3,2) are for our penalized estimators,
whose order is the same as in Tables 3.1 and 3.2.

Figure 3.2: The distribution of
√
n(β̂P −β0) for various P (·) when λn = n−4/5 and n = 500
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Plot (1,1) is for the SMD estimator (i.e., P (·) = 0) while plots (1,2)-(3,2) are for our penalized estimators,
whose order is the same as in Tables 3.1 and 3.2.

Figure 3.3: The distribution of
√
n(β̂P −β0) for various P (·) when λn = n−4/5 and n = 1000

Plot (1,1) is for the SMD estimator (i.e., P (·) = 0) while plots (1,2)-(3,2) are for our penalized estimators,
whose order is the same as in Tables 3.1 and 3.2.

Figure 3.4: The distribution of
√
n(β̂P −β0) for various P (·) when λn = n−4/5 and n = 2000
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Table 3.1: The bias of β̂P for various P (·), λn and n

n = 100 n = 500

λn = n−
2
3 λn = n−

4
5 λn = n−

8
9 λn = n−

2
3 λn = n−

4
5 λn = n−

8
9

P (φ) = E[φ2(Z)] 0.0468 0.0267 0.0178 0.0113 0.0016 −0.0013

P (φ) =
∫ 1

0
φ2(z)dz 0.0454 0.0263 0.0178 0.0125 0.0031 0.0002

P (φ) =
∫ 1

0
φ2(z)2zdz 0.0366 0.0179 0.0099 −0.0003 −0.0067 −0.0079

P (φ) =
∫ 1

0

φ2(z)
(1+z) ln 2

dz 0.0418 0.0244 0.0167 0.0126 0.0041 0.0013

P (φ) = P1(φ) 0.0026 0.0030 0.0033 −0.0011 −0.0011 −0.0011

n = 1000 n = 2000

λn = n−
2
3 λn = n−

4
5 λn = n−

8
9 λn = n−

2
3 λn = n−

4
5 λn = n−

8
9

P (φ) = E[φ2(Z)] 0.0017 −0.0040 −0.0049 −0.0024 −0.0051 −0.0048

P (φ) =
∫ 1

0
φ2(z)dz 0.0039 −0.0018 −0.0030 −0.0002 −0.0033 −0.0034

P (φ) =
∫ 1

0
φ2(z)2zdz −0.0099 −0.0119 −0.0110 −0.0125 −0.0110 −0.0088

P (φ) =
∫ 1

0

φ2(z
(1+z) ln 2

dz 0.0052 −0.0002 −0.0015 0.0014 −0.0017 −0.0021

P (φ) = P1(φ) −0.0007 −0.0005 −0.0005 −0.0007 −0.0006 −0.0006

Table 3.2: The standard deviation of
√
nβ̂P for various P (·), λn and n

n = 100 n = 500

λn = n−
2
3 λn = n−

4
5 λn = n−

8
9 λn = n−

2
3 λn = n−

4
5 λn = n−

8
9

P (φ) = E[φ2(Z)] 0.3360 0.3306 0.3224 0.3358 0.3075 0.2848

P (φ) =
∫ 1

0
φ2(z)dz 0.2933 0.2824 0.2736 0.2627 0.2335 0.2131

P (φ) =
∫ 1

0
φ2(z)2zdz 0.4697 0.4752 0.4667 0.5940 0.5557 0.5197

P (φ) =
∫ 1

0

φ2(z)
(1+z) ln 2

dz 0.2582 0.2435 0.2346 0.1927 0.1646 0.1475

P (φ) = P1(φ) 0.3178 0.3829 0.4396 0.0450 0.0597 0.0719

n = 1000 n = 2000

λn = n−
2
3 λn = n−

4
5 λn = n−

8
9 λn = n−

2
3 λn = n−

4
5 λn = n−

8
9

P (φ) = E[φ2(Z)] 0.3511 0.3188 0.2948 0.3360 0.2973 0.2662

P (φ) =
∫ 1

0
φ2(z)dz 0.2654 0.2345 0.2136 0.2482 0.2147 0.1895

P (φ) =
∫ 1

0
φ2(z)2zdz 0.6449 0.5951 0.5552 0.6578 0.5754 0.5063

P (φ) =
∫ 1

0

φ2(z)
(1+z) ln 2

dz 0.1852 0.1579 0.1416 0.1696 0.1418 0.1237

P (φ) = P1(φ) 0.0499 0.0729 0.0948 0.0572 0.0911 0.0988
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3.7 Conclusion

In this paper, we developed
√
n asymptotically normal estimators for the slope coef-

ficients in the PLIV model, which are robust to a possible lack of nonparametric identifica-

tion. Since the model is not regular in the presence of nonparametric partial identification,

we then developed a feasible two-step optimally penalized estimator with minimum asymp-

totic variance for a linear functional of the slope coefficients through employing an optimal

penalty. In addition, we provided a consistent estimator for the asymptotic variance matrix.

Monte Carlos simulations demonstrated good finite sample performance of our penalized

estimators. Despite the focus on the PLIV model in this paper, the results can be extended

to general semiparametric conditional moment restriction models following the same tech-

nique as long as sufficient structural information on the conditional moment function is

imposed.
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3.9 Appendix

3.9.1 Proofs of Main Results

For ease of reference, Table 3.3 presents simplified notation for random variables,

conditional means and series estimators, which will be used throughout the appendix. Table

3.4 collects the sequences utilized in the text and the location of their introduction.
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Table 3.3: List of simplified notation

ρ(β, φ, Y,X,Z) The random variable Y −X ′β − φ(Z) for β ∈ B and φ ∈ Φ.
m(β, φ,W ) The conditional mean E[ρ(β, φ, Y,X,Z)|W ] for β ∈ B and φ ∈ Φ.

m̂(β, φ,W ) The series estimator Ê[ρ(β, φ, Y,X,Z)|W ] for β ∈ B and φ ∈ Φ.

hj(φ,X,Z) The random variable X(j) − φ(Z) for φ ∈ Φ, j = 1, . . . , dx.
gj(φ,W ) The conditional mean E[hj(φ,X,Z)|W ] for φ ∈ Φ, j = 1, . . . , dx.

ĝj(φ,W ) The series estimator Ê[hj(φ,X,Z)|W ] for φ ∈ Φ, j = 1, . . . , dx.

Table 3.4: List of sequences

λn The penalty tuning parameter. See Display (3.6).
Jn The dimension of the sieve space. See Display (3.8).
kn The number of sieves for the series estimator. See Display (3.9).
J−αzn The rate of the sieve approximation error. See Assumption 3.3.2(ii).
k−αwn The rate of the series approximation error. See Assumption 3.3.4(v).
δP,n The convergence rate of the penalty estimator. See Assumption 3.3.3(ii).
δδ,n The convergence rate of the weight estimator. See Assumption 3.3.6(i).
δm,n The convergence rate of the series estimator. See Lemma 3.9.3.
ξn The length of sieves for the series estimator. See Assumption 3.3.4(iii).
εn The nuisance sequence for the penalty estimator. See Assumption 3.3.6(ii).

