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ABSTRACT 

THE CONCEPT OF CAUSALITY IN IMAGE RECONSTRUCTION 

Jorge Llacer~ Eugene Veklerov and Jorge Nunezl 

Engineering Division 
Lawrence Berkeley Laboratory 

1 Cyclotron Road 
Berkeley, CA 94720 USA 

LBL-25877 

Causal images in emission tomography are defined as those which could have 
generated the data by the statistical process that governs the physics of 
the measurement. The concept of causality was previously applied to decid­
ing when to stop the MLE iterative procedure in PET. The present paper 
further explores the concept, indicates the difficulty of carrying out a 
correct hypothesis testing for causality, discusses the assumption needed 
to justify the tests proposed and discus,ses a possible methodology for a 
justification of that assumption. The paper also describes several methods 
that we have found to generate causal images and it shows that the set of 
causal images is rather large. This set includes images judged to be supe­
rior to the best maximum likelihood images, but is also includes unaccept­
able and noisy images. The paper concludes by proposing to use causality 
as a constraint in optimization problems. 

1. INTRODUCTION 

Over the past two years we have been involved in a detailed study of the 
behavior of solutions to the image reconstruction problem in Emission To­
mography (ET) by the Maximum Likelihood Estimator (MLE) and Maximum Entropy 
(ME) methods, with data generated both by computer simulation and by the 
ECAT-111 tomograph of UCLA. Initially, the study focused on explaining the 
reasons for.image deterioration after a certain number of iterations in the 
MLE method and on finding a cure for this problem. 

As we progressed into the study of this phenomenon, we became aware of the 
fact that the observed deterioration is a direct consequence of trying to 
find an image which would have the highest probability of having generated 

1) J. Nunez is on leave from the Faculty of Physics, University of Barce­
lona, Spain. 



the initial noisy data (which the MLE is designed to do), but, in an ap­
parent contradiction, a true radioactive source equal to the image found 
could not have yielded the experimental data by a Poisson disintegration 
process in a statistical sense. This contradiction results from the sim­
ple fact that the likelihood criterion favors images whose forward projec­
tions are as close to the data as possible, whereas the Poisson assumption 
imposes a certain deviation between the two. 

Veklerov and Llacer (1987) observed that the images recovered after itera­
tions within a certain range could have generated the data as ascertained 
by a hypothesis testing procedure that, upon further investigation, turns 
out to be based on an assumption discusse~ below. That initial finding led 
them to formulating a stopping rule for the MLE algorithm. We consider 
that for a radiologist to have confidence in the results of an image re­
construction, it is necessary but not sufficient that ·the recovered image, 
if it were 'a true emission source,. could have generated the data. This has 
led Llacer and Veklerov (1988) to formulating the concept of causality. 
In this paper we explore that concept in some detail, discuss the difficul­
ty in carrying out a correct test of causality within the framework of hy­
pothesis testing, describe the assumption that must hold for the present 
tests to have statistical meaning and indicate a methodology that may jus­
tify that assumption. We are encouraged in that endeavor by the fact that 
causal images include some of the visually best reconstructions that we 
have seen, both from simulated and from true PET data. 

2. DEFINITIONS OF CAUSALITY 

In this section we define causality at three different levels of strictness 
without regard to the possible methods by which the hypothesis tests indi­
cated or implied can be carried out. We also show schematically the region 
fn projection space that includes causal images. Throughout this paper we 
shall use the standard notation introduced by Shepp and Vardi (1982): 

n*(d),(d=l, ... ,D) 

A.(b),(b=l, ... ,B) 

p(b,d) 
8 

A.*(d) = L: A.(b)p(b,d) 
b=l 

- the projection data or the number 
of coincidences detected in tube d; 

the emission density; 

the transition matrix; 

- the means or forward projections; 
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where B and D ~re th~ number of pixels. ~nd the number of projections, re­
spectively. We shall consider specifically the case of emission tomography 
(PET or SPECT) in which disintegration data follow.Poisson statistics. 

·' 

Definition 1: The image 'A(l), 'A(2), ... ; 'A(B) is said to be a causal image 
with respect to data, n*(l), n*(2), ... , n*(O), .if and only if the statisti-
cal hypothesis that n*(l), n*(2), ... , n*(D) is a Poisson sample with the 
means 'A*(l), 'A*(2), ... , 'A*(O), respectively, can be accepted (notre­
jected). 

