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ABSTRACT OF THE DISSERTATION

Topics in Nonparametric Statistics

by

Christopher Chang

Doctor of Philosophy in Mathematics

University of California San Diego, 2011

Professor Dimitris Politis, Chair

This thesis is concerned with nonparametric techniques for inferring properties of

time series.

First, we consider finite-order moving average and nonlinear autoregressive pro-

cesses with no parametric assumption on the innovation distribution, and present

a kernel density estimator of a bootstrap series that estimates their marginal den-

sities root-n consistently. This is equal to the rate of the best known convolution

estimators, and faster than the standard kernel density estimator. We also conduct

simulations to check the finite sample properties of our estimator, and the results are

generally better than corresponding results for the standard kernel density estimator.

Next, given stationary time series data, we study the problem of finding the best

linear combination of a set of lag window spectral density estimators with respect to

the mean squared risk. We present an aggregation procedure and prove a sharp oracle

inequality for its risk. We also provide simulations demonstrating the performance of

our aggregation procedure, given Bartlett and other estimators of varying bandwidths

as input. This extends work by Rigollet and Tsybakov on aggregation of density

estimators.

The last part of this thesis introduces a class of robust autocorrelation estimators

xii



based on interpreting the sample autocorrelation function as a linear regression.

We investigate the efficiency and robustness properties of the estimators that result

from plugging on three common robust regression techniques. Construction of robust

autocovariance and positive definite autocorrelation estimates is discussed, as well as

application of the estimators to AR model fitting. We finish with simulations, which

suggest that the estimators are especially well suited for AR model fitting.
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Chapter 1

Bootstrap with Larger Resample

Size for Root-n Consistent Density

Estimation with Time Series Data

1.1 Introduction

A common statistical problem involves estimating an unknown density function

f(x) given a limited number of observations X1, X2, . . . , Xn independently drawn

from that density. The standard approach today, first suggested by Rosenblatt (1956)

and Parzen (1962), is to use a kernel density estimator

f(x) =
1

nhn

n∑
i=1

K

(
x−Xi

hn

)
, (1.1)

where K is a nonnegative kernel function and hn is a bandwidth. With optimal

bandwidth determination, this estimator typically has a n−2/5 rate of convergence.

Often, e.g. in a time-series setting, independence does not hold. Roussas (1969)

and Rosenblatt (1970) were among the first to study the behavior of the kernel

1
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estimator under dependence; many later references can be found in Györfi et al.

(1989) chapter 4 and Fan & Yao (2003) chapter 5.

Recently, methods have been developed to exploit information about the form

of dependence to improve density estimates. Saavedra & Cao (1999) introduced a

convolution-kernel estimator for the marginal density of a moving average process

of order 1 (Zt = at − θat−1 with unknown θ), which they proved to have a n−1/2

rate of convergence—surprisingly superior to what is achievable in the independent

case. Müller et al. (2005) introduced a similar estimator for the innovation density

in nonlinear parametric autoregressive models, Schick & Wefelmeyer (2007) (SW,

for short) proved root-n consistency of the convolution density estimator for weakly

dependent invertible linear processes, and Støve and Tjøstheim (2007) (ST, for short)

proved root-n consistency of a convolution estimator for the density in a nonlinear

regression model.

This article is concerned with demonstrating that one can get root-n consistent

estimation of the marginal density for MA(p) and nonlinear AR(1) time series with

a simple kernel density estimator of a bootstrap series, thus bypassing the need for

a convolution. Our bootstrap is the usual model-based (semiparametric) residual

bootstrap (see e.g. Efron & Tibshirani (1993) or Davison & Hinkley (1997)). Inter-

estingly, and in contrast to some recent work involving bootstraps with smaller re-

sample sizes (e.g. Bretagnolle (1983), Swanepoel (1986), Politis (1993), Datta (1995),

Bickel (1997), Politis (1999)), our proposed bootstrap has resample size larger than

n by orders of magnitude.

The estimator is presented in section 2, and its root-n consistency is first proved

in the MA(1) case and then extended to MA(p). An application of the estimator to

the nonlinear AR(1) case is presented and analyzed in section 3; simulation results

are described in section 4, and a short conclusion is stated in section 5. Appendix A

contains all technical assumptions; all proofs are in Appendix B.
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1.2 MA(p) Density Estimation

1.2.1 MA(1)

Consider a stationary linear process with MA(1) representation

Xt = εt + aεt−1, t ∈ Z, a 6= 0, |a| < 1, εt iid with density f . (1.2)

The density f is assumed to satisfy smoothness conditions to be specified later.

Our objective is to estimate the stationary density h of the Xt’s as accurately as

possible. A first step toward this is a good estimate â of a. The usual choice is the

least squares (LS) estimate regressing X2, . . . , Xn on X1, . . . , Xn−1, which minimizes∑n
j=2(

∑j−1
k=0(−â)kXj−k)

2; this is adequate for our purposes.

To execute the residual bootstrap that is based on the MA model, it is necessary to

use â to estimate the sequence of residuals, use the estimated sequence to estimate

the underlying residual density, and finally, use the density estimate to construct

bootstrap replications of the linear process. We address each of these steps in turn.

If we express εj in terms of a and the Xis, we get an infinite geometric sum:

εj = Xj − aεj−1

= Xj − aXj−1 + a2εj−2

= . . .

=
∞∑
k=0

(−a)kXj−k

Thus it is necessary to choose a sequence of cutoff values pn indicating the number

of Xi terms we will use in extracting residuals. We use

pn := min(1, b(log n)(log log n)c). Then our residual estimates are
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ε̂n,j = Xj +

pn∑
k=1

(−ân)kXj−k,

Next, apply a kernel density estimator to this sequence that utilizes the centering

assumption and converges at a o(n−1/2) rate. Müller et al.’s (2005) weighted kernel

density estimator

f̂n(x) :=
1

n− pn

n∑
j=pn+1

wn,jkbn(x− ε̂n,j),

where kbn is a kernel, bn is a bandwidth, and wn,j := 1
1+λε̂j

are the weights, suffices

for this purpose. We’ll use a bandwidth proportional to n−1/4.

Then, construct a bootstrap residual sequence ε∗j for 1 − pn ≤ j ≤ N(n) using

iid sampling from density f̂n; here the replication length N(n) satisfies n5/2/N(n) =

o(1)—see the subsection “Determination of necessary bootstrap length” in Appendix

B. Finally, calculate bootstrap pseudo-data X∗j = ε∗j + ânε
∗
j−1 for j = 1, . . . , N(n),

and estimate h with

ĥ∗n :=
1

N

N∑
j=1

KdN (x−X∗j ) (1.3)

where {dn} is a second sequence of bandwidths, and K is another kernel function.

We’ll use dn proportional to n−1/5.

Our main result is the following:

Theorem 1.2.1. Given an MA(1) process of form (1.2), let ĥ∗n be as defined above,

dn := Dn−1/5 for some constant D, N satisfy n5/2/N = o(1), and all the conditions

in Section 1.6.1 hold. Then ĥ∗n = h+OP (n−1/2).

Note that the notation ĥ∗n = h + OP (n−1/2) is short-hand for ĥ∗n(x) = h(x) +

OP (n−1/2), uniformly in x.
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1.2.2 Extending to MA(p)

Now consider the process

Xt = εt +

p∑
j=1

ajεt−j, ap 6= 0, εt iid with density f , (1.4)

where the aj’s are such that 1 +
∑p

j=1 ajz
j has no roots on the complex unit disk,

and f satisfies (SW-F). Since the process is invertible, the least squares estima-

tors â1,n, . . . , âp,n of a1, . . . , ap are root-n consistent and satisfy (SW-R) with pn =

min(b| log|b| nc|+ 1, bn
2
c), where b is the root of 1 +

∑p
j=1 ajz

j with magnitude closest

to 1. Next, calculate the residuals ε̂n,j = Xj −
∑pn

s=1 %̂sXj−s, where 1−
∑∞

s=1 %̂sz
s =

1
1+

P∞
s=pn

âszs
. Compute the weighted kernel estimator

f̂n(x) :=
1

n− pn

n∑
j=pn+1

wn,jkbn(x− ε̂j).

where wn,j satisfies (MSW-W), k satisfies (SW-K), and bn satisfies (SW-Q) for some

ζ satisfying (SW-B). Construct a bootstrap replication ε∗j of the residuals (iid f̂n)

for 1− pn ≤ j ≤ N , and calculate X∗j = ε∗j +
∑pn

s=1 âs,nε
∗
j−s. Finally, estimate h with

ĥ∗n(x) := 1
N

∑n
j=1Kdn(x−X∗j ) where K satisfies (ST-K).

Then we have the following result:

Theorem 1.2.2. Given a MA(p) process of form (1.4), let ĥ∗n be as defined above,

dn := Dn−1/5 for some constant D, N satisfy n5/2/N = o(1), and all the conditions

in Section 1.6.1 hold. Then ĥ∗n = h+OP (n1/2).

1.3 Nonlinear AR(1)

Next, consider a stationary and geometrically ergodic nonlinear process with

representation
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Xi+1 = g(Xi) + ei, ei iid with density f , (1.5)

where f has mean zero and g is differentiable and invertible. Note that the differen-

tiability condition excludes some common nonlinear AR(1) models, such as SETAR.

For clarity of exposition, we will assume S.1 and S.2 in Appendix A are satisfied;

this is slightly stronger than stationary and geometrically ergodic.

As before, let h be the stationary density of the Xi’s. Since Xi has the same

distribution as g(Xi) + ei, following Stove (2008) we have

h(x) =

∫
f(x− g(u))h(u) du = E[f(x− g(X))].

In light of this, construct an estimator

h̃n(x) = Ê[f̂n(x− g̃n(X))] (1.6)

where f̂n is a weighted kernel estimator of the density of the ei’s, g̃n is a root-

n consistent estimator of g (such as a parametric least squares estimator), and Ê

represents an average taken over the observed Xis. (Note that a root-n consistent

estimator of g may not always exist.)

More precisely, estimate ẽn,i = Xi−g̃n(Xi−1) for 2 ≤ i ≤ n. Then, for some kernel

k satisfying (SW-K) and infx∈C k(x) > 0 for all compact sets C, and a sequence

of bandwidths bn satisfying (SW-B), set f̂n(x) = 1
n−1

∑n
j=2wn,jkbn(x − ẽn,j) where

wn,j satisfies (MSW-W) with ε̂ replaced with ẽ. Plugging that into (1.6) yields

h̃n(x) = 1
n(n−1)

∑n
i=1

∑n
j=2 wn,jkbn(x− g̃n(Xi)− ẽn,j).

Preliminary results by Støve and Tjøstheim (2008) suggest that h̃un is a root-n

consistent estimator of h, i.e.

h̃un = h+OP (n−1/2). (1.7)
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Since h̃n performs no worse than h̃un, (1.7) implies

h̃n = h+OP (n−1/2).

Now we propose a bootstrap kernel estimator of h that is root-n consistent given

(1.7).

Construct a bootstrap replication e∗j,n of the residuals using f̂n for −mn ≤ j ≤
N(n) where mn := d(log n)2e and N(n) is to be determined later. Let X∗−mn−1,n be

randomly drawn from the observed Xi’s, and compute X∗j,n := g̃n(Xj−1,n) + e∗j,n for

−mn ≤ j ≤ N(n). Our estimator of h is

ĥ∗n :=
1

N

N∑
j=1

KdN (x−X∗j,n)

where K and dN are still defined as in the first section.

Then we have the following result:

Theorem 1.3.1. Given a nonlinear AR(1) process of form (1.5), let ĥ∗n and h̃n be

as defined above, dn := Dn−1/5 for some constant D, N satisfy n5/2/N = o(1), and

all the conditions in Section 1.6.2 hold. If (1.7) is true, then ĥ∗n = h+OP (n−1/2).

1.3.1 Application: AR(1) Density Estimation

Assume a stationary linear process with AR(1) representation

Xt = aXt−1 + εt, t ∈ Z, a 6= 0, |a| < 1, εt ∼ f∀t,

where f has mean zero and infx∈C f(x) > 0 for all compact sets C. As usual, let h

be the true density of the Xt’s.

Compute the least squares estimator of a (i.e. minimize
∑n

j=2(Xj − aXj−1)2);

this estimator, which we’ll denote as ân, is root-n consistent. Then estimate ẽn,t =
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Xt− ânXt−1 for 2 ≤ t ≤ n, and finish the calculation of h̃n as with a nonlinear AR(1)

process. If (1.7) is true for the general nonlinear case, it’s true for this h̃n.

We now propose a bootstrap kernel estimation procedure that’s root-n consistent

given (1.7). Draw an iid sample ε∗j,n from the density f̂n for −mn ≤ j ≤ N(n) where

mn = d(log n)2e and N(n) ∼ n5/2+ε. Let X∗−mn−1,n be randomly drawn from the

observed Xi’s, and compute X∗j,n := âXj−1,n + ε∗j,n for −mn ≤ j ≤ N(n). Estimate

h with

ĥ∗n :=
1

N

N∑
j=1

KdN (x−X∗j,n)

where K and dN are defined as in the first section.

