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Exome sequencing of 20,791 cases of 
type 2 diabetes and 24,440 controls

     

Protein-coding genetic variants that strongly affect disease risk can yield relevant clues to disease pathogenesis. Here 
we report exome-sequencing analyses of 20,791 individuals with type 2 diabetes (T2D) and 24,440 non-diabetic control 
participants from 5 ancestries. We identify gene-level associations of rare variants (with minor allele frequencies of 
less than 0.5%) in 4 genes at exome-wide significance, including a series of more than 30 SLC30A8 alleles that conveys 
protection against T2D, and in 12 gene sets, including those corresponding to T2D drug targets (P = 6.1 × 10−3) and 
candidate genes from knockout mice (P = 5.2 × 10−3). Within our study, the strongest T2D gene-level signals for rare 
variants explain at most 25% of the heritability of the strongest common single-variant signals, and the gene-level effect 
sizes of the rare variants that we observed in established T2D drug targets will require 75,000–185,000 sequenced cases 
to achieve exome-wide significance. We propose a method to interpret these modest rare-variant associations and to 
incorporate these associations into future target or gene prioritization efforts.

Human genetics offers a powerful approach for better understanding 
and treating disease by identifying molecular alterations that are caus-
ally associated with physiological traits1. Common-variant array-based 
genome-wide association studies (GWAS) have associated thousands of 
genomic loci with hundreds of human traits2, and further analyses indi-
cate that heritability of most complex traits is attributable to modest- 
effect common regulatory variants3. However, non-coding GWAS asso-
ciations are challenging to assign to causal variants or genes4.

Protein-coding variants with strong effects on protein function or 
disease can offer molecular ‘probes’ into the pathological relevance of 
a gene5 and potentially establish a direct causal link6 between gene 
gain- or loss-of-function and disease risk7—especially when there 
is evidence of multiple independent variant associations (an ‘allelic 
series’) within a gene8. Several lines of evidence9 predict that strong- 
effect variants (allelic odds ratios > 2) will usually be rare (minor allele 
frequency (MAF) < 0.5%) and, in many cases, difficult to accurately 
study through current array-based GWAS and imputation strategies5. 
Whole-genome or whole-exome sequencing, by contrast, allows inter-
rogation of the full spectrum of genetic variation.

Previous exome-sequencing studies have identified relatively few 
exome-wide significant rare-variant associations for complex diseases 
such as T2D10. This paucity of findings is in part due to the limited 
sample sizes of previous studies, the largest of which included less than 
10,000 disease cases and fall short of the sample sizes that analytic9 
and simulation-based calculations11 predict are needed to identify 
rare disease-associated variants under plausible disease models. To 
increase rare coding variant analysis power, we collected and analysed 
exome-sequencing data from 20,791 T2D cases and 24,440 controls—
one of the largest analyses of exome-sequenced cases for T2D, specifi-
cally, and for any disease, more generally.

Genetic discovery from association analysis
Study participants (Supplementary Table 1) were drawn from five 
self-reported ancestries: (Hispanic/Latino (effective size (neff) = 14,442; 
33.8%), European (neff  =  10,517; 24.6%), African-American 
(neff = 5,959; 13.9%), East-Asian (neff = 6,010; 14.1%) and South-
Asian (neff = 5,833; 13.6%)) and yielded equivalent statistical power 
to detect associations as a balanced study of around 42,800 individuals 
or a population-based study (assuming T2D prevalence of 8% and no  

ascertainment bias) of around 152,000 individuals. Power was 
improved compared to the previous largest T2D exome-sequencing 
study10 of 6,504 cases and 6,436 controls, increasing, for example, 
from 5% to 90% for a variant with MAF = 0.2% and odds ratio = 2.5 
(Extended Data Fig. 1).

Exome sequencing to 40x mean depth, variant calling and quality 
control (Extended Data Fig. 2, Supplementary Methods, Supplementary 
Figs. 1–3 and Supplementary Table 2) produced a dataset with 6.33 mil-
lion variants: 2.3% common (MAF > 5%), 4.2% low-frequency 
(0.5% < MAF < 5%) and 93.5% rare (MAF < 0.5%) (Supplementary 
Table 3). These include 2.26 million nonsynonymous variants and 
871,000 insertions and deletions (indels), more than twice the number 
of variants that were analysed in a previous T2D exome-sequencing 
study10.

We first tested each variant, regardless of allele frequency, for T2D 
association (‘single-variant’ test; Methods and Extended Data Figs. 3, 
4). Fifteen variants (in seven loci) exceeded exome-wide significance 
(P < 4.3 × 10−7 for coding variants12, P < 5 × 10−8 for synonymous 
or non-coding variants), including ten nonsynonymous variants 
(Fig. 1a and Extended Data Table 1). These 15 associations are a sub-
stantial increase over the single association that was reported in a pre-
vious T2D-exome sequencing study10 and illustrate again the value 
of multi-ancestry association analyses13—as only 9 out of 15 variants 
achieved P < 0.05 in European samples. However, only two variants 
were not previously reported by GWAS: a variant in SFI1 (rs145181683, 
Arg724Trp; Supplementary Fig. 4) that failed to replicate in an inde-
pendent cohort (n = 4,522, P = 0.90; Methods) and a low-frequency 
(in Hispanic/Latino individuals; MAF = 0.89%) moderate-effect (odds 
ratio = 2.17, 95% confidence interval = 1.63–2.89) MC4R variant 
(rs79783591, Ile269Asn) that has previously been shown to decrease 
MC4R activity and to be associated with obesity and T2D in smaller 
studies14. Conditioning on body-mass index reduced but did not elim-
inate the MC4R Ile269Asn T2D association (P = 1.0 × 10−5).

Because single-variant analyses have limited power to detect 
rare-variant associations9, we next performed association tests for 
aggregations of variants within genes. Because numerous variant 
aggregation approaches (that is, ‘masks’) and gene-level tests are avail-
able, we developed a method (Methods, Extended Data Figs. 5, 6 and 
Supplementary Figs. 5, 6) to consolidate information across 14 analyses 
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into four results per gene: burden9 and SKAT15 analyses, each of which 
were either summarized as the ‘minimum P value’ across masks or 
‘weighted’ to estimate the effect of gene haploinsufficiency. We used 
an exome-wide gene-level significance threshold of P = 6.57 × 10−7 
(Methods).

Using this strategy, gene-level associations were exome-wide signifi-
cant for MC4R, SLC30A8 and PAM (Fig. 1b, Extended Data Table 2 and 
Supplementary Table 4), with variants from multiple ancestries contrib-
uting to each signal (Methods). All three genes lie within reported T2D 
GWAS loci and contain previously identified coding variant signals: the 
common variant Arg325Trp and 12 rare protective protein-truncating  
variants (PTVs) for SLC30A87,16, the low-frequency variants Asp563Gly 
and Ser539Trp for PAM10,17 and the low-frequency variant Ile269Asn 
for MC4R.

The associations in MC4R (combined MAF = 0.79%, minimum 
P = 2.7 × 10−10, odds ratio = 2.07, 95% confidence interval = 1.65–
2.59) and PAM (combined MAF = 4.9%, weighted P = 2.2 × 10−9, 
odds ratio = 1.44, 95% confidence interval = 1.28–1.62) result largely 
from effects of the previously identified coding variants in these genes, 
although the MC4R signal remained nominally significant after removing 
Ile269Asn (P = 8.6 × 10−3; Supplementary Fig. 7) and the PAM signal 
remained nominally significant (P < 0.05) after removing the 35 strong-
est individually associated PAM variants (Supplementary Fig. 8). As 
illustrated by a recent study that identified a novel T2D risk mechanism 
through cellular characterization of PAM Asp563Gly and Ser539Trp18, 
variants identified in our study (uniquely from sequencing)6 could yield 
further insights into the T2D risk mechanism mediated by PAM.