Proof of Theorem 3.3.1: For every ε > 0, let A(ε) ≡ {(β, φ) ∈ B×Φ : ‖β − β0‖+ ‖φ−

φP ‖∞ ≥ ε} and An(ε) ≡ {(β, φ) ∈ B×ΦJn : ‖β − β0‖+ ‖φ− φP ‖∞ ≥ ε}. By the definition

of (β̂P , φ̂P ) in (3.7), we have for any ε > 0

P(‖β̂P − β0‖+ ‖φ̂P − φP ‖∞ ≥ ε) ≤ P( inf
(β,φ)∈An(ε)

1

n

n∑
i=1

m̂2(β, φ,Wi)σ̂
−2(Wi)

+ λnP̂ (φ) ≤ 1

n

n∑
i=1

m̂2(β0,ΠnφP ,Wi)σ̂
−2(Wi) + λnP̂ (ΠnφP )). (3.25)

By Lemma 3.9.3 and Assumption 3.3.3(ii), result (3.25) implies for any ε > 0

P(‖β̂P − β0‖+ ‖φ̂P − φP ‖∞ ≥ ε) ≤ P( min
(β,φ)∈An(ε)

C E[m2(β, φ,W )σ−2(W )]

+ λnP (φ) ≤ C ′ E[m2(β0,ΠnφP ,W )σ−2(W )] + λnP (ΠnφP ) + op(λn) +Op(δ
2
m,n)). (3.26)
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Recalling that m(β0,ΠnφP ,W ) = E[φP (Z)−ΠnφP (Z)|W ], we have

E[m2(β0,ΠnφP ,W )σ−2(W )] = E[(E[φP (Z)−ΠnφP (Z)|W ])2σ−2(W )]

≤ ‖ΠnφP − φP ‖2∞ ≤ O(J−2αz
n ), (3.27)

where the first inequality follows by Assumption 3.3.3(i) and the second by Assumption

3.3.2(ii). Since An(ε) ⊂ A(ε) for any ε > 0 by Assumption 3.3.2 and |P (ΠnφP )− P (φP )| =

o(1) by Assumptions 3.3.2 and 3.3.3(iii), results (3.26) and (3.27) imply for any ε > 0

P(‖β̂P − β0‖+ ‖φ̂P − φP ‖∞ ≥ ε) ≤ P( min
(β,φ)∈A(ε)

C E[m2(β, φ,W )σ−2(W )]

+ λnP (φ) ≤ O(J−2αz
n ) + λnP (φP ) + op(λn) +Op(δ

2
m,n)). (3.28)

Recall that δn,m = max{
√
kn/n, k

−αw
n } and max{kn/n, k−2αw

n , J−2αz
n } = o(λn), so result

(3.28) implies for any ε > 0

P(‖β̂P − β0‖+ ‖φ̂P − φP ‖∞ ≥ ε) ≤ P( min
(β,φ)∈A(ε)

C E[m2(β, φ,W )σ−2(W )]

+ λnP (φ) ≤ λnP (φP ) + op(λn)). (3.29)

Note that A(ε) is compact with respect to ‖ · ‖ + ‖ · ‖∞ by Assumptions 3.3.1(ii) and (iii)

and C E[m2(β, φ,W )σ−2(W )] + λnP (φ) is continuous in (β, φ) with respect to ‖ · ‖+ ‖ · ‖∞

by Lemma 3.9.4 and Assumption 3.3.3(iii), so there exists (βε,n, φε,n) ∈ A(ε) such that

C E[m2(βε,n, φε,n,W )σ−2(W )] + λnP (φε,n)

= min
(β,φ)∈A(ε)

C E[m2(β, φ,W )σ−2(W ) + λnP (φ). (3.30)

Thus, results (3.29) and (3.30) imply for any ε > 0

P(‖β̂P − β0‖+ ‖φ̂P − φP ‖∞ ≥ ε) ≤ P(C E[m2(βε,n, φε,n,W )σ−2(W )]

+ λnP (φε,n)− λnP (φP ) ≤ op(λn)). (3.31)
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By the definition of lim inf, there exists a subsequence {nk}∞k=1 such that

lim
k→∞

C E[m2(βε,nk , φε,nk ,W )σ−2(W )] + λnkP (φε,nk)− λnkP (φP )

λnk

= lim inf
n→∞

C E[m2(βε,n, φε,n,W )σ−2(W )] + λnP (φε,n)− λnP (φP )

λn
. (3.32)

Since A(ε) is compact, it is without loss of generality to assume that {(βε,n, φε,n)}∞k=1 is

convergent with the limit, say (βε, φε) ∈ A(ε). Then it must be one of the cases: (i)

E[m2(βε, φε,W )σ−2(W )] > 0 or (ii) E[m2(βε, φε,W )σ−2(W )] = 0. For case (ii), we have

m2(βε, φε,W ) = 0 almost surely by Assumption 3.3.3(i), and thus βε = β0 and φε ∈ Φ0 by

Assumption 3.3.1(v). This in turn implies that ‖φε − φP ‖∞ ≥ ε since (βε, φε) ∈ A(ε), and

thus P (φε) > P (φP ) by Assumption 3.3.3(iii). For case (ii), we therefore have

lim
k→∞

C E[m2(βε,nk , φε,nk ,W )σ−2(W )] + λnkP (φε,nk)− λnkP (φP )

λnk
> 0. (3.33)

Note that (3.33) is obviously true for case (i) since 0 < λn = o(1). It combines with result

(3.32) to yield

lim inf
n→∞

C E[m2(βε,n, φε,n,W )σ−2(W )] + λnP (φε,n)− λnP (φP )

λn
> 0. (3.34)

Combining results (3.31) and (3.34) yields for any ε > 0

lim
n→∞

P(‖β̂P − β0‖+ ‖φ̂P − φP ‖∞ ≥ ε) = 0, (3.35)

which completes the proof of the theorem.