Root-n consistency of this estimator, given (1.7), is shown by Theorem 1.3.1.

1.3.2 Application: Nonlinear Parametric AR(1) Density Es-

timation

Now assume a stationary and geometrically ergodic nonlinear process

Xi+1 = gϕ(Xi) + ei

just like the general nonlinear AR(1) case, except that g is known up to a q-

dimensional parameter ϕ, and this provides a framework for estimating g root-n

consistently. For instance, we can have a root-n consistent estimator ϕ̂ of ϕ, and

have the parametrization of g obey the following condition from Muller (2005):

The function τ 7→ gτ (x) is differentiable for all x with derivative τ 7→ ġτ (x), and

for each constant C,

sup
|τ−ϕ|≤Cn−1/2

n∑
i=1

(gτ (Xi)− gϕ(Xi)− ġϕ(Xi)(τ − ϕ))2 = oP (1).
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Also, E[|ġϕ(X)|5/2] <∞.

Then (given (1.7)) a root-n consistent estimator of h can be constructed as follows:

Estimate ẽn,t = Xt − gϕ̂(Xt−1) for 2 ≤ t ≤ n, and finish the calculation of

h̃n as with a nonlinear AR(1) process. Draw an iid sample ε∗j,n from the density

f̂n for −mn ≤ j ≤ N(n) where, as before, mn = d(log n)2e and N(n) ∼ n5/2+ε.

Let X∗−mn−1,n be randomly drawn from the observed Xi’s, and compute X∗j,n :=

âXj−1,n + ε∗j,n for −mn ≤ j ≤ N(n). Estimate h with

ĥ∗n :=
1

N

N∑
j=1

KdN (x−X∗j,n)

where K and dN are defined as in the first section.

1.4 Simulation study

To evaluate our proposed estimator on finite samples, we compare its (numerically

estimated) mean integrated squared error (MISE) to that of the classical kernel

estimator (1.1).

For each entry in the following tables, 200 simulated realizations with fixed sample

size (usually n = 100 or n = 400) of the process {Xt} were generated, and then a

bootstrap replication of length n5/2 was generated off each sample. The first 200

elements of these replications were discarded. (Note that the computation of a single

long bootstrap replication of length ≥ 1000n is as computer intensive as the usual

procedure of generating 1000 or more length-n replications and averaging the results;

but using a single replication is slightly advantageous because the initial “break-in”

period doesn’t have to be repeated. In the n = 100 case, n5/2 is precisely 1000n,

while n5/2 = 8000n when n = 400.)

The estimated MISEs (denoted by ˆMISE) of our proposed estimator and the
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classical kernel estimator were computed by averaging the results of numerically

integrating the square of the difference between the density estimates and the true

marginal density.

Gaussian kernels were used. Bandwidth selection was left to R 2.9’s default

behavior, namely 0.9 min(stdev, IQR
1.34

)n−1/5.

The AR(1) model Xt = φXt−1 + et was investigated first, with the following

choices of densities for et:

Gaussian: N(0, 1)

Skewed unimodal: 1
5
N(0, 1) + 1

5
N(1

2
, 2

3
) + 3

5
N(4

5
, 5

9
)

Kurtotic unimodal: 2
3
N(0, 1) + 1

3
N(0, 1

10
)

Separated bimodal: 1
2
N(−3

2
, 1

2
) + 1

2
N(3

2
, 1

2
)

It’s easily seen from Table 1.1 that our bootstrap estimator almost always yields

better results, though the improvement is smaller when the AR coefficient is low (un-

surprising since our theoretical results show the bootstrap estimator would yield no

improvement in the a = 0 case), and in the separated bimodal subcase the bootstrap

estimator exhibits worse performance than the classical kernel estimator. However,

even there the superior asymptotic performance of the bootstrap is in evidence, as

a 32% to 39% MISE disadvantage when n = 100 declines to a roughly 25% disad-

vantage when n increases to 400; and larger sample sizes are slightly associated with

better relative performance of our estimator across the board.

Next, we looked at the MA(1) model Xt = et + aet−1, with the same mix of

densities.

Table 1.2 exhibits most of the same patterns seen in Table 1.1. Our estimator

outperforms the standard kernel density estimator for all error densities except the

separated bimodal, though, as expected, the performance advantage is smaller for

low MA(1) coefficients. Larger sample sizes are associated with superior relative

performance.

Our third simulation generated data from the MA(3) process Xt = et + a1et−1 +
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Table 1.1: AR(1) Simulation Results
Density Coef. Sample size Bootstrap ˆMISE Std. kernel ˆMISE SE of diff. % advantage

Gaussian

0.8
100 .00286 .01256 .01084 77
400 .00075 .00440 .00397 83

0.5
100 .00272 .00859 .00626 68
400 .00072 .00247 .00130 71

0.2
100 .00423 .00695 .00383 39
400 .00132 .00219 .00102 39

-0.2
100 .00407 .00604 .00255 32
400 .00134 .00203 .00080 34

Skewed unimodal

0.8
100 .00481 .01867 .01623 74
400 .00166 .00553 .00432 70

0.5
100 .00502 .01347 .01017 63
400 .00157 .00390 .00199 60

0.2
100 .00698 .01000 .00592 30
400 .00222 .00359 .00166 38

-0.2
100 .00680 .00897 .00465 24
400 .00251 .00338 .00144 26

Kurtotic unimodal

0.8
100 .00338 .01414 .01082 76
400 .00078 .00414 .00360 83

0.5
100 .00302 .00880 .00628 66
400 .00078 .00305 .00186 74

0.2
100 .00518 .00825 .00441 37
400 .00195 .00289 .00121 32

-0.2
100 .00562 .00743 .00303 24
400 .00192 .00262 .00102 27

Separated bimodal

0.8
100 .00135 .00712 .00698 81
400 .00035 .00204 .00178 83

0.5
100 .00242 .00544 .00441 56
400 .00101 .00173 .00086 41

0.2
100 .02702 .02047 .00880 -32
400 .01059 .00876 .00395 -21

-0.2
100 .02759 .01989 .00868 -39
400 .01104 .00866 .00453 -28

a2et−2 + a3et−3.

From Table 1.3, we can observe that a more complex known dependence structure

leads to consistently better relative performance of our estimator even on moderately

sized samples.

Finally, we simulated nonlinear AR(1) data from the process Xt = φ tan−1Xt−1 +

et.

From Table 1.4, we can see that, with the exception of the separated bimodal

φ = −0.2 case, our estimator continued to outperform (or match, in the nearly

nonstationary φ = 1 case) the standard kernel density estimator. It appears that

multimodality of the error distribution genuinely lowers effectiveness in the non-
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Table 1.2: MA(1) simulation results.
Density Coef. Sample size Bootstrap ˆMISE Std. kernel ˆMISE SE of diff. % advantage

Gaussian

0.8
100 .00504 .00632 .00600 20
400 .00112 .00222 .00103 49

0.5
100 .00462 .00689 .00320 33
400 .00137 .00241 .00105 43

0.2
100 .00600 .00670 .00241 11
400 .00199 .00245 .00075 19

-0.2
100 .00477 .00575 .00230 17
400 .00174 .00213 .00063 18

Skewed unimodal

0.8
100 .00856 .01045 .00758 18
400 .00327 .00464 .00192 29

0.5
100 .00772 .01024 .00484 25
400 .00256 .00395 .00182 17

0.2
100 .00899 .01002 .00389 10
400 .00315 .00367 .00127 14

-0.2
100 .00814 .00900 .00436 9
400 .00257 .00311 .00100 17

Kurtotic unimodal

0.8
100 .02130 .02106 .00975 -1
400 .00807 .01140 .00336 29

0.5
100 .01873 .02268 .00933 17
400 .00792 .01190 .00325 33

0.2
100 .03822 .03645 .01388 -5
400 .01373 .01614 .00520 15

-0.2
100 .03407 .03244 .01490 -5
400 .01385 .01500 .00631 8

Separated bimodal

0.8
100 .02141 .01560 .00523 -37
400 .00980 .00789 .00189 -24

0.5
100 .00706 .00726 .00207 3
400 .00354 .00336 .00103 -5

0.2
100 .02554 .02038 .00820 -25
400 .01075 .00921 .00471 -17

-0.2
100 .02659 .01990 .00946 -34
400 .01068 .00884 .00481 -21

linear AR case as also noted by Støve and Tjøstheim (2008) in the non-bootstrap

implementation of the convolution estimator.

However, there was one unexpected pattern: larger sample sizes were no longer

associated with better relative performance, and this phenomenon was not due to

errors in estimating φ. Our limited simulation data does not appear to exhibit a root-

n convergence rate. Since our theoretical root-n convergence result is dependent on

the validity of eq. (1.7) as conjectured by Støve and Tjøstheim (2008), one possibility

is that the conjecture is false. Further investigation of this case is in order.
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Table 1.3: MA(3) simulation results. (The MA coefficients are from lowest to highest
order.)

Density Coefs. Sample size Bootstrap ˆMISE Std. kernel ˆMISE SE of diff. % adv.

Gaussian
1, 0, -0.5

100 .00237 .00554 .00325 57
400 .00064 .00166 .00087 61

0.6, 0.3, 0.1
100 .00528 .00757 .00345 30
400 .00157 .00272 .00115 42

Skewed unimodal
1, 0, -0.5

100 .00437 .00789 .00421 45
400 .00210 .00372 .00175 44

0.6, 0.3, 0.1
100 .00869 .01271 .00571 32
400 .00320 .00466 .00193 31

Kurtotic unimodal
1, 0, -0.5

100 .00519 .00779 .00439 33
400 .00154 .00323 .00140 52

0.6, 0.3, 0.1
100 .01194 .01543 .00866 23
400 .00319 .00508 .00243 37

Separated bimodal
1, 0, -0.5

100 .00212 .00342 .00162 38
400 .00083 .00119 .00062 30

0.6, 0.3, 0.1
100 .00418 .00469 .00145 11
400 .00150 .00172 .00064 13

1.5 Conclusions

A bootstrap-based kernel density estimator was presented, and proved to esti-

mate the marginal density of certain finite-order moving average processes and order

1 autoregressive processes root-n consistently. This matches the asymptotic perfor-

mance of the best known convolution estimators, and is a significant improvement

over the n−2/5 rate of the usual kernel density estimator.

Simulations indicate that a sample size of 100 is sufficient to realize this perfor-

mance advantage in most cases, though the advantage is greater across the board

given a sample size of 400 (confirming our asymptotic analysis). Small dependence

coefficients lower the effectiveness of our estimator, as would be expected from con-

sidering the independent case where no improvement is possible. Multimodality of

the error distribution also lowers effectiveness, as also noted by Støve and Tjøstheim

(2008). When these factors are present, simulation results indicate that our estima-

tor still does not perform much worse than the standard kernel density estimator,

but it is unlikely to provide a significant advantage, either.

Our estimator also tends to outperform the usual kernel density estimator for

nonlinear autoregressions. However, the picture there is less complete as our simu-
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Table 1.4: Nonlinear AR(1) simulation results.
Density Coef. Sample Bootstrap ˆMISE Std. kernel ˆMISE SE of diff. % adv.

Gaussian

1
36 .14843 .15623 .01682 5
100 .14344 .14591 .00865 2
400 .14290 .14302 .00399 0

0.5
36 .00844 .01851 .01254 54
100 .00375 .00782 .00522 48
400 .00141 .00284 .00130 50

-0.2
36 .00796 .01272 .00783 37
100 .00421 .00594 .00246 29
400 .00151 .00218 .00077 31

-0.8
36 .01584 .02057 .00914 23
100 .01557 .01798 .00518 13
400 .01679 .01731 .00240 3

Skewed unimodal

1
36 .21769 .22613 .02888 4
100 .20533 .20829 .01607 1
400 .19800 .19827 .00694 0

0.5
36 .01306 .02533 .01940 48
100 .00463 .00996 .00639 53
400 .00200 .00419 .00255 52

-0.2
36 .01645 .02134 .01067 23
100 .00675 .00824 .00335 18
400 .00230 .00300 .00124 23

-0.8
36 .02332 .02827 .01543 18
100 .01889 .02216 .00900 15
400 .01972 .02082 .00400 5

Kurtotic unimodal

1
36 .15627 .16352 .01981 4
100 .14788 .15114 .00951 2
400 .14799 .14773 .00419 0

0.5
36 .00891 .01828 .01273 51
100 .00324 .00788 .00510 59
400 .00161 .00311 .00157 48

-0.2
36 .01104 .01582 .01076 30
100 .00530 .00652 .00256 19
400 .00193 .00239 .00080 19

-0.8
36 .01899 .02219 .00885 14
100 .01696 .01846 .00539 8
400 .01736 .01787 .00264 3

Separated bimodal

1
36 .07139 .07211 .00389 1
100 .07154 .07089 .00209 -1
400 .07309 .07210 .00102 -1

0.5
36 .00788 .01126 .00476 30
100 .00968 .00990 .00472 1
400 .01540 .01407 .00537 -9

-0.2
36 .04551 .02861 .01399 -59
100 .02152 .01424 .00837 -51
400 .00586 .00411 .00239 -42

-0.8
36 .01364 .01482 .00404 8
100 .01500 .01454 .00350 -3
400 .01584 .01531 .00245 -3



15

lation does not appear to exhibit a root-n rate, and our theoretical result predicting

that convergence rate is dependent on a conjecture.