In contrast to MC4R and PAM, the SLC30A8 signal (103 variants, 
combined MAF = 1.4%, weighted P = 1.3 × 10−8, odds ratio = 0.40, 
95% confidence interval = 0.28–0.55) was not primarily driven by an 
individual variant (Arg325Trp (MAF > 1%) was not included in the 
gene-level analysis). The association was instead driven by 90 missense 
variants (weighted P = 3.9 × 10−7) and remained nominally signif-
icant (P < 0.05) even when we removed the 32 strongest individu-
ally associated SLC30A8 variants (Fig. 1c and Supplementary Fig. 9). 
Although SLC30A8 was first implicated in T2D over a decade ago16, the 
disease-associated molecular mechanism(s) through which SLC30A8 
acts remain poorly understood19—in part because the common risk- 
increasing allele Arg325Trp and the rare risk-decreasing PTVs were 
both initially thought to decrease protein activity7,19. The protective 
allelic series from our analysis argues that decreased T2D risk is the 
typical effect of SLC30A8 missense variation—that is, it is not unique 
to haploinsufficiency—and provides many additional alleles that can 
be characterized to gain mechanistic insights.

To evaluate association evidence for genes other than MC4R, PAM 
and SLC30A8, we assessed the 50 most-significant gene-level associa-
tions from our study in two independent exome-sequencing datasets: 
12,467 European or African-American individuals (3,062 T2D cases) 
from the CHARGE discovery sequencing project20 (Supplementary 
Table 5; 50 genes available) and 49,199 European individuals 
(12,973 T2D cases) from the Geisinger Health System (Supplementary 
Table 6; 44 genes available). In a meta-analysis of the three studies 
(Methods and Supplementary Table 7), MC4R (P = 6.9 × 10−14), PAM 
(P = 3.0 × 10−9) and SLC30A8 (P = 3.3 × 10−8) each became more 
significant. In addition, one gene, UBE2NL (P = 5.6 × 10−7)—which 
has few prior links to T2D or other complex traits—newly achieved 
exome-wide significance (http://www.type2diabetesgenetics.org/). 
All aspects of this association passed quality control (Methods and 
Supplementary Table 8), although further replication will be important 
to establish UBE2NL as a novel T2D-relevant gene.

More broadly, we observed an excess of directionally consistent 
associations (both odds ratio > 1 or both odds ratio < 1) between 
the original and replication analyses (31 out of 46 in CHARGE, one-
sided binomial P = 0.013; 23 out of 40 in the Geisinger Health System, 
P = 0.21; overall P = 0.011; Supplementary Table 7), suggesting that 
several more of our top gene-level signals will reach exome-wide sig-
nificance in future studies.

Further insights from gene-level analyses
Even if a gene-level association does not achieve exome-wide signifi-
cance, it might still be of use to prioritize a gene as relevant to T2D8 or 
predict whether loss or gain of protein function increases disease risk7. To 
investigate potential insights that could be obtained by sub-exome-wide  
significant gene-level associations, we analysed 16 gene sets that 
were connected to T2D based on a variety of sources of evidence (for 
example, genes that contained diabetes-associated Mendelian variants, 
T2D drug targets21 or genes that have been implicated in diabetes- 
related phenotypes in mouse models22; Methods and Supplementary 
Table 9).

First, for each gene set, we investigated whether the genes within 
the set had more significant gene-level associations than expected by 
chance (Methods). In total, 12 out of 16 gene sets achieved P < 0.05 
set-level associations (Fig. 2a–e and Supplementary Fig. 10), including 
T2D drug targets (P = 2.1 × 10−3), genes previously reported in mouse 
models of non-insulin-dependent diabetes (NIDD; P = 5.2 × 10−3) 
or impaired glucose tolerance (P = 7.2 × 10−6) and genes that con-
tained common likely causal coding-variant T2D associations6 
(P = 8.8 × 10−3 after conditioning on the common variants nearby 
these genes). Additionally, as previously described10, we observed a 
significant set-level association (P = 1.2 × 10−3) for genes implicated 
in maturity onset diabetes of the young (MODY; Fig. 2a, Supplementary 
Table 10), with nominal associations in four genes including PDX1 
(weighted P = 1.7 × 10−4, odds ratio = 3.45, 95% confidence inter-
val = 1.78–6.71, 65 variants). Rare variants in genes associated with 
MODY also demonstrated aggregate association with lower body-mass 
index (minimum P = 5.7 × 10−3) and lower fasting insulin (mini-
mum P = 0.028), consistent with the known predominant variant 
risk mechanism of reduced insulin secretion in MODY23. Most gene 
set signals were driven by multiple genes in the set (Supplementary 
Table 11) and—compared with previous studies focused on PTVs24—
consisted of substantial contributions from missense variants. Indeed, 
set-level P values from PTVs alone were >0.05 for almost all gene sets 
(Supplementary Fig. 11).

Collectively, these results suggest that association strength at the gene 
level can be used as a potential metric to prioritize candidate genes 
relevant to T2D. For example, the set of 40 genes within T2D GWAS 
loci with gene-level P < 0.05 had a significant excess of protein–protein  
interactions among them (Methods and Supplementary Table 12), 
suggesting that this set may be enriched for ‘effector genes’ that medi-
ate T2D GWAS associations6. Fully evaluating the relevance to T2D 
of these and other candidate genes will require further experimental 
work4.

In addition to prioritizing genes that are potentially relevant to T2D, 
we assessed whether gene-level analysis could help to predict whether 
gene inactivation increases or decreases T2D risk, as this is of high 
interest for the development of therapeutics8. We compared the odds 
ratios that were estimated from a gene-level weighted burden anal-
ysis to directional relationships that have been previously reported 
(Methods). Seven out of eight T2D drug targets showed concordance 
between genetic and therapeutic directions of effect (three out of four 
inhibitor targets had an odds ratio < 1, four out of four agonist targets 
had an odds ratio > 1; one-sided binomial P = 0.035; Fig. 2f). The only 
exception was KCNJ11 (odds ratio = 1.59, inhibited by sulfonylureas), 
for which the gene-level signal was driven by a known25 activating mis-
sense mutation (His172Arg); an analysis without this variant predicted 
the correct (odds ratio < 1) directional relationship. This finding is 
consistent with the known reciprocal roles of KCNJ11 in both diabetes 
and persistent hyperinsulinaemic hypoglycaemia of infancy.

Concordances between gene-level estimates of odds ratios and 
knockout effects in mice were more equivocal (for example, 7 out of 11 
diabetes-associated genes had an odds ratio > 1, binomial P = 0.27; 137 
out of 240 genes associated with increased circulating glucose had an 
odds ratio > 1, P = 0.016; Supplementary Fig. 12). The lower concord-
ances for these gene sets, despite a trend towards lower-than-expected 
gene-level P values within them (Supplementary Fig. 10), highlight the 
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known limitations of animal models26, which can be highly dependent 
on model conditions27, to predict human physiology. Candidate genes 
with significant but directionally unexpected gene-level associations 
may provide valuable insights into seemingly promising preclinical 
results: for example, the protective gene-level signal for ATM in our 
analysis (burden test of PTVs odds ratio = 0.50, P = 0.003) contra-
dicts previous expectations—based on insulin resistance and impaired 
glucose tolerance in Atm knockout mice28—that ATM loss-of-function  
should increase T2D risk. Evidence is even less favourable that ATM 
haploinsufficiency strongly increases T2D risk, rejecting an odds 
ratio > 2 at P = 1.3 × 10−8. These observations could be relevant in 
the ongoing study of whether ATM has a role in metformin response29 
or whether ATM activators are considered able to treat cardiovascular 
disease30.

Comparison of rare and common variant associations
Despite early arguments that rare-variant studies would consider-
ably advance our understanding of complex diseases5, most genetic 
discoveries continue to be provided by studies of common variants, 
which can be studied in much larger sample sizes through array-based 
genotyping and imputation31. Previous quantitative analyses have 
similarly emphasized the main contribution of common variants to 
T2D heritability6,10, but they have lacked the sequencing data that are 
needed to fully evaluate the value added by rare variants (that is, direct 
sequencing in addition to array-based genotyping and imputation) to 
discover disease-associated loci, explain disease heritability and eluci-
date allelic series.

