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ABSTRACT OF THE DISSERTATION

Negligible Cohomology

by
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Professor Alexander Sergee Merkurjev, Chair

For a finite group G, a G-module M, and a field F, an element u € H%(G, M) is negligible
over F'if for each field extension L/F and every continuous group homomorphism from
Gal(Lsep/L) to G, w is in the kernel of the induced homomorphism H%(G, M) — H*(L, M).
We determine the group of negligible elements in H?(G, M) for every abelian group M
with trivial G-action in Chapter 3.

For p a prime and a trivial G-action on the coefficients, the negligible elements in the
cohomology ring H*(G,Z/pZ) form an ideal. In Chapter 4, we show that when p is odd or
p = 2 and either |G| is odd or F' is not formally real, the Krull dimension of the quotient of
mod p cohomology by the negligible ideal is 0. However, when p = 2, |G| is even, and F is
formally real, the Krull dimension of the quotient of mod 2 cohomology of a finite 2-group

by the negligible ideal is 1.

In Chapter 5, we compute generators of the negligible ideal in the mod p cohomology of
elementary abelian p-groups. We also partially compute generators of the negligible ideal in
the mod p cohomology of cyclic groups, finite abelian p-groups, dihedral groups, symmetric

groups, and generalized quaternion groups under certain roots of unity assumptions.
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CHAPTER 1

Introduction

The notion of negligible cohomology was introduced by J.-P. Serre in [Ser13] (see also
[GMSO03, Part I, §26]). Let G be a finite group, M a G-module, and F' a field. A continuous
group homomorphism j : I'y = Gal(Lgp/L) — G from the absolute Galois group I'y
of a field extension L of F to G yields a homomorphism j* : HY(G, M) — H(L, M) of
cohomology groups for every d > 0. An element v € HY(G, M) is called negligible over F
if u € ker(j*) for all field extensions L/F' and all j. All negligible over /' elements form a
subgroup H (G, M)neg = HY(G, M )neg.r C H* (G, M).

The following examples outline important connections between negligible classes and

a wide range of algebraic concepts.

Example 1.1. (1) Negligible cohomology elements are related to the embedding problem.
Let K/ F be a finite Galois field extension with G = Gal(K/F). Let

1 v M e =Ny y 1 (1.1)

be an exact sequence of finite groups with M abelian. The conjugation G’-action on
M makes M a G-module. The embedding problem for the exact sequence (1.1) and
field extension K/ F is to find a Galois G’-algebra K’ over F such that the restriction
map G' = Gal(K'/F) — Gal(K/F) = G coincides with f. Equivalently, one needs
to find a lifting I'r — G’ of the homomorphism I'r — G corresponding to the
extension K/F. Let u € H*(G, M) be the class of the exact sequence (1.1) and let
j : 't = G be the group homomorphism given by a field extension L/F. Then j

extends to a homomorphism I';, — G if and only if the pull-back of the sequence



(1.1) under j is split. The latter is equivalent to the triviality of the image of v under
J*: H*(G, M) — H?*(L, M). In other words, the class u is negligible if and only if all
embedding problems for the exact sequence (1.1) and all G-Galois field extensions
L'/ L of fields containing F' have solutions.

(2) Let M be an abelian group which we view as a module over any profinite group with
trivial action. The cohomology group H4(F, M) = H%(T'r, M) is the colimit of the
groups H%(G, M) over all finite discrete factor groups G of I'p. The group H*(G, M )neg
is contained in the kernel of the natural homomorphism H¢(G, M) — H%(F, M).

(3) Negligible cohomology elements of G are related to the invariants of GG as follows.
Let M be an abelian group with trivial group action. Write Inv*(G, M) for the group
of degree d (normalized) invariants of G with values in M over a field F' (for the

definition of the invariant see [GMS03]). The homomorphism
inv: HY(G, M) — Inv(G, M),

takes u € H%(G, M) to the invariant sending the class of a G-algebra N over a field
extension L/F (that is a G-torsor over SpecL) to j*(u) € HY(L, M) for j : I';, — G the

natural group homomorphism. By definition, H*(G, M )pes = ker(inv).

1.1 History of Negligible Cohomology

The definition of negligible cohomology that Serre used in [GMSO03, Part I, §26] is slightly
more restrictive than the one proposed in this dissertation. We make reference to a ground
field F' whereas a negligible class for Serre needs to be in the kernel of the restriction map
for every field. Serre described the mod 2 negligible classes over QQ of an elementary abelian
2-group in [GMS03, Part I, Lemma 26.4] and the negligible classes over Q of symmetric
groups in [GMS03, Part I, Theorem 26.3].

Saltman, in [Sal95], introduced our notion of negligible class referring to a fixed ground

field. However, he only worked with fields ' that are algebraically closed of characteristic



0, which we often generalize in the dissertation. [Sal95] is an early notable study of higher
unramified cohomology, focusing on H?*(C(V)¢, Q/Z) for V a faithful C-representation of a
finite group G. He proved that the third unramified cohomology is contained in the image
of the inflation map from H?*(G,Q/Z) to H3(C(V)%,Q/Z). The kernel of the inflation map
corresponds to H?*(G,Q/Z)neg,c-

[Sal95] discusses an easy to describe subgroup of the degree three negligible classes

known as permutation negligible classes,
HS(Gv Q/Z)per = ker(Hs(G7 @/Z) - Hg(Ga C<V)X>>

For a finite p-group G, Saltman used permutation negligible classes to find a surjection
from degree three negligible classes to a kind of equivariant Chow group. The permutation

negligible classes make up part of the kernel of the map.

Emmanuel Peyre constructed examples of non-trivial degree three negligible classes for
groups that are central extensions of an Fj,-vector space by another in [Pey98]. He assumed
that the ground field F' contains a fourth root of unity and that char(F") # 2. In a specific
example, Peyre provided a negligible class that is not permutation negligible, extending

Saltman’s examples of such elements for only 2-groups G.

In a subsequent paper [Pey99 ], Emmanuel Peyre adapted an argument by Bruno Kahn
to study the kernel and cokernel of a map from the Galois cohomology of a field F' to
unramified degree three Galois cohomology of the rational function field of a variety with
certain properties. Applying his result to negligible classes, Peyre proved that the negligible
cohomology of H?*(G,Q/Z(2)) is canonically isomorphic to the equivariant Chow group

CHZ (F) for an algebraically closed field F and a finite group G.

Peyre continued his study of negligible classes in [Pey08]. Over the ground field C, he
proved that the inflation map induces a surjection

H, (G, Q/Z)/H,

per(G> Q/Z) - Hrfr(C(V)Ga Q/Z)



from a quotient of degree three unramified cohomology to the unramified Galois cohomol-
ogy of C(V)“. The kernel of the surjection is killed by a power of 2 so, when G is of odd
order, Peyre proved that all degree three unramified negligible classes are permutation

negligible. The inflation map does not induce this isomorphism in general.

Peyre proved that if G is a finite group, then the prime to 2 part of H*(G, Q/Z)neg,c
is equal to the permutation negligible classes. As an application of this result, Peyre
constructed a group G and a non-trivial degree three unramified class of C(V)“. The
corresponding unramified Brauer group of C(V)¢ is trivial. Thus the G-invariant function

field is not rational over C, but second cohomology cannot detect it.

1.2 Outline of Dissertation

Chapter 2 of the dissertation includes basic results about negligible cohomology. Chapter
3 includes methods for computing the degree two negligible classes of finite groups in any
coefficients with a trivial action. Much of Chapters 2 and 3 were published by the author
and Alexander Merkurjev in [GM22].

A fundamental and difficult problem in Galois theory is to characterize those profinite
groups which are realizable as absolute Galois groups of fields. One of the most common
approaches has been to find constraints on the cohomology of absolute Galois groups. For
instance, the Bloch-Kato conjecture, proved by Rost and Voevodsky, provides a presentation
of the cohomology of absolute Galois groups with generators in degree one and relations

in degree two.

Quillen proved in [Qui71, Corollary 7.8] that the Krull dimension of H**"(G,Z/pZ) is
equal to the maximum rank of an elementary abelian p-subgroup of G. With Quillen’s result
as inspiration, Chapter 4 is dedicated to the Krull dimension of the mod p cohomology ring
of finite groups modulo the negligible cohomology ideal. We find that most classes in the
cohomology of a finite group disappear when mapped to the cohomology of an absolute
Galois group. We can interpret the size of negligible cohomology as a further restriction
on profinite groups that are realizable as absolute Galois groups of fields.

4



In [QV72], Quillen and Venkov proved that nilpotent elements in the group cohomology
of a finite group G are detected on the elementary abelian p-subgroups of G. Likewise,
the elementary abelian p-subgroups of G provide an effective tool for detecting negligible
classes in the cohomology of GG. Section 5.1 contains the computation of generators of the
mod p negligible cohomology ideal of elementary abelian p-groups. The material from
Chapter 4 and Section 5.1 has been submitted for publication by the author and Alexander
Merkurjev as [GM23].

The remainder of Chapter 5 is a collection of computations of generators of the negligible
cohomology ideal of cyclic groups (Section 5.3), finite abelian p-groups (Section 5.4),
dihedral groups (Section 5.5), symmetric groups (Section 5.6), and generalized quaternion
groups (Section 5.7). There is special focus on Conjecture 5.6 that the mod 2 negligible

classes of a finite group G can be detected on elementary abelian 2-subgroups of G.

In the case of finite abelian p-groups, dihedral groups, symmetric groups, and gen-
eralized quaternion groups, there is still work that needs to be done to find a complete
description of the generators of the negligible cohomology ideal. Many of the computations
focus on mod p coefficients and have restrictions on the roots of unity present in the base

field. These are notable avenues for future projects on the negligible cohomology ideal.

Another promising future area of study is the negligible cohomology of profinite groups.
If a profinite group I' is the absolute Galois group of a field K, then an automorphism of I
induces an isomorphism on cohomology in any coefficients with trivial I'-action. Thus I
has trivial negligible cohomology over F' for any subfield I of K. Loosely, then, negligible
cohomology of a profinite group could detect how far a profinite group is from being an

absolute Galois group.

1.3 Notation and Facts

We use the following notations in the paper.

G is a finite group;



F is the base field, F, is a separable closure of F, ' = Gal(Fip/F') is the absolute

Galois group of F;;

p is the group of roots of unity in Fie, and fi,, is the group of m-th roots of unity in Fip,

tm (F) = pm N FX, fix a generator &, of fi,,;
For an abelian group A write A for the torsion part of A and set A[g] := ker(A % A),

where ¢ is an integer;
A[p™] := U,~ Alp°], where p is a prime integer;
HYF,M) := HYTr, M) for a (discrete) I'r--module (Galois module) M.

Let K be a field extension of I'. We will fix a primitive m-th root of unity ¢,, € Fp
throughout the dissertation. When (,,, C K, we identify y,, with Z/mZ as I' x--modules.
Then HY(K,Z/mZ) ~ H* (K, ji,,) ~ K> /(K*)™, and we write an element of H'(K,Z/mZ)
asaclass (a) for a(K*)™ € K*/(K*)™. Let (a;) € K*/(K*)™ for 1 < i < d. We often write
(ai,...,aq) for the cup product (a;) U--- U (aq) in HY(K,Z/mZ). Note that (a,a) = (a,—1)
and (a,b) + (b,a) = 0 for all (a), (b) € H'(K,Z/mZ).

In order to discuss Krull dimension, we define the commutative ring

HeeN(G 7 /pZ)  if p # 2
H(C.BpT) = (G,Z/pZ) ifp+#

HYG,Z/2Z)  ifp=2.

Since inflation maps are ring homomorphisms, the negligible elements of #(G, Z/pZ) form
an ideal, denoted Z(G,Z/pZ). We write Q(G,Z/pZ) = H(G,Z/pZ)/Z(G,Z/pZ) for the
negligible quotient. In the possibly non-commutative ring H*(G, Z/pZ), we denote the two-
sided ideal of negligible elements I(G, Z/pZ). The radical of the negligible ideal (G, Z/pZ)
in H*(G,Z/pZ) is the ideal of eventually negligible elements.