1.6 Appendix A: Technical conditions

1.6.1 MA(1), MA(p)

Conditions on estimation of â and initial extraction of residuals:

(SW-R) pn is a sequence of positive integers where pn
n
→ 0 and npnc

2pn → 0

for all c ∈ (−1, 1). If {Xt} is instead expressed as an autoregression, viz. εt =

Xt −
∑∞

s=1 %sXt−s, the estimators %̂i,n = −(−ân)i of the autoregression coefficients

%i = −(−a)i satisfy

pn∑
i=1

(%̂i,n − %̂i)2 = Op(qnn
−1)

Conditions on the weighted kernel density estimator:

(MSW-W) wn,j := 1
1+λε̂j

for a choice of λ satisfying
∑n

j=pn+1wn,j ε̂n,j = 0,

(SW-K) k ≥ 0 integrates to one, and has bounded, continuous, and integrable

derivatives up to order two satisfying
∫
tik(t) dt = 0 for i = 1, 2 and

∫
|t|4|k(t)| dt <

∞,

(SW-Q)
∑

s>pn
|as| = O(n−1/2−ζ) for some ζ > 0.

(SW-B) The sequences bn, pn and qn and the exponent ζ satisfy pnqnb
−1
n ×

n−1/2 → 0, nb4
n = O(1), n1/4sn → 0 and n1/2bnsn = O(1), where sn = b

−1/2
n n−1/2 +

pnqnb
−5/2
n n−1 + b

−3/2
n n−ζ−1/2.
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Conditions on the kernel used in constructing the final marginal density estimate:

(ST-K) K ≥ 0 is bounded, two times differentiable, symmetric, integrates to one,∫
K ′(z) dz = 0, and

∫
z2K ′(z) dz = 0.

Conditions required to use results in Schick & Wefelmeyer (2007) in the proof of

the MA(1) convergence result:

(SW-C) If Xt is expressed as εt+
∑∞

s=1 ϕsεt−s, at least one of the moving average

coefficients ϕs is nonzero.

(SW-I) The function φ(z) = 1 +
∑∞

s=1 ϕsz
s is bounded, and bounded away from

zero, on the complex unit disk.

(SW-S)
∑∞

s=1 s|ϕs| <∞.

1.6.2 Nonlinear AR(1)

Pair of sufficient conditions for stationarity and geometric ergodicity (Franke

(2002a)):

S.1. infx∈C f(x) > 0 for all compact sets C.

S.2. g is bounded on compact sets and lim sup|x|→∞
E[|g(x)+e1|]

|x| < 1.

Franke et al.’s (2002b) geometric ergodicity theorem and conditions (used in the

final proof):

F.1. There exists a compact set K such that

(i) there exist ρ > 1 and ε > 0 with

E[|Xt||Xt−1 = x] ≤ ρ−1|x| − ε ∀x 6∈ K
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(ii) there exists A <∞ with

sup
x∈K
{E[|Xt||Xt−1 = x]} ≤ A.

F.2. K is a small set, i.e. there exist n0 ∈ N, γ > 0 and a probability measure φ

such that

inf
x∈K
{P n0(x,B)} ≥ γφ(B)

holds for all measurable sets B. P n(x, ·) denotes the n-step transition probability of

the Markov chain started in x.

F.3. There exists κ > 0 such that

inf
x∈K
{P (x,K)} ≥ κ.

Theorem 1.6.1. (Franke et al. (2002b)) Given F.1, F.2, and F.3, {Xt} is geomet-

rically ergodic with convergence rate ρµ only dependent on K, ρ, ε, A, n0, γ, and

κ.

This is used to establish the existence of a single geometric bound in the proof

of Theorem 1.3.1.

1.7 Appendix B: Proofs

1.7.1 Determination of necessary bootstrap length

The bootstrap length N(n) must be chosen such that the pdf ĥ∗n is within Cn−1/2

of

ĥn := f̂n ∗ f̂n,ân (1.8)
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everywhere with probability converging to 1. I.e., P ∗(supx |ĥ∗n(x)−ĥn(x)| > Cn−1/2)→
0 as n → ∞, where C is some constant, f̂n,c(x) := c−1f̂n(x/c), and ∗ indicates con-

volution. The following lemma tells us how to do this.

Lemma 1.7.1. If ĥ∗n is as defined in (1.3), ĥn is as defined in (1.8), and dn :=

Dn−1/5 for some constant D, choosing N(n) such that n5/2/N(n) = o(1) guarantees

P ∗(supx |ĥ∗n(x)− ĥn(x)| > Cn−1/2)→ 0 as n→∞.

Proof. ĥ∗n is a convergent kernel density estimator of ĥn with mean integrated squared

error (MISE) of order N−4/5 over bootstrap resamples (see e.g. Jones (1995) pg.

22–23). Thus, the L2 distance between ĥ∗n and ĥn in a bootstrap resample will,

for any fixed probability p < 1, be less than a constant multiple of N−4/5

1−p with

probability p. Also, the first derivative of ĥ∗n is bounded above by a constant multiple

of N1/5, because the maximal first derivative of KdN is of order d−1
N , and similarly,

the first derivative of ĥn is bounded above by a constant multiple of b−1
n . So the first

derivative of |ĥ∗n− ĥn| is bounded above by a constant multiple of max(d−1
N , b−1

n ); for

n5/2/N = o(1) and b−1
n = O(n1/4), d−1

N is asymptotically larger.

Note that, if one is trying to maximize the L∞ norm of a function with fixed L2

norm and bounded first derivative, a triangular spike with sides of maximal slope

is optimal. To see this, assume toward a contradiction that there exists a function

g with identical L2 norm but greater L∞ norm γ′, and denote the L∞ norm of the

triangular spike by γ. Then, there must exist some x for which |g(x)| = γ+γ′

2
. Let

the function j be the triangular spike centered at x. |g(x)| > |j(x)|, and |g| cannot

descend faster than |j| on either side of x since first derivatives are bounded and |j|
is defined to attain the extremal values. Thus, |g| ≥ |j| everywhere and g must have

a larger L2 norm than j.

We can now use calculus to compute an upper bound on maxx |ĥ∗n(x)− ĥn(x)| as

a function of N .



19

N−4/5 = 2

∫ HN−1/5

0

(N1/5x)2 dx

=
2

3
N2/5(HN−1/5)3

=
2

3
H3N−1/5

3

2
N−3/5 = H3

H = O(N−1/5)

So choosing N such that n5/2/N = o(1) guarantees maxx |ĥ∗n(x)− ĥn(x)| ≤ H =

o(n−1/2) for dn = Dn−1/5 with probability converging to 1.

1.7.2 Proof of Theorem 1.2.1

Proof. First, we verify that conditions (SW-C), (SW-S), and (SW-I) are satisfied.

a 6= 0 ensures (SW-C) is met. (SW-S) is automatic since there’s only one moving

average coefficient. |a| < 1 guarantees (SW-I).

Next, Lemma 1.7.1 shows that ĥ∗n = ĥn +OP (n−1/2), so it remains to prove that

ĥn = f̂n ∗ f̂n,ân is a root-n consistent estimator of h. Since the true density h satisfies

h = f ∗ fa (where fa(x) := a−1f(x/a)), we can write ĥn − h as:

ĥn − h = (f̂n ∗ f̂n,â − f̂n ∗ fn,â) + (f̂n ∗ fâ − f ∗ fâ) + (f ∗ fâ − f ∗ fa). (1.9)

Now Muller (2005) demonstrates that the weighted estimator f̂n performs no

worse than the corresponding unweighted estimator f̂un , so we can use results in SW

concerning f̂un .

The second and third components of (1.9) are o(n−1/2) under the supremum norm
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(by Theorem 4 and Theorem 3 in SW, respectively; these theorems apply as long

as (SW-C), (SW-I), (SW-S), (SW-F), (SW-R), (SW-K), (SW-Q), and (SW-B) hold,

all of which have been verified above). The first component can be rewritten as

f̂ ∗ (f̂â − fân), which has supremum norm equal to â−1
n times that of f̂â−1

n
∗ (f̂ − f).

This last convolution is o(n−1/2) by SW Theorem 4.

1.7.3 Proof of Theorem 1.2.2

Proof. Lemma 1.7.1 shows that ĥ∗n is a root-n consistent estimator of ĥn. Since

ĥn = f̂n ∗ f̂n,â1,n ∗ · · · ∗ f̂n,âp,n and h = f ∗ fa1,n ∗ fa2,n ∗ · · · ∗ fap,n , we have

ĥn−h = (f̂n ∗ ĝ1,â,n− f̂n ∗g1,â,n)+(f̂n ∗g1,â,n−f ∗g1,â,n)+(f ∗g1,â,n−f ∗g1,a) (1.10)

where we define gk,a := fak ∗ fak+1
∗ · · · ∗ fap , gk,â,n := fâk,n ∗ fâk+1,n

∗ · · · ∗ fâp,n , and

ĝk,â,n := f̂n,âk,n ∗ f̂n,âk+1,n
∗ · · · ∗ f̂n,âp,n .

Note that (SW-C) and (SW-S) are satisfied by any nondegenerate MA(p) process,

and the statement of (1.4) ensures (SW-I). Also, as before, we need not concern

ourselves with the difference between f̂n and f̂un . Thus, as in the MA(1) case, the

second and third components of (1.10) are shown by SW to be o(n−1/2). The first

component can be rewritten as (f̂ ∗ (ĝ1,â,n − g1,â,n)), which has supremum norm

bounded above by that of ĝ1,â,n − g1,â,n since ||f̂ ||1 = 1. We can rewrite this upper

bound as

ĝ1,â,n − g1,â,n = (f̂n,â1,n ∗ ĝ2,â,n − f̂n,â1,n ∗ g2,â,n) + (f̂n,â1,n ∗ g2,â,n − fn,â1,n ∗ g2,â,n);

the second term is o(n−1/2) again, and the first term can be bounded and recursively

expanded in the same manner. In the end, we have p separate terms, all o(n−1/2).
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1.7.4 Proof of Theorem 1.3.1

Proof. Define ĥ−mn,n(x) to be the density function of X∗−mn,n, ĥk,n(x) :=
∫
f̂n(x −

g̃n(u))ĥk−1,n(u) du for k > −mn (i.e. the density function of X∗k,n), and ĥ∞,n(x) :=

limk→∞ ĥk,n(x) (the existence of this limit will be proved below). Then ĥ∗n − h̃n =

(ĥ∗n − ĥ∞,n) + (ĥ∞,n − h̃n).

Because infx∈C k(x) > 0 for all compact sets C, and g̃n satisfies S.2, the process

{X∗j,n} (for fixed n) is geometrically ergodic and the associated autoregression has a

stationary solution. Furthermore, geometric ergodicity assures us that ĥk,n converges

(as k → ∞) at a geometric rate to the density of the autoregression’s stationary

solution. Thus the latter is limk→∞ ĥk,n.

The next question is whether the rate of geometric convergence can be bounded

by the same value across different values of n.

For this, F.1, F.2, and F.3 are verified to hold when n is allowed to vary,

and then Theorem 1.6.1 is applied. Because of S.2, there exists c < 1 where

lim sup|x|→∞
E[|g(x)+e1|]

|x| < c. It follows that E[|g̃n(Xt)||Xt−1 = x] ≤ 1+c
2
|x| − e1 for

all sufficiently large n, so F.1.i holds. Also, S.2 ensures g̃n is uniformly bounded on

compact sets for sufficiently large n, so F.1.ii also holds. F.2 and F.3 follow from S.1

and the consistency of f̂n as an estimator of f .

Therefore, since logn
mn
→ 0, and ||ĥ−mn,n − ĥ∞,n||∞ = OP (1), ||ĥ1,n − ĥ∞,n|| =

OP (cn) where c < 1 is a positive constant. It follows that ĥ∗n is close to a convergent

kernel density estimator of ĥ∞,n. If the X∗j,n’s were drawn from ĥ∞,n, ĥ∗n would have

mean integrated squared error of order N−4/5 as long as N only grows polynomially in

n, and by Lemma 1.7.1 we can choose N ∼ n5/2+ε to ensure ĥ∗n− ĥ∞,n = OP (1/
√
n).

Since the actual X∗j,n’s are drawn from distributions differing from ĥ∞,n by a geo-

metrically small (w.r.t. n) amount, the additional bias and variance introduced by

nonstationarity is of no consequence.