To compare discoveries that were possible from sequencing and 
array-based studies, we collected genome-wide array data within the 
same individuals that we sequenced (available for 34,529 (76.3%) 
individuals; 18,233 cases), imputed variants using best-practice ref-
erence panels32,33 and conducted a single-variant association analysis 
(‘imputed GWAS’; Methods and Supplementary Table 13). Out of 10 
exome-wide significant nonsynonymous single-variant associations 
from the sequence analysis, 8 were detected in the imputed GWAS 
analysis (PAX4 Arg192His and MC4R Ile269Asn were not imputable), 
together with genome-wide significant non-coding variant associa-
tions in 14 additional loci (Fig. 3a and Supplementary Table 14). All 
10 variants with significant single-variant sequence associations were 
also present on the Illumina Exome Array6. These results demonstrate 
the limited power of sequencing to detect single-variant associations 
beyond array-based genotyping and imputation, even before consid-
ering the much larger sample sizes enabled by the substantially lower 
cost of array-based genotyping.

We next compared the contributions to T2D heritability of the 
strongest (common) single-variant associations from the imputed 
GWAS to those of the strongest (mostly rare-variant) gene-level asso-
ciations from the sequencing analysis (Methods). The three exome-
wide significant gene-level signals explain an estimated 0.11% (MC4R), 
0.092% (PAM) and 0.072% (SLC30A8) of T2D genetic variance, only 
10–20% of the variance explained by the three strongest independent 
common-variant associations in the imputed GWAS (TCF7L2, 0.89%; 
KCNQ1, 0.81%; CDC123, 0.35%; Fig. 3b). More broadly, fitting a previ-
ous exponential model of heritability34 to our data (Methods) estimated 
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that the top 100 gene-level signals associated with T2D explained only 
1.96% of genetic variance within our study. These results argue against 
a large contribution to T2D heritability from even the strongest gene-
level signals, even after accounting for potential sources of downward 
bias in our calculations (see Methods).

We finally assessed whether an array-based GWAS could have 
detected the many potential allelic series that we observed from direct 
sequencing. Among the variants that contributed to the exome-wide 
significant gene-level associations in SLC30A8, MC4R and PAM, we 
estimate that 95.3% of variants are not imputable (r2 > 0.4; Methods) in 
the 1000 Genomes multi-ancestry reference panel32, 74.6% of those in 
Europeans are not imputable in the larger European-focused Haplotype 
Reference Consortium panel10 and 90.2% (79.7% of European variants) 
are absent from the Illumina Exome Array. Additionally, gene set asso-
ciations (using gene ‘scores’; see Methods) from the imputed GWAS 
showed suggestive associations (four gene sets achieved P < 0.05, nine 
achieved P < 0.1; Supplementary Fig. 13) but were weaker than gene 
set associations from the sequencing analysis. Some of these gene set 
associations are detectable in larger array-based studies: analysis of a 
110,000-sample multi-ancestry GWAS13 produced P < 0.05 for 12 out 
of 16 gene sets that we studied (Supplementary Fig. 14); however, the 
genes (and corresponding variants) that are responsible for the array-
based gene set associations were mostly different from those respon-
sible for the sequence-based associations, as the two methods often 
produced uncorrelated rank orderings of genes within gene sets (for 
example, r = −0.11, P = 0.57 for the mouse NIDD gene set; Fig. 3c).

Collectively, these results demonstrate the complementarity of 
array-based GWAS and exome sequencing, with the former favouring 
locus discovery and the latter enabling full enumeration of potentially 
informative alleles.

Inferences from nominally significant associations
The T2D drug targets analysed here illustrate the opportunities and 
challenges of using current exome-sequencing datasets in transla-
tional research. Rare-variant gene-level associations are significant 
across these targets as a set (Fig. 2b) and predict the correct T2D 
directional relationship for all but one gene (Fig. 2f). However, to 
detect—at exome-wide significance—the effect sizes estimated from 
our study with 80% power would require 75,000–185,000 sequenced 
cases (150,000–370,000 exomes in a balanced study, or 600,000–
1,275,000 exomes from a population with a prevalence of T2D of 8%; 
Fig. 4a and Methods).

As a consequence, many of the modest associations (for example, 
P = 0.05) in current samples may point to clinically or therapeutically 
relevant variants or genes (Supplementary Fig. 15). The false-positive 
rate for these associations is expected to be greater than the false-positive  
rate for exome-wide significant associations35 and be further 

influenced by imperfect calibration of association test statistics. If this 
false-positive rate can be quantified using independent ‘truth’ data36, 
however, then a modest association signal could help to justify further 
experimentation on a gene based on the likelihood that it is a true 
association, the cost of the experiment and the benefit of success37 
(Fig. 4b).

We developed and evaluated a method to quantify the false-positive  
association rate for nonsynonymous variants in our dataset by using 
independent data, modelling assumptions and prior data to map  
single-variant P values to estimated posterior probabilities of true, 
causal associations (PPAs) (Methods and Extended Data Fig. 7). 
Model parameters in the middle of the range that we explored 
(Methods and Extended Data Fig. 8) predict that 1.5% (95% confidence  
interval = 0.74–2.2%) of nonsynonymous variants that achieve P < 0.05 
in our study are truly, causally associated with T2D, increasing to 3.6% 
(95% confidence interval = 1.4–5.9%) for P < 0.005 and 9.7% (95% 
confidence interval = 3.9–15.0%) for P < 5 × 10−4 (Supplementary 
Fig. 16). In this model, 541 (95% confidence interval = 270–810) of the 
36,604 nonsynonymous variants with P < 0.05 in our study represent 
true, causal associations.

We next applied this method to variants within a curated set of 
94 T2D GWAS loci (Methods), which might be expected to show fur-
ther enrichment of true associations. Our model predicted that non-
synonymous variants within these loci had even higher PPAs: 2.0% 
(95% confidence interval = 0.048–4.0%) of such variants overall, 8.1% 
(3.6–12.4%) with P < 0.05 in our study and 17.2% (7.7–24.1%) with 
P < 0.005 were estimated to represent true, causal T2D associations. Of 
particular note are variants in these loci that not only achieve nominal 
significance (P < 0.05) in our analysis but also have moderate-to-large 
estimated effects on T2D risk (Supplementary Tables 15, 16), as we 
predict that a substantial number of these variants (for example, 76 
(95% confidence interval = 29–117) out of 746 with estimated odds 
ratio > 2 and 50 (95% confidence interval = 19–77) out of 503 with 
estimated odds ratio > 3) show true, causal associations.

Outside of GWAS loci, many genes are suspected to be involved in 
T2D because of prior evidence from non-genetic sources (for exam-
ple, animal studies22 or because of implication in related disorders23). 
To evaluate variants in such genes, we extended our PPA estima-
tion approach to incorporate gene prior probabilities (or ‘priors’)38 
(Methods and Extended Data Fig. 7d) and applied it to two sets of 
genes.

First, using a prior of 100% for genes associated with MODY—thus 
assuming that all genes implicated in MODY are relevant to T2D—
our model predicts 24 variants (combined MAF = 1.1%) to have 
PPA ≥ 40% (Supplementary Table 17). Nine have estimated odds 
ratio > 3 in our study; as none of these were previously reported to 
be pathogenic MODY variants, they are therefore novel rare-variant 
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candidates for use in the prediction of T2D risk. On the other hand, 
these results show that, once false-positive rates are empirically esti-
mated rather than assumed, nominally significant variants (P = 0.05) 
in genes associated with MODY are still, in absolute terms, more likely 
to be false-positive rather than true associations39.

Second, as an example of a gene prior that was derived objectively 
(rather than subjectively), we used a mixture model approach40 to 
estimate the proportion of non-null associations across the mouse 
NIDD gene set (Methods), leading to a prior of approximately 23% 
for genes of which knockout causes NIDD in mice. Our model with 
this prior (Supplementary Table 18) predicts nonsynonymous var-
iants that achieved P < 0.05 to have PPAs of 9.9% (PPAs of 24.6% 
for P < 0.005). In particular, we predict several nonsynonymous 
variants in MADD and NOS3 to have PPA ≥ 14% (Supplementary 
Table 19), suggesting links between variation in these genes and T2D 
based on combined evidence from human genetic studies and mouse 
models41,42.

Although these PPA calculations have limitations (Methods), they 
present a framework to use suggestive genetic signals to support cost–
benefit estimates of ‘go/no-go’ decisions43 in the language of decision 
theory37 (Fig. 4b). To enable this strategy, we have made our exome- 
sequencing association results publically available through the AMP 
T2D Knowledge Portal (http://www.type2diabetesgenetics.org/), which 
supports queries of precomputed associations and further enables 
dynamic recomputations of associations with custom covariates and 
sample- and/or variant-filtering criteria.