CHAPTER 2

Background and Preliminary Results

Let V be a faithful (finite dimensional) representation of the group G over F. The group
G acts on the field F (V) of rational functions on V over F making F(V)/F(V)% a Galois
G-extension. The following proposition shows that in the definition of negligible elements
it suffices to consider only surjective group homomorphisms j and, moreover, only one

(generic) Galois field extension F(V)/F(V)C.

Proposition 2.1. Let G be a finite group, M a G-module, w € H*(G, M), and F a field. Let V be
a faithful representation of G. The following conditions are equivalent:
(1) wis negligible over F, i.e., u € HY(G, M )yeq;
(2) j*(u) = 0 for all field extensions L/ F and every surjective group homomorphism j : I'r, — G
(3) If K = F(V)% and jix : Tk — G is given by the Galois G-extension F(V)/K, then
ji(u) = 0in HY(K, M).

Proof. (1) = (2) is trivial.

(2) = (3) is clear since the map jx in (3) is surjective.

(3) = (1): Let N/L be a Galois G-algebra for a field extension L/F and j : I', - G a
group homomorphism. We need to show that j*(u) = 0. As the natural homomorphism
HYL,M) — HYL(t), M), where L(t) is the rational function field over L, is injective,
replacing F' by F(t) and L by L(t) if necessary, we may assume that the field L is infinite.

The scheme Spec(K) is the limit of the family of varieties U/G, where U C V is
a nonempty open G-invariant subscheme such that the morphism U — U/G is a G-
torsor. For every such U write iy : HY(G,M) — HZ(U/G, M) for the edge homomor-
phism in the Hochschild-Serre spectral sequence [Mil80, Chapter III, Theorem 2.20],

7



EPY = HP(G, HL(U, M)) = HE(U/G, M). Since j} (u) = 0 and étale cohomology takes
limits of schemes to colimits of cohomology groups [Mil80, Chapter III, Lemma 1.16],
there is U such that i (u) = 0. As L is infinite, by [GMSO03, Part I, §5], there is a morphism
k : Spec(L) — U/G such that Spec(N) — Spec(L) is the pull-back of U — U/G with

respect to k. Then the composition
HYG, M) % HE(U/G, M) 55 HYK, M)

coincides with j*. Since iy (u) = 0 we have j*(u) = 0. O

Corollary 2.2. (cf., [Ser13] and [Sal95, Proposition 4.5])

(1) In the notation of the proposition,
HY(G, M)og = ker(HY(G, M) L5 HYF(V)S, M)).

(2) The group H*(G, M )eq is trivial if d < 1.

Proof. (1) This follows immediately from Proposition 2.1.

(2) As jis surjective, the inflation map j* is injective if d < 1. O
In the following proposition we collect some functorial properties of negligible elements.

Proposition 2.3. Let L/F be a field extension, G a finite group, M a G-moduleand f : H — G a
homomorphism of finite groups. Then
(1) The map f*: HY(G, M) — H*(H, M) takes H*(G, M )yeq into H*(H, M )yeq;
(2) HYG, M)uog C HY(G, M )peq.1;
(3) If L/F is finite, then [L : F| - H*(G, M )neg,r, C HYG, M ) eg;
(4) Ifa : M — N is a G-module homomorphism, then the map o : HY(G, M) — H%(G, N)
takes H (G, M )yeq into H (G, N ) yeq.

Proof. (1): Letj : I', — H be a group homomorphism for a field extension L of F' and
u € HYG, M)neg. Then j*(f*(u)) = (f 0 j)*(u) = 0, hence f*(u) € H*(H, M )neg.

8



(2): Let K = F(V)“ as in Proposition 2.1(3) and set KL := L(V)“. Letu € H*(G, M )peg.
By definition, j*(u) = 0 in H4(K, M). It follows that j}, (u) = resgr/x o ji(u) = 0in
HYKL, M), hence u € H(G, M )neg, by Corollary 2.2(1).

(3): If L/ F is finiteand u € H*(G, M )neg,1, thenresg 0 ji(u) = ji(u) = 0. Applying

the corestriction homomorphism, we get
[L: F]|-jx(u) =corgr/kx oresgr i © jx(u) = corgr/k © jrp(u) =0,

therefore, L : F]-u € H (G, M )peg.

(4) is clear. O]
Corollary 2.4. If p is a prime integer such that char(F') # p and p® - M = 0 for some s, then

Hd(G, M)neg = Hd(G7 M)Vl@ng(fp)'

Proof. Indeed, the degree [F'(&,) : F] is prime to p. O

From now on assume that M is an abelian group with trivial G-action.

Lemma 2.5. If M is a torsion free abelian group then H*(G, M )¢, = 0.

Proof. The exact sequence

0 > M > M@Q —— M®(Q/Z) —— 0
yields the isomorphisms
H*(G, M) ~ H'(G, M ®(Q/Z)), H*(L,M) ~ H'(L,M ® (Q/Z))

for every field L. Then H*(G, M )neg ~ H'(G, M ® (Q/Z))neg = 0 by Corollary 2.2(2). [

The following proposition reduces the computation of negligible elements to the case

when M is a torsion group.



Proposition 2.6. Let M be an abelian group. Then the natural map
H2(G7 Mtors)neg — H2<G7 M)neg

is an isomorphism.

Proof. If T is a profinite group and N is a torsion free abelian group, then H*(T', N) =
Hom(I', N) = 0 since the image of every (continuous) homomorphism I' — N is finite. The
factor group M /M,y is torsion free so the natural homomorphism H?(T, M) — H*(T', M)

is injective. Therefore, both horizontal maps in the commutative diagram

H2(G, Mioss) —— H2(G, M)

I I

H?(L, Myows) —— H*(L, M)

are injective for every field extension L/F and a group homomorphism j : I';, — G.

Let u € H*(G, M)neg. By Lemma 2.5, the group H?(G, M /Miors)neg is trivial, hence u
comes from an element w € H*(G, Myors). The diagram chase shows w € H*(G, Miors )neg,

i.e., the map in the statement of the proposition is surjective. O

Let M = colimM, be a directed colimit of abelian groups M;. By [Ser02, Chapter I, §2
Proposition 8], the cohomology of profinite groups commutes with directed colimits so
H?*(G, M )neg = cOlimH?(G, M;)neg. Since every torsion abelian group is the union of finite
groups and every finite group is a direct sum of primary cyclic groups, Proposition 2.6
shows that in order to compute H?(G, M )ne, for an arbitrary abelian group M, it suffices to
determine the structure of H*(G,Z/p*Z)neg for all primes p and positive integers s.

If char(F) = p > 0, then HY(G,Z/p*Z)neg = H(G,Z/p*Z) for d > 2 since H*(L,Z/p*Z)
is trivial for d > 2 and every field extension L/F by [Ser02, Chapter II, §2.2 Proposition
3]. In what follows when computing the group H?*(G,Z/p*Z)neg We will assume that
char(F') # p.

10



Lemma 2.7. Let G be a finite group and L a field. For d > 1,

HYG,Q/Z) ~ H™ (G, 7)

HYL,Q/Z) ~ H*"(L,Z)

and the isomorphisms respect negligible classes.

Proof. The short exact sequence 0 > 7 > Q » Q/Z —— 0 induces a long

exact sequence with the following portion.
Hd(_v Q) — Hd(_> Q/Z) — Hd+1<_7 Z) — Hd+1(_a Q)

Since Q is uniquely divisible, H4(G, Q) and H¢(L,Q) are trivial for d > 1. Let K be a field
extension of F'and j : 'y — G a continuous group homomorphism. The short exact

sequence also induces the following commutative square for d > 1.

HYG,Q/Z) — H*(G,Z)

2 2

HYK,Q/Z) —— H*(K,7)

Therefore, the connecting map induces an isomorphism on negligible classes. O

2.1 Cyclic Algebras

Let ['be a field and I'r = Gal(Fiep/F'). Write (I'r)* for the group of (continuous) characters
I'r — Q/Z, ie. (Tr)* = Hom(T'r,Q/Z) = HY(F,Q/Z) = H*(F,Z). For a character
z € (I'r)* and an element a € F* denote by (z, a) the class of the corresponding cyclic
algebra in the Brauer group Br(F') (see [GS17, §2.5]). By definition, (z,a) = = U a with
respect to the cup-product

(I)*® F* = H*(F,Z) @ H(F,F},)) — H*(F, F}) = Br(F).

)+ sep » 4 sep

11



If € (I'p)*[2], i.e.,, 22 = 0, then (z,a) is the class of a quaternion algebra split by the
quadratic extension F(a'/2)/F. Conversely, every element in Br(F') thatis splitby F'(a'/?)/F

is of the form (x, a) for some z € (I'r)*[2].

Lemma 2.8. If char(F') # 2, the kernel of the homomorphism (I'p)* — Br(F) taking a character x
to (x,—1) coincides with 2(T'r)*.

Proof. Let x € (I'r)* and let m be the order of x. Consider the matrix A € GL,,(F') defined
by (a1, a,...,a,) - A= (as,as,...,an, —a;) for all a; € F. Note that A™ = —1, hence we
have a homomorphism i : Z/2mZ — GL,,(Fip) defined by i(r + 2mZ) = A". The upper

row of the commutative diagram

O—>Z/QZ—%>@/Z;>Q/Z—>O

I, J

0 —— 2/22 —— ~272/2 —2— 172/ ——— 0

2m

J i l
1 —— FY, — GLy(Fiep) — PGLy,(Fiep) — 1,

where k(1 +2Z) = —1 yields an exact sequence (I'r)* 2 (Tp)* LN H?(F,7/27). 1dentifying
Z)27 with us and H?(F,Z/27) with the subgroup H?(F,u;) = Br(F)[2] of the Brauer
group H*(F, F,) = Br(F) we see that it suffices to show that 0(z) is equal to the cyclic

class (z,—1).

It is shown in [GS17, §2.5] that the image of = under the composition
(Tp)* = H'(F,Q/Z) — H'(F,PGL(Fyyp)) — H*(F, F},) = Br(F)

)+ sep

given by the bottom row of the diagram coincides with (z, —1). O

12



2.2 The Negligible Ideal and Quotient

For a prime p, we will often take M = Z/pZ with a trivial G-action. If char(F) =p > 0,
then HY(K,Z/pZ) = 0 for d > 2 by [Ser02, Chapter II, §2 Proposition 3] so H4(G, Z/pZ) is
entirely negligible for d > 2. We will, therefore, assume F'is a field with char(F’) # p when
computing the negligible classes of H*(G,Z/pZ).

The Norm Residue Isomorphism Theorem (proved by Voevodsky and Rost) [HW19]
reveals that the ideal H>°(K,Z/pZ) is generated by elements of H'(K,Z/pZ) when K
contains a primitive p-th root of unity. Therefore, it is often sufficient to check properties
on generators (a) € H'(K,Z/pZ) of H>°(K,Z/pZ).

When p = 2, let (¢;) € HY(K,Z/27Z) for 1 < i < d. Since H*(K,Z/27) is a commutative
ring, (a1,...,aq4)? = (a1,...,a4) U (—1)% The squaring map and cup product by (—1)? are
linear. Therefore, a* = a U (—1)? for any o € HY(K,Z/27Z). An inductive argument reveals
a"t = q U (—1),

The level of a field F, denoted s(F"), is the least number of squares that sum to —1 in
F. We say that F is formally real if —1 cannot be written as a sum of squares. By [Lam05,
Chapter VIII Theorem 1.10], F' is formally real if and only if F has an ordering. Pfister’s
Level Theorem, [LamO05, Chapter XI Theorem 2.2], proves that when s(F') is finite, s(F’) is
a power of 2. If F'is a field with s(F') = 2", we can, equivalently, say that the r-fold Pfister
form ((1,...,1)) is anisotropic over F while the (r + 1)-fold Pfister form ((1,...,1,1)) is
isotropic over F'. By [EKMO8, Section 16], the class (—1)"*! € H*(F,Z/2Z) is trivial while
(—1)" € H*(F,Z/2Z) is not. For a proof of the result, see [OVV07, Theorem 4.1].
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CHAPTER 3

Negligible Degree Two Cohomology of Finite Groups

3.1 Fields with many roots of unity

Proposition 3.1. Let G be a finite group and F a field and let m be a positive integer such that
char(F) does not divide m and p,, C F*. Then

H*(G, fim)neg = ker(H*(G, pim) — H*(G, FX)),

where we view pu,, and F* as trivial G-modules.