Finally, since h̃n is at least as good an estimator of E[f̂n(x − g̃n(X))] as it is of

E[f(x−g(X))] (two sources of error are eliminated, and none are introduced), and the
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former has density ĥ∞,n, we have ĥ∞,n− h̃n = OP (n−1/2). Since h̃n− h = OP (n−1/2)

given (1.7), it immediately follows that ĥ∗n = h+OP (n−1/2).
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Chapter 2

Aggregation of Spectral Density

Estimators

2.1 Introduction

Consider stationary time series dataX1, . . . , Xn and autocovariances {γ(k)} where

the underlying process has true mean zero and spectral density

p(ω) :=
1

2π

∞∑
j=−∞

γ(j)e−iωj (2.1)

defined for all ω ∈ [−π, π). For an estimator p̂(X1, . . . , Xn) of p, define the L2-risk

Rn(p̂, p) = E

[∫ π

−π
(p̂(x)− p(x))2 dx

]
. (2.2)

Let p̂1, . . . , p̂J be a collection of lag window (a.k.a. covariance averaging kernel)

spectral density estimators of p. We investigate the construction of a new estimator

p̂Ln which is asymptotically as good, in terms of L2-risk, as using the best possible

linear combination of p̂1, . . . , p̂J ; more precisely, p̂Ln satisfies the oracle inequality

23
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Rn(p̂Ln , p) ≤ inf
λ∈RJ

Rn(
J∑
j=1

λj p̂j, p) + ∆n,J (2.3)

where ∆n,J is a small remainder term independent of p.

Such an estimator has a variety of applications. For instance, to perform band-

width or model selection, one can set the p̂s to cover a wide spread of possibly

reasonable bandwidths/models. Or, when a linear combination of kernels outper-

forms all the individual inputs (e.g. when the p̂s are Bartlett windows; see Politis

(2011)), our estimator is capable of discovering it.

Kernel density estimation dates back to Rosenblatt (1956) and Parzen (1962);

Priestley (1981) and Brillinger (1981) discuss its application to spectral densities.

More recently, Rigollet and Tsybakov (2007) analyzed aggregation of probability

density estimators. We extend Rigollet and Tsybakov’s work to spectral estimation.

To perform aggregation, we use a sample splitting scheme. The time series data

is divided into a training set, a buffer zone, and a validation set; with an exponential

mixing rate, the buffer zone need not be more than logarithmic in the size of the

other sets to ensure approximate independence between the training and validation

sets.

The estimator, and theoretical results concerning its performance, are presented

in section 2. Simulation studies are conducted in section 3, and our conclusions are

stated in section 4.

2.2 Theoretical Results

2.2.1 Aggregation Procedure

Split the time series into a training setX1, . . . , Xnt , a buffer zoneXnt+1, . . . , Xnt+nb ,

and a validation set Xnt+nb+1, . . . , Xnt+nb+nv , where the first and third sets can be
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treated as independent. We investigate appropriate choices of nt, nb, and nv at the

end of this section.

With the training set, we produce an initial estimate

γ̂1(k) :=
1

nt

nt−k∑
j=1

Xj+kXj (2.4)

of the autocovariance function, after centering the data. (In practice, the data will be

centered to the sample mean rather than the true mean, but the resulting discrepancy

is asymptotically negligible w.r.t. autocovariance and spectral density estimation.

So, for simplicity of presentation, we center at the true mean above.)

We then propose the following candidate estimators:

pj(λ) :=
1√
2π

bj∑
k=−bj

γ̂1(k) · wj
(
k

bj

)
eikλ√

2π
(2.5)

where the bjs (j = 1, . . . , J) are candidate bandwidths arrived at via some selection

procedure, and the wjs (j = 1, . . . , J) are lag windows with wj(0) = 1, wj(x) ≤ 1 for

x ∈ (−1, 1), and wj(x) = 0 for |x| ≥ 1 for all j. The pjs have some linear span L in

L2 whose dimension is denoted by M where M ≤ J . Now construct an orthonormal

basis {φj} (j = 1, . . . ,M), and note that the φjs are–by necessity–trigonometric

polynomials of degree at most b := maxj bj, i.e.,

φj(λ) =
b∑

k=−b

aj,k
eikλ√

2π
(2.6)

for some collection of coefficients aj,k.

Then, based our validation set, we produce a different estimate of the autocovari-

ance function, namely
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γ̂2(k) :=
1

nv

nv−k∑
j=1

Xnt+m+j+kXnt+m+j (2.7)

and compute the coefficients

K̂j :=
1√
2π

b∑
k=−b

γ̂2(k)aj,k (2.8)

(so aj,k is the inner product of φj and eikλ√
2π

in L2).

Finally, our proposed aggregate estimator of the spectral density is given by

p̂(λ) :=
M∑
j

K̂jφj(λ). (2.9)

2.2.2 Performance Bounds

We start with the simplest mixing assumption, m-dependence (i.e. for all positive

integers j and k where k ≥ m, Xj and Xj+k are independent).

Theorem 2.2.1. If b
n
→ 0, EX4

t <∞, and the time series satisfies m-dependence,

the L2 risk is bounded above as follows:

Rn(p̂, p) ≤ min
c1,...,cM

||
M∑
j=1

cjpj − p||2 +
bp2(0)M

nvπ

+ o(bM/nv), (2.10)

where p is the true spectral density and || · || denotes the L2 norm (
∫ π
−π(·(x))2 dx)1/2.

Proof: Projecting p onto L, we get p∗L :=
∑M

j=1K
∗
j φj, where K∗j is the scalar product

of p and φj in L2. Then, by the Pythagorean theorem, we have
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||p̂− p||2 =
M∑
j=1

(K̂j −K∗j )2 + ||p∗L − p||2. (2.11)

Next, we have E[K̂j] = 1√
2π

∑b
k=−bE[γ̂2(k)aj,k]. Under m-dependence, the size-nb

buffer zone is sufficient to make all the γ̂2(k)s (functions only of the validation set)

independent of the aj,ks (functions only of the training set), so

E[K̂j] =
1√
2π

b∑
k=−b

E[γ̂2(k)]E[aj,k]

=
1√
2π

b∑
k=−b

(
1− |k|

nv

)
γ(k)aj,k (2.12)

Now, p(λ) = 1√
2π

∑∞
k=−∞ γ(k) e

ikλ
√

2π
, so

E[K∗j ] =E[〈p, φj〉]

=
1√
2π

b∑
k=−b

γ(k)aj,k (2.13)

Then,
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E[(K̂j −K∗j )2] = Var[K̂j] + (Bias[K̂j])
2

= Var

[
1√
2π

b∑
k=−b

γ̂2(k)aj,k

]

+

(
1√
2π

b∑
k=−b

|k|
nv
γ(k)aj,k

)2

=
1

2π
Var

[
b∑

k=−b

γ̂2(k)aj,k

]

+
2

n2
vπ

(
b∑

k=1

kγ(k)aj,k

)2

(2.14)

K̂j can be seen as a lag window spectral density estimator at λ = 0, except

the kernel function is allowed to be negative and doesn’t necessarily evaluate to 1

at zero. Parzen’s (1957) formula for the variance of such an estimator does not

require nonnegativity of the kernel function, but does require that it be normalized

to K(0) = 1; we can fix the latter by replacing aj,k with
aj,k
aj,0

and then multiplying

the resulting formulaic variance by a2
j,0. (This just cancels out.) As an asymptotic

result, it also requires that the kernel function be continuous rather than discrete, so

we interpolate aj,k+x = (1− x)aj,k + xaj,k+1 for 0 < x < 1. Then, applying Parzen’s

formula,

Var

[
b∑

k=−b

γ̂2(k)aj,k

]

=

[
2a2

j,0b

nv
p2(0)

∫ ∞
−∞

a2
j,k

a2
j,0

dk

]
+ o(b/nv) (2.15)

and plugging this into (2.14),
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E[(K̂j −K∗j )2]

=
b

nvπ
p2(0)

∫ ∞
−∞

a2
j,k dk +

2
n2
vπ

(
b∑

k=1

kγ(k)

)2

+ o(b/nv). (2.16)

∑b
k=−b a

2
j,k = 1, so, by convexity of x2, the integral is bounded above by 1. The

square of the bias can be absorbed into the o(b/nv) term. We conclude that

E[||p̂− p||2]

≤ min
K̂1,...,K̂M

∣∣∣∣∣
∣∣∣∣∣
M∑
j=1

K̂jpj − p

∣∣∣∣∣
∣∣∣∣∣
2

+
bp2(0)M

nvπ
+ o(bM/nv). (2.17)

Next, we consider the exponential mixing. Defining α(·) as in Definition A.0.1 in

Politis (1999),

Theorem 2.2.2. If b
n
→ 0, EX4

t < ∞, the time series satisfies the α-mixing as-

sumption α(k) ≤ ck for some constant c > 1 and all k ≥ nb, and nb is chosen such

that nb ≥ (2 + ε) logc n for some ε > 0, the L2 risk of our estimator has the same

upper bound as in Theorem 2.2.1.

Proof: We wish for the dependence between the γ̂2’s and the aj,k’s to have an impact

of order o(b/n) on ||p̂− p||2 −min
∣∣∣∣∣∣∑M

j=1 K̂jpj − p
∣∣∣∣∣∣2.

By Lemma A.0.1 in Politis (1999), with ξ = γ̂2(k), ζ = aj,k, p = 2, and q = ∞,

we have
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|Cov(γ̂2(k), aj,k)|

≤ 8(E|γ̂2|2)1/2 · 1 ·
√
α(nb) (2.18)

since |aj,k| ≤ 1 (because, by construction of the orthonormal basis,
∑

j a
2
j,k = 1);

≤ 8

√
(nv − k)2

n2
v

γ2(k) + Var γ̂2(k)
√
α(nb)

= Ω(8γ(k)
√
α(nb)) (2.19)

= Ω(8γ(k)c−nb/2)

Plugging this back into E[K̂j], we get an additional term with absolute value

bounded by Ω
(

1√
2π

∑b
k=−b 8γ(k)c−nb/2

)
. Since we chose nb ≥ (2 + ε) logc n, c−nb/2 ≤

n−1−(ε/2) so the term’s impact on E[K̂j] is o(b/n). Thus, its impact on E[(K̂j−K∗j )2]

is also o(b/n) as desired.

Theorem 2.2.3. If b
n
→ 0, EX4

t < ∞, the time series satisfies the α-mixing as-

sumption α(k) = O(k−c) for all k ≥ nb and some c > 2, and nb is chosen such that

nb ≥ n
2
c
+ε for some ε > 0, the L2 risk of our estimator has the same upper bound as

in Theorem 2.2.1.

Proof: The proof is identical to that of Theorem 2.2.2 up to (2.19). Plugging (2.19)

into E[K̂j], we get an additional term with absolute value bounded by

O
(

1√
2π

∑b
k=−b 8γ(k)n

−c/2
b

)
. Since we chose nb ≥ n

2
c
+ε, the term’s impact on E[K̂j]

is o(b/n), and the result follows.

Remark. If γ(k) decays at only a polynomial rate, Theorem 3.1 from Politis (2011)

is only able to bound minc1,...,cM

∣∣∣∣∣∣∑M
j=1 cjpj − p

∣∣∣∣∣∣2 by a term of order n
1

2r+1
−1

t , where
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r ≥ 1 satisfies
∑∞

k=1 k
rγ(k) < ∞. In this case, when the bandwidth candidates are

of smaller order than n
1

2r+1
v , nv should be larger than nt.

However, if γ(k) decays at least exponentially, the same theorem offers a bound

of O
(

lognt
nt

)
. In this case, if the bandwidth candidates increase more than logarith-

mically in nv, we’ll want to choose nv > nt.

2.3 Simulation Results

2.3.1 Bartlett Aggregation

The Bartlett kernel is defined by

w(x) =

{
1− |x| for |x| < 1;

0 elsewhere
(2.20)

In the following simulations, we aggregate the estimators

pj(λ) =
1√
2π

bj∑
k=−bj

γ̂1(k)w(
k

bj
)
eikλ√

2π
, (2.21)

for various collections of bjs.

Let {Zt} ∼ IID(0, σ2). The MA(1) model Xt = Zt + θZt−1 then has autoco-

variances γ(0) = (1 + θ2)σ2, γ(1) = θσ2, and γ(k) = 0 for k > 1. From Politis

(2003), the optimal large sample block size is (6n)1/3
∣∣∣ P∞

k=1 kγ(k)P∞
k=−∞ γ(k)

∣∣∣2/3, which evaluates

to (6n)1/3
∣∣∣ θ

(1+θ)2

∣∣∣2/3 in the MA(1) case. Most of our simulations use θ = 0.5, for

which this reduces to 2n1/3

3
.

In the tables below, “length” denotes the length of the time series, the bjs in

the aggregate are listed under “bandwidth”, “avg. K̂” denotes the average weight

assigned by the aggregate to the bandwidth, and “MSE” is the empirical mean square

error (MSE) of the kernel spectral density estimate. All values are averages over 200
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Table 2.1: MA(1) θ = 0.5 Bartlett aggregation results, optimal bandwidth with
single alternative.