Discussion
Our results provide a nuanced description of rare variation and its asso-
ciation with T2D, which might also apply to other complex diseases. 
Rare-variant gene-level signals are likely to be distributed across numer-
ous genes; however, the vast majority of signals individually explain 
vanishingly small amounts of T2D heritability: more than one million 
samples may be required for rare-variant signals in validated thera-
peutic targets to become significant exome-wide. Even among the four 
genes that reached exome-wide significance in our analysis, two (MC4R 
and PAM) do not include unusually strong rare-variant associations 
but rather typically modest rare-variant associations that are boosted 
from nominal to exome-wide significance by low-frequency variants.

Thus, for biological discovery in many complex traits, such as T2D, 
exome sequencing and array-based GWAS seem complementary: locus 
discovery and fine mapping are achieved most efficiently using larger 
array-based GWAS, whereas rare coding variant allelic series—that 
could aid experimental gene characterization44 or provide confidence in 
disease-gene identification—are best discoverable through sequencing. 

For personalized medicine, exome sequencing may produce some rare 
variants with sufficient effect sizes (Supplementary Tables 12, 17) to 
provide viable contributions to the prediction of genetic risk; however, 
these are sufficiently rare to be best viewed as complements to rather 
than replacements for GWAS-derived polygenic risk scores45. Whole-
genome sequencing might soon become sufficiently cost-effective to 
subsume both array-based GWAS and exome sequencing; even now, 
it is essential to expand imputation reference panels to power higher- 
resolution GWAS across all major ethnicities.

Our results suggest that, for now, maximizing the utility of exome 
sequencing will require drawing insights from associations that do not 
(yet) reach exome-wide significance. To help to interpret these sugges-
tive associations, we present a principled and empirically calibrated 
Bayesian approach (Fig. 4, Extended Data Fig. 7 and Supplementary 
Table 18) to estimate the association probability for any variant in our 
dataset, highlighting its use to interpret variants in known disease genes 
and prioritize genes from animal model studies for further investiga-
tion. Results and customized analyses from our study can be accessed 
through a public web portal (http://www.type2diabetesgenetics.org/), 
advancing the use of exome-sequencing data across many branches of 
biomedical research.
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MEthOds
A full description of the methods used in this study is available as Supplementary 
Methods.
Data reporting. The experiments were not randomized and the investigators were 
not blinded to allocation during experiments and outcome assessment.
Sample selection. We drew samples for exome sequencing from six consortia, most 
of which consisted of multiple studies and are described fully in Supplementary 
Table 1. T2D case status was determined according to study-specific criteria 
described in full in in Supplementary Table 1 and the Supplementary Methods. 
All individuals provided informed consent and all samples were approved for use 
by their institution’s institutional review board or ethics committee, as previously 
reported10,46–48. Samples that were newly sequenced at The Broad Institute as 
part of T2D-GENES, SIGMA and ProDiGY are covered under Partners Human 
Research Committee protocol 2017P000445/PHS ‘Diabetes Genetics and Related 
Traits’.
Data generation. The details of data generation, variant calling, quality control and 
variant annotation are described in full in the Supplementary Methods. In brief, 
for each consortium, sequencing data were aggregated (if previously available) or 
newly generated (if not) and then processed through a standard variant calling 
pipeline. We then measured samples and variants according to several metrics 
indicative of sequencing quality, excluding those that were outliers relative to the 
global distribution (Supplementary Fig. 1, Supplementary Table 2). These exclu-
sions produced a ‘clean’ dataset of 49,484 samples and 7.02 million variants.

Following initial sample and variant quality control, we performed additional 
rounds of sample exclusion from association analysis (Extended Data Fig. 2). We 
also excluded the 3,510 childhood diabetes cases from the SEARCH and TODAY 
studies based on an analysis that suggested their lack of matched controls would 
induce artefacts in gene-level association analyses (Supplementary Fig. 17). These 
exclusions produced an ‘analysis’ dataset of 45,231 individuals and 6.33 million var-
iants. A power analysis of this dataset is presented in the Supplementary Methods.

After these three rounds of sample exclusions, we estimated—within each ances-
try—pairwise identity-by-descent values, genetic relatedness matrices and principal 
components for use in downstream association analyses. We used the identi-
ty-by-descent values to generate lists of unrelated individuals within each ancestry, 
excluding 2,157 individuals to produce an ‘unrelated analysis’ set of 43,090 indi-
viduals (19,828 cases and 23,262 controls) and 6.29 million non-monomorphic  
variants. We used this set of individuals and variants for single-variant and gene-
level tests (described below) that required an unrelated set of individuals.

We annotated variants with the ENSEMBL Variant Effect Predictor49 (VEP, 
version 87). We produced both transcript-level annotations for each variant as 
well as a ‘best guess’ gene-level annotation using the –flag-pick-allele option (with 
ranked criteria described in the Supplementary Methods). We used the VEP LofTee 
(https://github.com/konradjk/loftee) and dbNSFP (version 3.2)50 plugins to gen-
erate additional bioinformatics predictions of variant deleteriousness; from the 
dbNSFP plugin, we took annotations from 15 different bioinformatics algorithms 
(listed in Extended Data Fig. 5) and then added annotations from the mCAP51 
algorithm. As these annotations were not transcript-specific, we assigned them to 
all transcripts for the purpose of downstream analysis.

Although we incorporated both transcript-level and gene-level annotations into 
gene-level analyses (see below), all single-variant analyses reported in the manu-
script or figures are annotated using the ‘best guess’ annotation for each variant.
Single-variant association analysis in sequencing data. To perform single-variant 
association analyses, we first stratified samples by cohort of origin and sequenc-
ing technology (with some exceptions described in the Supplementary Methods), 
yielding 25 distinct sample subgroups (Extended Data Fig. 3). For each subgroup, 
we performed additional variant quality control beyond that used for the ‘clean’ 
dataset, excluding variants according to subgroup-specific criteria described in 
Extended Data Fig. 3; in general, these criteria were strict—particularly for multial-
lelic variants and X-chromosome variants. We verified that these filters led to a 
well-calibrated final analysis through inspection of quantile–quantile plots within 
and across ancestries (Extended Data Fig. 4).

For each of the 25 sample subgroups, we then conducted two single-variant 
association analyses: one of all (including related) samples using the (two-sided) 
EMMAX test52 and one of unrelated samples using the (two-sided) Firth logistic 
regression test53. Both analyses included covariates for sequencing technology, and 
the Firth analysis included covariates for principal components of genetic ancestry 
(those among the first 10 that showed P < 0.05 association with T2D).

We then conducted a 25-group fixed-effect inverse-variance weighted 
meta-analysis for each of the Firth and EMMAX tests, using METAL54. We used 
EMMAX results for association P values and Firth results for effect size estimates.
Additional analysis of rs145181683. To assess whether the rs145181683 variant in 
SFI1 (P = 3.2 × 10−8 in the exome-sequencing analysis) represented a true novel 
association, we obtained association statistics from 4,522 Latinos55) who did not 
overlap with the current study. On the basis of the odds ratio (1.19) estimated in 

our analysis and the MAF (12.7%) in the replication sample, the power was 91% 
to achieve P < 0.05 under a one-sided association test. The observed evidence 
(P = 0.90, odds ratio = 1.00) did not support rs145181683 as a true T2D asso-
ciation. Further investigation of this lack of replication evidence suggested that, 
although the association from our sequence analysis is unlikely to be a technical 
artefact (genotyping quality was high), it could possibly be a proxy for a different 
(Native American-specific) non-coding causal variant (full details are available in 
the Supplementary Methods). Further fine-mapping and replication efforts will 
be necessary to test this hypothesis.
Gene-level analysis. For each gene, following previous studies10,56,57, we separately 
tested seven different ‘masks’ of variants grouped by similar predicted severity 
(defined in Extended Data Fig. 5). For each gene and each mask, we created up to 
three groupings of alleles, corresponding to different transcript sets of the gene; for 
many genes, two or more of these allele groupings were identical.

Before running gene-level tests, we performed additional quality control on 
sample genotypes. For each of the 25 sample subgroups (the same as used for 
single-variant analyses), we identified variants that failed subgroup-specific qual-
ity control criteria (shown in Extended Data Fig. 5) and set genotypes for these 
variants in all individuals in the subgroup as ‘missing’.