Proof of Theorem 3.3.2: By the definition of (β̂P , φ̂P ) in (3.7), we have

1

n

n∑
i=1

m̂2(β̂P , φ̂P ,Wi)σ̂
−2(Wi) + λnP̂ (φ̂P )

≤ 1

n

n∑
i=1

m̂2(β0,ΠnφP ,Wi)σ̂
−2(Wi) + λnP̂ (ΠnφP )). (3.36)
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By Lemma 3.9.3 and Assumption 3.3.3(ii), result (3.36) implies

C E[m2(β̂P , φ̂P ,W )σ−2(W )] + λnP (φ̂P ) ≤ C ′ E[m2(β0,ΠnφP ,W )σ−2(W )]

+ λnP (ΠnφP ) +Op(δP,nλn) +Op(δ
2
m,n)). (3.37)

By Theorem 3.3.1 and the continuous mapping theorem, there exists δ1,n ↓ 0 such that

|P (φ̂P )− P (φP )| = Op(δ1,n). Let δ2,n ≡ |P (ΠnφP )− P (φP )|, then δ2,n = o(1) by Assump-

tions 3.3.2 and 3.3.3(iii). Thus, results (3.27) and (3.37) imply

E[m2(β̂P , φ̂P ,W )σ−2(W )] ≤ Op((δP,n + δ1,n + δ2,n)λn) +Op(δ
2
m,n + J−2αz

n ). (3.38)

Since δP,n+δ1,n+δ2,n = o(1) and δ2
m,n+J−2αz

n = o(λn) by recalling that δn,m = max{
√
kn/n,

k−αwn }, result (3.38) implies

E[m2(β̂P , φ̂P ,W )σ−2(W )] ≤ op(λn). (3.39)

Note that ‖(β̂P , φ̂P )− (β0, φP )‖2w = E[m2(β̂P , φ̂P ,W )σ−2(W )] by the definition of ‖ · ‖w in

(3.11), so the result of the theorem follows by result (3.39).

Proof of Theorem 3.3.3: For j = 1, . . . , dx, let ej be the jth column of the dx × dx

identity matrix. By Theorem 3.3.1 and Assumptions 3.3.1(ii), 3.3.2, 3.3.5(i) and 3.3.7, we

have β̂P ± εnej ∈ B and φ̂P ± εnΠnφ
∗
j ∈ ΦJn for any εn = o(1) with probability approaching

one. By the definition of (β̂P , φ̂P ) in (3.7), it follows

0 ≤ 1

2n

n∑
i=1

m̂2(β̂P ∓ εnej , φ̂P ± εnΠnφ
∗
j ,Wi)σ̂

−2(Wi) +
λn
2
P̂ (φ̂P ± εnΠnφ

∗
j )

− 1

2n

n∑
i=1

m̂2(β̂P , φ̂P ,Wi)σ̂
−2(Wi)−

λn
2
P̂ (φ̂P )

=
±εn
n

n∑
i=1

ĝj(Πnφ
∗
j ,Wi)m̂(β̂P , φ̂P ,Wi)σ̂

−2(Wi)

+
ε2n
2n

n∑
i=1

ĝ2
j (Πnφ

∗
j ,Wi)σ̂

−2(Wi) +
λn
2
P̂ (φ̂P ± εnΠnφ

∗
j )−

λn
2
P̂ (φ̂P ) (3.40)
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for any εn = o(1) with probability approaching one. By Assumption 3.3.6(ii), there exists

εn = o(n−1/2) such that

λn
2
P̂ (φ̂P ± εnΠnφ

∗
j )−

λn
2
P̂ (φ̂P ) = op(ε

2
n). (3.41)

Since 1
n

∑n
i=1 ĝ

2
j (Πnφ

∗
j ,Wi)σ̂

−2(Wi) = Op(1) by Assumptions 3.3.1(ii), (iv), 3.3.2, 3.3.3(i)

and 3.3.5(i), combining results (3.40) and (3.41) yields

1

n

n∑
i=1

ĝj(Πnφ
∗
j ,Wi)m̂(β̂P , φ̂P ,Wi)σ̂

−2(Wi) = op(n
−1/2). (3.42)

By Theorem 3.3.2, Lemmas 3.9.5 and 3.9.6, Assumption 3.3.3(i), the triangle inequality and

the Cauchy Schwartz inequality, result (3.42) implies

1

n

n∑
i=1

gj(φ
∗
j ,Wi)m̂(β̂P , φ̂P ,Wi)σ

−2(Wi) = op(n
−1/2). (3.43)

For j = 1, . . . , dx, let ĝ
(σ)
j (φ∗j ,W ) ≡ Ê[gj(φ

∗
j ,W )σ−2(W )|W ]. Then result (3.43) can be

written as

1

n

n∑
i=1

ĝ
(σ)
j (φ∗j ,Wi)ρ(β̂P , φ̂P , Yi, Xi, Zi) = op(n

−1/2). (3.44)

By Lemma 3.9.7 and Theorems 3.3.1 and 3.3.2, result (3.44) implies

1

n

n∑
i=1

gj(φ
∗
j ,Wi)ρ(β̂P , φ̂P , Yi, Xi, Zi)σ

−2(Wi) = op(n
−1/2). (3.45)

Let G∗(W ) ≡ E[X − Φ∗(Z)|W ], which is equal to (g1(φ∗1,W ), . . . , gdx(φ∗dx ,W ))′ as well.

For λ ∈ Sdx , let Fλ ≡ {f : R × Rdx × Z × W → R : f(y, x, z, w) = λ′Γ−1G∗(w)

ρ(β, φ, y, x, z)σ−2(w), (β, φ) ∈ B×Φ}. Then Fλ is Donsker by Lemma 3.9.8 since supw∈W

|λ′Γ−1G∗(w)| < ∞ by Assumptions 3.3.1(ii), (iv), (v) and 3.3.5(i). Thus, the stochastic
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continuity and Theorem 3.3.1 imply

1

n

n∑
i=1

λ′Γ−1G∗(Wi)ρ(β̂P , φ̂P , Yi, Xi, Zi)σ
−2(Wi)

− λ′Γ−1 E[G∗(W )ρ(β̂P , φ̂P , Y,X,Z)σ−2(W )]

− 1

n

n∑
i=1

λ′Γ−1G∗(Wi)ρ(β0, φP , Yi, Xi, Zi)σ
−2(Wi)

+ λ′Γ−1 E[G∗(W )ρ(β0, φP , Y,X,Z)σ−2(W )] = op(n
−1/2). (3.46)

Note that E[G∗(W )ρ(β0, φP , Y,X,Z)σ−2(W )] = 0, so combining results (3.15), (3.45) and

(3.46) yields

λ′(
√
n(β̂P − β0)) = λ′Γ−1 1√

n

n∑
i=1

G∗(Wi)ρ(β0, φP , Yi, Xi, Zi)σ
−2(Wi) + op(1). (3.47)

Therefore, the result of the theorem follows by result (3.47), the central limit theorem and

the Slutsky lemma.

Proof of Lemma 3.4.1: For 0 6= λ ∈ Rdx , let a(W ) ≡ λ′Γ−1 E[X − Φ∗(Z)|W ](E[X −

Φ∗(Z)|W ])′σ−4(W )Γ−1λ, then Pλ(φ) = E[a(W )(Y − X ′β0 − φ(Z))2]. By Assumptions

3.3.1(i)-(iv), 3.3.3(i) and 3.3.5(i), we have for any φ1, φ2 ∈ Φ,

|Pλ(φ1)− Pλ(φ2)| . ‖φ1 − φ2‖∞, (3.48)

which implies that Pλ(·) is continuous in Φ. Obviously, Pλ(·) is strictly convex in Φ. Note

that Φ0 is convex and compact since Φ is compact by Assumption 3.3.1(ii) and (iii), so

Pλ(·) has a unique minimizer over Φ0. This completes the proof of the lemma.