Length Bandwidth Avg. K̂ MSE
100 3 .8391 .015955

12 .2250 .028312
agg. .022932

500 5 .9608 .004253
20 .0895 .008967

agg. .006289
1000 7 .9936 .002756

28 .0437 .006518
agg. .003739

27000 20 .9869 .000274
80 .0266 .000654

agg. .000293
125000 33 .9778 .000099

133 .0280 .000237
agg. .000102

1000 6 -.5530 .002717
7 1.5914 .002622

agg. .003234
1000 7 .9195 .002787

14 .1186 .003483
agg. .003642

1000 7 1.0387 .002985
50 -.0028 .011457

agg. .003721

trials, except for the length 125k time series (for which only 50 trials were averaged).

We first tried aggregations of two bandwidths, with one roughly optimal and

the other much larger. Theoretically, we expect the optimal linear combination

to basically ignore the second bandwidth, and this is what our aggregates tended

towards doing. However, for smaller sample sizes, the lone inefficient alternative

raised the MSE by close to 50%. This penalty was reduced to 5-10% once the

sample size reached the tens of thousands; see blocks 1–5 of Table 2.1.

We then tried varying the alternative bandwidth; see blocks 6–8. There was no
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noticeable difference between the 2x optimal and 7x optimal alternatives. However,

if the second bandwidth was instead a near-duplicate of the first, the MSE penalty

was found lower. Of course, there would be little potential gain from aggregation in

that case.

We then tried increasing the number of aggregate components, with geometric

spreads of bandwidths. As expected, the MSE penalty was roughly linear in the

number of components, and was more acceptable with larger sample sizes; see Table

2.2.

It did not really matter whether the aggregate included a near-optimal compo-

nent; the (3, 5, 10) aggregate outperformed the (4, 7, 14) aggregate and the (3, 12,

48) aggregate noticeably outperformed the (7, 14, 28) aggregate for length 1k time

series, despite the fact that the optimal bandwidth was about 7.

In the theory of kernel spectral estimation, the so-called ‘flat-top’ lag windows

have been shown to have very favorable asymptotic and finite-sample properties,

especially when the autocovariance decays quite rapidly. The simplest flat-top lag-

window is the trapezoid proposed by Politis and Romano (1995); for the definition

and properties of general flat-top lag windows see Politis (2001), Politis (2005) and

Politis (2011).

Since the trapezoid can be constructed as a linear combination of two triangular

(Bartlett) kernels, we wanted to investigate the conditions under which conditions

the aggregate estimator would tend to approximate a trapezoid. Note, however,

that the aggregate estimator shoots for minimum MSE, and the flat-top estimators

only achieve optimal performance when their bandwidth is chosen to be sufficiently

small. Hence, in Table 2.3 we investigate our aggregate’s ability to outperform its

near-optimal bandwidth component when a very low bandwidth component is also

provided.

Indeed, the weight assignments chosen by the aggregate are trapezoid approxi-

mations, and the aggregate is able to achieve a MSE advantage of 20% with sample
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Table 2.2: MA(1) θ = 0.5 Bartlett aggregation results, geometric bandwidth spreads.

Length Bandwidth Avg. K̂ MSE
100 2 -.7411 .019814

3 .9637 .016115
5 .8571 .017252

agg. .026471
100 2 -1.3568 .021141

3 3.0841 .017913
5 -1.1890 .019320
8 .5268 .024443

agg. .031413
1000 3 -1.4652 .005982

5 3.0790 .003430
10 -.6013 .003141

agg. .003696
1000 4 -.6085 .004167

7 1.7816 .002973
14 -.1436 .003627

agg. .003801
1000 5 .2156 .003218

10 .9896 .003148
20 -.1754 .005082

agg. .004350
1000 7 .7596 .002926

14 .5107 .003740
28 -.2355 .006496

agg. .004669
1000 3 .1063 .005605

12 1.0519 .003285
48 -.1280 .010856

agg. .004144
1000 5 .1666 .003345

10 .9547 .003253
20 -.1622 .005148
40 .0678 .009356

agg. .005392
27000 10 -.3527 .000480

20 1.5431 .000255
40 -.1843 .000340

agg. .000289
27000 10 -.3709 .000510

20 1.6316 .000289
40 -.2834 .000377
80 .3200 .000683

agg. .000338
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Table 2.3: MA(1) θ = 0.5 Bartlett aggregation results, two-bandwidth trapezoid
discovery simulations.

Length Bandwidth Avg. K̂ MSE
100 1 -.6542 .046679

3 1.7287 .016935
agg. .018653

500 1 -.2461 .041030
5 1.2560 .004652

agg. .003629
1000 1 -.1461 .040431

7 1.1477 .002836
agg. .002472

27000 1 -.0542 .039811
20 1.0544 .000283

agg. .000185
27000 2 -.0848 .009934

20 1.0842 .000269
agg. .000212

27000 3 -.1285 .004485
20 1.1316 .000293

agg. .000228
125000 1 -.0298 .039795

33 1.0311 .000096
agg. .000059

125000 2 -.0528 .009884
33 1.0503 .000092

agg. .000069
125000 3 -.0901 .004471

33 1.0915 .000101
agg. .000073

125000 1 -.0240 .039793
40 1.0227 .000096

agg. .000077
125000 3 -.0516 .004406

40 1.0527 .000102
agg. .000089

125000 5 -.0825 .001601
40 1.0852 .000098

agg. .000088
125000 1 -.0143 .039795

60 1.0158 .000124
agg. .000115

125000 3 -.0261 .004442
60 1.0283 .000120

agg. .000117
125000 5 -.0141 .001631

60 1.0187 .000119
agg. .000119
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sizes in the hundreds, which rises to close to 40% in the 125k sample size case. How-

ever, the trapezoid’s advantage appears to vanish as soon as the primary bandwidth

reaches 2x optimal.

The particularly favorable performance of the aggregates including a bandwidth

1 component in the last batch of simulations suggested that geometric bandwidth

spreads starting from 1 might significantly outperform the spreads investigated in

Table 2.2. This is in fact the case; see Table 2.4. While previously the aggregate did

not outperform the best individual component even with a length 27k time series,

now we see outperformance at length 4k, and by 27k it is by more than a factor of

2. Note that, in the length 4k case, the two additional bandwidths roughly double

the MSE compared to the simple trapezoid aggregate, but the procedure would still

be worthwhile if one was not aware of the value of using trapezoidal kernels directly.

In Table 2.5 we tried using our procedure just to select a bandwidth (picking

the one assigned the highest weight). Performance was very poor; in fact, the best

bandwidth was never selected the most frequently in any test case.

Finally, we tried aggregating Epanechnikov-Priestley kernels, i.e.

w(x) =

{
3
4
(1− x2) for |x| < 1;

0 elsewhere.
(2.22)

There is no exact result involving linear combinations of these kernels that is

analogous to the relation between trapezoidal and Bartlett kernels. However, for

the largest sample sizes our aggregate was able to significantly outperform all the

individual components, and across all sample sizes the aggregate never had MSE

worse than twice the best individual component.
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Table 2.4: Geometric bandwidth spreads starting at 1.

Length Bandwidth Avg. K̂ MSE
100 1 -.7459 .046781

2 4.5984 .022110
3 -11.690 .018185
4 8.9482 .017763

agg. .024602
500 1 -1.0408 .041107

2 1.8388 .001223
4 .5200 .005488
8 -.3026 .005160

agg. .006807
4000 1 -.6016 .039950

3 1.9790 .004779
7 -.4626 .001348
15 .0903 .001122

agg. .000830
27000 1 -.3707 .039813

4 1.5363 .002495
15 -.1786 .000299
50 .0127 .000437

agg. .000135
125000 1 -.2439 .039796

5 1.2143 .001604
25 .0287 .000115
125 .0036 .000230
agg. .000027

4000 1 -.4991 .039954
3 1.4966 .004734

agg. .000386
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Table 2.5: Model selection.

Length Bandwidth Selection freq. MSE
100 1 .010 .046307

2 .370 .021443
3 .335 .017748
4 .285 .017466

avg. .019362
500 1 .000 .040951

2 .540 .012115
4 .360 .005291
8 .100 .004772

avg. .008814
4000 1 .000 .039972

3 .570 .004650
7 .365 .001285
15 .065 .001108

avg. .003172
27000 1 .000 .039809

4 .750 .002487
15 .240 .000294
50 .010 .000415

avg. .001944
125000 1 .00 .039795

5 .82 .001627
25 .18 .000116
125 .00 .000217
avg. .001341



39

Table 2.6: Epanechnikov-Priestley kernels.

Length Bandwidth Avg. K̂ MSE
100 1 .1070 .047035

2 -19.102 .014780
3 66.422 .015464
4 -46.390 .018206

agg. .024315
500 1 -.4764 .040901

2 1.8497 .004509
4 -.2803 .003498
8 -.0877 .006134

agg. .005989
4000 1 -.1417 .039942

3 1.3346 .000836
7 -.1769 .000726
15 -.0177 .001411

agg. .001004
27000 1 -.0707 .039811

4 1.1460 .000219
15 -.0823 .000199
50 .0074 .000658

agg. .000161
125000 1 -.0471 .039794

5 1.2220 .000084
25 -.1909 .000067
125 .0151 .000349
agg. .000037
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2.4 Conclusions

We presented an aggregation procedure for kernel spectral density estimators with

asymptotically optimal performance. Our simulations verified that the aggregate

consistently performed within a factor of two (in MSE terms) of its best component,

and that it was capable of discovering nontrivial optimal linear combinations such

as the trapezoid kernel.

The procedure works best with large sample sizes (> 1000), but reasonable results

were obtained with a sample size as small as 500. It is particularly important to

minimize the number of aggregate components (preferably to two) in the latter case,

since there is a large error term linear in the number of components; however, this

term has favorable asymptotics, so very large sample sizes allow diverse aggregates

to be employed at minimal cost.

The viability of the first aggregation step as a model selection procedure was also

briefly investigated via simulation, and we found that it was unsuitable.
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Chapter 3

Robust Autocorrelation

Estimation

3.1 Introduction

The estimation of the autocorrelation function plays a crucial role in time series

analysis. For example, in the common case where a time series is modeled as an AR

process, the model coefficient estimates are straightforward functions of the estimated

autocorrelations [4].

Given a stationary time series X1, . . . , Xn, recall that the autocovariance function

(acvf for short) is γ(h) := E[(Xt+h − µ)(Xt − µ)] (where µ := E[Xt]), and the

autocorrelation function (acf for short) is ρ(h) := γ(h)/γ(0). The classical estimator

of the acf is the sample acf:

ρ̂(h) := γ̂(h)/γ̂(0)

where γ̂ is the sample acvf:

41
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γ̂(h) := n−1

n−h∑
j=1

(Xj+h − X̄)(Xj − X̄) (where X̄ := n−1
∑n

j=1 Xj).

Unfortunately, the sample acf is not a robust statistic–contamination of a single

point is enough to clobber the rest of the data and drive the estimate, masking

the real dependence structure. In practice, it is not uncommon for 10% or more of

measured time series values to be outliers [15], so this weakness is highly relevant.

In the past, the computational advantages enjoyed by the classical estimator over

robust techniques justified its near-universal usage, sometimes in combination with

an outlier identification method to patch its weakness. However, thanks to a massive

increase in available computing power, robust estimation is now frequently practical,

and it’s far from clear that classical estimation plus outlier elimination yields better

results than just using an intrinsically robust estimator.

The remainder of this paper is structured as follows: In section 3.2, we introduce

a new class of robust autocorrelation estimators, based on interpreting the sample

autocorrelation as a linear regression. Next, in section 3.3, we analyze the estimators

that result from plugging in three common robust regression techniques, and compare

their performance to that of the sample acf. Then, in sections 3.4-3.5, we discuss the

derivation of autocovariance and positive definite autocorrelation estimates from our

initial estimator. We apply our method to AR model fitting in section 3.6. Finally,

we present the results of a simulation study in section 3.7.

3.2 Robust acf estimation

Assume we have time series data X1, . . . , Xn generated by a second-order sta-

tionary process (except for outliers), i.e. [20]
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(i)E(X2
t ) <∞ ∀t

(ii)E(Xt) = µ = constant ∀t

(iii) cov(Xt+h, Xt) = γ(h) ∀t, h

Fix h < n where h ∈ Z+. If the time series is Gaussian, we have E[Xt+h−µ|Xt] =

(Xt − µ)ρ(h) for t ∈ {1, . . . , n − h}}. This motivates the following idea: create a

scatterplot with the points {(Xt − X̄,Xt+h − X̄), t ∈ {1, . . . , n − h}} (where the

x-coordinate is first); then use the slope of a regression line on the points as an

estimate of autocorrelation. It is well known that this regression slope estimate of ρ

is valid even if the time series is not Gaussian. 1

See Figure 3.1 for an example. Indeed, the least-squares estimate of slope is

almost identical to the sample acf for h
n

small. If the points in the scatterplot are

denoted (x1, y1), (x2, y2), . . . , (xn, yn), then the ordinary least squares (OLS) estimate

of slope is

1Since the independent variables are not known precisely–‘errors-in-variables’ –a technique like
orthogonal regression may be appropriate [13]. However, we do not pursue this here, since robust
estimation has been more thoroughly studied in the context of linear regression, and some robust
linear regression techniques are resistant to outliers in the x-coordinates. See Zamar [46] for a
discussion of robust estimation under errors-in-variables.
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Figure 3.1: Scatterplot of (Xt, Xt+1) for a realization of the AR(1) time series Xt =
0.8Xt−1 + Zt, Zt iid N(0, 1). Regression line is y = 0.82375x+ 0.01289.