We conducted two gene-level association tests: a burden test, which assumes all 
analysed variants within a gene are of the same effect, and SKAT15, which allows 
variability in variant effect size (and direction); each of these tests is two-sided. 
We performed each test across all unrelated individuals with 10 principal compo-
nents of genetic ancestry, sample subgroup and sequencing technology as covari-
ates. As this ‘mega-analysis’ strategy was different from the meta-analysis strategy 
that we used for single-variant analyses, as a quality control exercise we conducted 
a single-variant mega-analysis and found that its results showed broad correlation 
with those from the original meta-analysis (Supplementary Fig. 18).

We then developed two methods to consolidate the 2 × 7 = 14 P values pro-
duced for each gene (described in full in Extended Data Fig. 5, Supplementary 
Methods and Supplementary Figs. 5, 6). First, we corrected the smallest P value 
for each gene according to the effective number of independent masks tested for 
the gene (variable, but on average 3.6), based on the gene-specific correlation of 
variants across masks58 (referred to as the minimum P-value test; Supplementary 
Fig. 19). Second, we tested all nonsynonymous variants (that is, missense, splice 
site and protein-truncating mutations), but weighted each variant according to its 
estimated probability of causing gene inactivation9 (referred to as the weighted test, 
which essentially assessed the effect of gene haploinsufficiency from combined 
analysis of protein-truncating and missense variants; Supplementary Fig. 6). We 
verified that these two consolidation methods were well-calibrated (Extended Data 
Fig. 6) and broadly consistent yet distinct: across the 10 most significantly asso-
ciated genes, P values were nominally significant using both methods for 8 genes 
but varied by 1–3 orders of magnitude (Extended Data Table 2).

Because each gene mask could in fact represent up to three sets of alleles (owing 
to the transcript-specific annotation strategy that we used), for each of the four 
analyses multiple P values were possible for some genes. To produce a single gene-
level P value for each of the four analyses, we thus collapsed (for each gene) the 
set of P values across transcript sets into a single gene-level P value using the 
minimum P-value test.

We used a conservative Bonferroni-corrected gene-level exome-
wide significance threshold of P = 0.05/(2 tests × 2 consolidation meth-
ods × 19,020 genes) = 6.57 × 10−7. For each gene referenced in the manuscript, 
we report the P value and odds ratio from the analysis that achieved the lowest P 
value for the gene.
Gene-level analysis near T2D GWAS signals. In principle, a nearby common- 
variant association could lead to over- or underestimation of the strength of a 
gene-level association59. To assess whether differential patterns of rare variation 
across common-variant haplotypes could significantly affect our gene-level results, 
we conducted two analyses (described in the Supplementary Methods) and found 
no evidence that confounding from common-variant haplotypes was primarily 
responsible for the associations that were observed in our gene-level analyses.
Further exploration of significant gene-level associations. For our exome-wide 
significant gene-level associations (MC4R, PAM and SLC30A8), we conducted 
additional gene-level analyses to dissect the aggregate signals that were observed. 
First, we performed tests by progressively removing alleles in order of lowest single- 
variant analysis P value, in order to understand the (minimum) number of alleles 
that contributed statistically to the aggregate signal. Second, we performed tests 
conditional on each allele in the sequence (that is, calculating separate models with 
each individual allele as a covariate), and we then compared the resulting P values to 
the full gene-level P value, in order to assess the contribution of each allele individu-
ally to the signal. Finally, for MC4R, we conducted an analysis with an added sample 
covariate for body-mass index and found that it, as shown previously60,61, reduces 
the significance of both the Ile269Asn single-variant signal (P = 1.0 × 10−5) and 
the gene-level signal not attributable to Ile269Asn (P = 0.035).

https://github.com/konradjk/loftee
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To evaluate which ancestries contributed variants to MC4R, SLC30A8, and PAM, 
we calculated the proportion of variants in each signal unique to an ancestry and 
also compared the significance and direction of effect of each signal across ances-
tries. Across the three signals, 68.4% (287 out of 419) of variants in total were 
unique to one ancestry (63.9% for MC4R, 67.0% for SLC30A8 and 71.6% for PAM). 
Each signal had a direction of effect that was consistent across all five ancestries 
and each signal achieved P < 0.05 in at least two ancestries (MC4R in East-Asians 
and Hispanics; SLC30A8 in all ancestries other than African-Americans; and PAM 
in Europeans, South-Asians and Hispanics).
Analysis of exomes from the Geisinger Health System. We obtained gene-level 
association results that were previously computed from an analysis of 49,199 indi-
viduals (12,973 T2D cases and 36,226 controls) from the Geisinger Health System 
(GHS). Association statistics were available for 44 out of the 50 genes with the 
strongest gene-level associations from our study. A power analysis of the GHS 
replication analysis is available in the Supplementary Methods.

GHS sequencing data were processed and analysed as previously described24, 
and variants were grouped into four (nested) masks (roughly correspond-
ing to the LofTee, 5/5, 1/5 1% and 0/5 1% masks; more details are available in 
the Supplementary Methods). For each mask, association results were computed 
using two-sided logistic regression under an additive burden model (with pheno-
type regressed on the number of variants carried by each individual) with age, age2 
and sex as covariates. To produce a single GHS P value for each gene, we applied 
the minimum P-value procedure across the four mask-level results.
Analysis of exomes from the CHARGE consortium. We collaborated with the 
CHARGE consortium to analyse the 50 genes with the strongest gene-level asso-
ciations from our study in 12,467 individuals (3,062 T2D cases and 9,405 controls) 
from their previously described study62,63. A power analysis of the CHARGE rep-
lication analysis is available in the Supplementary Methods.

Variants in the CHARGE exomes were annotated and grouped into seven masks 
using the same procedure as for the original exome-sequencing analysis. Burden 
and SKAT association tests were then performed in the Analysis Commons64 
using a two-sided logistic mixed model65 assuming an additive genetic model and 
adjusted for age, sex, study, race and kinship. To produce a single CHARGE P value 
for each gene, we applied the minimum P-value procedure across the seven mask-
level results, as for the GHS analysis.
Meta-analysis with CHARGE and GHS. We conducted a meta-analysis among 
our original burden analysis and those of CHARGE and GHS. For each gene, 
we selected the mask that achieved the lowest P value in our original analysis 
and conducted a two-sided sample-size weighted meta-analysis with the results 
from CHARGE and GHS for the same mask (or an analogous mask as defined in 
the Supplementary Methods).
Investigation of the UBE2NL association. We investigated the novel associ-
ation that was found in the gene-level meta-analysis (UBE2NL, meta-analysis 
P = 5.6 × 10−7) in more detail. The UBE2NL burden signal was due to five PTVs 
in the original analysis (observed in 29 cases and 1 control; all of which had high 
(>45×) sequencing coverage; Supplementary Table 8) and was replicated at 
P = 0.02 in CHARGE; UBE2NL results were not available in GHS. As UBE2NL 
lies on the X chromosome, we conducted a sex-stratified analysis of the original 
samples and observed independent associations in both men (P = 5.7 × 10−4) and 
women (P = 1.6 × 10−3). UBE2NL does not lie near any known GWAS associa-
tions (http://www.type2diabetesgenetics.org/) and has few available references66–68, 
suggesting that it may be a novel T2D-relevant gene, although further replication 
will be important to establish its association.
Evaluation of directional consistency between exome-sequencing, CHARGE and 
GHS analyses. We examined the concordance of direction of effect size estimates 
(that is, both odds ratios of >1 or <1) between burden tests from our original 
exome-sequencing analysis and those from CHARGE and GHS. For the 46 genes 
advanced for replication with burden P < 0.05 for at least one mask (that is, ignoring 
those with evidence for association only under the SKAT model), we compared the 
direction of effect estimated for the mask with lowest P-value mask to that estimated 
for the same (or analogous) mask in the GHS or CHARGE analysis. We then con-
ducted a one-sided exact binomial test to assess whether the fraction of results with 
consistent direction of effects was significantly greater than expected by chance.
Gene set analysis in sequencing data. We curated 16 sets of candidate T2D-
relevant genes, defined in Supplementary Table 9 with criteria as specified in 
the Supplementary Methods. For each gene set, we constructed sets of matched 
genes with similar numbers and frequencies of variants within them (details are 
provided in the Supplementary Methods). A sensitivity analysis of this matching 
strategy is presented in the Supplementary Methods.

