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RESEARCH ARTICLE
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Abstract

Birth-death models play a key role in phylodynamic analysis for their interpretation in terms

of key epidemiological parameters. In particular, models with piecewise-constant rates vary-

ing at different epochs in time, to which we refer as episodic birth-death-sampling (EBDS)

models, are valuable for their reflection of changing transmission dynamics over time. A

challenge, however, that persists with current time-varying model inference procedures is

their lack of computational efficiency. This limitation hinders the full utilization of these mod-

els in large-scale phylodynamic analyses, especially when dealing with high-dimensional

parameter vectors that exhibit strong correlations. We present here a linear-time algorithm

to compute the gradient of the birth-death model sampling density with respect to all time-

varying parameters, and we implement this algorithm within a gradient-based Hamiltonian

Monte Carlo (HMC) sampler to alleviate the computational burden of conducting inference

under a wide variety of structures of, as well as priors for, EBDS processes. We assess this

approach using three different real world data examples, including the HIV epidemic in

Odesa, Ukraine, seasonal influenza A/H3N2 virus dynamics in New York state, America,

and Ebola outbreak in West Africa. HMC sampling exhibits a substantial efficiency boost,

delivering a 10- to 200-fold increase in minimum effective sample size per unit-time, in com-

parison to a Metropolis-Hastings-based approach. Additionally, we show the robustness of

our implementation in both allowing for flexible prior choices and in modeling the transmis-

sion dynamics of various pathogens by accurately capturing the changing trend of viral

effective reproductive number.

Author summary

Epidemic control and forecasting relies on accurate quantification of transmission and

recovery dynamics. This quantification is achievable through the analysis of phylogenetic
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relationships among pathogen strains obtained from infected individuals. As a key analyt-

ical tool for such inference, we concentrate on the study of the episodic birth-death-sam-

pling (EBDS) models. These models define a probability distribution on time-calibrated

phylogenies that enable estimation of time-varying rates of pathogens’ transmission,

recovery, and sampling. Advances in sequencing technology, however, have led to an

increasing amount of genetic data collected from these pathogens. Consequently, the tra-

ditional computational methods for analyzing these large-scale data under EBDS models

have become inadequate due to their high computational load. We aimed to break this

computational bottleneck by developing a new approach, based on the Hamiltonian

Monte Carlo sampling, that considerably accelerates inference of all rate parameters com-

pared to the traditional random-walk Metropolis-Hasting method. Our method greatly

improves the ability to explore the complex distributions that arise when we want to

understand disease dynamics at a more granular temporal resolution. This advancement

delivers value to public health as it helps rapid data-driven decision-making during out-

breaks and enhances our understanding of the spread of infectious diseases.

1 Introduction

Phylodynamic models represent a suite of powerful tools designed to unravel the interactions

between epidemiological and evolutionary processes. These models offer significant insights

into the pathogens’ dynamics and play a crucial role in advancing outbreak response efforts

for diseases such as SARS-CoV-2, Ebola, Dengue, and HIV [1–5]. In this paper, our primary

emphasis is directed toward the inference of epidemiological dynamics, rather than estima-

tion of the underlying phylogeny through sequence analysis. Specifically, we start with a sam-

ple of molecular sequences, which can be used to reconstruct the evolutionary relationships

between organisms, often viral pathogens, and yield inference on dynamics of the larger

pathogen population over time while relegating the phylogeny the status of a nuisance

parameter. To provide this link, a vital component of phylodynamic analysis is the use of

birth-death models, which belong to an important subclass of continuous-time Markov

chains (CTMCs). We use birth-death models to define the probability distribution on time-

calibrated phylogenies to reflect the fluctuations of the population size [6]. In this context,

birth-death models posit three major types of events: birth, which refers to the creation of

new lineages through pathogen transmission between hosts; death, which represents host

death/recovery or other removal from the studied population, and sampling, which means

the collection of a sequence derived from the pathogen in a single infected host and included

in the data set under analysis [7].

The past few decades have delivered a wide range of birth-death models. These span from

a simple, constant-over-time formulation [8] to models that allow both birth and death rates

to vary over time [9, 10]. Further extensions incorporate additional processes, both statistical

and biological, such as the collection of samples in continuous time [11], migration [12], or

the dependency of rates of birth and death on key biological traits [13–15]. One powerful

variant, the episodic birth-death-sampling (EBDS) model [9, 16–18] permits birth, death,

and sampling rates to change in discrete epochs throughout time to capture more compli-

cated population dynamics. Recent inference based on EBDS models has found its way

already into many applications, especially on the understanding of the spread of infectious

disease [4, 19, 20].
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With increasingly rich and complex molecular sequence datasets across fields, improving

the scalability of inference under EBDS models remains challenging both in terms of the

number of sequences and the number of epochs. The most commonly employed inference

methods based on Markov chain Monte Carlo (MCMC) [21, 22] use random-walk transition

kernels generally to propose new parameter values in a blind fashion. Consequently, they

lead to many birth-death model likelihood evaluations and slow exploration across the state

space, especially for high-dimensional problems. The potentially complex correlation struc-

ture between epoch parameters can further exacerbate inference. This is where gradient-

based sampling methods, such as Hamiltonian Monte Carlo (HMC) [23, 24], are expected to

shine. HMC has recently become very popular as a MCMC algorithm that overcomes many

of the limitations of random-walk Metropolis-Hasting (MH) methods. Instead of making

random proposals, HMC exploits the gradient of the log posterior with respect to (wrt) its

model parameters to propose new states that are likely to be accepted and are far from the

current state. Since HMC can make large moves in the state space while still maintaining a

high acceptance rate, it can lead to faster convergence and better mixing than MH

approaches, if one can efficiently evaluate not only the log posterior (up to a constant) but

also its gradient. Successful implementation of HMC transition kernels has proved fruitful in

terms of boosting sampling performance in other phylogenetic inference frameworks,

including for different clock models (which describe how rates of molecular evolution vary

among different organisms over time [25, 26]), divergence times (the internal-node heights

of phylogenies [27]) and non-parametric coalescent models (which fall into another category

of phylodynamic models assuming effective population size as a piecewise-constant form of

time [28]).