The rationale behind Def. 1 is as follows: Let us assume that 'A*(l) = 

'A*(2) = ... = 'A*(O) = 100 and all n*(d) are between 99 and 101. Then we 
have to conclude that the corresponding image is not causal because the de­
viation between the data and the means is less than what is imposed by the 
Poisson assumption. If, on the other hand, all n*(d) are either 50 or 150 

in the same example, then the corresponding image is not causal either be­
cause the deviation between the data and the means is greater than what is 
imposed by the Poisson assumption. Put another way, a causal image is an 
image such that .the distance between the data and the corresponding forward 
projection is "just right", not too small and not too large. 

Definition 1 specifies the fullest form of causaJity or strong causality. 
That fdrm appears difficult to implement as a constraint in an optimization 
problem. For that reason we introduce a new causality definition by relax~ 
ing Def. 1; since the new definition of causality requires less than Def. 
L it is appropriate to call this new form of causality "weak causality". 

Definition 2: The image 'A(l), 'A(2), ... , 'A(B) is said to be a weakly 
causal image with respect to data, n*(l), n*(2), ... , n*(O), if and only if 
the second moments of n*(l), n*(2), ... , n*(O) are consistent with the 
Poisson hypothesis, namely: 

D 

L: 
dal 

[n*(d) - 'A*(d)J 2 

= D 
(l) 

).*(d) 

Indeed, the expected value of the numerator of each term in Eq. (1) is the 
variance, while that of the denominator is the mean. Therefore, Eq. (1) 
must be satisfied if·the Poisson hypothesis holds. However, the reverse 
statement is not true, because the equa~ity of the variance and the mean 
is necessary but not sufficien~ for a distribution to be Poisson or, put 
another way, Def. 2 is less demanding than Def. 1. 
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It is possible to strengthen Def. 2 by requ1r1ng that higher moments of 
n*(l), n*(2), ... , n*(D) be consistent with the Poisson· hypothesis as well. . . 

Definition 3: The image X(l), "A(2), ... , "A(B) is said to beak-causal 
image with respect to d~ta, n*(l), n~(2), ... , n*(D), if and only if the 
first k moments of n•< 1), n*(2), .· .. ·• n*(D) are consistent with the Poisson . 
hypothesis, hamely: 

D 

L 
d=l 

[n*(d) - "A*(d)J; = D (2) 
fi[)..*(d)] 

where i = 1 , ... , k and f;(X) is the expression for ~he i-th·moment of the 
Poisson distribution with the mean x. 

The first moment meets this requirement automatically for any unbiased im­
age. Here are the first several fi(x):. t 2(x) = x, f3<x> = x, f4<x) = 

3x2 
+ x, f5(x) = 10x2 

+ 'x. Note that a 2-causal image is simply a weakly 
causal image and when k ~ ~. a k-causal image becomes strongly causal. The 
main advantage of Def. 3 over Def. 1 is that the former is easier to im­
plement as a constraint of an optimization problem. 

Geometrically, all weakly causal images belong to an area resembling an 
ellipsoid and surrounding the maximum likelihood point. Indeed, if the 
left-hand side of Eq. (1) must equa~ the right-hand side to the accuracy of 
c, all points satisfying Eq. (1) form the spac.e between two egg-shaped sur­
faces. He will call this space the causality shell. The k-causal and 
strongly causal images .form~ subset of the shell ~ith gaps between them. 
Figure 1 shows. an example of a shell as well ai lines along which likeli­
hood is constant, which are regular ellipsoids .for large values of data. 

3. THE TESTS FOR CAUSALITY 

Let us outline the procedure for testing for stro~g causality described in 
deta i1 by Vek 1 erov and L 1 acer ( 1987). He wi 11 fo 11 ow this outline with a 
critical discussion of its validity. He want to test the hypothesis th~t 

n*(l) is a realization drawn from a·Poisson distribution with the mean 
\.-(1), n*(2) drawn. from· a Poisson dist.ribution with the mean )..*(2), etc. A 
widely used method for ~esting such a hypothesis .• known as Pearson's good­
ness of fit tests, see e.g. Canavos (1984)., is to define several mutually 
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Fig. 1: 

... ~· ~- ~- ~- ~- -· 
A ( 1 ) 

Causality shell and ellipses along which 
MLE paths for different initial images. 
of "overdone" images after different MLE 
be causal. 

XBL 117-2,76 

likelihood is constant. 
The results of filtering 
iterations are found to 

exclusive and exhaustive classes, assign each realization to a class and 
then compare the observed numbers of realizations assigned to the classes 
with the expected numbers determined by the Poisson hypotheses. Th~ dis­
crepancy between the two is measured by the chi-square statistic. When the 
chi-squar·e statistic exceeds a certain threshold, the hypothesis is rejec­
ted. Some technical difficulties arise in trying to adapt Pearson's pro­
cedures to our needs, but they are resolved in our previously referenced 
work. 