Proof. Let V be a finite dimensional faithful representation of GG such that there is a G-
invariant open subset U C V with the property that V' \ U is of codimension at least 2 in V'
and there is a G-torsor U — X for a variety X over F'. Such representations exist by [Tot99,
Remark 1.4]. Since U is an open subscheme of an affine scheme, it is smooth over F'. Note
that U — X is étale and, hence, smooth. By [Sta23, Lemma 29.34.19], X is smooth over F

so X is regular.

The Hochschild-Serre spectral sequence [Mil80, Chapter III, Theorem 2.20]
EY? = H(G, HE(U,Gp)) = HE (X, Gp)
yields an exact sequence
Pic(U)Y — H*(G, F[U]*) — Br(X).

The group Pic(U) is trivial as U is an open subset of the affine space V. By the choice of
14



U every invertible regular function on U is constant, i.e., F[U]* = F'* and hence the map

H?*(G, F*) — Br(X) is injective.
By [Mil80, III, Example 2.22], the natural map Br(X) — Br(X), where K = F(X), is

injective. It follows that the bottom map of the commutative diagram

H*(G, i) — H*(K, fim,)

| |

H*(G, F¥) —— Br(K)

is injective. The right vertical morphism is also injective identifying H?(K, y1,,,) with
Br(K)[m]. Hence the other two homomorphisms in the diagram have equal kernels. Now

the statement follows from Corollary 2.2(1). N

Remark. The proposition also follows from the isomorphism Inv*(G,Q/Z) ~ H?*(G, F>)
established in [Bail7].

It follows from Proposition 3.1 that H*(G, ju, )neg coincides with the image of the con-
necting homomorphism

HY G, F* /i) — H*(G, i)

for the exact sequence 1 — pu,, — F* — F*/u,, — 1. An element of the group
HY (G, F*/uy,) is a group homomorphism G — F* /. Its image is contained in p(F) /iy

Consider the exact sequence
1= o, = p(F) = p(F)/ o — 1. (3.1)

We have proved the following result.

Corollary 3.2. In the conditions of Proposition 3.1 the group H*(G, i )neg coincides with the
image of the connecting homomorphism H* (G, u(F)/pm) — H*(G, um) for exact sequence (3.1).

15



Exact sequence 0 — Z/mZ  Q/Z ™ Q/Z — 0 for integer m > 0 yields an embedding
G*/mG* —— H*(G,Z/mZ),

where G* := Hom(G, Q/Z) = H' (G, Q/Z) is the character group of G. We identify G*/mG*
with a subgroup of H*(G,Z/mZ).

3.2 Primary case

Let p be a prime integer and F a field such that char(F’) # p.

Lemma 3.3. Let jiy00 (F(§,)) = ppt for some t with 1 < t < co. Assume that t > 2 if p = 2. Then

e (F (&) = i for every v > .

Proof. The image of the injective homomorphism y : I' = Gal(F(uy~)/F(&,)) — Z) taking
an automorphism o to the unique p-adic unit a such that o(§) = &% for all £ € ppe is
contained in U; = {a € Z)|a = 1 mod p'}. Choose an element o € I' such that x(0) & Uyy..
By assumption, U, is a topological cyclic group generated by o. It follows that im(y) = U,
and F'(§,r) for all r > t are all intermediate fields between F'(¢,) and F'(y,~) corresponding

to all closed subgroups U, C U,. O

Theorem 3.4. Let G be a finite group, p a prime integer and s a positive integer. Let F' be a field
such that char(F') # p and 0« (F(€,)) = ppt for some t with 1 <t < oo.

(1) Ift > s, then
H*(G,Z/p*L)neg = (G*[p'™°) + p°G*) /p°G* C G*/p°G* C H*(G,Z/p°L).

(2) Ift < sandt > 2in the case p = 2, then H*(G,Z/p*Z)neq = 0.

Proof. (1): Sincet > s, by Corollary 2.4, we may assume that /1, C F*, hence Z/p°Z ~ pus

as Galois modules. The p-primary component of the exact sequence (3.1) is isomorphic to

16



the upper row of the commutative diagram

0 —— Z/p°Z 2 p~2)7 —2 s pZ)T —— 0

H L]

0 — Z/p’Z 22— Q/Z —— Q/Z —— 0

Applying cohomology groups to the diagram and using Corollary 3.2 we see that the group

H?(G, 7Z/p*ZL)neg coincides with the image of the composition
G*[p'~°) = H'(G,p*'Z/)Z) — H'(G,Q/Z) = G* — G*/p°’G* C H*(G,Z/p°7L),

whence the result.

(2): Let L = F(pps). By Lemma 3.3, we have ju- (L) = j,s. The first part of the theorem
applied to the field L show that H*(G,Z/p*Z )neg,r. = 0. It follows from Proposition 2.3(2)
that H*(G,Z/p*Z)neg = 0. O

33 Thecasep=2andi=1

It remains to consider the case p = 2 and ¢ = 1 and F'is a field of characteristic different

from 2. The condition ¢ = 1 means that —1 is not a square in F.

Proposition 3.5. Let b > a be positive integers, L a field such that {3 € L(v/—1)and I' =Ty
Then T*[20=9] N 20 C 2°T*,

Proof. We prove the statement by induction on a. The case a = 1 is obvious.

a = 2: Letz € T*[2°72] N 2T'*. Write z = 2y for y € I'*[2°~!]. Consider the cyclic class
(y,—1) € Br(L). As —1 = (£)* " in I/ :== L(y/—1), we have

(y7 _1) XL L' = (ny> _1) =21, (yL/7€2b) = (2b71yL’>€2b) =0
in the Brauer group Br(L’) since 2°~'y = 0. We proved that (y, —1) is split by the extension
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L(+v/—1) of L, hence (y, —1) is the class of the quaternion algebra (z, —1) for some z € I'*[2].
It follows that (y — 2z, —1) = 0, hence y — z € 2I"* by Lemma 2.8 and therefore,

r=2y=2y—z) €4

a—1= a: Letx € ['*[2°7% N 2I'*. By the induction hypothesis, * = 2471y for some
y € I*[2°71. Then 2y € I'*[2°=2] N 2" and hence 2y € 4T* by the first part of the proof.
Finally, z = 2972 - 2y € 20972 . 4" = 2°T"*, O

Theorem 3.6. Let G be a finite group and s a positive integer. Let F be a field such that char(F') # 2
and —1 & (F*)2. Write pos (F(\/=1)) = pqe for some t' with 1 < t' < oo.

(1) Ift' > s, then
HY(G,Z)2° D) g = ((G*[2 5] N 2G™) + 2°G") /2°G* € G*/2°G* € H*(G,Z/2°Z).

(2) Ift' < s, then H*(G,Z,/2°Z) seq = 0.

Proof. (1): It follows from Theorem 3.4(1) applied to the field F” := F(y/—1) and Proposi-
tion 2.3(2) that

H*(G,Z)2°D)neg € H*(G,2)2 L) neg i = (G*[2° %] + 2°G*) /2°G".

Applying Corollary 3.2 in the case m = 2 we see that H*(G,Z/2Z)ne; = 0 since t = 1. The

commutativity of the diagram

G*/2°G* ——— G*/2G*

l I

H(G,Z)2°Z) —— H*(G,Z/2Z)

shows that H*(G, Z/2°Z)neg C 2G*/2°G*. Tt follows that

H*(G,Z)2°D)neg C (G721 N 2G™) + 2°G*) /2°G".

18



Conversely, let = € G*[2¢7°] N 2G*. We show that the corresponding element in
G*/2°G* C H?*(G,Z/2°Z) is negligible. Let L/F be a field extensionand j : I';, — G a

group homomorphism. Consider the following commutative diagram

G*/2°G* —L— (Tp)*/2°(Tp)"

| l

H*(G,7,/2°7) —— H2(L,7/27)

By Proposition 3.5 applied to a = s and b = ' we see that the image of = in (I'z)*/2°(I'1)* is
trivial and hence the image of x in H?(L,Z/2°7Z) is also trivial, i.e., z is negligible.

(2): Let L = F(9s) = F'(u2s). By Lemma 3.3 applied to F”, we have pig (L) = pios. The
first part of the theorem applied to the field L shows that H*(G,Z/2°Z )neg,, = 0. It follows
from Proposition 2.3(2) that H*(G, Z/2°Z)neg = 0. O

34 Q/Z coefficients in characteristic zero

Proposition 3.7. Assume that F is a field such that char(F') = 0 and p C F. The negligible
cohomology of H*(G,Q/Z) over F is trivial.

Proof. 1dentify y1 ~ Q/Z. Let V be a faithful F'-representation of G. In [Bail7, Theorem 3.1],
the normalized elements of Inv?(G, Q/Z(1)) = Inv*(G, Q/Z) are identified with H?(G, F*).

The short exact sequence

1 > L » [ > F*/u —— 1.

induces a long exact sequence in cohomology with the portion

HY (G, F*/p) —— H(G,p) —— HG, F¥).

Since the G-action on F*/y is taken to be trivial, we have H' (G, F* /u) = Hom(G, F'* /11).

The group F'*/u is torsion-free so Hom(G, F'* /) is trivial for G finite. The induced
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map H?(G, ) — H?(G, F*) is injective. Therefore, inv : H*(G,Q/Z) — Inv*(G,Q/Z) is
injective. We conclude H*(G, Q/Z)neg is trivial as in Example 1.1(3). O

Corollary 3.8. Assume that ' is a field such that char(F') = 0. The negligible cohomology of
H?(G,Q/Z) over F is trivial.

Proof. Proposition 3.7 implies that H*(G, Q/Z)neg r(y = 0. Thus H*(G,Q/Z)neg = 0 by
Proposition 2.3(2). ]
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CHAPTER 4

Krull Dimension of the Negligible Quotient

4.1 Krull dimension of the negligible quotient over fields that are not

formally real

In all cases except when p = 2, F' is formally real, and G has even order, we prove that the
mod p cohomology of a finite group G becomes entirely negligible after some degree. We

begin with a more general result about the nilpotence of elements in Galois cohomology.

Lemma 4.1. Let p be a prime. If p is odd, assume i, C K. If p = 2, assume that the field K is not
formally real. Then every element of H>°(K, Z/pZ) is nilpotent.

Proof. In the graded ring H*(K,Z/pZ), the sum of nilpotent elements is nilpotent and
the p-th power map is linear. It is thus sufficient to check nilpotence on homogeneous
generators (a) € H'(K,Z/pZ) of H>°(K,Z/pZ). When p is odd, we have (a)? = (a,—1) = 0.
Whenp = 2and s(K) = 27, (—1)" is trivial in H"™' (K, Z/2Z). Let m be a power of 2 such
thatr + 1 <m — 1. Then (a)™ = (a) U (—1)™"! = 0. O

Corollary 4.2. Assume that K is a field such that char(K) # 2 and s(K) = 1. The square of any
element of H>°(K,7/27) is trivial.

Theorem 4.3. Let p be a prime, G a finite group, and F a field. If p = 2, assume that F is not
formally real or G has odd order. Then the negligible quotient Q(G,Z/pZ) is finite. In particular,
Q(G,7Z/pZ) has Krull dimension 0.

Proof. If p = 2 and |G| is odd, H>%(G,Z/27Z) = 0. Hence, we may assume that F is not
formally real when p = 2. By Corollary 2.4, for negligible cohomology computations we may
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assume that p, C F. The ring H(G,Z/pZ) is finitely generated by [Eve91, Corollary 7.4.6].
Let K be a field extension of F'and j : I'x — G a continuous group homomorphism. The
image of each generator via j* will be nilpotent in H~°(K, Z/pZ) by Lemma 4.1. Therefore,
each generator of H(G,Z/pZ) is in the radical of Z(G,Z/pZ) and, hence, Q(G,Z/pZ) is
finite. We conclude that Q(G,Z/pZ) is a ring of Krull dimension 0. O

4.2 Krull dimension of the negligible quotient over formally real fields

The final case to consider is when p = 2, F' is formally real, and G has even order. With

these assumptions, we prove the Krull dimension of the negligible quotient is always 1.