In this paper, we incorporate gradient-based sampling methods into phylodynamic analysis

based on EBDS models, thereby enabling scalable inference within this framework. First, we

refactor the EBDS (log) likelihood to show explicitly that the computational complexity scales

linearly both in terms of the number of sequences and the number of epochs. With this refac-

toring in hand, we deliver a novel linear-time algorithm to evaluate the gradient of this (log-)

likelihood wrt all epoch parameters simultaneously. Then we design and deploy an efficient

HMC sampler that enables us to fit a large class of EBDS models in a Bayesian framework and

provide an open-source implementation in the popular Bayesian Evolutionary Analysis by

Sampling Trees (BEAST) software [29].

Current approaches to Bayesian inference for EBDS epoch parameters employ a variety of

prior assumptions to model the dependence structure between parameters across epochs.

Some priors assume that birth, death and sampling rates across epochs are independent and

identically distributed (iid) [4, 9, 17]. To smooth rate variation over time, temporally-auto-cor-

related priors such as Ornstein-Uhlenbeck smoothing prior [18], Gaussian Markov random

fields (GMRF) priors [30, 31] and the horseshoe Markov random field for EBDS models [32]

have been considered. Conveniently, both our linear-time gradients and our HMC approach

generalize across all of these choices of prior without the need to construct model-specific sam-

pling techniques and allow us to introduce the Bayesian bridge shrinkage prior to yield parsi-

monious time-varying rate patterns.

Across three real-world infectious disease examples that vary in the number of sequences,

model dimension, and prior specification, we demonstrate the performance gain achieved by

our implementation of an HMC transition kernel compared to random walk transition ker-

nels. Moreover, for each of these datasets we infer key epidemiological parameters and demon-

strate the utility of our scalable approach for providing reasonable estimates of pathogen

transmission dynamics over time.
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2 Methods

2.1 Setup

In an infectious disease setting, suppose an infected individual initiates an epidemic at time

(measured backwards from the present day) tor> 0, called the time of the origin. Then, each

currently and newly infected individual disseminates the pathogen to others at a time-varying

birth rate λ(t) and transitions into a noninfectious state at a time-varying death rate μ(t). At

any given time, we may sample an infected individual with time-varying sampling rate ψ(t), at

which point we add the time of sampling and a molecular sequence of their infectious agent

into our time-stamped molecular sequence alignment Y. Further, we may posit K fixed time-

points at which we randomly sample all infected individuals with associated vector of probabil-

ities ρ = (ρ1, . . ., ρK), adding the time and molecular sequence to Y. Note that this means that

several individuals can be sampled at the same time point. The choice of the time-points is

dependent on the dataset at hand and will be discussed later in this section. Every sampled

infected individual may be treated and then become noninfectious with time-varying probabil-

ity r(t) which we assume equal to one everywhere for complete sampling.

The model defined above provides a forward in time portrayal of the epidemiological

process. Considering the N sampled and time-stamped sequences in Y as tree tips, there

exists a (possibly unknown) phylogeny T that depicts the evolutionary relationships among

these sequences. Specifically, T is a rooted, bifurcating tree with N tip nodes that corre-

spond to the sampled sequences or their hosts from the population and N − 1 internal nodes

that represent transmission events between hosts. We define the height of the nodes as the

length of time between the time of the corresponding transmission/sampling events and the

time of the most recent sampled sequence, which we refer to the present time, 0. Each node

of T is then associated with a node-height � 0 relative to the present, such that the differ-

ence between the parent node-height and its child node-height is a branch length measured

in the units of real time (e.g., years). We call the earliest internal node in T the root and its

node-height corresponds to the time of the most recent common ancestor (TMRCA).

Therefore, we can further define the node heights of internal nodes to be bifurcation times

and that of leave nodes to be sampling times. Accordingly, for a vector of bifurcation times,

we have v = (v1, v2, . . ., vN−1) where v1 < � � �< vN−1. And we let u = (u1, u2, . . ., uN) be a vec-

tor of serial sampling times where u1 < � � �< uN.

For an episodic model, we make the assumption that all the rate parameters are piece-wise

constant across K different epochs with cut points t = (t0, . . ., tK), with t0 = 0< t1 < � � �< tK−1

< tK. We also require tor� tK. Under this assumption, we can rewrite the time dependent

birth rate λ(t) in terms of some unknown epoch-specific birth rate λ = (λ1, . . ., λK), where

λ(t) = λk for tk−1 < t� tk. Similar parametrization applies to other parameters, so that we can

express μ(t) in terms of μ = (μ1, . . ., μK), ψ(t) in terms of ψ = (ψ1, . . ., ψK) and r(t) in terms of r
= (r1, . . ., rK). Without loss of generality, we let intensive sampling events happen at every time

point in t. Then we define ρ = (ρ1, . . ., ρK), where ρ(t) = ρk for t = tk−1. We can remove these

intensive sampling events at the epoch switching times from our model simply by setting

ρ = 0.