A fundamental objection to the above procedure (pointed oui to us by sever­
al workers) stems from the fact that the image_ which we are trying to test 
against has been generated by the same set of data that we are testing. 
Under those conditions, the question implied by testing for any of the 
definitions of causality given above cannot even be posed. Cramer (1946) 
proves that the chi square test, when certain parameters that describe 
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the function against which we are testing are estimated from the sample, 
can only be used to test the hypothesis that the data are drawn from the 
defined probability distribution with~ values of those parameters. In 
our case this implies that, with the parameters A*(d) having been derived 
from the data n*(d), we can only test the hypothesis that the data were 
obtained from a Poisson distribution with~ values of A*(d) unknown 
to us. 

This limited test seems totally unnecessary since we know that the data 
were really generated by a Poisson disintegration process. It follows 
that, by using the appropriate number of degrees of freedom, a hypothesis 
test comparing the parameters A*(d) generated by the MLE method Cat con­
vergence) to the data n*(d) should never be rejected if, indeed, the MLE is 
a good method for estimating those parameters. He shall pursue this test 
in the future. 

The hypothesis tests that can be derived from the above definitions of 
causality would have complete validity if the parameters. that determine 
the Poisson ;process against which we are testing were completely and inde­
pendently specified. In our case that implies that we have a complete and 
independent knowledge of the activity distribution that generated the data. 
If that were the case, a test would again be unnecessary. He know that the 
data would have been generated by such a source distribution. Indeed, the 
whole image reconstruction process would be unnecessary. 

Because of our observations that images generated by the MLE (and other 
methods as described below), when started from a uniform image fieJd and 
stopped according to the rule derived from strong causality hypothesis 
testing, are visually good, with a useful compromise between edge sharp­
ness and low noise in regions of high activity, we have to believe that our 
concept of causality, although not fitting correctly in the framework of 
hypothesis testing, has a definite value. Results similar to ours have 
also been obtained by Hebert et al (1988) in Single Photon Emission Tomo­
graphy (SPECT). Many other researchers (mostly in the field of Astronomy) 
have come up with variations of the same tests which they proposed to use 
as constraints or necessary conditions for image reconstruction, or as an 
analysis of residues: Skilling and Bryan (1984), Ables (1974), Gull and 
Daniel (1978), Narayan and Nityanda (1986), Reiter and Pfleiderer (19S6) 

and Tarantola (1987). 
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The assumption that we believe can lead to a justification of our hypothe­
sis testing is related to the case of a completely specified image, as in­
dicated above, and is the following: 

~e are given an image and its projection A*(d). We do not know how 
it was obtained. ~e are also given a set of data n*(d) and we are 
asked to test the hypothesis that that image, as if completely speci­
fied, could have generated the data. He would then proceed with test­
ing the hypothesis in the methods developed or implied for Definitions 
1 through 3. 

The above assumption would be justified in practice if an analysis of the 
distribution of the hypothesis testing function H of Veklerov and Llacer 
( 1987) (for De f. l) or of the chi square function va 1 ues (for Def. 2) for 
reconstructions of a large number of different realizations of a fixed im­
age source distribution were found to be chi square distributed with the 
expected number of degress of freedom. Such a finding would imply that the 
strict theory of hypothesis testing can be relaxed under some conditions. 
We are now beginning such a study. 

4. ARE ALL CAUSAL IMAGES GOOD? 

The causal images obtained by stopping the M~E algorithm at the right point 
by no means exhaust the set of causal images. We have conducted two series 
of experiments in order to get an idea of how different causal images can 
be from one another. We have used a mathematical brain-like phantom with 
1 million counts shown in Fig. Sa. 

The first series consisted of images generated by the same MLE algorithm 
but with drastically different initial images. We chose a four quadrant 
checkerboard image as an initial image with 1.95 and 0.05 times the average 
number of counts per pixel in the "hot" and "cool" quadrants, respectively. 

It converged towards the same. maximum likelihood image as in the case of a 
uniform initial image, but its MLE path crossed the shell at a different 
point, as is shown schematically in Fig. l. Visually, a causal image ob­
tained with the checkerboard image used as the initial one stil l retains 
the boundaries between the quadrants. Figure 2a shows the image after it­
eration 2, and 2b shows it after iteration 50, where the image is causal 
(H = 15 .2) . The quadrant boundaries gradually disappear as the iterative 
process progresses but they are still visible at iteration 300. 