Lemma 4.4. Let G be a finite group of even order. Assume that F' is formally real. Then the Krull
dimension of Q(G, Z/27) is positive.

Proof. Let H be an order 2 cyclic subgroup of G. By Proposition 2.3(1), the restriction res :
H(G,Z/2Z) — H(H,Z/2Z) factors as [ : Q(G,Z/2Z) — Q(H,Z/2Z). By [Eve61, Theorem
7.1], H(H,Z/2Z) is a finite algebra over the subring im(res) so Q(H, Z/2Z) is a finite algebra
over the subring im( f). [AM16, Corollary 5.9] shows dim(Q(G, Z/2Z)) > dim(Q(H, Z/27Z)).
By Theorem 5.1, Q(H,Z/27Z) = H(H,Z/2Z) ~ Z/2Z[z] has Krull dimension 1. O

Lemma 4.5. Let G be a finite group. The Krull dimension of Q(G, Z/27Z) is at most 1.

Proof. Let u and v be homogeneous elements of H*(G,Z/2Z). Denote k = deg(u) and
¢ = deg(v). We will show that uv(u’ + v*) is negligible. Let K be a field extension of F and

j : I'x — G a continuous group homomorphism. Let o = j*(u) and 5 = j*(v). Then

F (Mo 4w = P U B+ a U g
=aU(-DMUupB+aupu(-1)*
= (@UB+aUpB)U(—1)k

=0.

We conclude that elements of the form uv(u’ + v*) are negligible.
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For a set of generators {ui,...,u,} of R = H*(G,Z/27Z) with d; = deg(u;), define the
ideal I = (uu; (u?j + ujl) :1 < i < j < m). We showed above that I C I(G,Z/2Z).
Let P be a prime ideal of R that contains I/(G,Z/27Z) and, thus, I. It suffices to show
that dim(R/P) < 1 since dim(Q(G,Z/27Z)) = maxpi(z/2z) dim(R/P). If u; € P for all
1 <i<m,then R/P = 7Z/2Z and dim(R/P) = 0. We may assume that u; ¢ P for some
1 < i < m. Since usu; (ul +uj") € Pand P is prime, u; € P or u +uj € P forevery j. For
the ring homomorphism ¢ : Z/27Z[t] — R/P defined as ¢(t) = u;, u; is integral over im(y)
in either case. Thus R/ P is a finite Z/2Zt|-algebra so dim(R/P) < dim(Z/2Z[t])) =1. O

Theorem 4.6. Let G be a finite group of even order and F' a formally real field. Then the negligible
quotient Q(G,Z/2Z) has Krull dimension 1.
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CHAPTER 5

Negligible Cohomology Ideal Computations

5.1 Elementary Abelian p-groups

In this section, G is an elementary abelian p-group of rank n or G ~ (Z/pZ)" for p a
prime. We wish to compute generators of the negligible cohomology ideal of the mod p
cohomology of G. We will first study the p = 2 case, which is a generalization of Serre’s
computation of negligible classes over Q for elementary abelian 2-groups found in [GMS03,
Part I, Lemma 26.4]. By [CTV03, Proposition 4.5.4], the mod 2 cohomology of a rank n

elementary abelian 2-group G is a polynomial ring in n variables,
H*(G,Z)27) ~7)2Z[x1, . .., x,]

where {z1,...,x,} is a basis for H'(G,Z/2Z) as a Z/2Z-vector space.

Throughout this section, we will denote {1,2,...,n} by [1,n].

Theorem 5.1. Let G be an elementary abelian 2-group of rank n and F a field with char(F') # 2.
Denote by s(F') the level of F.

(1) If Fis formally real, then 1(G,7Z/27) over F is generated by
{xix?+$]~xf 1<i<j<n}.
(2) If s(F) =2" > 1, then I(G,Z/2Z) over F is generated by
{wa? +xja 1 <i<j<n}u{z]"*:1<i<n}
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(3) If s(F) =1, then I(G,Z/2Z) over F is generated by
{27 :1<i<n}.

Proof. See Section 2.2 for an overview of s(F'), the level of F. Let I be the ideal generated
by the elements in the proposition statement for an elementary abelian 2-group of rank n.
We will first prove that I C I(G,Z/27Z). Let K be a field extension of F'and j : I'x — G be
a continuous group homomorphism. Denote (a;) = j*(z;) € H (K, Z/2Z) ~ K* /(K*)>.

7 (@} + wad) = (i, a5, a5) + (a5, a3, a5) = (a5, a5, —1) + (aj,a;, —=1) = 0
If s(F) = 2", then (—1)"™! is trivial and
5 (@) = (a:)™"? = (a;) U (=) = 0.

We will now show that I(G,Z/27Z) C I. Define the iterated Laurent series field £ =
F((a1))((az)) - - - ((an)) with indeterminates a;. For S C [1,n], denote g = [],.qz; and
(as) = [Les(@) in H®(K,Z/2Z). Then H*(E,Z/2Z) is a free H*(F, Z/2Z)-module with
basis {(ag) : S C [1,n]} by [Kat06, Theorem 3]. The field extension E(\/az, ... ,+/a,) over
E is Galois with Galois group G acting by g-\/a; = (—1)%¥,/a; for g € G. As aresult, there
is a continuous group homomorphism jz : I'y — G, which induces a ring homomorphism
j% s HY(G,Z/2Z) — H*(E,7/2Z).

Define the subset T = {zgz} : S C [1,n],j € S maximal,0 < i} of H*(G,Z/2Z) if F is
formally real or T’ = {zgz} : S C [1,n],j € S maximal, 0 <i < + 2} if F' is not formally
real and s(F') = 2". Denote by IV the subspace of H*(G, Z/27) generated by 7'. Note that,
modulo I, every element of H*(G, Z/2Z) may be reduced to an element of WW. Further, for
all zga! € T,

jp(eszl) = (as) U (a;)" = (ag) U (—1)".

Since {(ag) : S C [1,n]} is linearly independent in H*(E,Z/2Z) as a H*(F,Z/2Z)-module,
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the restriction of jj, to I is injective. We build the following commutative square.

-

W 2 sy H*(E,7./27.)

l i

H*(G,2/22)]I —— H*(G,7/22)/1(G,Z,/2Z)

A diagram chase implies that f is injective and /(G,Z/2Z) C 1. O

We will now focus on the case when p is an odd prime. By [CTV03, Proposition 4.5.4],
the mod p cohomology of an elementary abelian p-group G is a polynomial ring over the

exterior algebra of the character group G* of G,

HY(G, Z/pZ) =~ MG)[yy, - -, Yn]

where deg(y;) = 2 and n is the rank of G as an elementary abelian p-group. Let {z1, ..., z,}
be a basis for H'(G,Z/2Z) as a Z/2Z-vector space. For each 1 < i < n, we can choose

yi = B(x;) for B : H'(G,Z/pZ) — H*(G,Z/pZ) the Bockstein homomorphism.

The following result can be found in [EM11, proof of Proposition 3.2].

Lemma 5.2. Let K be a field that contains a primitive p-th root of unity &,. Then B(a) = aU (&)
fora € HY(K,Z/pZ).

Proof. Let B : H'(K,Z/pZ) — H?*(K,Z) denote the integral Bockstein homomorphism.

The homomorphism f : Z — K, satisfying f(1) = ¢, factors through Z/pZ. We can build

the following commutative diagram.

H\(K,Z/pZ) —2— H*(K,Z) —"— H*(K,KZ) ~ Br(K)

\)l/ N

2K, Z/pZ)

By [GS17, Proposition 4.7.3, Corollary 2.5.5, and Proposition 4.7.1], f*(B(«)) is o U (&,) in
H*(K,Z/pZ). Therefore, B(a) = a U (¢,) by commutativity. O
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Let K be a field extension of F'and j : I'x — G be a continuous group homomorphism.

The Bockstein commutes with inflation so, for x € H'(G, Z/pZ),
7*(B(z)) = B(j"(z)) = j"(2) U (&) (5.1)

when p, C K by Lemma 5.2.

Theorem 5.3. Let p be an odd prime. Let G be an elementary abelian p-group of rank n.

(1) If F does not contain a primitive p* root of unity, then 1(G,Z/pZ) over F is generated by
{ryj+xy 1 <i<j<n}U{yy;:1<i<j<n}
(2) If F contains a primitive p* root of unity, then 1(G,Z/pZ) over F is generated by
{yi: 1 <i<n}.

Proof. By Corollary 2.4, we may assume that 1, C F for negligible cohomology compu-
tations. Let I be the ideal generated by the elements in the proposition statement for an
elementary abelian p-group of rank n. We will first prove that I C I(G,Z/pZ). Let K be
a field extension of ' and j : I'x — G be a continuous group homomorphism. Denote

(a;) = j*(z:) € HY(K,Z/pZ) ~ K* /(K*) s0
77 (i) = 37 (B(x:)) = B(j"(2:)) = Blai) = (ai, &)
by equation (5.1). We have

7 (xy; + z59:) = (ai,a5,&) + (aj,a,&,) =0

]*(yzy]) = (aia gpa a’ja Sp) = _(aia aj> 5}77 gp) = _(ai> aja gpa _1) =0.
If F contains a primitive p? root of unity ¢,2, we obtain

3 (W) = (ai, &) = (@i, &) = plai, §2) = 0.
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We will now show that I(G,Z/pZ) C I. Define the field extension E of F as in the proof
of Theorem 5.1. Once again, by [Kat06, Theorem 3], H*(E,Z/pZ) is a free H*(F,Z/pZ)-
module with basis {(ag) : S C [1,n]}. Asbefore, we have j;, : H*(G,Z/pZ) — H*(E,Z/pZ).

Define the subsets

Ty ={xs:S C[l,n]}

Ty = {xgy; : S C [1,n],i < jforeachi € S}

of H*(G,Z/pZ). If F does not contain a p? root of unity, let T = T} U T5. If F’ does contain
a p? root of unity, let T = T;. Denote by W the subspace of H*(G,Z/pZ) generated by T
Note that, modulo /, every element of H*(G,Z/pZ) may be reduced to an element of V.

Further,

ip(zs) = (as)

Jr(rsy;) = (as) U (a;, &) = (asugy) U (&)

Since {(ag) : S C [1,n]} is linearly independent in H*(E,Z/pZ) as a H*(F,Z/pZ)-module,

the restriction of j}, to W is injective. We build the following commutative square.

-k

W - e s H*(E,7./pZ)

l il

H*(G,Z/p2)]I —L— H*(G,Z/22)/1(G,Z/pZ)

A diagram chase implies that f is injective and I(G,Z/pZ) C I. O

5.1.1 Open conjecture

In [QV72], Quillen and Venkov proved that nilpotent elements in the group cohomology
of a finite group G are detected on the elementary abelian p-subgroups of G. We could

hope that there is a similar result about negligible classes.
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Recall from Section 2.2 that a class u € H*(G,Z/pZ) is eventually negligible if u* is

negligible for some £ > 1.

Conjecture 5.4. Let G be a finite group and F' a field such that char(F') # p. An element of
H*(G,Z/pZ) is eventually negligible if and only if it restricts to an eventually negligible element
in H*(H,Z/pZ) for each elementary abelian p-subgroup H C G.

If p is odd, every element of H>°(G,Z/pZ) and H>°(H,Z/pZ) is eventually negligible
by Theorem 4.3. [QV72] handles the degree zero classes so the conjecture holds when
p is odd. The conjecture holds for the same reasons if p = 2 and |G| is odd or F is not a

formally real field.

Lemma 5.5. Let H be an elementary abelian 2-group of rank n and F a formally real field such
that char(F) # 2. Then [(H,7Z/27) is radical.

Proof. 1dentify H*(H,Z/27) ~ Z/2Z[z:, . . .,x,] as a polynomial ring in n variables. Then
[GMS03, Part I, Lemma 26.4] proves an homogeneous polynomial f € Z/2Z[x1, ..., z,]
is contained in I(H,Z/2Z) if and only if f vanishes when each z; is evaluated on values
of Z/27. We note that f* vanishing implies f vanishes so f* € I(H,Z/2Z) implies f is in
I(H,Z/2Z). For a possibly inhomogeneous g € H*(H,Z/27Z), an inductive argument will
prove that g* € I(H,Z/27) implies g € I(H,Z/27Z). O

Lemma 5.5 states that the eventually negligible elements of H*(H, Z/2Z) are negligible

for H an elementary abelian 2-group. We can rephrase the conjecture as follows.