After reparametrizing the rates of the EBDS model, we can arrive at some key epidemiologi-

cal quantities. For example, if we assume there are no intensive sampling events, we can specify

the effective reproductive number as ReðtÞ ¼
lðtÞ

mðtÞþcðtÞrðtÞ. Other parameters that are important

include the total rate of becoming noninfectious, which is defined as δ(t) = μ(t) + ψ(t)r(t), and

the sampling proportion, defined as zðtÞ ¼ cðtÞrðtÞ
mðtÞþcðtÞrðtÞ. If we also assume removal of lineages
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upon sampling, these formulas can be further simplified by letting r(t) be constant and always

equal to 1.

2.2 Probability density of a sampled phylogeny

Recall we break time into intervals with cut points t = (t0, . . ., tK) defined by epochs. Within

each epoch, we define a series of subintervals such that a new subinterval start at every bifurca-

tion time v, sampling time u and epoch switching time t (see Fig 1). We delineate the subinter-

val by indices j, which begins at sj and terminates at sj+1 (where sj< sj+1). If tor = tK, then the

grids s = (s1, . . ., s2N+K−1) can be obtained by joining the time points in v, u and t according to

their ascending order when none of these times coincide with each other. If tor< tK, we have

s2N+K−1 = tor instead of tK.

Consequently, each subinterval, inclusive on the left, is partitioned in such a way that it pre-

cludes the occurrence of an epoch switching, birth or sampling event within its boundaries.

Within the k-th epoch, the first subinterval starts at sj = tk−1 and the last subinterval ends at

smkþ1 ¼ tk. Note that for the last epoch K, the last subinterval ends at tor. We assign L(j) to

account for the number of lineages in T that are extant in subinterval time (sj, sj+1].

Our likelihood derivation falls into the common framework with Stadler et al. (2013), Gav-

ryushkina et al. (2014) and Magee and Höhna (2021) [9, 17, 33]. However, instead of writing

the likelihood in terms of the times of node and epochs, we write it in terms of the subintervals

j. This representation highlights the fact that the likelihood can be computed in one pass,

Fig 1. A phylogeny arising from an EBDS model. This sampled phylogeny has three epochs (with epoch switching time t1, t2) and

thus three sets of model parameters including rates and probabilities. For every epoch, each branch is further divided into

subinterval that starts at sj and ends at time sj+1 so that no epoch switching, birth or sampling event occurs within it. Each subinterval

within each epoch k is represented by a phylogeny segment index, j.

https://doi.org/10.1371/journal.pcbi.1011640.g001
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starting at the present and ending at the origin. The interval-based representation of the log-

likelihood is as follows:

log P½T j λ;μ;ψ; ρ; r; t� ¼ N1 log r1 þ
XK

k¼1

Xmk

j¼1

|fflfflfflffl{zfflfflfflffl}
PK

k¼1
mk�2NþK� 2∗

log IkðEjÞ þ Lð jÞ log
qkðsjþ1Þ

qkðsjÞ

 ! !

; ð1Þ

where mk is the total number of subintervals in epoch k. (*: equality holds when no events hap-

pens at the exact same time except for the current).

The indicator function Ik(Ej) is labelled by the index k. This implies that the function is con-

cerned with events occurring within the time frame (tk−1, tk]. We have Ej represent the event

that takes place at the termination of subinterval j within epoch k. In most phylodynamic stud-

ies, ancestral sampling scenarios are not taken into account; therefore, our model is based on

the assumption of a strictly bifurcating phylogenetic tree and does not involve considerations

of ancestral sampling cases, which is distinctive from the work of Gavryushkina et al. (2014)

[17]. Nonetheless, incorporating ancestral sampling into our framework is relatively straight-

forward. This can be achieved by setting the treatment probability to be less than 1 and adding

the term ψk(1 − rk) to our indicator function to account for events involving ancestral samples.

Consequently, this indicator function takes the following form:

IkðEjÞ ¼

1; Ej ¼ a epoch switching event happens on sjþ1

lk; Ej ¼ a birth event happens at sjþ1

ckðð1 � rkÞpkðsjþ1Þ þ rkÞ; Ej ¼ a tip sampling event happens at sjþ1

r
Nk
k ðð1 � rkÞpk� 1ðsjþ1Þ þ rkÞ

Nk � ð1 � rkÞ
LðjÞ� Nk ; Ej ¼ an intensive sampling event happens at sjþ1 ¼ tk� 1:

ð2Þ

8
>>>>>>><

>>>>>>>:

Note that pk(t) is the probability that an infected individual at time t has no sampled descen-

dants when the process is stopped (i.e., at time t0), and qk(t) is the probability density of an

individual at time t giving rise to an edge between t and tk−1 (not tk since we define time to

flow backwards which is the reverse of the generative process) for tk−1 < t< tk in epoch k. We

have p0(t0 = 0) = 1.

The intensive sampling probability at time tk−1 is ρk and the corresponding number of

leaves sampled at that time is Nk. The index here is intentionally misaligned to reconcile the

fact that we model the epoch as left inclusive in time.