7 
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Fig. 2: MLE reconstructions with the initial image being a 4 quadrant 
checkerboard. Image a) is after iteration 2; Image b) is after 
iteration 50; it is causal (H • 15.2). 

The second series of experiments owes its origin to the idea put forth in 
Snyder et al (1987), whereby the use of a sieve and a resolution kernel is 
equivalent to post-filtering of the image generated by the regular MLE al­
gorithm . Using that idea, we were able to produce a number of causal ima­
ges as follows. He let the MLE process overshoot the causality shell. 
Thereafter, several "overdone" images were filtered by convolution with 
Gaussian distributions. By choosing the right standard deviations of the 
Gaussian distributions we were able to bring the images back to the shell, 
as is also shown schematically in Fig. 1. 

It is interesting to note that it was necessary to use different values for 
the standard deviation to bring different MLE images back to the shell: 
the greater values were needed for images generated after more iterations. 
Figure 3 shows the value of the H function as a function of the standard 
deviation o for several MLE images used in the convolution operation. 
The resulting causal images are shown in Fig. 4. Causal images obtained 
by filtering reconstructions with an increasing number of iterations show 
increasing noise. Image a) is a causal MLE image obtained by the stopping 
rule, image b) is an "overdone" MLE image after 50 iterations, images c), 
d), e) and f) are MLE images after SO, 100, 200 and 300 iterations, re­
spectively, filtered to make them causal. The cleanest and sharpest image 
is image c). Furthermore, it is the "best" image we have ever seen for the 
data set at hand. 
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Fig. 3: Results of Gaussian filters with different standard deviations 
applied to MLE reconstructions after certain iteration numbers: 
25, 30 , 50, 100, 200 and 300. The hypothesis testing parameter H 
of the resulting images is shown as a function of the standard 
deviation. Different curves correspond to different iteration 
numbers. 

5. MAXIMUM ENTROPY RECONSTRUCTION AND CAUSALITY 

Another attempt to arrive at causal images was made by the use of maximum 
entropy techniques . The maximum entropy solution seems attractive because 
it yields the image with the lowest information content compatible with the 
data. Thus, the criterion will give an image which avoids any bias while 
satisfying the imposed constraints. 

Following Frieden (1972) and Gullberg and Tsui (1987), we formulate the 
problem as follows: 

Maximize: 

-
~ 'A(b) 'A(b) ~ _n(d) n(d) 
L...J ln --- p L...J ln --
b·l N'A N'A d·l Nn Nn 

(3) 

9 



where 

subject to 

B 
N'A .. L: 'A(b); 

b-1 

B 

N • n 
n(d); 'A(b) 2 0; n(d) 2 0 

L: P(b,d)'A(b)+n(d)-nm • n*(d); d-1, ... , D 
b:l 

(4) 

The parameter pis the weight quantifying the relative importance of the 
entropy of the noise vs. that of the image. The true noise or the differ­
ence between the data and the forward projections can be represented as 
n(d) - nm, where n(d) is a biased noise term and nm is a constant noise 
bias which insures that n(d) is always positive. 

Due to the Poisson nature of the data, we have chosen: 

and 

nm • max [2"n*(d)] d. 1, ... , D 

(n(d) - n ) m 

D 
.. 0 ; 

D 
N • :E n (d) • D nm 
n d-1 

The constant p effectively controls the smoothness of the solution: the 
larger the constant, the less smooth image will result for a given noise. 
If the data contains very little noise, p can be made very high thus 
obtaining high sharpness. The bias nm also controls the smoothness of 
the image. In this case, the large nm, the smoother the image, with a 
background being higher. 

Note that in this model, the noise n(d) is a variable in the optimization 
problem and the solution gives unbiased estimates ·for both the image and 
the noise. However, the present model does not contain the information 
about the Poisson nature of the data. 