Proof of Proposition 3.4.1: The proof proceeds by showing ‖Γ̂ − Γ‖ = op(1) and

supφ∈Φ ‖Σ̂(φ)− Σ(φ)‖ = op(1), and concludes the result of the proposition by the triangle

inequality. We first show ‖Γ̂− Γ‖ = op(1). By Lemma 3.9.11, Assumption 3.3.3(i) and the
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triangle inequality, for 1 ≤ j, k ≤ dx,

1

n

n∑
i=1

ĝj(ϕ,Wi)ĝk(ψ,Wi)σ̂
−2(Wi) =

1

n

n∑
i=1

gj(ϕ,Wi)gk(ψ,Wi)σ
−2(Wi) + op(1) (3.49)

uniformly over ϕ,ψ ∈ Φ. By the similar argument as in the proof of Lemma 3.9.8, we have

{f :W → R : f(w) = gj(ϕ,w)gk(ψ,w)σ−2(w), ϕ, ψ ∈ Φ} is Glivenko Cantelli. So

1

n

n∑
i=1

gj(ϕ,Wi)gk(ψ,Wi)σ
−2(Wi) = E[gj(φ,W )gk(ϕ,W )σ−2(W )] + op(1) (3.50)

uniformly over ϕ,ψ ∈ Φ. Since E[gj(φ
∗
j ,W ) E[ϕ(Z)|W ]σ−2(W )] = 0 for all ϕ ∈ Φ,

E[gj(ϕ,W )gk(ψ,W )σ−2(W )] = E[gj(φ
∗
j ,W )gk(φ

∗
k,W )σ−2(W )]

+ E[(gj(ϕ,W )− gj(φ∗j ,W ))(gk(ψ,W )− gj(φ∗k,W ))σ−2(W )]. (3.51)

Combining results results (3.49), (3.50) and (3.51) yields

1

n

n∑
i=1

ĝj(ϕ,Wi)ĝk(ψ,Wi)σ̂
−2(Wi) = E[gj(φ

∗
j ,W )gk(φ

∗
k,W )σ−2(W )]

+ E[(gj(ϕ,W )− gj(φ∗j ,W ))(gk(ψ,W )− gj(φ∗k,W ))σ−2(W )] + op(1) (3.52)

uniformly over ϕ,ψ ∈ Φ. Setting ϕ = ψ and j = k in result (3.52) leads to

1

n

n∑
i=1

ĝ2
j (ϕ,Wi)σ̂

−2(Wi) = E[g2
j (φ
∗
j ,W )σ−2(W )]

+ E[(gj(ϕ,W )− gj(φ∗j ,W ))2σ−2(W )] + op(1) (3.53)

uniformly over ϕ ∈ Φ. Since 1
n

∑n
i=1 ĝ

2
j (φ̂
∗
j ,Wi)σ̂

−2(Wi) ≤ 1
n

∑n
i=1 ĝ

2
j (Πnφ

∗
j ,Wi)σ̂

−2(Wi) by

the definition of φ̂∗j in (3.19), applying result (3.53) to ϕ = φ̂∗j and Πnφ
∗
j leads to

E[(gj(φ̂
∗
j ,W )− gj(φ∗j ,W ))2σ−2(W )]

≤ E[(gj(Πnφ
∗
j ,W )− gj(φ∗j ,W ))2σ−2(W )] + op(1) = op(1), (3.54)
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where the equality follows since E[(gj(Πnφ
∗
j ,W ) − gj(φ

∗
j ,W ))2σ−2(W )] = o(1) due to

‖Πnφ
∗
j − φ∗j‖∞ = o(1). By the Cauchy Schwartz inequality, result (3.54) implies

E[(gj(φ̂
∗
j ,W )− gj(φ∗j ,W ))(gk(φ̂

∗
k,W )− gk(φ∗k,W ))σ−2(W )] = op(1). (3.55)

Combing results (3.52) and (3.55) yields

1

n

n∑
i=1

ĝj(φ̂
∗
j ,Wi)ĝk(φ̂

∗
k,Wi)σ̂

−2(Wi) = E[gj(φ
∗
j ,W )gk(φ

∗
k,W )σ−2(W )] + op(1), (3.56)

which implies ‖Γ̂− Γ‖ = op(1). We next show supφ∈Φ ‖Σ̂(φ)− Σ(φ)‖ = op(1). By Lemma

3.9.11, ‖β̂1 − β0‖ = op(1), Assumptions 3.3.1(i)-(iv) and the triangle inequality, for 1 ≤

j, k ≤ dx,

1

n

n∑
i=1

ĝj(ϕ,Wi)ĝk(ψ,Wi)σ̂
−4(Wi)ρ

2(β̂1, φ, Yi, Xi, Zi)

=
1

n

n∑
i=1

gj(ϕ,Wi)gk(ψ,Wi)σ
−4(Wi)ρ

2(β0, φ, Yi, Xi, Zi) + op(1) (3.57)

uniformly over ϕ,ψ, φ ∈ Φ. By the similar argument as in the proof of Lemma 3.9.8, we have

{f : R×Rdx ×Z ×W → R : f(y, x, z, w) = gj(ϕ,w)gk(ψ,w)σ−4(w) ρ2(β0, φ, y, x, z), ϕ, ψ,

φ ∈ Φ} is Glivenko Cantelli. So

1

n

n∑
i=1

gj(ϕ,Wi)gk(ψ,Wi)σ
−4(Wi)ρ

2(β0, φ, Yi, Xi, Zi)

= E[gj(ϕ,W )gk(ψ,W )σ−4(W )ρ2(β0, φ, Y,X,Z)] + op(1) (3.58)

uniformly over ϕ,ψ, φ ∈ Φ. Combining results (3.57) and (3.58) yields

1

n

n∑
i=1

ĝj(φ̂
∗
j ,Wi)ĝk(φ̂

∗
k,Wi)σ̂

−4(Wi)ρ
2(β̂P , φ, Yi, Xi, Zi)

= E[gj(φ̂
∗
j ,W )gk(φ̂

∗
k,W )σ−4(W )ρ2(β0, φ, Y,X,Z)] + op(1) (3.59)

uniformly over φ ∈ Φ. By the triangle inequality and the Cauchy Schwartz inequality,
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results (3.54) and (3.59) imply

1

n

n∑
i=1

ĝj(φ̂
∗
j ,Wi)ĝk(φ̂

∗
k,Wi)σ̂

−4(Wi)ρ
2(β̂P , φ, Yi, Xi, Zi)

= E[gj(φ
∗
j ,W )gk(φ

∗
k,W )σ−4(W )ρ2(β0, φ, Y,X,Z)] + op(1) (3.60)

uniformly over φ ∈ Φ, which implies supφ∈Φ ‖Σ̂(φ)− Σ(φ)‖ = op(1).