The definitions of the underlying functions, qk(t) and pk(t), follow the work from Stadler

et al. (2013) and the detailed formulas are included in S1 Text [9]. Note that our Eq 1 does not

condition the tree likelihood upon any particular properties, such as the presence of at least

one sampled individual. Without loss of generality, additional conditioning schemes can be

integrated by adding a factor to the log-likelihood; relevant discussions on this subject are

available in Table S3 from the study by MacPherson et al. (2022) [6].

As stated previously, our representation of the likelihood differs from the more standard

nodewise representation (see for example [9, 17, 33, 34]). Our representation makes it explicit

that the likelihood computation can be accomplished in OðN þ KÞ time (see S1 Text for

computational details). We also demonstrate this behavior empirically in S1 Text. On the

other hand, as we show in S1 Text section 6, the conventional nodewise representation leads to

ambiguities in the cost and a wide potentially range of computational complexities depending

on implementation decisions. In S1 Text section 7 we show empirically that formulations

based on the nodewise representation include both implementations which are of the same
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computational order as ours (namely BEAST2 [35] and RevBayes [36]) and which scale worse

in the number of epochs (TreePar [9]).

2.3 Inference

In a Bayesan inference procedure, as introduced in Section 2.1, we use a multiple sequence

alignment with the sampling times, the time-stamped sequences, Y, as the input data. Based on

Y, we can form the posterior distribution over the product space of trees and EBDS model

parameters as follows. First, a phylogeny T is generated from the EBDS process defined in Sec-

tion 2. Then we specify a molecular clock model that controls the rate at which evolution

occurs on each branch of T . Under a molecular character-based CTMC substitution model,

the columns in the sequence alignment evolve independently along the branches of the tree.

Adoption of different substitution models is contingent upon the distinct attributes of the

dataset under investigation (see Section 2.6.1). For the sake of notational convenience, we refer

to the vector encompassing both substitution and clock model parameters as ω. We denote by

PðY j ω;T Þ the probability of the time-stamped sequences under the CTMC substitution

model, known as the phylogenetic likelihood. Subsequently, we can factorize the posterior in

the following manner:

P½T ; λ;μ;ψ; ρ; r; t;ω j Y� / PðY j ω;T ÞP½T j λ;μ;ψ; ρ; r; t�

� P½λ;μ;ψ; ρ; r; t;ω�

/ PðY j ω;T ÞPðωÞP½T j λ;μ;ψ; ρ; r; t�

� PðλÞPðμÞPðψÞPðρÞPðrÞPðtÞ:

ð3Þ

In phylodynamic analyses, it is sometimes advantageous to streamline the model by main-

taining the death rate as constant. We can also presume the intensive sampling probability to

be 0 and treatment probability to uniformly be 1 across all epochs. In handling time-varying

parameters, we choose either iid priors or Markov random field models based on dataset-

dependent assumptions pertaining to the patterns of change expected in rate parameters. In

this paper, we specifically consider the GMRF and the Bayesian bridge Markov random field

model, the latter of which we describe below.

With increasing complexity of the existing EBDS models, we seek to integrate Bayesian reg-

ularization methods to help manage the potentially vast quantity of model parameters. Specifi-

cally, we consider Markov random field priors which specify distributions on the incremental

difference between the log-transformed rate parameters. By assigning a normal distribution to

the incremental changes, we arrive at the GMRF priors that induce a smoothing effect on the

change of rate parameters across contiguous epochs. This approach naturally leads to adjacent

epochs exhibiting similar rate values. However, a strong data signal indicative of a rate change

can still manifest in the resulting trajectory. By placing a heavy-tailed Bayesian bridge prior

[37] on these, we achieve a more generalized extension of the GMRF model. The key distinc-

tion resides in the specification of the standard deviation arising from the normal priors on

the increments. In this resulting Bayesian bridge Markov random field framework, each

epoch’s increment is assigned an additional variable to account for variation, thereby affording

greater flexibility to the model.

Supposing we have varied birth rates, we define the birth rate on the log scale l
∗
k ¼ logðlkÞ.

Then we have the prior on increments, P l
∗
k � l

∗
k� 1
j t

� �
/ expf�

�
�
�
l∗k � l

∗
k� 1

t

�
�
�
a

g for k> 1, where

τ is the global scale parameter that controls the overall degree of parameter variation. As α
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diminishes, the function Pðl∗k � l
∗
k� 1
Þ accrues an increased density close to zero. For the pur-

pose of our study, we establish α = 0.25 to address a potent prior assumption that l
∗
k � l

∗
k� 1

is

approximately 0 without inducing any problems related to mixing issues. In other words, we

do not anticipate substantial fluctuations in the birth rates across consecutive epochs (but

allow for rapid rate shift, for example during the exponential growth phase.) Another impor-

tant parameter is the local scale, denoted as νk, which is specific to an individual increment

l
∗
k � l

∗
k� 1

. Its density regulates the magnitude of the spike and the tail behavior of the above

marginal l
∗
k � l

∗
k� 1
j t.

Note that the GMRF model can be perceived as a specific instance of the Bayesian bridge

MRF, where all the local scale parameters are equalized to 1 and α is fixed at 2. In this case, the

increment differences adhere to a normal distribution whose variance is solely governed by a

single global scale parameter.

To complete our model, a normal prior is assigned to l
∗
1

in adherence with the method out-

lined in Magee et al. (2020) [32]. We obtain the mean parameter of the prior using an empiri-

cal Bayes method. This provides a crude estimate of the log rate parameter, coupled with a

standard deviation that is sufficiently large to encompass all possible values (see S1 Text). We

apply a Gamma(1,1) prior to ϕ = τ−α. This selection is grounded on a combination of theoreti-

cal considerations and empirical validation and allows for an efficient Gibbs sampler for τ.