10 
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c d 

e f 

XBB 889-8512 

Fig. 4: Causal images obtained by the MLE or the MLE and subsequent 
filtering. a) MLE and the stopping rule (30 iterations, H = 
17.5); b) MLE in the rising part of H (50 iterations, H = 30.25); 
c) is image b) filtered with sigma= 0. 625 with resulting H = 
13 .2; d) MLE image after 100 iterations filtered with sigma= 
0.75; e) MLE image after 200 iterations filtered with sigma= 
0.75; f) MLE image after 300 iterations filtered with sigma= 
0.875 . Images d), e) and f) are all causal but with increasing 
noise. 
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In order to solve the problem of maximizing Eq. (3) subject to constraints 
in Eq. (4), we introduce the Lagrangian function and solve the 
unconstrained problem of maximizing: 

~ A(b) A(b) ~ n(d) n(d) 
L .. - L..J -- ln --- p LJ -- ln --

b=l NA NA d=l Nn Nn 

0 B 
- L lld [n*(d)-n(d)+nm- L P(b,d)A(b)] 

d=l b=l NA 

where J.L(d) d .. 1, ... , 0 are Lagrange multipliers. 

The maximum of L is achieved when: 

aL 0 b = 1 ' . .. ' B = 
aA(b) 
aL 0 d = 1 ' ... ' 0 .. 
an(d) 
aL 0 d .. 1 ' ... ' 0 = 
all<d) 

which have the following solution: 

(5) 

where the Lagrange multiplier is determined by the system of 0 nonlinear 
equations: 

(6) 

The solution of the system as shown in Eq. (6), is derived using the non­
linear Gauss-Seidel-Newton iterative algorithm found in Ortega and Rhein­
boldt (1970). As the iterative algorithm for obtaining the Lagrange mul­
tipliers progresses, we can substitute the multipliers in Eq. (5) and mon­
itor the formation of the image as well as its various statistics. 
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Figure Sb shows the maximum entropy reconstruction of the same phantom as 
the one used in the previous reconstructions in the absence of noise at 
convergence after 10 iterations with p • SO. Note , that the reconstruction 
is nearly perfect. This shows that the algorithm works very well in the 
case of little noise where it is possible to use large values of p thereby 
achieving high sharpness in the reconstructed image. 

In the presence of noise, the behavior of the present version of the algo­
rithm is not adequate due to the simplicity of the noise model. We have 
obtained promising results by adjusting p and smoothing the final image. 

The images in Figure Sc through Sf are the ME reconstructions of the same 
phantom of Sa with noise (Poisson data), with p • 8. Image c) is gener­
ated after only one iteration in the calculation of the Lagrange multiplier 
and d) after twenty iterations at convergence. Image e) is obtained by 
filtering image d) by convolving it with the Gaussian distribution with 
a. 0.7S pixels. Image f) is obtained by increasing the bias parameter 
nm by 2S1 and filtering. Note that the structures of the phantom are 
clearly visible but we have found that none of the images are causal. 

He have just recently concluded the first reconstruction experiments with 
a fully Bayesian reconstruction method, using an entropy prior distribution 
and the Likelihood criterion as the conditional probability of the data, 
given an image. An adjustable parameter which, in effect, changes the 
weight of one of the criteria with respect to the other and appears justi­
fiable in terms of intensity jumps of the image and data has been used in 
the problem formulation. This work is still in progress but we can report 
that, by proper choice of the adjustable parameter, it is possible to ob­
tain images that converge (in an iterative formulation of the reconstruc­
tion process) to stable causal images of a quality very similar to that of 
the MLE images of Fig. 4 c). We have, thus, another method to obtain 
causal images. 

6. CAUSALITY-BASED ALGORITHMS 

The experiments described in Sect. 4 have demonstrated that the set of 
causal images is rather large. It includes the best images we have ever 
seen, which are clearly superior to MLE images, but it also includes unac­
ceptable images as well as noisy ones. This suggests that causality is a 
valuable concept in image reconstruction but, taken alone, it is not enough 
to guarantee good reconstructions. 

13 
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Fig. 5: ME images. a) source image with 1M counts; b) reconstruction 
with noiseless data; c) lst iteration for obtaining Lagrange 
multipliers with H • 103; d) 20th iteration in Lagrange 
multipliers with very high H; e) 20 iterations filtered with 
sigma K 0.75 with H still too high (1142); f) obtained by 
increasing the bias parameter by 251 and filtering. 
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Therefore, it is promising to use causality as a constraint a.nd try to op­
timize another criterion, such as entropy, while remaining on the shell. 
Then it may be more convenient, from the computation complexity point of 
view, to limit ourselves to weak or·k-causal1ty, that is: 

Maximize: 

subject to 

fori .. 1, ... , k. 

B 
- 2: 'A( b) 1 n'A(b) 

bal 

D [n*(d) - 'A*(d)]i 
)' = D d:i' f; ['A*{d)] 

This approach has been proposed by Skilling and Bryan (1984) who, using 
our terminology, considered only weak causality (k • 2) and in the Gaussian 
rather than Poisson case. 
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