ρ̂OLS(h) =

∑n−h
j=1 (xj − x̄)(yj − ȳ)∑n−h

j=1 (xj − x̄)2

=

∑n−h
j=1 (xj+h − x̄(h+1)...n)(xj − x̄1...(n−h))∑n−h

j=1 (xj − x̄1...(n−h))2

≈
∑n−h

j=1 (xj+h − x̄)(xj − x̄)
n−h
n

∑n
j=1(xj − x̄)2

=
n

n− h
ρ̂(h)

where x̄a...b := (b− a+ 1)−1
∑b

j=a xj and x̄ := x̄1...n.

The additional n
n−h factor is expected, since the regression slope is an unbiased
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estimator while the sample acf is biased low by construction. The only other differ-

ence is the inclusion/exclusion of the first and last time series points in computing

sample mean and variance; the impact of that is negligible.

The implication is that if we run a robust linear regression on {(Xt, Xt+h)}, we

should get a robust estimate of autocorrelation. (Since we are only interested in the

slope, the (−X̄,−X̄) displacement can be dropped.) This is then our proposal for

robust acf estimation.

To fix ideas, we investigate in detail three estimators in this class:

1. ρ̂L1. Recall that a residual ri of a linear regression is the vertical distance

between the point (xi, yi) and the regression line, i.e. ri = yi − (axi + b) where a is

the slope and b the intercept of the regression line. The simplest robust regression

technique, L1 regression, minimizes the sum of absolute residuals instead of the sum

of squares of those residuals; the effect is to find a “median regression line”.

2. ρ̂LTS. Least trimmed squares regression, or LTS for short, takes a different

approach: instead of changing the pointwise loss function, we use the usual squared

residuals but throw the largest values out of the sum. More precisely, define |r|(1) ≤
. . . ≤ |r|(n−h) to be the ordered residual absolute values. Then α-trimmed squares

minimizes

σ̂ :=

d(1−α)(n−h)e∑
j=1

|r|2(j)

1/2

.

We look at α-trimmed squares for α = 1
2

(so we sum up to the median absolute

residual).

3. ρ̂MM . An M-estimate [16] minimizes

L(β) :=
n∑
i=1

`

(
ri(β)

σ̂

)
.

for some pointwise loss function `, where σ̂ is an estimate of the scale of the residuals.
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It is efficient, but not resistant to outliers in the x values. A “redescending” M-

estimate utilizes a loss function with derivative decreasing to zero at the tails.

In contrast, an S-estimate (S for “scale”) minimizes a robust estimate of the scale

of the residuals:

β̂ := argmin
β

σ̂(r(β))

where r(β) denotes the vector of residuals and σ̂ satisfies

1

n

n−h∑
j=1

`
(rj
σ̂

)
= δ.

(δ is usually chosen to be 1
2
.) It has superior robustness, but is inefficient.

MM-estimates, pioneered by Yohai (1987), combine these two techniques in a

way intended to retain the robustness of S-estimation while gaining the asymptotic

efficiency of M-estimation. Specifically, an initial robust-but-inefficient estimate β̂0

is computed, then a scale M-estimate of the residuals, and finally the iteratively

reweighted least squares algorithm is used to identify a nearby β̂ that satisfies the

redescending M-estimate equation.

For further discussion of these three robust regression techniques, see Maronna

(2006).

3.3 Theoretical Properties

3.3.1 General

We focus our attention on normal efficiency and two measures of robustness

(breakdown point and influence function).

Relative normal efficiency is the ratio between the asymptotic variance of the clas-

sical estimator and that of another estimator under consideration, assuming Gaussian
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residuals and no contamination. This is a measure of the price we are paying for any

robustness gains.

The breakdown point (BP) is the asymptotic fraction of points that can be con-

taminated without entirely masking the original relation. Now, in the case of time

series and ARMA processes, we distinguish two types of outliers (Denby (1979)):

1. innovation outliers that affect all subsequent observations, and can be observed

in a pure ARMA process with a heavy-tailed innovation distribution.

2. additive outliers or replacement outliers that exist outside the ARMA process

and do not affect other observations. For second-order stationary data, the dif-

ference between them is minimal (a replacement outlier functions like a slightly

variable additive outlier), so for brevity we just concern ourselves with additive

outliers.

For additive outliers, the classical autocorrelation estimator has a breakdown

point of zero since a single very large outlier is enough to force the estimate to

a neighborhood of −1
n−h (see Figure 3.2). Since one additive outlier influences the

position of at most two points in the regression, our robust autocorrelation estimators

will exhibit BPs at least half that of the robust regression techniques they are built on.

(See Ma and Genton (2000) on “temporal breakdown point” for a more exhaustive

discussion.)

The impact of an innovation outlier on the regression line varies. For instance,

only one point is moved off the regression line in the AR(1) case, but three points

are affected in the MA(1) case. So in the former scenario, our robust autocorrelation

estimators can be expected to fully inherit the BPs of the robust regressors with

respect to innovation outliers, but we cannot expect as much reliability with MA

models.

Interestingly, infinite variance symmetric alpha-stable innovation distributions

result in a faster sample acf convergence rate than the finite variance innovation case
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Figure 3.2: Degenerate OLS regression line from 50 N(0,1) points contaminated by
one outlier at 1000.

(Davis (2000)); this is possible because the innovation outliers create high leverage

points in the scatterplot that are very close to the “correct” regression line. We will

investigate whether our robust regression estimates keep up.

Next, the influence function (IF) describes the impact on an autocorrelation

estimate ρ̂ of adding an infinitesimal probability of an outlier. For additive outliers,

it is defined as follows:

IF (x, ρ̂, F ) := lim
ε→0+

ρ̂((1− ε)F + ε∆x)− ρ̂(F )

ε

for x such that this limit exists, where F is the time series distribution and ∆x

denotes a probability point mass at x. This is a measure of the asymptotic bias

caused by observation contamination (Ma (2000)). We use a similar definition for
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innovation outliers under an ARMA model: letting G be the innovation distribution

and F (G) the resulting time series distribution,

IF (x, ρ̂ ◦ F,G) := lim
ε→0+

ρ̂(F ((1− ε)G+ ε∆x))− ρ̂(F (G))

ε

For the classical estimator, the value of the influence function increases without

bound as |x| → ∞ for both additive and innovation outliers, since the numerator in

the limit converges to a nonzero constant while the denominator goes to zero.

Finally, we note that our robust autocorrelation estimates are not guaranteed

to be in the range [-1, 1]; consider the time series {1, 2, 0}, which defines a slope

-2 regression line for h = 1. See section 5 on making our estimate mathematically

better-behaved.

3.3.2 L1

Because the x-coordinates are not fixed, ρ̂L1 does not inherit all the asymptotic

robustness advantages normally enjoyed by L1 regression. Any outlier in the middle

of the time series appears as both an x- and a y-coordinate, and while L1 regression

shrugs off the y outlier, the x outlier point can have an extreme influence on it.

Therefore, the BP is zero in the additive outliers case and the influence function

increases without bound again. Since, if the underlying process is AR(1), an additive

outlier can have an effect similar to that of two adjacent innovation outliers, the

theoretical bounds are no better in the innovation outliers case.

3.3.3 LTS

LTS regression exhibits the highest possible breakdown point (1
2
). It is robust with

respect to both x- and y-outliers, so ρ̂LTS retains the 1
2

BP in the AR(1) innovation

outliers case and has a BP of at least 1
4

with respect to additive outliers. The
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influence function flattens at the tails since the probability of mistaking the outlier

for a “real” point declines exponentially in n.

It also exhibits the optimal convergence rate, but has a very low normal efficiency

of around 7%; cf. Rousseeuw (1987) for details.

3.3.4 MM

MM-estimates also have an asymptotic breakdown point of 1
2

and are resistant to

both x- and y-outliers, so ρ̂MM has a BP of 1
2

in the innovation outliers case and at

least 1
4

in the additive outliers case. The influence function flattens because a robust

estimate of residual scale is used.

The normal efficiency is actually a user-adjustable parameter. In practice, it it is

usually chosen to be between 0.7 and 0.95; aiming for an even higher normal efficiency

results in too large a region where the MM-estimate tracks the performance of the

classical estimator rather than exhibiting the S-estimate’s robustness. We use 0.85

in our simulations.

3.4 Robust Autocovariance Estimation

In order to derive an autocovariance estimate from our robust regression slopes,

we need to multiply by some estimate of variance. Here, we present a way to obtain

this estimate using the robust regression insight.

Our first objective is to obtain a robust estimate of location. Now, from each

robust autocorrelation regression we perform, we can derive an estimate of the process

mean µ as a function of the estimated slope and intercept:
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Yt = β0 + β1Yt−h + error (3.1)

Yt − µ = β1(Yt−h − µ) + error, since this line should have zero intercept

Yt = µ+ β1Yt−h − β1µ+ error (3.2)

β0 = µ(1− β1) (combining (3.1) and (3.2))

µ̂ :=
β̂0

1− β̂1

Each value of h = 1, . . . , H (for some H) yields a distinct µ̂, so we use L1 (i.e.

compute the median) or LTS to aggregate these into a single estimate.

Since

(Yt − µ)2 = γ(0) + error,

we can then estimate γ(0) by using L1 or LTS on our centered sample values (Yt−µ̂)2;

denote this estimator by γ̂(0). Finally, we multiply ρ̂(h) by γ̂(0) to get a robust

estimate γ̂(h) of γ(h).

We note that Ma and Genton’s (2000) robust autocovariance estimator is an

alternative here.

3.5 Robust and positive definite estimation of au-

tocorrelation and autocovariance matrices

The most obvious way to robustly estimate the autocorrelation matrix Σ (where

Σi,j = ρ(|i− j|); i, j = 1, . . . , q for some q ≤ n) is by plugging our robust correlation

estimates directly into the diagonals and subdiagonals; designate this matrix by Σ̂.

(I.e. Σ̂i,j := ρ̂(|i− j|).) Unfortunately, this is not guaranteed to be positive definite.
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However, following McMurry and Politis (2010), we can define a tapered weight

function κ as

κ(x) =


1 if |x| ≤ 1

g(|x|) if 1 < |x| ≤ cκ

0 if |x| > cκ,

where |g(x)| < 1 and cκ ≥ 1 is some constant, and let the l-scaled version be denoted

as κl(x) := κ(x/l). Also define the tapered estimator

Σ̂κ,l = [κl(i− j)γ̂|i−j|]qi,j=1.

Fix κ and l. If TDT t is the spectral decomposition of Σ̂κ,l (T is an orthogonal

matrix, and D = diag(d1, . . . , dn) which are the eigenvalues of Σ̂κ,l), define

Dε := diag(dε1, . . . , d
ε
n),

where dεi := max(di, ε/n
β).

Then

Σ̂ε
κ,l := TDεT t (3.3)

is positive definite for any positive β and ε.

McMurry and Politis (2010) have observed that the parameter choice β = 1,

ε = 1 with g(x) linear (so κ is trapezoidal) works well in practice. Choosing l is also

addressed by McMurry and Politis (2010) in the difficult case where q is large (even

the case q = n); if q is small w.r.t. n, tapering is not necessary and estimator (3.3)

is applicable with l = n.
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3.6 Application to AR Model Fitting

3.6.1 Direct method

In the context of a pure AR(p) model Xt = φ1Xt−1 + . . .+ φpXt−p + Zt, autoco-

variance estimates are often directly used to derive AR coefficient estimates via the

Yule-Walker equations:

Σpφp = γ
p

σ2 = γ(0)− (φ
p
)′γ

p

where Σp is the autocovariance matrix, φ
p

= (φ1, . . . , φp)
′, and γ

p
= (γ1, . . . , γp)

′

However, if the standard autocovariance estimates are used, a single outlier of

size B perturbs the coefficient estimates by O(B/n), and a pair of such outliers can

perturb φ̂1 by O(B2/n).

One way to address this vulnerability is to plug the robust, positive definite auto-

covariance matrix estimate discussed in the previous section into the linear system.

(Note that a positive definite matrix is necessary to ensure the system is solvable.)

For p small w.r.t. n, compute Σ̂ε
κ,l from (3.3) with κ(x) = 1 everywhere, l = n, ε = 1,

and q = p; then solve the Yule-Walker equation Σ̂1
κ,nφ = γ̂p where γ̂p is the first

column of Σ̂1
κ,n. The algorithm is similar for large p, just with different choices of κ

and l.