To regularize the tail behavior, we leverage the shrunken-shoulder version of the Bayesian

bridge prior and limit the bridge to have light tails past the slab width, ξ [37, 38]. An efficient

update of Markov random field models global and local scale parameters (for Bayesian bridge

priors) follows Nishimura and Suchard (2023) [38]. In this framework, the prior on the incre-

ment space represented as a scale mixture of normal distributions:

P l
∗
k � l

∗
k� 1
j nk; t; x

� �
¼ N 0;

1

x
2
þ

1

n2
kt

2

� �� 1
 !

; ð4Þ

where νk is called the local scale parameter and τ is the global scale parameter. (Note that νk
has an exponentially tilted stable distribution with characteristic exponent α/2.) This mixture

representation aids in clarifying the local adaptivity of the Bayesian bridge prior as consider-

able changes in rates can be accommodated by an increase in νk without necessitating a rise in

τ. The inclusion of the slab width helps to bound the variance of increments to ξ2. We set ξ = 2,

which creates a reasonable upper limit on the variations in birth rate between consecutive

epochs.

In our study, we primarily focus on sampling P½T j λ;μ;ψ; t�. With increasing numbers of

epochs, the parameter space of the EBDS model expands quickly, exhibiting substantial corre-

lation between adjacent epochs. To improve the sampling efficiency, we utilize HMC method

to concurrently sample the time varying model parameters and ensure a high acceptance rate.

2.4 Hamiltonian Monte Carlo sampling

Hamiltonian Monte Carlo is a widely-used Markov chain Monte Carlo method to sample

from a target distribution effectively. Given a target parameter θ with a posterior probability

density π(θ), HMC iteratively generates samples from the target distribution by simulating the

dynamics of a physical system whose equilibrium distribution is equal to π(θ). In particular,

HMC introduces an auxiliary momentum parameter d, which is typically chosen to follow a

multivariate normal distribution with zero mean and covariance matrix M, i.e., d � N ð0;MÞ.
M is also known as the mass matrix, which serves as a hyperparameter. The Hamiltonian
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function of the system is defined as:

H ¼ UðθÞ þ KðdÞ; ð5Þ

where U(θ) = −log(π(θ)) is the potential energy, and K(d) = d(T) M(−1)d/2 is the kinetic energy

of the system.

Starting from the current state (θ0, d0), HMC updates the state according to the following

differential equations:

dd
dt
¼ � rUðθÞ ¼ r log pðθÞ

dθ
dt
¼ þrKðdÞ ¼ M� 1d:

ð6Þ

The simple and effective “leapfrog” method [24] approximates the solution to (6) numerically:

dtþ�=2 ¼ dt þ
�

2
r log p θtð Þ

θtþ� ¼ θt þ �M
� 1dtþ�=2

dtþ� ¼ dtþ�=2 þ
�

2
r log p θtþ�

� �
;

ð7Þ

where � is the size of each leapfrog step, and n steps are required to simulate the Hamiltonian

dynamics from time t = 0 to t = n�. In practice, the “leapfrog” method has been shown to be

stable and accurate for a wide range of step sizes [24]. In this work, we fix n = 15 and auto-

adapt � within BEAST to achieve an acceptance rate of approximately 70%.

The default choice of the mass matrix is the identity matrix. However, using a different M,

such as a log-posterior Hessian approximation can largely enhance the efficiency of HMC

sampling. In this work, M is adaptively tuned to estimate the expected (diagongal) Hessian

averaged over the prior distribution. This design choice alleviates some computational burden,

following the work of Ji et al. (2020) [25].

2.5 Gradient

HMC sampling of the model parameters requires the gradient of the log-likelihood derived

from (1) wrt the EBDS model rate parameters. The gradient is the collection of derivatives wrt

model parameters:

rθP½T j λ;μ;ψ; ρ; r; t� ¼
@P
@y1

; � � � ;
@P
@yk

; � � � ;
@P
@yK

� � >

; ð8Þ

where θk 2 {λk, ψk, μk, ρk} is a unified parameter to reduce notation clutter.

Given the piece-wise constant nature of the model, the likelihood assumes a consistent

form across all epochs. Therefore, we can examine the gradient of the log-likelihood at each

epoch separately. We denote the log-likelihood at epoch k and phylogeny segment j as:

log Pkð jÞ ¼ log IkðEjÞ þ LðjÞ log
qkðsjþ1Þ

qkðsjÞ

 !

: ð9Þ

We can further get individual terms in (8) by accumulating contributions from each epoch
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and the corresponding phylogeny segments:

@ log P
@yk

¼
XK

a¼k

Xmk

j¼1

@ log PaðjÞ
@yk

; yk 2 flk;ck; mk; rkg: ð10Þ

By examining the interdependency between epochs, we discern that a given epoch k exerts

influence on the gradient of parameters pertaining to that and all preceding epochs. Conse-

quently, it becomes necessary to consider
@ log PkðjÞ

@yk
and

@ log PkðjÞ
@yk� i

respectively, where i is a positive

integer ranging between 1 and k − 1.

First, we consider the gradient contribution at epoch k wrt the current model parameters
@ log PkðjÞ

@yk
, where θk 2 {λk, ψk, μk, ρk}.