Proof of Corollary 3.5.1: By Theorem 3.3.1, we have ‖β̂P − β0‖ = op(1) and ‖φ̂P −

φP ‖∞ = op(1). Since β̂1 = β̂P and φ̂P ∈ Φ, Proposition 3.4.1 implies

‖Γ̂−1Σ̂(φ̂P )Γ̂−1 − Γ−1Σ(φ̂P )Γ−1‖ = op(1). (3.61)

Note that ‖Σ(φ1)− Σ(φ2)‖ . ‖φ1 − φ2‖∞ for any φ1, φ2 ∈ Φ by Assumptions 3.3.1(i)-(iv),

so Σ(·) is continuous in Φ with respect to ‖ · ‖∞. By the continuous mapping theorem, it

together with ‖φ̂P − φP ‖∞ = op(1) implies

‖Γ−1Σ(φ̂P )Γ−1 − Γ−1Σ(φP )Γ−1‖ = op(1). (3.62)

Combine results (3.61) and (3.62) to conclude the result of the corollary by noting that

Σ(φP ) = ΣP .

3.9.2 Useful Lemmas

Lemma 3.9.1. Suppose {Yi, Xi, Zi,Wi}ni=1 is a set of independently and identically dis-

tributed observations according to

Y = Xβ0 + Zγ0 + ε with X = W ′b+ u and Z = W ′c+ v,

where Y ∈ R is the dependent variable, X ∈ R and Z ∈ R are potentially endogenous

variables, and W ∈ R2 are IVs such that E[W (ε, u, v)] = 0. Suppose E[WW ′] = I and

‖E[WW ′ε2]‖ <∞ for ε ∈ {ε, u, v}. If b = (1, 0)′ and c = 0, then the IV estimator for β0 is
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not necessarily asymptotically normally distributed.

Proof: The IV estimator for β0 is given by

β̂ = β0 +
ĉ2ê1 − ĉ1ê2

ĉ2b̂1 − ĉ1b̂2
, (3.63)

where b̂ ≡ (b̂1, b̂2)′ ≡ 1
n

∑n
i=1WiXi, ĉ ≡ (ĉ1, ĉ2)′ ≡ 1

n

∑n
i=1WiZi and ê ≡ (ê1, ê2)′ ≡

1
n

∑n
i=1Wiεi. Since ‖E[WW ′ε2]‖ < ∞ for ε ∈ {ε, v} and c = 0, (

√
nê′,
√
nĉ′)′

d−→ N(0,

E[((ε, v)(ε, v)′)⊗WW ′]) by the central limit theorem, where ⊗ denotes Kronecker product.

Since E[WW ′] = I, ‖E[WW ′u2]‖ < ∞ and b = (1, 0)′, b̂
p−→ (1, 0)′ by the law of large

numbers. It follows from (3.63) by the Slutsky lemma that

√
n(β̂ − β0)

d−→ Z4Z1 −Z3Z2

Z4
, (3.64)

where Z ≡ (Z1,Z2,Z3,Z4)′ is a zero mean Gaussian random vector with covariance matrix

E[((ε, v)(ε, v)′)⊗WW ′]. The result of the lemma follows by noting that the right hand side

of (3.64) is not normally distributed if E[W1W2v
2] = 0 and E[W 2

2 εv] = 0.

Lemma 3.9.2. Suppose Φ = CγzM for some M > 0 and γz > 0, Assumptions 3.3.1(i) and

(iii) hold. Then we have

sup
φ∈Φ
| 1
n

n∑
i=1

φ2(Zi)− E[φ2(Z)]| = op(1)

Proof: Let G ≡ {f : Z → R : f(z) = φ2(z), φ ∈ Φ}. For any φ1, φ2 ∈ Φ, |φ2
1(z)−φ2

2(z)| ≤

2M‖φ1 − φ2‖∞. So G is lipschitz in Φ. Theorem 2.7.1 and 2.7.11 of van der Vaart and

Wellner (1996b) imply for every ε > 0,

N[ ](ε,G, L1(P)) ≤ N(ε/4M,Φ, ‖ · ‖∞) . exp((4M/ε)dz/γz) <∞. (3.65)

Result (3.65) implies G is Glivenko-Cantelli by Theorem 2.4.1 in van der Vaart and Wellner

(1996b), which gives the result of the lemma.
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Lemma 3.9.3. Suppose Assumptions 3.3.1(i)-(iv), 3.3.3(i) and 3.3.4 hold. Let δn,m ≡

max{
√
kn/n, k

−αw
n }. Then there exists finite constants C,C ′ > 0 such that

C E[m2(β, φ,W )σ−2(W )]−Op(δ2
m,n) ≤ 1

n

n∑
i=1

m̂2(β, φ,Wi)σ̂
2(Wi)

≤ C ′ E[m2(β, φ,W )σ−2(W )] +Op(δ
2
m,n)

uniformly over (β, φ) ∈ B×Φ.

Proof: The proof proceeds by verifying the conditions of Lemma C.2(ii) of Chen and

Pouzo (2012a). For j = 1, . . . , kn, let Oj ≡ {f : R ×Rdx × Z ×W → R : f(y, x, z, w) =

pj(w)ρ(β, φ, y, x, z), (β, φ) ∈ B × Φ}. Note that max1≤j≤kn E[p2
j (W )] . 1 by Assumption

3.3.4(iii), so Lemma 3.9.8 implies

max
1≤j≤kn

J[ ](1,Oj , ‖ · ‖L2(P)) . 1. (3.66)

Thus, result (3.66) implies Assumption C.2(iii) of Chen and Pouzo (2012a) is satisfied with

Cn . 1. Note that |ρ(β, φ, Y,X,Z)| . |Y | + ‖X‖ + 1 and E[(|Y | + ‖X‖ + 1)2|W ] . 1

by Assumptions 3.3.1(i), (ii) and (iv), so Assumption C.2(i) of Chen and Pouzo (2012a) is

satisfied. Assumptions 3.3.4(v) and (vi) imply that for (β, φ) ∈ B×Φ, there is πβ,φ ∈ Rkn

such that supw∈W |m(β, φ,w)− pkn(w)′πβ,φ| = O(k−αwn ) uniformly over (β, φ) ∈ B×Φ, so

Assumption C.2(ii) of Chen and Pouzo (2012a) is satisfied. In addition, Assumption C.1

of Chen and Pouzo (2012a) is satisfied by Assumptions 3.3.1(i), 3.3.3(i) and 3.3.4(i)-(iv).

Thus, the result of the lemma follows by Lemma C.2(ii) of Chen and Pouzo (2012a).