3.6.2 Extended Yule-Walker method

Another technique for increasing robustness, which can be used simultaneously,

was explored by Politis (2009). He observed that the ‘extended’ Yule-Walker equa-

tions yield additional valid estimators for the AR coefficients; e.g. for an AR(1),
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valid estimators for φ1 include γ̂1/γ̂0, γ̂2/γ̂1, γ̂3/γ̂2, etc. Thus, in the AR(1) case, a

straight line regression on the (γ̂k, γ̂k+1) scatterplot (with no intercept term) yields

an estimator of φ1 that is somewhat resistant to individual anomalous γ̂ks.

Generalizing this idea, fix p′ ≥ p, and let φ
p

:= (φ1, . . . , φp)
′, γ

k
:= (γ1, . . . , γk)

′,

γ̂
k

:= (γ̂1, . . . , γ̂k)
′. Denote the p′ × p matrix with jth column equal to

(γ1−j, γ2−j, . . . , γp′−j) by Σp′,p. Then the extended Yule-Walker equations up to k = p′

are given by

γ
p′

= Σp′,pφp

Following Politis (2009), define Σ̂p′,p to be the p′ × p matrix with jth column

(γ̂1−j, γ̂2−j, . . . , γ̂p′−j), and write

γ̂
p′

= Σ̂p′,pφp + ε, (3.4)

which defines an error vector ε.

Equation (3.4) can be viewed as a multivariate linear regression with ‘errors-

in-variables’, and identical x- and y-axis scales; running the regression gives us an

estimate of φ
p
. To ensure uniqueness of the solution, plug the first p columns of Σ̂ε

κ,l

from (3.3) (with q = p′) rather than the raw autocovariance estimates into equation

(3.4).

3.7 Simulation Results

3.7.1 Baseline

First, we generated time series data X1, . . . , Xn according to the MA(1) model

Xt = Zt + φZt−1 (with no outliers) with φ ∈ {0.2, 0.5, 0.8}, n ∈ {50, 200, 800}, and

Zt i.i.d. N(0, 1). We estimated the lag-1 and lag-2 autocorrelations, and compared
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them to the true values ( φ
1+φ2 and 0, respectively).

As baselines for comparison, we included OLS regression, which as discussed

above is nearly identical to the sample acf, and Ma and Genton’s (2000) robust

autocorrelation estimator (denoted as MG).

We did the same thing for the AR(1) model Xt = φXt−1 + Zt. (True autocorre-

lations are φ and φ2 in this case.)

As expected, the OLS (classical) estimator performed best in the no contami-

nation case. (See Tables ??-3.2.) However, the MM estimator’s performance was

nearly indistinguishable from OLS’s. The L1 and Ma-Genton estimators were some-

what less efficient, with MSEs roughly 1.5x to 2x that of the OLS estimator, and

LTS’s known terrible normal efficiency was clearly in evidence.

Sample size did not affect the performance of the estimators relative to each

other, but a larger sample size reduced the downward bias of them all.

3.7.2 Innovation Outliers

Next, we investigated estimator performance in the face of innovation outliers,

modifying Zt to be distributed according to a Gaussian mixture, 90 or 96 percent

N(0, 1) and 10 or 4 percent N(0, 625).

From Table 3.3, we can see that for φ = −0.2, the Ma-Genton, L1, and MM

estimators do a substantially better job of handling the innovation outliers than

the sample acf. However, for larger values of φ and large sample sizes, our robust

estimates of ρ(1) cluster toward φ instead of φ
1+φ2 , because any innovation outlier not

immediately followed by a second one creates a point of the form (x + ε1, φx + ε2)

(where |x| >> |εi|)–all of these high-magnitude points trace a single line of slope φ

which are picked up by the robust estimators as the primary signal, and the other

high-magnitude outlier points (which bring the OLS estimate in line) are ignored.

The Ma-Genton estimator, not being based on linear regression, is not affected by
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Table 3.1: Uncontaminated MA(1) simulation results, averages of 200 trials.
φ n Estimator Avg. ρ̂(1) MSE Avg. ρ̂(2) MSE

0.2

50

OLS .16815 .01669 -.04035 .02312
MG .17428 .02465 -.03364 .03676
L1 .15741 .02938 -.04618 .03622

LTS .12148 .11283 -.06980 .13513
MM .16728 .01731 -.04223 .02533

200

OLS .18238 .00458 -.01316 .00546
MG .18174 .00629 -.01753 .00714
L1 .18875 .00827 -.01559 .00861

LTS .18659 .04622 -.02034 .04300
MM .18328 .00489 -.01330 .00574

800

OLS .19202 .00120 .00173 .00108
MG .19266 .00127 .00152 .00135
L1 .19457 .00190 .00080 .00213

LTS .20289 .01614 .00342 .01447
MM .19253 .00122 .00154 .00123

0.5

50

OLS .35834 .01685 -.03677 .02702
MG .36166 .02319 -.02692 .03660
L1 .35859 .02194 -.01190 .03290

LTS .38351 .07726 .00142 .10233
MM .35940 .01748 -.02757 .02745

200

OLS .39859 .00216 -.00520 .00516
MG .39992 .00308 -.00571 .00707
L1 .39810 .00520 -.00163 .00862

LTS .40652 .03394 .01994 .04868
MM .39731 .00252 -.00528 .00560

800

OLS .39746 .00094 -.00465 .00183
MG .39809 .00111 -.00344 .00239
L1 .39897 .00175 -.00113 .00258

LTS .39555 .01439 .00574 .01894
MM .39780 .00100 -.00395 .00199

0.8

50

OLS .45355 .01053 -.05546 .03023
MG .45369 .01663 -.06168 .04081
L1 .44862 .01992 -.06792 .04046

LTS .46865 .08112 -.06159 .12601
MM .45345 .01106 -.05628 .03074

200

OLS .48315 .00242 -.00775 .00667
MG .48289 .00322 -.00604 .00877
L1 .48248 .00470 -.00235 .00847

LTS .49077 .02759 .02308 .03534
MM .48340 .00256 -.00730 .00663

800

OLS .48415 .00055 -.00434 .00166
MG .48349 .00067 -.00541 .00186
L1 .48356 .00121 -.00320 .00202

LTS .47204 .01296 .00645 .01402
MM .48402 .00059 -.00436 .00166
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Table 3.2: Uncontaminated AR(1) simulation results, averages of 200 trials.
φ n Estimator Avg. ρ̂(1) MSE Avg. ρ̂(2) MSE

0.2

50

OLS .16358 .02592 .02875 .01956
MG .15360 .03837 .02700 .03465
L1 .17565 .03564 .01710 .03553

LTS .18526 .11907 -.00201 .12429
MM .16702 .02758 .02804 .02197

200

OLS .20110 .00439 .02818 .00552
MG .20064 .00550 .02512 .00688
L1 .19851 .00733 .02330 .00762

LTS .19576 .04101 .02079 .03917
MM .20009 .00459 .02691 .00562

800

OLS .19193 .00125 .04054 .00123
MG .19286 .00162 .04009 .00146
L1 .19139 .00206 .04056 .00211

LTS .19555 .01551 .05124 .01590
MM .19191 .00137 .04066 .00124

0.5

50

OLS .44600 .01603 .18352 .02630
MG .44176 .02597 .18445 .03796
L1 .45312 .02454 .19821 .03591

LTS .46085 .09045 .21308 .11105
MM .44471 .01738 .18691 .02687

200

OLS .48241 .00417 .23662 .00681
MG .47893 .00494 .23194 .00776
L1 .48157 .00635 .23560 .00937

LTS .48630 .03007 .22803 .03912
MM .48229 .00429 .23674 .00699

800

OLS .49777 .00100 .24495 .00157
MG .49708 .00125 .24396 .00202
L1 .49994 .00147 .24465 .00210

LTS .50000 .00983 .24269 .01308
MM .49796 .00105 .24512 .00165

0.8

50

OLS .72894 .01682 .52273 .04186
MG .70482 .02413 .48780 .05783
L1 .72172 .02256 .51311 .05671

LTS .69385 .06811 .49295 .15527
MM .72896 .01790 .51800 .04563

200

OLS .78556 .00191 .61795 .00502
MG .78135 .00235 .61327 .00565
L1 .78586 .00291 .61878 .00646

LTS .78713 .01646 .61040 .03228
MM .78498 .00193 .61847 .00489

800

OLS .79622 .00045 .63450 .00142
MG .79563 .00052 .63324 .00166
L1 .79702 .00076 .63717 .00185

LTS .80020 .00573 .64809 .00765
MM .79634 .00048 .63522 .00149
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Table 3.3: MA(1) simulation results with innovation outliers, averages of 200 trials.
φ Contam. % n Estimator Avg. ρ̂(1) MSE Avg. ρ̂(2) MSE

-0.2

4

50

OLS -.19785 .01077 -.02147 .01086
MG -.18534 .02753 -.03046 .03823
L1 -.17678 .00886 -.01231 .00707

LTS -.16145 .07133 -.01445 .05180
MM -.18117 .00742 -.00452 .00842

800

OLS -.19071 .00112 -.00615 .00154
MG -.18134 .00169 -.00437 .00191
L1 -.19446 .00010 .00032 .00011

LTS -.18800 .00164 .00205 .00058
MM -.19424 .00006 .00028 .00007

10

50

OLS -.19866 .01171 -.01778 .01596
MG -.18570 .02871 -.06054 .03894
L1 -.18540 .00228 -.00367 .00309

LTS -.16230 .03224 -.00381 .02583
MM -.18483 .00187 -.00340 .00314

800

OLS -.19148 .00112 -.00318 .00155
MG -.17732 .00167 -.00538 .00205
L1 -.19368 .00004 -.00017 .00006

LTS -.19485 .00022 -.00025 .00013
MM -.19312 .00002 -.00011 .00004

0.5

4

50

OLS .34683 .04265 -.05107 .01870
MG .36554 .02180 -.05204 .04099
L1 .42316 .01562 -.02221 .01304

LTS .35159 .08751 -.04056 .07510
MM .38470 .02550 -.02562 .01032

800

OLS .39890 .00067 -.00156 .00148
MG .39308 .00119 -.00587 .00252
L1 .46748 .00475 -.00097 .00014

LTS .45444 .01428 -.00032 .00088
MM .48818 .00786 -.00121 .00010

10

50

OLS .37823 .00939 -.03809 .01739
MG .34596 .02506 -.06730 04132
L1 .43980 .01020 -.00796 .00501

LTS .33623 .06072 -.00761 .01634
MM .36369 .03569 .00016 .00302

800

OLS .39977 .00083 -.00338 .00181
MG .39091 .00120 -.00774 .00246
L1 .47008 .00501 .00072 .00007

LTS .49193 .01064 .00257 .00022
MM .48947 .00805 .00006 .00004

0.8

4

50

OLS .46616 .01131 -.04233 .03611
MG .46974 .01749 -.05979 .03702
L1 .55699 .03682 -.00934 .01905

LTS .43306 .10956 -.03247 .05134
MM .49038 .07561 -.01341 .01176

800

OLS .48720 .00054 -.00442 .00168
MG .49182 .00087 -.01179 .00261
L1 .59438 .01447 -.00013 .00013

LTS .55985 .02922 .00078 .00066
MM .68805 .06670 -.00008 .00010

10

50

OLS .45878 .00836 -.04923 .01955
MG .48799 .01891 -.06083 .04586
L1 .61845 .04446 -.00939 .00426

LTS .46685 .12663 -.01234 .01295
MM .50545 .11626 -.00938 .00443

800

OLS .48400 .00063 -.00768 .00170
MG .51178 .00147 -.00867 .00247
L1 .63333 .02528 -.00110 .00005

LTS .71091 .08715 -.00049 .00014
MM .76902 .09312 -.00084 .00004
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this pattern.
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Figure 3.3: Xt vs. Xt+1 plot for the MA(1) model Xt = Zt+0.8Zt−1 with innovation
outliers. With an innovation outlier at Zt, (Xt−1, Xt) usually lies on the vertical
line, (Xt, Xt+1) on the diagonal, and (Xt+1, Xt+2) on the horizontal. The robust
estimators tend to fit the diagonal line.

From Table 3.4, we can see that the robust regression estimators all shine in the

AR(1) innovation outlier case. This is unsurprising, since an AR(1) innovation outlier

only pulls one point off the appropriate regression line, while generating several other

high-magnitude points on it (see Figure 3.4). Note that the high-magnitude (and

thus high leverage) points are in fact proportionally much closer to the regression

line than the rest of the points; this accounts for the fast heavy tail sample acf

convergence rate mentioned earlier, which can be seen in the table (the MSEs for

n = 800 are especially small).