Then we have the following cases:

@ log PkðjÞ
@yk

¼

If Ej is a birth event happens at subinterval end sjþ1 :

1yk¼lk
1

yk
þ Lð jÞ �

@Qkðsjþ1; sjÞ
@yk

; ð11Þ

If Ej is a serial sampling event happens at subinterval end sjþ1 :

1yk¼ck
1

yk
þ

1 � rk
ð1 � rkÞpk sj

� �
þ rk
�
@pkðsjÞ
@yk

þ LðjÞ �
@Qkðsjþ1; sjÞ

@yk
; ð12Þ

If Ej is an intensive sampling event happens at subinterval end sjþ1 ¼ tk� 1 :

1yk¼rk
Nk

yk
þ
Lð jÞ � Nk

ð1 � ykÞ

� �

þ
1 � rk

ð1 � rkÞpk� 1 sj
� �
þ rk
�
@pk� 1ðsjÞ
@yk

; ð13Þ

If Ej is a epoch switching event happens at subinterval end sjþ1 :

Lð jÞ �
@Qkðsjþ1; sjÞ

@yk
: ð14Þ

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Note that 1 is the indicator function. We leave the explicit expression of the shared terms in

(11)–(14) to S1 Text.

Second, we consider the gradient at epoch k wrt the previous model parameters
@ log PkðjÞ
@yk� i

,

where θk−i 2 {λk−i, ψk−i, μk−i, ρk−i}:

@ log Pk jð Þ
@yk� i

¼

If Ej is a birth event or epoch switching event happens at subinterval end sjþ1:

L jð Þ �
@Qk sjþ1; sj

� �

@yk� i
; ð15Þ

If Ej is a serial sampling event happens at subinterval end sjþ1:

1 � rk
ð1 � rkÞpk sj

� �
þ rk
�
@pk sj
� �

@yk� i
þ L jð Þ �

@Qk sjþ1; sj
� �

@yk� i
: ð16Þ

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

We also leave the explicit expression of the shared terms in (15)-(16) in S1 Text.

Third, we discuss the gradient at epoch k wrt the treatment probability r. In (1), the treat-

ment probabilities at different epochs only affect the current epoch. Therefore, we only need to
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consider
lk;j
@rk

as follows:

@ log Pk jð Þ
@rk

¼

If Ej is a serial sampling event happens at subinterval end sjþ1:

1 � pk sj
� �

1 � rkð Þpk sj
� �
þ rk

; ð17Þ

If Ej is a intensive sampling event happens at subinterval end sjþ1 ¼ tk� 1:

1 � pk� 1 sj
� �

1 � rkð Þpk� 1 sj
� �
þ rk

: ð18Þ

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

The total gradient wrt r can be obtained similar to (10).

To determine the computation complexity of gradient evaluation, we can assume the gradi-

ent calculation for
@ log PkðjÞ

@yk
takes constant time. The model has K epochs, where each epoch has

ð2NþK� 2Þ

K phylogeny segments in average. According to (10), the total computation complexity is

O K � ð2NþK� 2Þ

2

� �
� OðNKÞ, since K� N. We demonstrate this result through a series of timing

experiments presented in S1 Text where we also compare the efficiency of gradients calcula-

tions with the automatic differentiation algorithm implemented in the VBSKY [39] package

based on JAX library [40]. Figure E in S1 Text shows our analytical gradients implemented in

BEAST significantly outpace the VBSKY method.

2.6 Analysis

2.6.1 Examples. We evaluate the relative effectiveness of MH-MCMC and HMC transi-

tion kernels under the EBDS model using three phylodynamic examples. The first example

comprises 274 sequences of the Pol locus of HIV-1 subtype A sampled in Odesa, Ukraine from

2000 to 2020 that Vasylyeva et al. (2020) previously analyzed to assess the population-level

impact of the transmission reduction intervention project (TRIP) on HIV transmission [4,

41]. Following this previous analysis, we establish a cutoff point of 50 years for the EBDS

model. Within this period of time, we let the birth, death and sampling rates vary across 10

epochs mirroring the grid points specified by Vasylyeva et al. (2020) [4]. Note that for better

comparability to the original work [4], we place iid lognormal priors on the rate parameters.

Both the previous and our analysis assume an HKY nucleotide substitution [42] model with

discrete-gamma-distributed rate variation among sites (HKY+G) [43], and an uncorrelated

lognormal relaxed molecular clock model [44] (UCLD), with a CTMC rate-reference prior

[45] on the clock-model mean, truncated between 1 × 10−3—3 × 10−3, and a normal prior

(with mean = 5 × 10−4 and standard deviation = 5 × 10−4) on the standard deviation. We use a

normal distribution prior (with mean = 35, standard deviation = 5) on the time to the most

recent common ancestor, in accordance with the previous study.

Second, we examine the transmission dynamics of 637 human influenza A/H3N2 HA

genes across 12 epidemic seasons sampled from New York state following the study of Parag

et al. (2020) [46, 47]. We set an EBDS model cutoff value of 13 years and infer time-varying

birth and sampling rates across 78 epochs, each representing 2 months in time, and a con-

stant-over-time death rate. Preceding studies focused on the evolutionary dynamics of influ-

enza A/H1N1 virus mostly utilize the coalescent models. These studies predominantly rely on

Gaussian process smoothing [48, 49]. Following the same path, we seek to use GMRF prior

distributions for the birth and sampling rates. Our approach accommodates the considerable

variability in the effective reproductive number across different flu seasons from 1993 to 2005.
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We adopt the same substitution and clock models from Rambaut et al. (2008) [46]. Specifically,

to account for potential differences in the rate of substitution between the first and second

codon positions compared to the third, we employ the SRD06 substitution model [50] and

apply an HKY nucleotide substitution model with discrete-gamma distributed rate heteroge-

neity for both codon-position partitions (1st + 2nd, and 3rd). We further assume a UCLD

clock model and employ the default priors from BEAST on the substitution and clock model

parameters.