Conjecture 5.6. Let G be a finite group and F a formally real field. An element of H*(G,Z/27)
is eventually negligible if and only if it restricts to a negligible element in H*(H,Z/27) for each

elementary abelian 2-subgroup H C G.

Let v € H*(G,Z/27Z) be an element that does not restrict to a negligible element in
H*(H,Z/2Z) for some elementary abelian 2-subgroup H C G. Since I(H,Z/27Z) is radical,
no power of v restricts to a negligible element in H*(H, Z/27). By Proposition 2.3(1), v
is not eventually negligible in H*(G, Z/2Z). Therefore, eventually negligible elements of
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H*(G,7Z/2Z) restrict to negligible elements of H*(H,7Z/2Z). However, we have yet to prove
that we can detect eventually negligible elements of H*(G,Z/2Z) on the cohomology of

elementary abelian 2-subgroups of G.

5.2 Negligible Ideal Computational Tools

When G is not an elementary abelian p-group, the following results will help compute the

negligible cohomology ideal in some cases.

Lemma 5.7. Let H C G be a subgroup of a finite group G. Denote by
d . prd d
cor® : HY(H,M) — H*(G, M)

the degree d corestriction (or transfer) map. If u € HY(H, M) is negligible over F, then cor®(u) is
negligible over F in H(G, M).

Proof. Let K = F (V)€ for V a faithful F-representation of G. Since H is a subgroup of G, V
is likewise a faithful F-representation of H. Define Ky = F(V)". We build the following

commutative square.
HA(H, M) —* HYG, M)

linf H linf

HY Ky, M) =% H(K, M)

Proposition 2.1 proves that the kernel of these inflation maps are the negligible classes of
H(H, M) and H%(G, M) respectively. Then infy(u) = 0 implies that inf(cor?(u)) = 0. We
conclude that cor?(u) is negligible in HY(G, M). O

Lemma 5.8. Let G be a finite group and p be a prime integer. Let H C G be a subgroup for which
ged([G = H],p) = 1. Then restriction is an injection of rings H*(G,Z/pZ) — H*(H,Z/pZ).
Further, [(G,Z/pZ) = H*(G,Z/pZ) N I(H,Z/pZ) when H*(G,Z/pZ) is viewed as a subring of
H*(H,7/pZ).

Proof. The composition of the corestriction and restriction maps is multiplication by [G : H]
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on each H%(G,Z/pZ). Since ged([G : H],p) = 1, the composition is an isomorphism on
each HY(G,Z/pZ). We conclude that res : H*(G,Z/pZ) — H*(H,Z/pZ) is an injective ring
map and each cor? : HY(H,Z/pZ) — H*(G,Z/pZ) is a surjective group homomorphism.

View H*(G,Z/pZ) as a subring of H*(H,Z/pZ) via restriction. If u € I(G,Z/pZ), then
res(u) € I(H,Z/pZ) by Proposition 2.3(1). Thus

I(G,Z/pZ) C H*(G,Z/pZ) N I1(H,Z/pZ).

Ifve HYG,Z/pZ) N H*(H,Z/pZ)neg, then v = res(u) for some u € H(G,Z/pZ). We have
cor’(v) = cor(res?(u)) = [G : H]u is an element of H*(G,Z/pZ)neg by Lemma 5.7. We
conclude that u is an element of H(G, Z/pZ)ney since G : H] is invertible in H*(G, Z/pZ).
For an inhomogeneous w € H*(G,Z/pZ) N I(H,Z/pZ), perform the above procedure on
each homogeneous piece. Therefore, I(G,Z/pZ) > H*(G,Z/pZ) N I(H,Z/pZ). O

We will make frequent use of the following short exact sequence.

0 >y 7 —— 7 > Z/nZ —— 0 (5.2)

Lemma 5.9. Assume that ;o C F. Let L be a field extension of F. Then the connecting map
HYL,Z/nZ) — H*(L,Z) in the long exact sequence induced by (5.2) is injective for d > 2.

Proof. Since F' contains all roots of unity, we can identify ;(d) ~ Q/Z for any d. Tak-
ing a direct limit over all integers m of the Norm Residue Isomorphism [HW19] yields
H*™YL,Q/Z) ~ K} (L) ® Q/Z for K} (L) the (d — 1)st Milnor K-group of the field L.
Therefore, H*"'(L,Q/Z) is n-divisible for d > 2. Lemma 2.7 proves that H*"'(L, Q/Z) is
isomorphic to H%(L,Z) so H%(L,Z) is also n-divisible. The connecting map of the long

exact sequence induced by (5.2) is injective for d > 2. O

In the rest of Chapter 5, we will often assume that ;1 C F. The next result proves

that, from a negligible cohomology perspective, the same computations can be obtained
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by assuming F' contains only finitely many roots of unity. However, the result does not

indicate the exact roots of unity required.

Proposition 5.10. Let L over F be an algebraic field extension. For each positive integer d, there is
some finite intermediate field extension Lo/ F for which H*(G, M )yeg, 1, = H*(G, M ) eq,.. Further,
the negligible ideal 1(G,7Z/pZ) over some finite intermediate field extension Lo/ F is the same as
that over L.

Proof. Letu € HYG, M)pneg,.- We can write L as the colimit of finite algebraic extension
L;/F. Let V be a faithful representation of G over L. Then L(V)¢ = U;Ly(V)%, and we

obtain the following commutative diagram for each i.

HYL;(V)%, M) il » HY(L(V), M)

inf i inf

HYG, M)

Since inf(u) = 0, we have res;(inf;(u)) = 0 or inf;(u) € ker(res;) for each i. The universal
map f : colim; H4(L;(V)¢, M) — HY(L(V)“, M) induced by the restrictions is an isomor-
phism via [Ser02, Chapter I, §2 Proposition 8]. Therefore, inf;(u) = 0 for some i and
u € HYG, M)neg, 1, by Proposition 2.1.

By [Eve91, Corollary 7.4.6], the Noetherian ring H*(G,Z/pZ) is finitely generated.
Thus the negligible ideal I(G,Z/pZ) over L is finitely generated. We may assume that
the generators are homogeneous. To construct L, take the compositum of the finite field

extensions corresponding to each generator of the negligible ideal. O

5.3 Cyclic Groups

Unfortunately, negligible cohomology computations for groups more complicated than
elementary abelian p-groups become difficult. Section 5.3.1 culminates with Proposition
5.15 in which we show degree three and degree four cohomology of cyclic groups is entirely

negligible under certain roots of unity assumptions. In Section 5.3.2, we use the result to
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find generators of the mod p negligible cohomology ideal of cyclic p-groups in Propositions
5.17 and 5.19 under certain roots of unity assumptions. Proposition 5.17 describes the p = 2
case with a limitation on the roots of unity. Section 5.3.3 provides a slight relaxation of the

roots of unity requirement of Proposition 5.15.

5.3.1 Degree Three and Degree Four Negligible Cohomology of Cyclic Groups

In order to compute the degree three and degree four negligible classes of cyclic groups,

we will need preliminary results about connecting homomorphisms.

Let K be a field extension of ' and j : I'x — G a continuous group homomorphism.
We will assume throughout this section that y,, C F' so p,, is a trivial I x-module. Endow

Exty, (ftm, ftm) With a group structure via the Baer sum. The group homomorphism
@y, : Bty (fhm, pm) — Hom (H*(K, piy), H¥™ (K, i)

identifies the class of an extension with a connecting homomorphism in the induced long

exact sequence on cohomology.

Let C; in Ext%K (tm, pm) denote the class of the extension

\ \ ®Z \
1 > L, > e > L,

~
—_

Let &,,2 be a primitive m? root of unity. The cyclic extension K (¢,,2)/K provides a group
homomorphism ¢ : I'y — Gal(K(&,,2)/K). The action on 125 is given by o - &/, = ¢(0)(&%).

For a cyclic degree m field extension E of K, we know that £ = K( {/x) for some
x € E* since p,,, C K. Denote by x : I'x — Gal(E/K) ~ Z/mZ the surjective group
homomorphism induced by the field extension. Let D(z) in Exty.,_(tm, ftm) be the class of

the extension

1 > L, > D oy — Py, — 1.

with action o - (§1, &) = (§&1x(0)(&), &) for o € Tk.
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Lemma 5.11. Let K be a field and &, a primitive m-th root of unity. Assume ., C K. Then the
Baer sum kD(&,,) + Cy is equal to Cy, in Exty_(fun, fn)-

Proof. We will proceed by induction on k. The base case k = 0 is trivial. Assume that
kD(&n) + Cy = Cy. We will show that the Baer sum D(¢,,,) + Cx = Ciy1. Let X be the
pullback in the following diagram.

Then X = {((&,¢),£") : £,& € pm,&" € pme, & = (€)™ }. Define Y to be the quotient of X
via the image of the skew-diagonal embedding of ji,,, in X. The image of the skew-diagonal
embedding of 1, in X is {((£71,0),€) : £ € ) so each class of Y has a representative of
the form ((0,¢'),&") for &' € pum, £" € pim2, and & = (¢”)™. The Baer sum D(¢,,,) + C}, is the

class of the extension 0 — i, = Y — i, — 0.

Both D(&,,) and Cj, refer to the cyclic field extension K (¢,,2) of K. Denote the group
homomorphism corresponding to the extension by y : I'x — Gal(K (,,2)/K). For o € I'c
such that y(o) generates Gal(K (&,,2)/K) and " € pi,,,2, we have x(0)(£") = ()" =

(&")m¢". In other words, the action of ¢ is multiplication by (£”)™. Then

o ((07 5,)7 6”)

((x(0)(§),€), x(0)"(€")
((€',6), x(0)*(£")

(1,6, x(0)*(€")()
((1,€), x(0)(€")

since ¢ = (£”)™. We conclude Y =~ ufi(fﬂ) as I'x-modules and D(¢,,,) + Cy = Ci4q in

Exty, (ftm, pm)- O
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Lemma 5.12. Let K be a field with pi,,, C K. Then ®,(Cy) is trivial and ®,(Cy) = —kPr(D (&)
in Hom(H* (K, pi), H¥ YK, pi,)).

Proof. 1t is sufficient to show @, (Cy) is trivial in Hom(H*(K, pu,,), H**Y(K, 11,,)) by Lemma

5.11. Since p,, C K, we can identify s, ~ u&" as I'x-modules for all i € Z. The extension

N y ,,®d
1 > L, > o

~
—_

> M
induces a long exact sequence in cohomology with portion
HYK, 188) —— HYK, )~ HY(E, 1),
By the Norm Residue Isomorphism [HW19], the following commutative square
HYUK, i) ————— HYK, i)
: ]
Kd(K)/I”LQKd(fQ — Ky(K)/mKy(K)

proves that the top map is surjective. Therefore, ®;(Cy) = O is trivial. [

Lemma 5.13. Let K be a field that contains a primitive m-th root of unity &,,. Then

Pe(D(Em))(7) = (Em) Uy

fOT" g S Hk(K7 Mm)

Proof. Let &,,2 be a primitive m? root of unity. For the cyclic field extension K (,,2) of
K, there is a corresponding group homomorphism x : I'x — Gal(£/K) ~ Z/mZ in
HY(K,Z/mZ). The pairing Z/mZ ® fi,, — j, induces a cup product

U: HY (K, Z/mZ) @ H*(K, ji,,) — H*" (K, 1)
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for each £ > 0. Since f1,,, C K, we can identify D(&,,) with the short exact sequence
0 —— Z/mZ —— Z/mZ & Z/mZ —— Z/mZ —— 0

with I'g-action on Z/mZ & Z/mZ given by o - (z,y) = (v + x(0)(y),y) for ¢ € T'x. Then

D(¢&,,) induces the commutative square

HO(K,Z/mZ) @ H*(K, i) —— H*(K, i)

lao ®id lak

HY(K,Z/mZ) @ H*(K, i) —— H*Y(K, i)
for 0" : H*(K, pn) — H*(K, p,,) a connecting map. We identify H(K, Z/mZ) ~ Z/mZ

so " maps 1 € Z/mZto x € H'(K,Z/mZ). By commutativity,

®(D(&m))(7) = 0"(v) = x U7

for v € H*(K, j1,,). In the notation we adopt, x is written as (&,,,) € K*/(K*)™. O

Lemma 5.14. Let K be a field that contains a primitive m-th root of unity &,,,. The mod m surjection
q: Z — Z/mZ induces a map q, : H*(K,Z) — H?(K,Z/mZ) on cohomology. A character
x € H*(K,Z) corresponds to a cyclic extension K(%/a) of K defined by qo x : T — Z/mZ.
Then q.(x) = (a) U (&m)-

Proof. The following commutative diagram

0 » 7 > Q > Q/Z —— 0

N

0 > 7L > > Z/mZ —— 0

§ l H

0 —— Z/mZ — Z/m*Z —— Z/mZ —— 0

3
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induces the commutative square

HY(K,Q)7) —=— H*(K,Z)

[ [

HY(K,Z/mZ) —2— H*(K,Z/mZ).