The Ma-Genton estimator does not appear to share the fast convergence rate.
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Table 3.4: AR(1) simulation results with innovation outliers, averages of 200 trials.
φ Contam. % n Estimator Avg. ρ̂(1) MSE Avg. ρ̂(2) MSE

-0.2

4

50

OLS -.22576 .02227 .02086 .01577
MG -.20588 .03829 .00309 .03341
L1 -.20750 .01018 .02877 .01126

LTS -.18120 .06381 .01468 .05601
MM -.20344 .00958 .03090 .00692

800

OLS -.19775 .00145 .03814 .00091
MG -.20515 .00160 .04088 .00161
L1 -.19949 .00009 .03948 .00010

LTS -.19582 .00053 .03674 .00062
MM -.19983 .00005 .03962 .00007

10

50

OLS -.20993 .01148 .02600 .00906
MG -.22251 .03201 .03557 .03274
L1 -.20522 .00131 .04086 .00157

LTS -.19185 .01821 .04927 .01699
MM -.20467 .00070 .04440 .00126

800

OLS -.19992 .00125 .04020 .00173
MG -.21774 .00209 .03777 .00178
L1 -.20048 .00004 .03959 .00005

LTS -.19996 .00016 .03800 .00017
MM -.20039 .00002 .03967 .00003

0.5

4

50

OLS .46520 .00956 .19043 .02019
MG .48690 .02355 .19364 .04024
L1 .49198 .00532 .22763 .00791

LTS .48511 .02905 .19989 .04247
MM .49183 .00377 .23505 .00649

800

OLS .49840 .00097 .24964 .00152
MG .53888 .00282 .26705 .00255
L1 .49969 .00006 .25023 .00009

LTS .50038 .00039 .25076 .00039
MM .49966 .00004 .24984 .00007

10

50

OLS .43619 .04085 .17919 .02531
MG .55736 .02541 .23512 .03739
L1 .48964 .00309 .23227 .00662

LTS .48506 .00814 .24911 .01338
MM .49613 .00106 .24566 .00249

800

OLS .49832 .00086 .24440 .00151
MG .59379 .00993 .28994 .00367
L1 .49924 .00003 .24811 .00007

LTS .49902 .00012 .24713 .00018
MM .49941 .00002 .24885 .00004

0.8

4

50

OLS .74099 .01184 .53776 .03219
MG .81219 .01316 .61055 .03626
L1 .77752 .00572 .59431 .01536

LTS .76933 .02006 .59469 .03543
MM .77987 .00425 .59493 .01619

800

OLS .79691 .00037 .63449 .00104
MG .88504 .00760 .74106 .01129
L1 .80011 .00003 .63971 .00008

LTS .80013 .00016 .64059 .00040
MM .80001 .00002 .64043 .00006

10

50

OLS .72992 .01731 .53105 .03459
MG .89090 .01489 .70164 .02350
L1 .79232 .00165 .61721 .00596

LTS .79450 .00806 .61635 .01611
MM .79677 .00068 .62704 .00465

800

OLS .79714 .00046 .63659 .00137
MG .93719 .01892 .80715 .02847
L1 .79990 .00001 .63971 .00004

LTS .79943 .00008 .64034 .00012
MM .80009 .00001 .64031 .00003
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Table 3.5: AR(2) simulation results with innovation outliers, averages of 200 trials.
True (ρ(1), ρ(2)) is (5

9
, 17

45
) in the (φ1, φ2) = (0.5, 0.1) case, and (6

7
, 57

70
) in the (φ1, φ2) =

(0.6, 0.3) case.

φ1, φ2 Contam. % n Estimator Avg. ρ̂(1) MSE Avg. ρ̂(2) MSE

0.5, 0.1

4

50

OLS .49805 .01063 .30211 .05545
MG .58988 .02912 .36280 .03815
L1 .53168 .00797 .34237 .01120

LTS .54746 .03708 .37782 .04575
MM .54553 .00746 .35229 .00849

800

OLS .55232 .00110 .37241 .00147
MG .64522 .00940 .43532 .00545
L1 .55813 .00034 .37576 .00018

LTS .61018 .00749 .38777 .00166
MM .57101 .00151 .37671 .00010

10

50

OLS .50255 .01400 .30139 .04159
MG .70744 .04561 .44201 .03910
L1 .53896 .00265 .35993 .00599

LTS .59708 .01678 .37594 .01517
MM .56102 .00395 .36632 .00395

800

OLS .55514 .00106 .37448 .00143
MG .74715 .03765 .50552 .01800
L1 .55795 .00021 .37708 .00011

LTS .63746 .00934 .38582 .00082
MM .55693 .00030 .37730 .00005

0.6, 0.3

4

50

OLS .73869 .02945 .66437 .04485
MG .85771 .01835 .79481 .03038
L1 .83786 .01150 .75807 .02043

LTS .85036 .02913 .77909 .03403
MM .85324 .01226 .77049 .01785

800

OLS .85081 .00060 .80749 .00101
MG .96729 .01227 .94209 .01663
L1 .90582 .00242 .83797 .00066

LTS .91584 .00372 .84984 .00160
MM .91882 .00383 .84796 .00121

10

50

OLS .70326 .04351 .62912 .05943
MG .91934 .01062 .86392 .01527
L1 .84315 .00793 .76536 .01284

LTS .88486 .01410 .81898 .01243
MM .88306 .00714 .78694 .00987

800

OLS .84891 .00076 .80323 .00119
MG .98441 .01621 .96065 .02146
L1 .90649 .00248 .83758 .00062

LTS .92019 .00409 .85299 .00166
MM .92185 .00421 .84226 .00084
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Figure 3.4: (xt, xt+1) plot for a realization of the AR(1) time series Xt = 0.8Xt−1 +Zt
with one innovation outlier.

Moving on to the AR(2) case (Table 3.5), we see that with innovation outliers,

the L1 and MM robust estimators exhibit much better performance than OLS given

a small (50) sample size, but the difference fades with a larger sample size. The

Ma-Genton estimator performs relatively poorly across the board.

3.7.3 Additive Outliers

Next, we investigated the performance of our estimators in the additive outlier

case by perturbing one or two elements in the middle of the time series by a large

number (where, as before, innovations are i.i.d. N(0, 1)).

The Ma-Genton and MM estimators do the best (Table 3.6). The OLS estimator

performed especially badly in the φ = 0.8 case, L1 was fairly good but failed the
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Table 3.6: AR(1) simulation results with additive outliers, averages of 200 trials. In
a length-n time series, an “a, b” contamination pattern means that a was added to
the n

2
th element and b was added to the (n

2
+ 1)th element.

φ n Contam. Pattern Estimator Avg. ρ̂(1) MSE Avg. ρ̂(2) MSE

-0.2

50

25, 25

OLS .45142 .42544 -.04117 .00796
MG -.15163 .03272 .01986 .03361
L1 .00949 .04707 -.00093 .00337

LTS -.16946 .09823 .02005 .06239
MM -.11206 .03400 .01052 .00573

25, 0

OLS -.03535 .02868 -.02372 .00719
MG -.23079 .03396 .03604 .03247
L1 -.00350 .03885 -.00308 .00348

LTS -.22194 .11734 .04899 .09225
MM -.12271 .03509 .01925 .01019

25, -25

OLS -.48932 .08450 .00144 .00328
MG -.27360 .03155 .01328 .03401
L1 -.22172 .02783 .00269 .00268

LTS -.18993 .09892 .00917 .06258
MM -.11939 .04269 .00924 .00569

800

25, 25

OLS .21900 .17617 .01230 .00140
MG -.20102 .00130 .03990 .00146
L1 -.12892 .00658 .01522 .00135

LTS -.21102 .01470 .04796 .01365
MM -.18993 .00220 .01481 .00112

25, 0

OLS -.11684 .00753 .02222 .00138
MG -.20590 .00128 .03766 .00138
L1 -.16603 .00271 .01995 .00165

LTS -.20086 .01327 .02622 .01303
MM -.19773 .00208 .02053 .00118

25, -25

OLS -.38096 .03324 .01549 .00167
MG -.20358 .00136 .03339 .00181
L1 -.19913 .00164 .01230 .00178

LTS -.19461 .01404 .02058 .01134
MM -.18644 .00255 .01274 .00143

0.8

50

25, 25

OLS .49677 .09497 -.00211 .42308
MG .73375 .01678 .48080 .05831
L1 .71784 .02180 .02922 .38034

LTS .76085 .05544 .41964 .17343
MM .80826 .03660 .40465 .13308

25, 0

OLS .08162 .52154 .04809 .35910
MG .69233 .02827 .46751 .06854
L1 .34407 .25730 .13002 .29226

LTS .71216 .07760 .44343 .15611
MM .70241 .02940 .42005 .10891

25, -25

OLS -.40196 1.44785 .03820 .36352
MG .69580 .02682 .50972 .04958
L1 .07515 .55373 .05980 .34270

LTS .73795 .06227 .45480 .13595
MM .73087 .01986 .44154 .11602

800

25, 25

OLS .68855 .01329 .40271 .05906
MG .79444 .00052 .62901 .00148
L1 .79499 .00071 .59307 .00407

LTS .79494 .00556 .62680 .00936
MM .79541 .00047 .63165 .00126

25, 0

OLS .61925 .03378 .49346 .02354
MG .79651 .00048 .63460 .00134
L1 .78514 .00097 .61991 .00197

LTS .80580 .00493 .63532 .00849
MM .79848 .00046 .63659 .00125

25, -25

OLS .31915 .23308 .39943 .05927
MG .79172 .00065 .62866 .00160
L1 .76533 .00208 .59569 .00394

LTS .78979 .00514 .63881 .00996
MM .79527 .00050 .63117 .00136
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φ = 0.8, n = 50 case, and LTS generally acted as a much less efficient MM.

3.7.4 Austrian Bank Data

We then applied our estimators to some real-world data, monthly interest rates

of an Austrian bank over a 91 month period (see Figure 3.5). This data set has

previously been analyzed by Künsch (1983) (1984) and by Ma and Genton (2000).
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Figure 3.5: 91 consecutive monthly interest rates of an Austrian bank.

Note the three outliers at months 18, 28, and 29. Following Künsch, we run our

estimators on both the original data set, and a slightly revised data set where the

three outliers are replaced with 9.85.

The L1 and Ma-Genton estimators both gave reasonable numbers and were less

affected by the outliers than OLS. However, the LTS estimator was erratic, overesti-

mating the low lag autocorrelation, exhibiting a discontinuity at ρ̂(6) when outliers
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Table 3.7: Simulation results with Austrian bank data. (ρ̂(2) was omitted since it

was always close to ρ̂(1)+ ˆρ(3)
2

.)

Estimator Outliers replaced? ρ̂(1) ρ̂(3) ρ̂(4) ρ̂(5) ρ̂(6) ρ̂(12)

OLS
no .79184 .58923 .51249 .44414 .40440 .08583
yes .93920 .77965 .67369 .58264 .50113 .07476

MG
no .96571 .82703 .73727 .65968 .55046 -.18033
yes .96923 .82350 .77709 .69337 .60000 -.15294

L1
no .97222 .83459 .78351 .72603 .65957 -.02786
yes .98361 .89655 .83505 .78169 .76991 -.03361

LTS
no .99451 .95588 .87975 .85556 .36749 -.94203
yes 1.00000 .96667 .87603 .86441 .81633 -.94203

MM
no .97194 .81113 .49292 .40119 .34198 .04550
yes .96779 .86493 .79272 .69961 .59654 .07344

Table 3.8: AR(2) simulation results with innovation outliers (10 percent frequency,
SD 25x normal), averages of 50 (with n = 800) or 200 (with n = 50) trials.

φ1, φ2 n Estimator Avg. φ̂(1) MSE Avg. φ̂(2) MSE

0.5, 0.1

50

OLS .56535 .03910 -.01931 .03450
MG .78635 .16480 -.15357 .11939
L1 .52698 .01167 .06052 .01173

LTS .53997 .03552 .04648 .02372
MM .56058 .01610 .03653 .01423

800

OLS .61277 .01600 .03479 .00733
MG 1.04081 .29954 -.28389 .15202
L1 .51674 .00072 .08902 .00042

LTS .64642 .02789 -.01545 .01772
MM .52117 .00120 .08589 .00072

were present, and yielding a bizarre value of -.94203 for the 12-month autocorrela-

tion. MM yielded fine results up to lag 3, but the lag 4-6 numbers were heavily

affected by the outliers.

3.7.5 AR Model Fitting

Finally, we combined the direct AR model fitting method described in section 3.6

with our robust autocorrelation estimators.
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As we can see in Table 3.8, the robust AR model fitter yields reasonable results

even when given the raw sample acf. However, performance was noticeably better

with n = 50 when combining it with the L1 or MM robust autocorrelation estimators,

and with n = 800 instead, the performance advantage was overwhelming. Thus, these

two methods are not redundant; they complement each other very well.

The Ma-Genton estimator did not estimate the autocorrelations well in Table 3.5,

so it is not surprising that the inferred AR coefficients are also far off.

3.8 Conclusions

A procedure for constructing robust autocorrelation estimators out of robust lin-

ear regression techniques was proposed, and applied to L1, LTS, and MM regression.

A simulation study was then performed, comparing these estimators to the sample

acf and a scale-based robust estimator proposed by Ma and Genton. It was found

that the Ma-Genton estimator was superior at handling MA(1) models, while our

L1- and MM-based estimators shined in the AR case (where Ma-Genton performed

poorly). The L1 and MM estimators worked especially well with Politis’ suggested

procedure for robustly estimating AR coefficients.
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