Lastly, to demonstrate the potential our linear-time algorithms afford phylodynamic analy-

ses on larger data sets, we examine 1610 full Ebola virus (EBOV) genomes sampled between 17

March 2014 and 24 October 2015 from West Africa [2] to explored the factors contributing to

the spread of Ebola during the 2014–2016 epidemic. We set a EBDS model cutoff value of 2

years and infer time-varying birth and sampling rates for 24 epochs, each corresponding to a

month in time, and a constant death rate. For choosing the priors on the rate parameters, we

incorporate information from previous studies on the transmission dynamics of Ebola virus

disease in West Africa [51, 52]. The number of confirmed cases first persisted at a relatively

low level and started to soar in the mid-Summer of 2014, followed by a consistent peak and a

dramatic decrease after the initiation of some key intervention events. Considering the poten-

tial fast shifts projected to the effective reproductive number, we apply the Bayesian bridge

MRF model as the prior for the incremental differences in the birth and sampling rates. Based

on Dudas et al. (2017), we assume a HKY+G substitution model independently across four

partitions (codon positions 1, 2, 3 and non-coding intergenic regions) and a log-normally-dis-

tributed relaxed molecular clock model with a CTMC reference prior on the clock model

mean, and leave all other priors on substitution and clock model parameters at their BEAST

defaults [2],.

2.6.2 Implementation. We conduct all analyses using extensions to BEAST 1.10 [29] and

the high-performance BEAGLE 4.0 library [53] for efficient computation on central processing

units (CPUs). We take the timing measurements using a Macbook Pro equipped with an M1

Pro chip that features 8 CPU cores and 32GB of RAM. For all experiments involving BEAST,

we utilized the Azul Zulu Builds of OpenJDK version 18 on the ARM architecture.

To validate our implementation of the EBDS model within the BEAST framework, we

employ continuously-integrated unit-testing. These tests cover both the EBDS likelihood and

its gradients. For the likelihood assessment, we perform a comparative analysis of the log-den-

sity evaluation between our implementation and that of existing software. We also evaluate

our analytic gradient against a numerically computed central-difference approximation all

within BEAST, setting a criterion that the maximum absolute relative difference between the

gradient dimensions does not exceed 1 × 10−3.

To compare the performance of the two transition kernels in estimating the EBDS model

parameters, we conduct efficiency comparison analyses that focused solely on the estimation

of the birth-death model’s rate parameters. Specifically, we fix the phylogeny to the maximum

clade credibility (MCC) tree, a tree with the maximum product of the posterior clade probabil-

ities summarized from the Bayesian joint phylogeny inference. We analyze all data sets using

BEAST with logging performed every 1000 iterations. We run our algorithm on the HIV

example for 300 million iterations when using MH-MCMC transition kernel and 30 million

iterations for HMC transition kernel. Also, to obtain convergent results for the influenza

example, we run analyses using MH-MCMC and HMC transition kernels for 300 million and

50 million iterations, respectively. For the Ebola example, we run analyses using MH-MCMC

and HMC transition kernels for 100 million and 30 million iterations, respectively.

For a more comprehensive evaluation of HMC and MH-MCMC samplers, we extend our

efficiency comparison beyond the fixed phylogeny assumption by conducting a joint analysis
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where we simultaneously infer the phylogenetic tree from sequence data. We limit this com-

parative analysis to the HIV dataset as a proof of concept, acknowledging that tree inference

can be impractically time-consuming for the larger two examples using only univariate transi-

tion kernels on the EBDS model rates. We run both sets of transition kernels for a total of 550

million iterations for this joint analysis comparison.

We adopt a Metropolis-within-Gibbs approach [54] and develop a random-scan Gibbs

cycle to systematically cycle through the sampling of the phylogenetic tree topology, rate

parameters, and subsequently other model components. For all analyses, we discard 10% of

the MCMC chain samples as burn-in.

We calculate the effective sample size (ESS) for each rate parameter of interest using the

coda package [55] in CRAN [56]. ESS quantifies the degree to which auto-correlation within

MCMC iterations contributes to uncertainty in estimates [57]. We average ESS per compute-

hour for each parameter across 10 independent runs to reduce Monte Carlo error in each esti-

mate, aiming for a maximal Monte Carlo error of 10%. We report the relative increase in ESS

per hour of the HMC sampler compared with the MH-MCMC sampler over all rate

parameters.

We also conduct phylodynamic analysis for each of the three examples under a joint phy-

logeny inference scheme to mitigate potential bias from the fixed phylogeny, following the

model specifications discussed in Section 2.6.1. Under these settings, we simulate MCMC

chains for all examples of‘ 500 million iterations using HMC transition kernel with logging

performed every 1000 iterations.