The image of (a) in H*(K,Z) is x. By Lemma 5.12,

0'(a) = —=P1(Co) = —(&m) U (a) = (a) U (&m).

The result follows from commutativity. O

Proposition 5.15. Let G be a cyclic group of order m. If m # 2 (mod 4), assume p,, C F. If
m = 2 (mod 4), assume po,, C F. Then HY(G,Z/mZ)ney = HY(G,Z/mZ) for d € {3,4}.

Proof. Let K be a field extension of F' and j : I'x — G a continuous group homomorphism.
Let x € H'(G,Z/mZ) be a generator. Then j*(z) € H'(K,Z/mZ) corresponds to a field
extensions F /K for which Gal(E/K) ~ G ~ Z/mZ. Since pu,, C F, wenote E = K( /a)
for some (a) € K*/(K*)™. Then j*(z) corresponds to (a) in H'(K,Z/mZ) ~ K> /(K*)™.
By including Z/mZ into Q/Z, the field extension induces a character x¢ : G — Q/Z in
HY(G,Q/Z) ~ H*(K,Z).

Let g : Z — Z/mZ be a surjection with induced map ¢. : H*(—,Z) — H*(—,Z/mZ) on
cohomology. Denote x = j*(xg) € H*(K,Z) and generator y = q.(x¢) € H*(G,Z/mZ). By

Lemma 5.14, the following commutative square proves j*(y) = (a) U (§) € H*(K,Z/mZ).

H*(G,7) —*— H*(G,Z/m7Z)

I I

H*(K,7) —~— H*(K,Z/mZ)

Cup product by g € H?(G,Z) gives isomorphisms H%(G,Z/mZ) — H*(G,Z/mZ)

in each degree d > 1. Thus x U y is a generator of H*(G,Z/mZ) and y U y is a generator of
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H*(G,Z/mZ). We have

7 (e Uy) = (a) Ula,&m) = (a, =1, &m)

]*(yuy) = (a7€m> U (aafm) = —(CL7 _17§m7 _1)

When m # 2 (mod 4) and p,, C F, we note (—1) is trivial. When m = 2 (mod 4), we have

j*(.TUy) = (CL, _17£m) = (CL, _17522771) = 2(@, _17£2m) =0

j*(yuy) = —(CL, _1757717 _1) = _<a7 _17§§m7 _]') - _2(0’7 _17527717 _1) =0.

Therefore, H*(G,Z/mZ) and H*(G,Z/mZ) are entirely negligible. O

Corollary 5.16. Let G be cyclic of order n. If n # 2 (mod 4), assume i, C F. If n = 2 (mod 4),
assume po, C F. Then H (G, Z)nee = HY(G,Z) for d € {3,4}.

Proof. Since multiplication by n on H%(G, Z) is trivial in each degree, short exact sequence
(5.2) induces a surjective connecting map on cohomology H*(G,Z/nZ) — H*(G,Z) for
each d > 1. The connecting map respects negligible cohomology since short exact sequence
(5.2) produces an analogous long exact sequence in Galois cohomology. Proposition 5.15

completes the argument in degrees 3 and 4. O]

5.3.2 Negligible Cohomology Ideal of Cyclic Groups

If we restrict our view to the coefficients M = Z/pZ with a trivial G-action for prime p,
then, from a negligible cohomology standpoint, Lemma 5.8 proves that it is sufficient to
only consider cyclic groups of order p*. Let C,. be a cyclic group of order p*. The case

k = 1is taken care of in Section 5.1. Hence, we will assume £ > 1 throughout this section.

When p = 2 and k£ > 1, the cohomology ring of a cyclic 2-group is

H*(Cy, 7.)27) ~ 7,27, y]/ {z?)
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such that deg(z) = 1 and deg(y) = 2 by [Eve91, Section 3.2].

When p is an odd prime and & > 1, the cohomology ring of a cyclic p-group is
H*(Cpi, Z/pZ) == Ngpin(Cpi) [y

for C7, the characters of ) and deg(y) = 2 by [Eve91, Section 3.2].

Proposition 5.17. Assume that F is a field such that char(F) # 2 and j1, C F.

(1) If prorer C F, then the negligible cohomology ideal of H*(Csr, Z/2Z) is generated by {y}.
(2) If por+r ¢ F, then the negligible cohomology ideal of H* (Cyr, Z./27) is generated by {xy, y*}.

Proof. By Corollary 2.2(2), there are no negligible classes in H'(Cy, Z/27Z). Corollary 3.2
proves that H*(Cyr, Z/27) is entirely negligible if and only if iy C F.

Since yy C F, Proposition 5.15 implies that H*(C}, Z/4Z) is entirely negligible. The
quotient Z /47 — 7./27 induces a surjection H*(Cy, Z/4Z) — H?*(Cy4,7/27) that respects
negligible classes by Proposition 2.3(4). Thus H?*(C,y,Z/27) is entirely negligible. Let
Cye-1 denote the unique cyclic subgroup of Cy: of order 2¢~!. The corestriction map
H3(Cor-1,Z)27) — H?*(Cy,Z/2Z) is an isomorphism for k£ > 2 and respects negligible
classes by Lemma 5.7. Via induction on k, H*(Cy, Z/27) is entirely negligible for all k& > 2.

Let K be a field extension of F'and j : I'x — Cy a continuous group homomorphism.
Then j*(y*) = j*(y)? = j*(y)U(—1)%is trivial since j14 C F. We conclude that H*(Cy, Z/27)

is entirely negligible. O

Remark. Assume that iy ¢ F or, equivalently, s(F') > 1. We have not yet developed
techniques to determine when classes of H?¥~1(Cy,7Z/27) are negligible. However, the
next result, Proposition 5.18, implies that the unique elementary abelian 2-subgroup of Cy«
can detect the negligible classes of H?4(Cyx,7Z/27). The result aligns with Conjecture 5.6

although, when r is even, there is one choice for ¢ missing.

Proposition 5.18. Assume that F' is a field such that char(F') # 2.
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(1) Ifs(F) =27, then y" is not negligible in H*(Cyr, Z,/27) if ¢ < | 5L |. Further, y* is negligible
ife =[50
(2) If F is formally real, then y* is not negligible in H**(Cy, Z/27) for any 1 < ¢.

Proof. The group Cs: has a unique elementary abelian 2-subgroup H, which is cyclic of
order 2. The restriction map res? : H(Cor,Z/27) — H(H,Z/27) is an isomorphism in
even degrees. Theorem 5.1 proves that res*(y*) is not negligible in H*(H,Z/27Z) when
¢ < | |. By Proposition 2.3(1), y* is not negligible when ¢ < |“* |. If F' is formally real,
y" is not negligible for any 1 < /.

We will now assume ¢ > [“£3]. Let K be a field extension of F'and j : I'x — Co a

continuous group homomorphism. Then

Since 2¢ — 2 > r + 1, we find j*(y*) is trivial when s(F) = 2". O

Proposition 5.19. Let p be an odd prime. Assume F is a field such that char(F') # p.

(1) y? is negligible in H*(Cyx, Z/pZ).
(2) If ppe+r C F, then the negligible cohomology ideal of H*(C,x, Z/pZ) is generated by {y}.
(3) If pyr C Fbut s ¢ F, then the negligible cohomology ideal of H*(Cyx, Z/pZ) is generated

by {zy,y*}.
Proof. Let K be a field extensionof F'and j : ['x — C,« a continuous group homomorphism.
Then j*(y?) = j*(y)* = 7*(y) U (—1)? is trivial.

By Corollary 2.2(2), there are no negligible classes in H'(C,x,Z/pZ). Corollary 3.2
proves that H*(C,, Z/pZ) is entirely negligible if and only if i1 C F.

If p,» C F, Proposition 5.15 proves that H3(Cx, Z/p*Z) and H*(C,x, Z/p*7Z) are entirely

negligible. The quotient Z/p*Z — 7 /pZ induces a surjection
HYCy,Z/p"Z) — H*(C\, Z/pZ)

40



in each degree d > 0 that respects negligible classes by Proposition 2.3(4). Therefore,
H*(Cy,Z/pZ) and H*(C\, Z/pZ) are entirely negligible. O

5.3.3 Relaxation of Roots of Unity for Cyclic Groups of Odd Prime Power Order

In order to compute the negligible classes of H*(Cyx,Z/p"Z), Proposition 5.15 requires
ppx C F. In this subsection, we prove a slight relaxation of the requirement j,» C F.
For an odd prime p, we will show that H3(C\z«, Z/p*7Z) and H*(Czr, Z/p**Z) are entirely

negligible over F if ju« C F.

Proposition 5.20. Let p be an odd prime. Assume j,c C F. Then H*(C e, Z/p*Z) is entirely
negligible over F.

Proof. 1f ji,2c C F, we obtain the result by Proposition 5.15. Assume that ji,2c ¢ F. Let V
be a faithful F-representation of C)2c and K = F(V)%* . Denote by

infx : H*(Cpoe, Z/p"Z) — H*(K,Z/p"Z)

an inflation map. By Proposition 2.1, the kernel of inf,, is the negligible cohomology of
H3(Cpe, Z,/p'T).

Let m be the largest integer for which jy,m C F'sol < m < 2(. Let L = K({,m+:) be
the separable degree p* field extension of K. Note that 2¢ < m + ¢ so y,2c C L. Denote
by res,. : H*(K,Z/p*Z) — H*(L,Z/p"Z) a restriction map. Over F(&,m+c), V @p F(Em+e)
is a faithful representation of C\zr. Then L = F(Emie)(V @5 F(Eym+e)) >, and inflation

inf; ¢ : H*(Cyr, Z/p"Z) — H*(L,Z/p'Z) factors as inf;, ¢ = res, oinf.

The short exact sequence

0 —— Z/p'% — Z)p*L —— Z)p"Z —— 0
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induces the following commutative diagram with exact rows.

H3(Choe, Z/p*Z) —L— H3(Cp, Z/p'Z)

linfpg YA linf v Vi

HX (K, Z/p'Z) —— H*(K,Z/p'L) —— HYK, L/p*Z) —— H*(K,Z/p'Z)

I
l lrespe l es,2¢ lrespg

H2(L,Z/p'Z) —— H*(L,Z/p'L) —— H3L,L[p*Z) —— H(L,Z/p'Z)

Let u be a generator of H*(Cc, Z/p*Z). Since p,e C F, inf,e(g.(v)) = 0in H3(K,Z/p'Z)
by Proposition 5.15. Equivalently, inf ¢ (u) lifts to an element o € H*(K,Z/p‘Z). Then u is
negligible in H*(C\z¢, Z/p*Z) if and only if « is in the image of the connecting map 46°.
Since 2« C L, Proposition 5.15 implies that inf; 2 (u) = res,.(inf2(u)) = 0. By
commutativity and row exactness, res,.(«) € im(9?). Lemma 5.12 proves that §* = 0 so
a € ker(res,). By [MS82, Corollary 15.3], ker(res,) = x - H*(K,Z/p'Z) for x the image of
a generator of H'(Cc, Z/p'Z) via inflation. The element y is some power of (¢,¢). Lemma
5.12 proves 02 = —2®,(D(&,¢)) so 62(y) = —2((§,¢) U ) for v € H*(K,Z/p"Z). Therefore,

« € im(6?) as long as p is odd. We conclude u is negligible over F. O

Corollary 5.21. Let pi,e C F. Then H?(C\2e, Z/p™Z) is entirely negligible over F for any m > 0.