Lemma 3.9.4. Suppose Assumptions 3.3.1(i), (ii), (iv) and 3.3.3(i) hold. Then we have

for any (β1, φ1), (β2, φ2) ∈ B×Φ,

|E[m2(β1, φ1,W )σ−2(W )]− E[m2(β2, φ2,W )σ−2(W )]| . ‖β1 − β2‖+ ‖φ1 − φ2‖∞.
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Proof: We have for any (β1, φ1), (β2, φ2) ∈ B×Φ,

|E[m2(β1, φ1,W )σ−2(W )]− E[m2(β2, φ2,W )σ−2(W )]|

. (E[m2(β1, φ1,W )] + E[m2(β2, φ2,W )])1/2

× (E[m(β1, φ1,W )−m(β2, φ2,W )]2)1/2. (3.67)

by the Cauchy Schwartz inequality and Assumption 3.3.3(i). Note that m(β, φ,W ) =

E[X ′(β0 − β)|W ] + E[φ0(Z)− φ(Z)|W ], so for any (β, φ) ∈ B×Φ,

E[m2(β, φ,W )] . 1. (3.68)

by Assumption 3.3.1(ii) and (iv). Note that m(β1, φ1,W )−m(β2, φ2,W ) = E[X ′(β2−β1)]+

E[φ2(Z)− φ1(Z)|W ], so for any (β1, φ1), (β2, φ2) ∈ B×Φ,

E[m(β1, φ1,W )−m(β2, φ2,W )]2 . (‖β1 − β2‖+ ‖φ1 − φ2‖)2 (3.69)

by Assumption 3.3.1(ii) and (iv). Combine results (3.67)-(3.69) to conclude the result of

the lemma.

Lemma 3.9.5. Suppose Assumptions 3.3.1(i)-(iv) and 3.3.4 (i)-(iv) hold. Then we have

1

n

n∑
i=1

m̂2(β, φ,Wi) = op(n
−1/2) +Op(kn/n)

uniformly over (β, φ) ∈ {(β, φ) ∈ B×Φ : ‖(β, φ)− (β0, φP )‖w = op(n
−1/4)}.

Proof: For any (β, φ) ∈ B × Φ, let u(β, φ, Y,X,Z,W ) ≡ ρ(β, φ, Y,X,Z) − m(β, φ,W )

and û(β, φ,W ) ≡ Ê[u(β, φ, Y,X,Z,W )|W ]. Then by the Cauchy Schwartz inequality and

P (P ′P )−P ′ is idempotent, we have

1

n

n∑
i=1

m̂2(β, φ,Wi) ≤
2

n

n∑
i=1

m2(β, φ,Wi) +
2

n

n∑
i=1

û2(β, φ,Wi). (3.70)

Following the same argument as in the proof Lemma 3.9.8, we have {f :W → R : f(w) =
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m2(β, φ, w), (β, φ) ∈ B × Φ} is Donsker. Note that E[(m2(β, φ,W ) −m2(β0, φP ,W ))2] .

‖(β, φ)− (β0, φP )‖2w and m(β0, φP ,W ) = 0, so by the stochastic equicontinuity it follows

1

n

n∑
i=1

m2(β, φ,Wi)− E[m2(β, φ,W )] = op(n
−1/2) (3.71)

uniformly over (β, φ) ∈ {(β, φ) ∈ B × Φ : ‖(β, φ) − (β0, φP )‖w = op(1)}. Recall that

E[m2(β, φ,W )] . ‖(β, φ)− (β0, φP )‖2w, so result (3.71) implies

1

n

n∑
i=1

m2(β, φ,Wi) . ‖(β, φ)− (β0, φP )‖2w + op(n
−1/2) = op(n

−1/2) (3.72)

uniformly over (β, φ) ∈ {(β, φ) ∈ B ×Φ : ‖(β, φ) − (β0, φP )‖w = op(n
−1/4)}. By the proof

of Lemma 3.9.3, Assumption C.1, C.2(i) and (iii) of Chen and Pouzo (2012a) are satisfied

with Cn . 1 and Lemma C.1(ii) of Chen and Pouzo (2012a) implies

1

n

n∑
i=1

û2(β, φ,Wi) = Op(kn/n) (3.73)

uniformly over (β, φ) ∈ {(β, φ) ∈ B × Φ : ‖(β, φ) − (β0, φP )‖w = op(n
−1/4)}. Combine

results (3.70), (3.72) and (3.73) to conclude the result of the lemma.

Lemma 3.9.6. Suppose Assumptions 3.3.1(i), (ii), (iv), 3.3.2(ii), 3.3.4(v), (vi), 3.3.5(i)

and (ii) hold. Then we have

max
1≤j≤dx

1

n

n∑
i=1

(ĝj(Πnφ
∗
j ,Wi)− gj(φ∗j ,Wi))

2 = Op(max{J−2αz
n , δ2

m,n}).

Proof: By the Cauchy Schwartz inequality, we have

1

n

n∑
i=1

(ĝj(Πnφ
∗
j ,Wi)− gj(φ∗j ,Wi))

2 ≤ 2

n

n∑
i=1

(ĝj(Πnφ
∗
j ,Wi)− ĝj(φ∗j ,Wi))

2

+
2

n

n∑
i=1

(ĝj(φ
∗
j ,Wi)− gj(φ∗j ,Wi))

2 (3.74)
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Note that P (P ′P )−P ′ is idempotent, so by Assumptions 3.3.2(ii) and 3.3.5(i) we have

1

n

n∑
i=1

(ĝj(Πnφ
∗
j ,Wi)− ĝj(φ∗j ,Wi))

2 ≤ 1

n

n∑
i=1

(φ∗j (Zi)−Πnφ
∗
j (Zi))

2 = O(J−2αz
n ). (3.75)

Let G∗j ≡ (gj(φ
∗
j ,W1), . . . , gj(φ

∗
j ,Wn))′ and H∗j ≡ (hj(φ

∗
j , X1, Z1), . . . , hj(φ

∗
j , Xn, Zn))′.

Then we have

1

n

n∑
i=1

(ĝj(φ
∗
j ,Wi)− gj(φ∗j ,Wi))

2 =
1

n
(G∗j )

′(I − P (P ′P )−P ′)G∗j

+
1

n
(H∗j −G∗j )′P (P ′P )−P ′(H∗j −G∗j ). (3.76)

Note that supw∈W E[(hj(φ
∗
j , X, Z))2|W = w] . 1 by Assumptions 3.3.1(ii), (iv) and 3.3.5(i),

so 1
n(H∗j−G∗j )′P (P ′P )−P ′(H∗j−G∗j ) = Op(kn/n) by the Markov inequality. By Assumptions

3.3.4(v), (vi) and 3.3.5(i), 1
n(G∗j )

′(I − P (P ′P )−P ′)G∗j = O(k−2αw
n ). Hence, result (3.76)

implies

1

n

n∑
i=1

(ĝj(φ
∗
j ,Wi)− gj(φ∗j ,Wi))

2 = Op(δ
2
m,n). (3.77)

Combine results (3.74), (3.75) and (3.77) to conclude the result of the lemma.

Lemma 3.9.7. Suppose Assumptions 3.3.1(i)-(iv), 3.3.3(i), 3.3.4(iii) and 3.3.5(iii) hold.