To conduct a gene set analysis, we then combined the genes in the gene set with 
the matched genes. Within the combined list of genes, we ranked genes using the 
P values observed for the minimum P-value burden test. We then used a one-side 
Wilcoxon rank-sum test to assess whether genes in the gene set had significantly 
higher ranks than the comparison genes.

Use of gene-level associations to predict effector genes. To assess whether gene-
level associations from exome sequencing—which are composed mostly of rare 
variants independent of any GWAS associations—could prioritize potential effector 
genes within known T2D GWAS loci, we first assessed whether predicted effector 
genes (based on common-variant associations) were also enriched for rare coding 
variant associations. Our analysis (described in full in the Supplementary Methods) 
indicated that effector genes predicted from common coding variant associations 
do show significant enrichments (P = 8.8 × 10−3), but effector genes predicted 
from transcript-level associations do not (P = 0.72).

We then curated a list of 94 T2D GWAS loci, and 595 genes that were within 
250 kb of any T2D GWAS index variant, from a 2016 T2D genetics review69 and 
observed 40 with a P < 0.05 gene-level signal (Supplementary Table 12), greater 
than the 595 × 0.05 = 29.75 expected by chance (P = 0.038). Only three (SLC30A8, 
PAM and HNF1A) were from the list that we curated of 11 genes with causal 
common coding variants6. We found that these 40 genes were significantly more 
enriched for protein interactions (P = 0.03; observed mean = 11.4, expected 
mean = 4.5) than the 184 genes implicated based on proximity to the index SNP 
(P = 0.64; observed mean = 21.1, expected mean = 21.9), although evaluation of 
the biological candidacy of these genes will ultimately require in-depth functional 
studies70. Rare coding variants could therefore, in principle, complement com-
mon-variant fine-mapping71,72 and experimental data4,70 to help to interpret T2D 
GWAS associations; however, our results indicate that much larger sample sizes 
and/or orthogonal experimental data will be required to clearly implicate specific 
effector genes. A full description of this analysis is included in the Supplementary 
Methods.
Use of gene-level associations to predict direction of effect. To assess whether 
gene-level association analyses of predicted deleterious variants could be used to 
predict therapeutic direction of effect, we compared odds ratios estimated from 
a modified weighted burden test procedure (described in the Supplementary 
Methods) to those expected for T2D drug targets (assuming agonist targets to 
have true odds ratios > 1 and inhibitors to have true odds ratios < 1). For a similar 
comparison to expectations for mouse gene knockouts, we used the relationship 
between mouse phenotype and human phenotype specified in the Supplementary 
Methods. Genes present in two gene sets with opposite expected direction of effects 
were excluded from this analysis.
Collection and analysis of SNP array data. To compare discoveries from our 
exome-sequencing analyses to discoveries possible from common-variant GWAS 
of the same samples, we aggregated all available SNP array data for the exome- 
sequenced samples (18,233 cases and 17,679 controls; Supplementary Table 13). 
After sample and variant quality control (described in the Supplementary 
Methods), we imputed variants from the 1000 Genomes Phase 332 (1000G) and 
Haplotype Reference Consortium33 (HRC) reference panels using the Michigan 
Imputation Server73. We used 1000G-based imputation for all association analy-
ses and HRC-based imputation to assess the number of exome-sequence variants 
imputable from the largest available European reference panel (details available in 
the Supplementary Methods).

After imputation, we performed sample and variant quality control, as well 
as two-sided association tests, analogous to the exome-sequence single-variant 
analyses. In contrast to the exome-sequencing analyses, a quantile–quantile plot 
suggested that the associations from the EMMAX test were not well calibrated, and 
we therefore used only the Firth test (that is, for both P values and odds ratios) in 
the imputed GWAS analysis.

To conduct gene set analysis with the imputed GWAS data, we first used the 
method implemented in MAGENTA74 to calculate gene scores from the imputed 
GWAS single-variant association results. Following the same protocol as for gene 
set analysis from the exome-sequencing results, we then conducted a one-sided 
Wilcoxon rank-sum test to compare the gene scores to those of matched com-
parison genes. We followed the same approach for the gene set analysis that we 
conducted in a larger, previously published13 GWAS.
LVE calculations. To calculate LVEs, we used a previously presented formula75 
(equations are available in the Supplementary Methods) to calculate the LVE of a 
variant with three genotypes (AA, Aa and aa) and corresponding relative risks (1, 
RR1 and RR2). When presenting the strongest LVE values for the imputed GWAS 
analysis, we only considered variants that were genotyped in at least 10,000 indi-
viduals to avoid potential artefacts that result from a spurious association in a 
small-sample subgroup. For gene-level LVE calculations, we used the variant mask 
with lowest P value to calculate LVEs. We also conducted a sensitivity analysis to 
bound the extent to which our gene-level LVE estimates might be biased down-
wards due to their inclusion of benign alleles; this analysis (described in full in 
the Supplementary Methods) produced upper bounds of gene-level LVEs that were 
at most twofold higher than the point estimates.
Prediction of LVE explained by the top 100 and top 1,000 gene-level associ-
ations. To forecast the LVE that will be explained once 100 (or 1,000) signifi-
cant T2D gene-level associations are detected, we applied a previously suggested 
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model34 in which the LVE of a gene is related to its rank in the overall gene-level 
P-value distribution. Specifically, the model is LVEn = ean + b where LVEn is the LVE 
of the gene with nth lowest gene-level P value. We fitted this model using linear 
regression to the top 50 genes in our analysis (Supplementary Fig. 20), yielding 
estimates of a = −0.044 and b = −7.07. We then calculated the LVE of the top 
100 (or 1,000) genes by summing the actual LVE of the top three signals (which 
achieved exome-wide significance in our analysis) with the LVE predicted by the 
model for genes ranked 4–100 (or 4–1,000).
Estimated power to detect gene-level associations with T2D drug targets. To 
estimate the power of future studies to detect gene-level associations in genes with 
effect sizes similar to those for established T2D drug targets, we used aggregate 
allele frequencies and odds ratios estimated from our gene-level analysis and an 
assumed prevalence of K = 0.08 to calculate a proxy for true population frequencies 
and relative risks. For each gene, we used odds ratios and frequencies from the 
variant mask that yielded the strongest gene-level association. Because, on aver-
age, these drug targets had five effective tests per mask, we used an exome-wide 
significance threshold of α = 1.25 × 10−7 for power calculations. We calculated 
power as previously described76.

The ranges given in the main text (75,000–185,000 disease cases) represent the 
numbers from the power calculations for INSR (the drug target with the highest 
observed effect size) and IGF1R (the drug target with the lowest observed effect 
size other than KCNJ11 and ABCC8). We excluded KCNJ11 and ABCC8 from this 
reported range, given that a mixture of risk-increasing and risk-decreasing variants 
in these genes probably diluted their burden signals. We did not account for uncer-
tainty in estimated odds ratios or aggregate variant frequency in these calculations, 
as no genes had 95% confidence intervals that that did not overlap odds ratio = 1.
Interpretation of suggestive associations. We quantified the PPA for nonsynon-
ymous variants observed in our dataset as a function of association strength meas-
ured by single-variant P values. We define a true association as a variant that, when 
studied in larger sample sizes, will eventually achieve statistical significance owing 
to a true odds ratio ≠ 1. We distinguish true associations from causal associations: 
causally associated variants are the subset of truly associated variants in which the 
variant itself is causal for the increase in disease risk, as opposed to being truly 
associated due to linkage disequilibrium (LD) with a different causally associated 
variant (that is, an ‘LD proxy’). An overview of the method that we developed for 
PPA calculations is provided in Extended Data Fig. 7, and a full description of the 
method is included in the Supplementary Methods. Here, we outline the steps in 
the approach.

First, for various single-variant P-value thresholds in the exome-sequencing 
analysis, we calculated the fraction of variants that reached this threshold with 
directions of effect concordant with those of an independent exome array study10. 
For example, 61.3% of nonsynonymous variants within T2D GWAS loci that 
reached P < 0.05 in the exome-sequencing analysis had concordant directions 
of effect with the independent study, a fraction that decreased (as expected) for 
higher P-value thresholds (for example, 49.4% at P > 0.5) or when only variants 
outside of T2D GWAS loci were analysed (51.9% at P < 0.05).