Proof. By Proposition 5.20, H3(Z/p*7Z,7/p**Z) is entirely negligible over F.

For now, assume m < 2{. The surjection Z/p*Z — 7Z/p™Z induces a surjective ho-
momorphism H*(Cz, Z/p*Z) — H3(C,2e, Z/p™Z) by inspecting the corresponding long
exact sequence in cohomology. Proposition 2.3(4) shows that the induced map respects
negligible classes. Thus H?(C,., Z/p™Z) is entirely negligible for all m < 2/.

Assume m > 2(. The inclusion Z/p*Z — Z/p™Z induces an isomorphism in coho-
mology H?3(Cee, Z/p**Z) — H3(Cpe, Z/p™Z) by inspecting the corresponding long exact
sequence in cohomology. Proposition 2.3(4) shows that the induced map respects negligible

classes. Thus H?(C)2¢, Z/p™Z) is entirely negligible for all m > 2. O

The next result extends the relaxed degree three negligible computation of Proposition
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5.20 to degree four when the order of the cyclic group and the order of the coefficients

coincide.

Lemma 5.22. Let p be prime. If H*(C,., Z/p*Z) is entirely negligible over F, then H*(C, Z/p*Z)

is entirely negligible over F.

Proof. Let K be a field extension of F'and j : 'k — C,x a continuous group homomorphism.

The short exact sequence
0 —— Z/p*7 —— Z/p*7 —— Z/p*7 —— 0

induces the following commutative square.

HY(G, Z/p"Z) —=— HY(G,Z/p'Z)

I I

H3(K,Z/p*7) —— HYK,Z/p*7)

By assumption, j* is the zero map in degree three so H*(G,Z/p"Z) is contained in the

kernel of j* in degree four. O

5.4 Finite Abelian Groups

5.4.1 Finite Abelian 2-groups

Let G be a finite abelian 2-group. Assume that G’ has n cyclic direct summands in elementary
divisor form. Denote by G; the ith cyclic direct summand of G so G ~ @, G;. Denote by
m the first index for which |G;| > 2. [Eve91, Sections 3.2 and 3.5] prove the cohomology
ring of G is

H*(G,7Z)27) ~ 7.)27[x1, ..., Toy Yy - - - > Yn) /{22, ... 22)

rn

where deg(z;) = 1 for 1 < ¢ < n and deg(y;) = 2 for m < j < n. We can pick a basis

x1,..., T} for HY(G,7Z/27) as a 7Z/27Z-vector space such that z; is the inflation of a gen-
P 8
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erator of H'(G;,Z/2Z). Further, we can pick y; so that it is the inflation of a generator of

H2(G,, Z,/27).

Proposition 5.23. Let G be a finite abelian 2-group with n direct summands when written in
elementary divisor form. Denote by m the index of the first direct summand of order greater than 2.
The following classes are negligible over a field F with char(F) # 2.

(1) {mizj(x; +z;):1<i<j<m}

(2) {wiy; (@i +y;) 1 1<i<m<j<n}

(3) {way;(ys + ;) :m <@ <j<nj
(4) Ifs(F) =27, {a]™: 1 <i<m}
(5) Ifs(F) =27 {y;:m < j<n[57] <L}

Proof. The proof of Lemma 4.5 reveals that classes of the form (1), (2), (3) are negligible.

We will now assume that s(F') = 2". Let K be a field extension of F and j : 'x — G a
continuous group homomorphism. Then j*(x;) = (a;) € K*/(K*)? for some square free
a; € K*. We have

7 (@) = (s, a) = (@) U(=1)"1 =0

so classes of the form (4) are negligible. Assume that [“£2] < (. Therefore,

55 =3 () =5 y) u (=1’ D =0

so classes of the form (5) are negligible. O

Remark. In order to detect that many classes are not negligible, we restrict to the cohomology
of a maximal elementary abelian 2-subgroup. Combine the results of Theorem 5.1 and
Proposition 2.3(1). There are, however, classes like z;z? or z;y; for 1 < i < m and
m < j < k < nthatrestrict to 0 in the cohomology of all elementary abelian 2-subgroups.

We do not yet have a way of detecting whether these classes are negligible.

Remark. By [QV72], classes that restrict to 0 in the cohomology of all elementary abelian

2-subgroups of G are nilpotent and, thus, eventually negligible in H*(G, Z/27Z). Proposition
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5.23 reveals that the classes of H*(G,7Z/2Z) that restrict to non-zero negligible classes in
the cohomology of elementary abelian 2-subgroups of G are negligible. Conjecture 5.6

holds for finite abelian 2-groups.

5.4.2 Finite Abelian p-Groups for Odd p

Let p be an odd prime. Assume now that G is a finite abelian p-group with n cyclic direct
summands in elementary divisor form. Denote by G; the ith cyclic direct summand of G

so G ~ @, G;. [Eve9]l, Sections 3.2 and 3.5] proves
H*(G,Z/pL) =~ Mgy (GT) Y1 - -, Y]

where G* is the characters of G and deg(y;) = 2 for 1 < i < n. We can pick a basis
{x1,...,2,} for G* = H'(G,Z/pZ) as a Z/pZ-vector space such that z; is the inflation of a
generator of H'(G;,Z/pZ). Further, we can pick y; so that it is the inflation of a generator
of H*(G;, 7./ pZ).

Proposition 5.24. Let p be an odd prime and G be a finite abelian p-group with cyclic direct
summands G; for 1 < i < n in elementary divisor form. The following are negligible over any field
F with char(F) # p.

(1) {ziyi : 1 <i <n}

(2) {y2:1<i<n)

Proof. Let x be a generator of H'(G;,Z/pZ) such that inf(z) = x; and y a generator of
H?*(G;,Z/pZ) such that inf(y) = y;. Let K be a field extension of Fand j : I'x — G a
continuous group homomorphism. Let j; : I'x — G; be the composition of j with the

surjection G — G;. We have the following commutative diagram.

H*(Gy, Z/pZ) —™ H*(G,Z/pZ)

H

“(K,Z/pZ)
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By Proposition 5.19, j#(zy) = 0 and j;(y?) = 0. Therefore, j*(x;y;) = 0 and j*(y?) = 0 so
z;y; and y? are negligible in H*(G,Z/pZ). O

The following integral negligible cohomology result will be useful for the negligible

cohomology computations of non-abelian groups.

Lemma 5.25. Let G be a group of order n. If n # 2 (mod 4), assume p,, C F. If n = 2 (mod 4),
assume jiz, C F. The square of any element of H*(G,Z) is negligible in H*(G, Z) over F..

Proof. Denote by [G, G] the commutator subgroup of G so G/[G, G| is the abelianization of
G. The group of characters H?(G, Z) is isomorphic to H*(G /|G, G], Z) via inflation. Since
G/|G,G] is a finite abelian group, we can write /|G, G] in elementary divisor form with
cyclic direct summands G;. We can choose a generating set {zy,...,z,} of H*(G/|G,G],Z)

in which each z; is the inflation of a generator of H*(G;,Z).

Let K be a field extension of F'and j : 'y — G a continuous group homomorphism.
Let j : 'x — G/|G,G] be the composition of j with the projection G — G/|G, G| and
Ji + Ik — G, the composition of j with the surjection G/[G,G] — G;. We build the

following commutative diagram for each d > 1.

HYG;,z) " HYG/[G,G),Z) — HYG,Z)

HYK,Z)

By Corollary 5.16, H*(G;,Z) is entirely negligible over F. Thus 2? in H*(G/|G,G],Z) is
negligible over F' for each 1 < i < /. We conclude that the square of each character in

H*(G,Z) is negligible over F. O

5.5 Dihedral Groups

Let D, be the dihedral group of order 2n. Dihedral groups are examples of Coxeter

groups and, in some cases, of Weyl groups (e.g. D, Ds, and D). Under the assumption
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that the characteristic of the base field is coprime to that of the group, [Hir20, Part II]
provides a detailed description of the mod 2 ring of cohomological invariants of a Weyl
group. Although there are noted issues with the paper, [Ducll, §3.2 Theorem 7] claims
that Conjecture 5.6 holds for Weyl groups over Q. Further, [Ducl1, Theorem 2| combined
with [Ducll, §1 Proposition 1] would show that Conjecture 5.6 holds for Coxeter groups

over some finite field extension of Q.

5.5.1 Odd Order Subgroup of Rotations

We will assume that the subgroup of rotations of D, has odd order. In other words, n is

odd. [Han93, Theorem 5.6] shows H*(Ds,,, Z/27) ~ 7./27Z[v4] for deg(vy) = 1.
Proposition 5.26. Let n be an odd natural number and F a field with char(F') # 2.
(1) If s(F) = 27, the negligible cohomology ideal of H*(Ds,,, Z/2Z) over F' is generated by
{777}

(2) If F' is formally real, the negligible cohomology ideal of H*(Ds,,, Z/27) over F is trivial.

Proof. Let s € D, represent a reflection and H = (s) be the order 2 cyclic subgroup of
D,,, generated by s. Since n is odd, the abelianization of Dy, is cyclic of order 2 generated
by the class of s. Therefore, res : H*(Ds,, Z/2Z) — H*(H,7Z/2Z) is a ring isomorphism.
Combining Theorem 5.1 and Proposition 2.3(1), we find v} is not negligible for 1 < k < r+2

when s(F) = 2" and v} is not negligible for any 1 < k when F is formally real.

Let K be a field extension of ' and j : ['x — G a continuous group homomorphism.

We have j*(v;) = (a) € K*/(K*)? for a square-free element a € K*. Then

J71(r) = (a)" = (a) U (=1)* .

If s(F) = 27, then v} is negligible for k > r + 2. O

Remark. Conjecture 5.6 is supported by the result of Proposition 5.26.
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5.5.2 Even Order Subgroup of Rotations

We will now assume that the subgroup of rotations of Dy, has even order. In other words,

n is even. Then [Han93, Theorem 5.5] shows
H*(Dyy, Z.)27) ~ 7.)27[uy, vy, ws] / {u3 4 uyvy + (n/2)ws)

for deg(u;) = deg(vy) = 1 and deg(ws) = 2.

Lemma 5.27. Let k > 2. Assume that F is a field such that char(F') # 2 and poc C F. The
2-torsion of H*(Dar+1, Z) is negligible.

Proof. Let Dyr+1 be the dihedral group of order 28! for k > 2. We note 2k — 2 > k so 222

is a multiple of 2*. Thus the cohomology ring of D1 is
H*(Daps1, Z) =~ Zlag, by, c3, dy] / (22, 2by, 2¢3, 2%dy, b + azbs, ¢ + asdy)

where deg(as) = deg(by) = 2, deg(c3) = 3, and deg(ds) = 4 by [Han93, Theorem 5.2]. The
2-torsion of H*(Dyr+1,7) is generated by {a3, b2, 2""1d,}.

The unique cyclic subgroup of Dy.+1 of order 2% is H = (r), the subgroup of rotations.
The integral cohomology ring of H implies H*(H,Z) ~ Z/2*Z generated by z* for generator
v € H*(H,Z). Let N : HY(H,Z) — H?(Dys1,Z) be the norm map defined in [Eve91,
Section 6.1]. By [Eve91, Theorem 6.1.1 (N4) ],

resp Ny @)= [] ora=-a?

0‘€D2k+1 /H

Since resj | (N3 (z)) is a generator of H*(H,Z), the order of N';;?*" (z) is at least 2*.
Thus d, is a linear combination of {a2, b2, V72" (2)}.

By Lemma 5.25, {a2, b3} is negligible. By Corollary 5.16, H*(H,Z) is entirely negligi-
ble since iz C F. Lemma 5.7 implies that cor§ (resf (N (z))) = 2N () is negligible.

Therefore, 28~1d, is negligible. O
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Proposition 5.28. Assume F is a field such that char(F) # 2 and u C F. The negligible
cohomology ideal of H*(Dyx+1, Z/27) over F is generated by {u?, v}, uywe, viwse, w3}. In particular,

H%(Dgxi1, Z)27) is entirely negligible for d > 3.