Then we have

max
1≤j≤dx

1

n

n∑
i=1

(ĝ
(σ)
j (φ∗j ,Wi)− gj(φ∗j ,Wi)σ

−2(Wi))ρ(β, φ, Yi, Xi, Zi) = op(n
−1/2) +Op(k

−2αw
n )

uniformly over (β, φ) ∈ {(β, φ) ∈ B×Φ : ‖(β, φ)− (β0, φP )‖w = op(n
−1/4), ‖β− β0‖+ ‖φ−

φP ‖∞ = op(1)}.

Proof: Recalling that u(β, φ, Y,X,Z,W ) = ρ(β, φ, Y,X,Z) − m(β, φ,W ) for (β, φ) ∈
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B×Φ, we have

1

n

n∑
i=1

(ĝ
(σ)
j (φ∗j ,Wi)− gj(φ∗j ,Wi)σ

−2(Wi))ρ(β, φ, Yi, Xi, Zi)

=
1

n

n∑
i=1

(ĝ
(σ)
j (φ∗j ,Wi)− gj(φ∗j ,Wi)σ

−2(Wi))m(β, φ,Wi)

+
1

n

n∑
i=1

(ĝ
(σ)
j (φ∗j ,Wi)− gj(φ∗j ,Wi)σ

−2(Wi))u(β, φ, Yi, Xi, Zi,Wi). (3.78)

For j = 1, . . . , dx, let Dj ≡ (gj(φ
∗
j ,W1)σ−2(W1), . . . , gj(φ

∗
j ,Wn)σ−2(Wn))′. Then we have

1

n

n∑
i=1

(ĝ
(σ)
j (φ∗j ,Wi)− gj(φ∗j ,Wi)σ

−2(Wi))
2 =

1

n
D′j(I − P (P ′P )′P ′)Dj . (3.79)

Note that 1
nD
′
j(I − P (P ′P )−P ′)Dj . supw∈W ‖G∗(w)σ−2(w)−Π∗σp

kn(w)‖ = O(k−2αw
n ) by

Assumption 3.3.5(ii), so result (3.79) implies

1

n

n∑
i=1

(ĝ
(σ)
j (φ∗j ,Wi)− gj(φ∗j ,Wi)σ

−2(Wi))
2 = Op(k

−2αw
n ). (3.80)

By the Cauchy Schwartz inequality, results (3.72) and (3.80) imply

1

n

n∑
i=1

(ĝ
(σ)
j (φ∗j ,Wi)− gj(φ∗j ,Wi)σ

−2(Wi))m(β, φ,Wi) = op(n
−1/2) +Op(k

−2αw
n ) (3.81)

uniformly over (β, φ) ∈ {(β, φ) ∈ B × Φ : ‖(β, φ) − (β0, φP )‖w = op(n
−1/4)}. Due to re-

sult (3.80), 1
n

∑n
i=1(ĝ

(σ)
j (φ∗j ,Wi)− gj(φ∗j ,Wi)σ

−2(Wi))u(β, φ, Yi, Xi, Zi,Wi) is stochastically

equicontinuous by Lemma 3.9.8. Thus, it follows

1

n

n∑
i=1

(ĝ
(σ)
j (φ∗j ,Wi)− gj(φ∗j ,Wi)σ

−2(Wi))u(β, φ, Yi, Xi, Zi,Wi)

− 1

n

n∑
i=1

(ĝ
(σ)
j (φ∗j ,Wi)− gj(φ∗j ,Wi)σ

−2(Wi))u(β0, φP , Yi, Xi, Zi,Wi) = op(n
−1/2) (3.82)

uniformly over (β, φ) ∈ {(β, φ) ∈ B × Φ : ‖β − β0‖ + ‖φ − φP ‖∞ = op(1)}. Now by
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Assumptions 3.3.1(i), (ii) and (iv), we have

E[
1

n

n∑
i=1

(ĝ
(σ)
j (φ∗j ,Wi)− gj(φ∗j ,Wi)σ

−2(Wi))u(β0, φP , Yi, Xi, Zi,Wi)]
2

. E[
1

n2

n∑
i=1

(ĝ
(σ)
j (φ∗j ,Wi)− gj(φ∗j ,Wi)σ

−2(Wi))
2] (3.83)

By the Markov inequality, results (3.80) and (3.83) imply

1

n

n∑
i=1

(ĝ
(σ)
j (φ∗j ,Wi)− gj(φ∗j ,Wi)σ

−2(Wi))u(β0, φP , Yi, Xi, Zi,Wi)

= Op(n
−1/2k−αwn ). (3.84)

Combining results (3.82) and (3.84) yields

1

n

n∑
i=1

(ĝ
(σ)
j (φ∗j ,Wi)− gj(φ∗j ,Wi)σ

−2(Wi))u(β, φ, Yi, Xi, Zi,Wi)

= op(n
−1/2) +Op(k

−2αw
n ) (3.85)

uniformly over (β, φ) ∈ {(β, φ) ∈ B×Φ : ‖β − β0‖+ ‖φ− φP ‖∞ = op(1)}. Combine results

(3.78), (3.81) and (3.85) to conclude the result of the lemma.

Lemma 3.9.8. Suppose Assumptions 3.3.1(ii) and (iii) hold. Let c : W → R with

E[c2(W )] <∞ and F ≡ {f : R×Rdx×Z×W → R : f(y, x, z, w) = c(w)ρ(β, φ, y, x, z), (β, φ)

∈ B×Φ}. Then there exits K > 0 such that F (y, x, z) ≡ K|c(w)|(|y|+‖x‖+1) is an envelope

for F and

J[ ](1,F , ‖ · ‖L2(P)) . 1.

If in addition Assumptions 3.3.1(i) and (iv) hold, then F is Donsker.

Proof: Since B×Φ is bounded by Assumptions 3.3.1(ii) and (iii), so there exists K > 0

such that |c(w)ρ(β, φ, y, x, z)| ≤ K|c(w)|(|y|+ ‖x‖+ 1) for any (β, φ) ∈ B×Φ, which gives
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the first result of the lemma. We have for any (β1, φ1), (β2, φ2) ∈ B×Φ,

|c(w)ρ(β1, φ1, y, x, z)− c(w)ρ(β2, φ2, y, x, z)|

≤ H(x,w)(‖β1 − β2‖+ ‖φ1 − φ2‖∞), (3.86)

where H(x,w) ≡ c(w)(‖x‖+ 1). Result (3.86) implies F is lipschitz continuous in (β, φ) ∈

B×Φ. By Theorem 2.7.11 of van der Vaart and Wellner (1996b), for every ε > 0

N[ ](ε,F , ‖ · ‖L2(P)) ≤ N(ε/(2‖H‖L2(P)),B×Φ, ‖ · ‖+ ‖ · ‖∞)

≤ N(ε/4(‖H‖L2(P)),B, ‖ · ‖)×N(ε/(4‖H‖L2(P)),Φ, ‖ · ‖∞). (3.87)

where the second inequality follows by N(ε,B × Φ, ‖ · ‖ + ‖ · ‖∞) ≤ N(ε/2,B, ‖ · ‖) ×