Second, we derived an equation to convert the fraction of concordant associ-
ations to an estimated proportion of true associations. This value provides a PPA 
estimate, as a function of P value, for an arbitrary variant in the set initially used 
to calculate direction of effect concordances. We computed separate mappings 
for arbitrary nonsynonymous variants (using all exome-wide nonsynonymous 
variants) and one for nonsynonymous variants within GWAS loci (using only non-
synonymous variants within the 94 T2D GWAS loci). We note that the mapping 
produced from our analysis applies only to the results from the current study: 
because other studies have different sample sizes and may apply different statistical 
tests, the mapping would need to be recomputed to interpret the associations of 
other studies using the same method.

Third, we converted PPA estimates to estimates of the posterior probability of 
causal associations (PPAc). This conversion requires estimates of the fraction of 
coding variant associations that are causal (as opposed to LD proxies). We explored 
several values for this parameter, as described in the Supplementary Methods and 
shown in Extended Data Fig. 8.

Fourth, we extended PPA estimates to incorporate gene-specific priors by 
mapping posterior odds of causal association (POc) to a Bayes factor for causal 
association (BFc). This calculation requires a set of training variants with a known 
prior. For this training set, we use nonsynonymous variants within GWAS loci 
and modelling assumptions for their prior. Details of this model are described in 
the Supplementary Methods and a sensitivity analysis of its assumptions is shown 
in Extended Data Fig. 8.

Finally, as a preliminary estimate of a principled prior likelihood for genes in 
the mouse NIDD gene set, we estimated the proportion of non-null associations 
across all genes in the set. To use true prior data (rather than associations from the 
current study), we calculated gene-level P values for each gene in the set using the 
MAGENTA74 algorithm applied to a recent transethnic T2D GWAS13. We then 

used a previously developed approach40,77 that models the distribution of observed 
P values as a mixture of uniform (representing the null distribution) and beta (rep-
resenting the non-null distribution) distributions, yielding a prior value of 23.2%.

Our PPAc calculations currently have several limitations. They apply only to 
single-variant associations and not (yet) to gene-level associations; extending them 
to apply to gene-level associations would avoid the possibility of conflicting results 
among variants within a gene but would require larger-scale gene-level replication 
data than that we had available in the current analysis. Additional work will also be 
needed to generate data and develop methods to estimate objective rather than sub-
jective gene priors (researchers can often overestimate evidence of disease relevance 
for genes in which they have invested considerable effort), to reduce dependence of 
our conclusions on modelling assumptions (Extended Data Fig. 8) and to explore 
the extent to which the large number of variant associations that we predict from 
our data localize to specific gene or variant functional annotations78.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.

Data availability
Sequence data and phenotypes for this study are available via the database of 
Genotypes and Phenotypes (dbGAP) and/or the European Genome-phenome 
Archive, as indicated in Supplementary Table 1.

Code availability
Available for download are scripts for calculating the minimum P-value gene-level 
test, gene set enrichment analyses and the proportion of true associations as a 
function of variant P values.
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Extended Data Fig. 1 | Power analysis. The power to detect associations 
(using a two-sided test) at P < 5 × 10−8 for variants (or collections of 
variants) with a given minor allele frequency (x axis) and odds ratio  
(y axis) measured as the average across all ancestries. a, Cells are shaded 
according to the power of the current study of 20,791 T2D cases and 
24,440 controls, with white indicating high power and red indicating low 

power. The 20%, 50%, 80% and 99% contour lines are labelled. b, Cells are 
shaded according to the difference in power between the current study and 
a previously published study of 12,940 individuals10, with yellow–white 
indicating a large increase in power and red indicating a small increase in 
power. The 20%, 40%, 60% and 80% contour lines are labelled.
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Extended Data Fig. 2 | Data quality control workflow. A schematic of 
the steps involved in sample and variant quality control is shown. Quality 
control was conducted as described in the Methods to construct a set of 
samples and variants included in the association analysis. Each step is 
depicted as an arrow, with the number of samples or variants excluded 
by the step shown at the end of the arrow. The final set of samples and 
variants analysed are represented by the ‘Analysis’ dataset; we further 
excluded samples of high relatedness to other samples in the dataset from 
some but not all analyses. After each step that removed samples, we also 
removed newly monomorphic variants (hence the decrease in variants 
between the ‘Clean’ and ‘Analysis’ datasets).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Single-variant association analysis workflow. 
A schematic of the steps involved in single-variant exome-sequencing 
association analysis is shown, as described in the Methods. We began 
analysis with a division of samples in the ‘Analysis’ dataset (leftmost 
column) into 25 different subgroups (second column from the left) based 
on cohort, ancestry and sequencing technology. We then filtered variants 
according to metrics computed separately for each subgroup; we applied 
the filters listed in the ‘Basic filters’ box to all subgroups and for some 
subgroups we applied additional (more stringent) filters as indicated by 
boxes in the third column from the left. The resulting number of variants 
and samples advanced for analysis in each subgroup are indicated in  
the fourth column from the left. We analysed each subgroup with both the 
EMMAX test (to measure association strength) and the Firth test  

(to measure allelic odds ratios), each of which are two-sided; the number 
of principal components included as covariates in the Firth test is shown in 
the fifth column from the left. Finally, we combined each of the EMMAX 
and Firth subgroup-level results using a 25-group meta-analysis to 
produce the final P values and odds ratios reported for each variant. Multi, 
variant is multiallelic; CR, call rate; P, variant subgroup-level P value; 
P(Fisher), variant subgroup-level P value from Fisher’s exact test; P(miss), 
P value for subgroup-level variant differential missingness between  
T2D cases and controls; P(HWE), P value for deviation from subgroup-
level Hardy–Weinberg equilibrium; Alt GQ, mean genotype quality of 
non-reference genotypes (across all samples); X Chrom, variant is on  
X chromosome.
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Extended Data Fig. 4 | Calibration of single-variant analysis. To assess 
whether our single-variant association statistics (two-sided, calculated by 
the EMMAX test) were well-calibrated, we computed quantile–quantile 
plots of associations across all samples (Overall) and within each ancestry 
(total n = 45,231 individuals). To avoid deflation of the quantile–quantile 
plot from rare variants (for which the expected P values are discrete rather 
than uniformly distributed), only variants with minor allele counts of  
20 or greater (either overall or within the relevant ancestry) are shown. 

Variants were also LD-pruned before plotting, to avoid induced variance 
from correlated P values of these variants, using the ‘clump’ method 
implemented in PLINK. The λ values indicate genomic control, as 
measured by the ratio in observed median χ2 statistic to that expected 
under the null hypothesis. Red line, expectation of P values under the 
null distribution. Blue lines (and grey region), 95% confidence interval of 
expectations under the null distribution.
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Extended Data Fig. 5 | Gene-level association analysis workflow. 
A schematic of the steps involved in gene-level exome-sequencing 
association analysis, as described in Methods, is shown. We began analysis 
with subgroup-level genotype filtering (second column from the left) of 
unrelated samples in the ‘Analysis’ dataset (leftmost column); we then 
applied genotype filters for each subgroup (filtering genotypes for either 
all or no samples in each subgroup), similar to those used in subgroup-
level single-variant analyses. We then annotated each non-reference 
variant allele with 16 different bioinformatics algorithms to assess allele 
deleteriousness, and we grouped alleles into one of seven nested masks 
(third column from the left; the number of variants and weights shown 
correspond to alleles absent from ‘higher’, or more stringent, nested masks).  