Proof. By Corollary 2.2(2), there are no negligible classes in H'(Dy,,Z/27). Corollary 3.2
proves that H?(Da,, Z/2Z)neg r is generated by {u?, vi} when yy C F.

Short exact sequence (5.2) for n = 2 induces the following commutative square.

H3(Dopsr, Z,)27) —— H*(Dois1, Z)

linfg’ linf‘l

H3(K,7.)27) — H4(K,Z)

Lemma 5.9 proves that the bottom map is injective when F' contains all roots of unity.
When por C F, Lemma 5.27 shows that the 2-torsion of H*(Dsx+1,Z) is negligible. Thus
H3(Dgri1,7Z/27) is entirely negligible.

In degree 4, {u}, v}, u?ws, V3w, } are negligible since u? and v} are negligible. Corollary
4.2 proves that wj is negligible over F'. The cohomology in higher degrees is generated by

products of negligible classes. O

Corollary 5.29. Assume F is a field such that char(F) # 2 and pn C F. Let n be an even
natural number. The negligible cohomology ideal of H*(Dsy,,Z/27) over F is generated by
{u2, v}, uywy, viwg, w3}, In particular, H(Da,, Z/27) is entirely negligible for d > 3.

Proof. Let H be a Sylow 2-subgroup of D,,. By Lemma 5.8, restriction induces an injection

H*(Day, Z,/27.) — H*(H,7,/27) for which I(Ds,, Z,/27) = H*(Day, Z./27,) N 1(H, 7./27,).

If 4 does not divide n, H ~ (Z/2Z)*. Apply Theorem 5.1.

If 4 divides n, H ~ Dyx+1 for some k > 2. Apply Proposition 5.28. O
Remark. Corollary 5.29 requires ;1 C F' so, in particular, s(F') = 1. For an elementary

abelian 2-subgroup H of Ds,, Theorem 5.1 proves that the negligible cohomology ideal
H*(H,Z/27) is generated by the square of characters in H'(H, Z/2Z). Corollary 5.29 is not
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immediately a counterexample to Conjecture 5.6 although we have yet to study how w;
restricts to the cohomology of H. We also have yet to compute the negligible cohomology

of a dihedral group D, when n is even over a field that does not contain all roots of unity.

5.6 Symmetric Groups

Serre classifies the negligible classes of symmetric groups over Q for finite coefficients
with a trivial action in [GMS03, Theorem 26.3]. He compares group cohomology to the
computation of the cohomological invariants of a symmetric group found in [GMS03,
Theorem 25.13]. Serre finds that the mod 2 negligible classes over Q are those that restrict
to negligible classes in the cohomology of elementary abelian 2-subgroups by comparing
the result with [GMS03, Lemma 26.4]. Serre’s results confirm Conjecture 5.6 for symmetric

groups over Q.

Proposition 5.30. Let p be an odd prime. Assume that F is a field such that char(F') # p.

(1) If p < n < 2p, then HY(S,,, Z/pZ) is entirely negligible over F in non-zero degrees.
(2) If 2p < n < 3p, then HY(S,,,Z/pZ) is entirely negligible over F for non-zero d # 3. If

2 C F, then H(S,,Z/pZ) is entirely negligible over F in all non-zero degrees.

Proof. The abelianization of S,, is Z/2Z for n > 3. Thus H'(S,,Z/pZ) = 0 for p an odd
prime. By [Hup13, Theorem 25.12], H*(S,,,Z/pZ) = 0.

(1) By assumption, p divides n! but p? does not divide n!. Thus a Sylow p-subgroup C,
of S, is cyclic of order p. The composition of corestriction and restriction with respect

to C,, is multiplication by %, an isomorphism on each H4(S,,, Z/pZ). Therefore,
cor : H(C,, Z/pZ) — H(S,,Z/pZ)

is surjective for all d > 0 and respects negligible classes by Lemma 5.7. We may
assume, without loss of generality, that n, C F' by Corollary 2.4. Then Proposition
5.15 implies that H%(C,,Z/pZ) is entirely negligible for d > 3. We conclude that
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(2)

HY(S,,Z/pZ) is entirely negligible for all d > 3.

By assumption, p? divides n! but p* does not divide n!. Since there is no element of
order p? in S, the Sylow p-subgroups H of S,, are elementary abelian of order p*.
The composition of corestriction and restriction with respect to H is multiplication

by 2—2’, an isomorphism on each H%(S,,, Z/pZ). Therefore,
cor: HY(H,Z/pZ) — HYS,,Z/pZ)

is surjective for all d > 0 and respects negligible classes by Lemma 5.7. When p,» ¢ F,
Theorem 5.3 proves H%(H, 7 /pZ) is entirely negligible for d > 4. We conclude that
HY(S,,Z/pZ) is entirely negligible for all d > 4. When y,: C F, Theorem 5.3 proves
H®(H,Z/pZ) is entirely negligible for d > 2. We conclude that H¢(S,,, Z/pZ) is entirely
negligible for all d > 3. O

Since S3 ~ Dg, the mod 2 negligible cohomology ring of S3 is computed in Section 5.5.1.

We will compute generators of the mod p negligible cohomology ideal for S; and Ss.

Proposition 5.30(1) handles the negligible cohomology ideal of H*(S,,Z/37Z). [Nak62,

Theorem 4.1] proves that

H*(S4,Z)27) ~ 7./ 27 uy, va, ws] / {(ugws)

for deg(u;) = 1, deg(ve) = 2, and deg(ws) = 3.

Proposition 5.30(1) handles the negligible ideals of H*(S5,Z/3Z) and H*(Ss,Z/5Z).
[KG23] proves that

H*(S5, Z/QZ) ~ Z/QZ[Ul, V2, ’LU3]/<U1U)3>

for deg(u;) = 1, deg(vqe) = 2, and deg(ws) = 3.

Proposition 5.31. Assume that F is a field such that char(F) # 2 and p C F. Then the
negligible cohomology ideals of H*(S4,Z/27Z) over F and H*(Ss,Z/2Z) over F are generated by
{u?, uyve, w3, v3}. In particular, H4(Sy, Z./27) and H%(Ss, Z./27) are entirely negligible for d > 3.

51



Proof. Letn € {4,5}. By Corollary 2.2(2), the negligible cohomology of H'(S,,,Z/27Z) over
F is trivial. Corollary 3.2 proves H?(S,,, Z/2Z)neg is generated by {ui} when yiy C F.

A Sylow 2-subgroup H of S, is isomorphic to Dg and of index 3 if n = 4 or index 15
if n = 5. Thus cor? : HY(H,7Z/27) — H%(S,,7Z/2Z) is surjective for all d > 0. Proposition
5.28 implies H(H,Z/27Z) is entirely negligible for d > 3 when u C F. By Lemma 5.7,
HY(S,,Z/2Z) is entirely negligible for d > 3. O

Remark. Proposition 5.31 requires y C F'so, in particular, s(F') = 1. Once again, Proposition
5.31 is not immediately a counterexample to Conjecture 5.6 although we have yet to study
the restriction to elementary abelian 2-subgroups or generalize the computations to an

arbitrary base field.

5.7 Generalized Quaternion Groups

Let Q. denote the generalized quaternion group of order 2* for k > 3 with presentation
Qu={9.h:g" " =h'=1¢"" =k n"\gh=g7").
[MP91, Theorem 1] proves that for n > 4

H*(Qs,Z)27) ~ Z/QZ[ul,vl,wAt]/(u% + uv; + v%, u%vl + uw%}

H*(Qan, Z)27) ~ 7.)2Z[uy, v1, wy]/ {uyvy, us + v3)

where deg(u;) = deg(vy) = 1 and deg(w,) = 4.

Proposition 5.32. Assume char(F') # 2.
(1) If s(F) =1, then {u?,v?} is negligible in H*(Qs, Z/27) over F.
(2) Assume s(F) = 2" > 1. There are no negligible classes in H*(Qs, Z/27Z) over F.
(3) Assume s(F) = 2". If ¢ > [%] + 1, then wj is negligible in H*(Qs,Z/2Z) over F. If
(< | ™|, then wf is not negligible in H*(Qs, Z/2Z) over F.
(4) If Fis formally real, then there are no negligible classes in H*(Qs, Z/2Z) over F'. Further,
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wy is not eventually negligible in H*(Qs, Z/27) over F.

Proof. By Corollary 2.2(2), the negligible cohomology of H'(Qs,Z/2Z) over F is trivial.

As groups, H*(Qs,Z/27) is generated by {u?,vi} and H*(Qs,Z/27Z) is generated by
{ufv; = uyvi}. Let K be a field extension of F and j : 'y — Qs be a continuous group
homomorphism. Then j*(u;) = (a1) € K*/(K*)?* and j*(v1) = (a2) € K*/(K*)? for

ai, ay € K* square-free. We have

7*(u?) = (a1, a1) = (a1, —1)
7 (0}) = (a, a2) = (a2, —1)

j*(ufvl) = J*(I@ Uj*(n) = (a1, a1,a2) = (a1, az, —1)

If s(F) = 1, then (a;,—1) = (az,—1) = 0. If s(F) > 1, then Corollary 3.2 proves
H?*(Qs,7,/27)neg is trivial.

The order 2 center Z of the generalized quaternion group Qs is its unique elementary
abelian 2-subgroup. Since w, is not nilpotent in H*(Qs, Z/2Z), [QV72] implies that w, does
not restrict to 0 on H*(Z,Z/2Z). When s(F) = 2" and ¢ < || or F is formally real for any
¢ > 1, the restriction of w to H*(Z,7Z/27) is not negligible. Theorem 5.1 and Proposition
2.3(1) provide the relevant results. When s(F) =2"and ¢ > [7] + 1,

j*<w€) _ ]*(,w4) U (_1)4(671) -0

so wj is negligible. u

Proposition 5.33. Assume char(F') # 2. Let k > 4.
(1) If s(F) =1, then {u?,v?} in H*(Qqr, Z/27) is negligible over F.
(2) If s(F) =2, then {u} = v}} in H*(Qqr, Z/27) is negligible over F.
(3) Ifs(F) =2" > 1, then there are no negligible classes in H*(Qqr, Z/27) over F.
(4) Assume s(F) = 27. If ¢ > [%] + 1, then w} is negligible in H*(Qqx, Z/27) over F. If

¢ < | ™2, then wf is not negligible in H*(Qyr, Z/27) over F.
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(5) If F is formally real, then there are no negligible classes in H*(Qqx, Z/27) and H3(Qqx, Z./27)
over F. Further, w, is not eventually negligible in H*(Qqx, Z/2Z) over F.

Proof. By Corollary 2.2(2), the negligible cohomology of H'(Qx,Z/27Z) over F is trivial.

As groups, H*(Qr, Z/27) is generated by {u},vi} and H?*(Qax,Z/27) is generated by
{u? = v?}. Let K be a field extension of F' and j : I'x — Qu be a continuous group
homomorphism. Then j*(u;) = (a1) € K*/(K*)* and j*(v1) = (a2) € K*/(K*)? for

ai, a; € K* square-free. We have

7*(uf) = (a1, a1) = (ar, —1)
7 (0}) = (as, a2) = (a2, —1)

j*(u:f) = (a1,a1,a1) = (ay,—1,-1).

If s(F) = 1, then (a;,—1) = (az,—1) = 0. If s(#) > 2, then Corollary 3.2 proves
H?*(Qgr, 227 )neg is trivial. If s(F') = 2, then (a;, —1,—1) = 0.

The order 2 center Z of the generalized quaternion group Qs is its unique elementary
abelian 2-subgroup. Since w, is not nilpotent in H*(Qqx,Z/27Z), [QV72] implies that w;
does not restrict to 0 on H*(Z,7Z/2Z). When s(F) = 2" and ¢ < [™!] or F is formally
real for any ¢ > 1, the restriction of w} to H*(Z,7Z/27Z) is not negligible. Theorem 5.1 and
Proposition 2.3(1) provide the relevant results. When s(F') = 2"and £ > [7] + 1,

fk(wé) _ ]*(w4) U (_1)4(671) -0

so wj is negligible. u

Remark. Conjecture 5.6 has not been confirmed in the generalized quaternion case. If
s(F) = 2" > 1, there are sometimes choices for ¢ between |4 | and [£] + 1. We have yet to

determine whether w is negligible over F in these cases.
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