N(ε/2,Φ, ‖ · ‖∞). By Assumptions 3.3.1(ii) and (iii), Theorem 2.7.1 of van der Vaart and

Wellner (1996b) implies

logN(ε,Φ, ‖ · ‖∞) . (
1

ε
)dz/γz . (3.88)

Note that N(ε,B, ‖ · ‖) . (2/ε)dx and ‖H‖L2(P) . 1 by Assumptions 3.3.1(iv), so results

(3.87) and (3.88) imply

logN[ ](ε,F , ‖ · ‖L2(P)) . log(
2

ε
)dx + (

1

ε
)dz/γz (3.89)

for ε < 1. By Assumption 3.3.1(ii), γz > dz/2 and then result (3.89) implies

J[ ](1,F , ‖ · ‖L2(P)) . 1, (3.90)

which gives the second result of the lemma. Note that E[F 2(Y,X,Z)] <∞ by Assumptions

3.3.1(i), (ii) and (iv), so the last result of the lemma follows by Theorem 2.5.6 of van der

Vaart and Wellner (1996b).

Lemma 3.9.9. Suppose Y,X,Z ∈ R and W ∈ R2 satisfy ‖E[W (Y,X,Z)]‖ ≤ ∞ and
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E[W (Y − Xβ0 − Zγ0)] = 0 for a unique β0 ∈ R and some γ0 ∈ R. Let Θ ∈ R6 be the

parameter space for (E[YW ′],E[XW ′],E[ZW ′])′. Then β0(θ) is discontinuous in Θ.

Proof: Since β0 is identified, it is either θ3θ6 − θ4θ5 6= 0 or θ5 = θ6 = 0, θ2
3 + θ2

4 6= 0 and

θ1θ4 = θ2θ3, which corresponds to γ0 being identified and not being identified, respectively.

It follows

β0(θ) =


θ6θ1−θ5θ2
θ3θ6−θ4θ5 if θ3θ6 − θ4θ5 6= 0

θ1
θ3

or θ2
θ4

if θ5 = θ6 = 0, θ2
3 + θ2

4 6= 0, θ1θ4 = θ2θ3.
(3.91)

Consider the path θ(c) ≡ (1, 0, 1, c, c, 0) ∈ Θ for c ∈ R, then (3.91) implies

β0(θ(c)) =

 0 if c 6= 0

1 if c = 0.
(3.92)

Result (3.92) implies β0(θ) is not continuous at θ = (1, 0, 1, 0, 0, 0) ∈ Θ, so the result of the

lemma follows.

Lemma 3.9.10. Let VP and σ2
P (·) be given in Theorem 3.3.3. Then VP − V ∗P is positive

semidefinite for a given P (·), where V ∗P denotes VP evaluated σ2(·) = σ2
P (·).

Proof: As E[X − Φ∗(Z)|W ] and Γ may depend on σ2(·), we write E[X − Φ∗σ(Z)|W ]

and Γσ instead of E[X − Φ∗(Z)|W ] and Γ. Note that E[E[X − Φ∗σ(Z)|W ]σ−2(W )(E[X −

Φ∗σP (Z)|W ])′] = Γσ by result (3.13), so we have

VP − V ∗P = E[A(W )σ2
P (W )(A(W ))′], (3.93)

where A(W ) ≡ Γ−1
σ E[X − Φ∗σ(Z)|W ]σ−2(W )− Γ−1

σP
E[X − Φ∗σP (Z)|W ]σ−2

P (W ). The result

of the lemma follows by noting that the right hand side of (3.93) is positive semidefinite.

Lemma 3.9.11. Suppose Assumptions 3.3.1(i)-(iv) and 3.3.4 hold and δm,n = o(1). Then

we have

max
1≤j≤dx

sup
w∈W

|ĝj(φ,w)− gj(φ,w)| = op(1)
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uniformly over φ ∈ Φ.

Proof: For φ ∈ Φ and j = 1, . . . , dx, let π̂j,φ ≡ (P ′P )−
∑n

i=1 p
kn(W )′hj(φ,Xi, Zi). Thus,

ĝj(φ,W ) = pkn(W )′π̂j,φ. By Assumptions 3.3.4(v) and (vi), for φ ∈ Φ and j = 1, . . . , dx

there is πj,φ ∈ Rkn such that

sup
w∈W

|gj(φ,w)− pkn(w)′πj,φ| = O(k−αwn ) (3.94)

uniformly over φ ∈ Φ. By the Cauchy Schwartz inequality and Assumption 3.3.4(iii), it

follows

E[(ĝj(φ,W )− gj(φ,W ))2] ≤ 2‖π̂j,φ − πj,φ‖2 + 2 sup
w∈W

|gj(φ,w)− pkn(w)′πj,φ|2. (3.95)

Following Newey (1997)(p.162), by Assumptions 3.3.1(i), 3.3.4(iii) and (iv), with probability

approaching one P ′P/n is invertible and

‖π̂j,φ − πj,φ‖ ≤ Op(1) sup
w∈W

|gj(φ,w)− pkn(w)′πj,φ|

+Op(1)‖ 1

n

n∑
i=1

pkn(Wi)
′(hj(φ,Xi, Zi)− gj(φ,Wi))‖ (3.96)

uniformly over φ ∈ Φ. Following Chen and Pouzo (2012b)(p.17-20), by Assumptions

3.3.1(i)-(iv) and 3.3.4, we have (in particular, Cn . 1 there following the similar argu-

ment as in the proof of Lemma 3.9.3)

‖ 1

n

n∑
i=1

pkn(Wi)
′(hj(φ,Xi, Zi)− gj(φ,Wi))‖ = Op(

√
kn/n) (3.97)

uniformly over φ ∈ Φ. Combining results (3.94)-(3.97) yields

E[(ĝj(φ,W )− gj(φ,W ))2] = Op(δ
2
m,n). (3.98)

uniformly over φ ∈ Φ. Note that the density of W is bounded and bounded away from over
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W that is compact by Assumptions 3.3.4(i) and (ii), so result (3.98) implies

sup
w∈W

|ĝj(φ,w)− gj(φ,w)| = op(1) (3.99)

uniformly over φ ∈ Φ, since δm,n = o(1). This completes the proof of the lemma.
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Dovonon, P. and Gonçalves, S. (2014). Bootstrapping the GMM overidentification test
under first-order underidentification. Working paper.



210

Dovonon, P. and Renault, E. (2013). Testing for common conditionally heteroskedastic
factors. Econometrica, 81 2561–2586.

Dudley, R. (1990). Nonlinear functionals of empirical measures and the bootstrap. In
Probability in Banach Spaces 7 (E. Eberlein, J. Kuelbs and M. Marcus, eds.), vol. 21 of
Progress in Probability. Birkhäuser Boston, 63–82.
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