We computed burden and SKAT analyses (both of which are two-sided) 
using one of two approaches to combine alleles across masks (Methods): 
first, by analysing all alleles at once with weights assigned according to the 
most stringent mask containing the allele (weighted test); and second, by 
analysing each mask independently and then calculating the lowest P value 
corrected for the effective number of tests (minimum P-value test). Multi, 
variant is multiallelic; CR, call rate; P(miss), P value for subgroup-level 
variant differential missingness between T2D cases and controls; P(HWE), 
P value for deviation from subgroup-level Hardy–Weinberg equilibrium; 
Alt GQ, mean genotype quality of non-reference genotypes (across all 
samples).
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Extended Data Fig. 6 | Calibration of gene-level association analyses. 
For both the burden and SKAT tests, we tested for gene-level association 
within seven different allelic masks. As this produced seven P values 
for each test, we developed two means to consolidate these results 
(Methods). a, b, The quantile–quantile plots of associations are shown for 
the minimum P-value burden test (a) and the weighted burden test (b). 
Each test is two-sided and consists of n = 43,071 unrelated individuals. 
Only genes with combined minor allele count of 20 or greater are shown 

in the quantile–quantile plots, to avoid deflation from genes with too 
few variants to produce P values asymptotically uniform under the null 
distribution. The λ values indicate genomic control, as measured by 
the ratio in observed median χ2 statistic to that expected under the null 
hypothesis. The three genes with exome-wide significant associations are 
labelled. Red line, expectation of P values under the null distribution. Blue 
lines (and grey region), 95% confidence interval of expectations under the 
null distribution.
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Extended Data Fig. 7 | PPA calculation workflow. a, We estimated 
the PPAs for nonsynonymous variants in our sequence analysis based 
on concordance with independent exome array data and previously 
published6,78,80 estimates of the fraction of causal coding associations 
(Methods). b, PPA estimates for nonsynonymous variants within T2D 
GWAS loci are shown as a function of P value (right y axis, black line; 
95% confidence interval, grey shading) together with the total number of 
such variants (left y axis, red line). c, For variants outside of T2D GWAS 
loci, we developed a method to further compute Bayes factors, which 
measure the odds of true and causal association, as a function of P value, 

using a model of the prior odds of true and causal association for variants 
in GWAS loci (Methods). d, These Bayes factors can be combined with a 
subjective prior belief in the T2D relevance of a gene (y axis) to produce 
the estimated posterior probability of true and causal association for 
any nonsynonymous variant in the exome-sequence dataset based on its 
observed log10(P) (x axis). Posterior estimates are shaded proportional to 
value (red, low; white, high). Values are shown for the default modelling 
assumptions of 33% of missense variants that caused gene inactivation and 
30% of true missense associations that represented the causal variant.
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Extended Data Fig. 8 | Estimated posterior probability of associations 
for different prior hypotheses. We estimated the posterior probability of 
association for nonsynonymous variants that met various single-variant 
P-value thresholds (two-sided EMMAX test, n = 45,231 individuals) in 
our analysis, as described in the Methods and shown in Extended Data 
Fig. 7. To perform the needed calculations, we assumed that, on average, 
1.1 genes that are found within each T2D GWAS locus are relevant to T2D 
and 33% of missense mutations within these genes cause gene loss-of-

function. a–f, To assess the sensitivity of our analysis to these assumptions, 
we repeated the calculations with different assumptions of 0.5 (a), 2.0 (b), 
0.25 (c) and 0.1 (d) T2D-relevant genes within each GWAS locus, as well 
as 25% (e) and 40% (f) of missense variants leading to loss-of-function. 
All analyses assume the default modelling parameters that 30% of true 
nonsynonymous associations are causal associations; different values for 
this parameter would scale posterior probability estimates linearly.
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Extended data table 1 | Most significant single-variant associations from exome-sequencing analysis

The most significant results from exome-sequencing single-variant association analyses are shown (n = 45,231 individuals). Gene, the closest gene to the variant. Variant, a unique identifier for the 
variant within our exome-sequencing analysis. Consequence, the predicted consequence of the variant, defined by sequence ontology annotation and produced using VEP. Impact, the effect of the 
variant, as predicted using VEP (Med, medium; Mod, modifier). Change, the predicted protein change, defined according to the ‘best guess’ transcript as described in the Methods. MAFs are calculated 
as the maximum across all ancestries. Case, the number of samples with T2D carrying the variant. Ctrl, the number of samples without T2D carrying the variant. OR, the odds ratio, calculated from 
the Firth analysis. P, the P value, calculated from the (two-sided) EMMAX analysis. Ref P: the P value of the variant in one of three previous GWAS or exome array analyses, referenced in the Ref 
column6,13,79.
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Extended data table 2 | Most significant gene-level associations from exome-sequencing analysis

The most significant results from gene-level analyses are shown (n = 43,071 unrelated individuals). Genes are ranked according the (two-sided) minimum P value achieved across the four  
gene-level analyses. Gene, a unique identifier for the gene within our exome-sequencing analysis. Var (CAF), the number of alleles (combined allele frequency (CAF) of variants) in the mask achieving 
the strongest association across the four tests (that is, the 0/5 1% mask for the weighted test, or the mask with the minimum P value for the minimum P-value test). Burden, results from the  
(two-sided) burden analysis. SKAT, results from the (two-sided) SKAT analysis. Min P, results from the (two-sided) minimum P-value analysis. Weighted, results from the (two-sided) weighted analysis. 
OR, the odds ratio as estimated from the burden analysis. P, the (two-sided) P value for the indicated analyses.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.
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Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used in data collection

Data analysis All software used in the analysis was open source and is described in the Methods section of the manuscript. Existing software packages 
used were: RTA v2.7.3, BWA v0.7 , Picard v1, GATK v3.4, VEP v87, Plink 1.9, EPACTS v3.2.4, MetaXcan v0.3, DAPPLE, MAGENTA v2.4, R 
v3.4, Michigan Imputation Server. Custom scripts (available for download as a zip file) were written to conduct the minimum p-value test, 
perform the Wilcoxon rank sum test for gene sets, and estimate the fraction of true associations as a function of variant p-value.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Sequence data and phenotypes for this study are available via the database of Genotypes and Phenotypes (dbGAP) and/or the European Genome-phenome 
Archive, as indicated in Supplementary Table 1.
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Life sciences study design
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Sample size We conducted a power analysis (described in the text) to demonstrate that the 45,231 samples analyzed in the study provided a significant 
increase in power to detect rare variant associations compared to previous studies. Power calculations were performed for frequency and 
effect size combinations in the range of those previously hypothesized to exist for complex diseases like T2D.

Data exclusions At the time of sample selection for sequencing, samples were excluded if they matched predetermined criteria for T1D or MODY as described 
in Supplementary Table 1. At the analysis stage, excluded data were of three types. (a) Samples and (b) variants were excluded if they failed 
quality control analyses (described in Methods). (c) ~3600 cases from the PRODiGY study were excluded because they did not have suitably 
matched controls, resulting in inflated tests statistics as described in the Methods section. Exclusion criteria during the analysis stage were 
determined based on inspection of the distribution of data.

Replication We replicated our significant associations in independent datasets from CHARGE and GHS, as described in the main text. All three exome-wide 
significant associations were replicated.

Randomization Samples were allocated according to the cohort in which they were collected. Further control for confounding factors (imprecise ancestry 
matching even within cohort, technical confounders) were controlled for by including covariates in the regression model used for association 
analysis

Blinding As our analysis involved a regression of phenotype on genotype, neither of which can be influenced by the analyst or data collector, blinding 
was not relevant to our study 

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
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Animals and other organisms
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Clinical data

Methods
n/a Involved in the study

ChIP-seq
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MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Population characteristics are described in Supplementary Table 1. Relevant characteristics include age, sex, and BMI. For most 
cohorts, patients with T2D had higher BMI and age, except for cohorts from the GoT2D study where lean, young cases and old, 
obese controls were preferentially selected. Gender distribution varied by cohort.

Recruitment Patients were recruited originally as a part of numerous cohort studies, described in Supplementary Table 1, each of which had 
different selection criteria. For most cohorts, patients were recruited over a long period of time and then cases and controls 
were selected for sequencing based on DNA and phenotyping quality. T2D diagnosis was determined by clinical data and not the 
participants themselves. Some bias may have occurred in terms of patient response to recruitment but these are unlikely to be 
correlated with genotype or have a significant effect on our analysis.

Ethics oversight All samples were approved for use by their home institution’s institutional review board or ethics committee, as previously 
reported (see references in the Methods section of the manuscript). Samples newly sequenced at The Broad Institute as part of 
T2D-GENES, SIGMA, and ProDiGY are covered under Partners Human Research Committee protocol # 2017P000445/PHS 
“Diabetes Genetics and Related Traits”. 
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