3 Results

3.1 Performance improvements

Fig 2 shows the binned ESS per hour estimates of the EBDS model rates (λ, μ, ψ) that the

MH-MCMC and HMC samples generate for all three viral examples. Table 1 summarizes the

performance improvements by reporting the relative increase in the minimum ESS per hour

comparing both samplers across all rate parameters.

The HIV example assumes that time-varying rates are a priori independent across epochs

and for inference on a fixed phylogeny, HMC demonstrates an approximate 245-fold accelera-

tion relative to MH-MCMC. Likewise, the influenza example imposes a GMRF across epochs

and returns an approximate 79.4-fold speed-up. On the other hand, the EBOV example

enforces heavier shrinkage, and hence higher a priori correlation between epochs, and yields a

smaller yet computationally impactful (approximately 12.7-fold) performance increase.

These efficiency improvements also extend to more comprehensive analyses in which we

simultaneously learn the phylogenetic tree structure and nucleotide substitution process. In

the HIV example, while minimum ESS per hour estimates for the EBDS model rates decrease

by approximately an order-of-magnitude when jointly inferring the phylogeny (Fig 2), the rel-

ative speed-up that HMC affords actually grows slightly to a 277-fold increase (Table 1). This

suggests that HMC can handle well the additional parameter correlation that joint analyses

often induce. We observe, however, impractically long convergence and mixing times using

the univariate transition kernels for the two larger examples under joint analyses, and so can

not directly compare their efficiency with the joint analyses that HMC succeeds in enabling for

these examples.

S1 Text provides additional performance metrics comparing HMC vs HM-MCMC, includ-

ing run-times to reach min ESS> 200 across all EBDS model rates.
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Fig 2. Efficiency Comparison between random walk Metropolis-Hastings (MH-MCMC) and Hamiltonian Monte

Carlo (HMC) samplers. Bars correspond to the estimated effective sample size per hour averaged across 10

independent runs for all rate parameters. The height of each bar indicates the number of parameters that achieve the

given ESS per hour value.

https://doi.org/10.1371/journal.pcbi.1011640.g002
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3.2 HIV dynamics in Odesa, Ukraine

In the context of conducting phylodynamic analyses using EBDS models, we are primarily

interested in the value and trend of effective reproductive number over time Re(t) that is the

average number of secondary cases per infectious case in a population made up of both suscep-

tible and non-susceptible hosts. If Re> 1, the number of cases is growing, such as at the start

of an epidemic; if Re = 1, the disease is endemic; and if Re< 1, there is an expected decrease in

transmission [58]. Under the EBDS model, given the absence of intensive sampling events, if

an individual becomes infected at time t, we can use the rate parameters at time t to obtain an

estimated ReðtÞ ¼
lðtÞ

mðtÞþrðtÞcðtÞ. Furthermore, in all our analyses for infectious disease phylody-

namics, we maintain r(t) = 1 as constant. This assertion carries the assumption that upon diag-

nosis and sequencing, an individual ceases to be a source of infection. This could be due to

treatment, death, or geographical relocation, rendering them incapable of onward

transmission.

To assess the effects of TRIP for reducing the transmission of HIV in Odesa, we fit the

EBDS model with varying birth, death and sampling rates and plot the resulting Re(t) trend

estimate in Fig 3. We apply iid lognormal priors on the rate parameters to stay consistent with

the methods in previous study [4].

Estimates of Re(t) appear mostly to accord with previous findings that identify a drop in

infection rate subsequent to the implementation of the TRIP intervention. Focusing on the

period from 2013 to early 2016, when TRIP was enacted, our posterior mean estimate of Re is

2.64 (95% CI: 1.18–5.43); while post-intervention, the posterior mean reduces to 0.152 (95%

CI: 0.03–0.32). This latter value, falling below the critical threshold of 1, signifies the potential

deceleration of HIV transmission.

3.3 Seasonal influenza in New York state

While influenza viruses circulate throughout the year, peak influenza outbreaks in the United

States typically occur between December and February. Rambaut et al. (2008) employed a

non-parametric coalescent model to elucidate the cyclical patterns of variation in the popula-

tion size, uncovering a notable increase in genetic diversity at the beginning of each winter flu

season [46]. Subsequently, Parag et al. (2020) demonstrated that incorporating sampling inten-

sity into the otherwise sampling-naive non-parametric coalescent process improves the preci-

sion of these inferred cycles [47]. With a GMRF smoothing prior on increments, our model

also offers the potential for accurately inferring seasonal behaviour and achieving the precision

of parameter estimations.

Fig 4 presents posterior estimates of the effective reproductive number Re(t) for the align-

ment of 637 A/H3N2 HA sequences from New York state. As expected, the trajectory is highly

cyclic, and all peaks lie near the midpoint of the influenza seasons with estimated Re larger

Table 1. Relative speedup in terms of effective sample size per hour (ESS/h) of HMC over MH-MCMC for HIV example from both fixed and random phylogeny

analyses, and for Influenza and Ebola examples from fixed phylogeny analyses.

Example Minimum ESS/h HMC

MH-MCMC HMC Speedup

HIV (Fixed tree, 10 epochs) 1.60 × 101 3.91 × 103 2.45 × 102 times

HIV (Random tree, 10 epochs) 1.63 × 100 4.51 × 102 2.77 × 102 times

Influenza (Fixed tree, 78 epochs) 2.43 × 10-1 1.93 × 101 7.94 × 101 times

Ebola (Fixed tree, 24 epochs) 5.30 × 100 6.73 × 101 1.27 × 101 times

https://doi.org/10.1371/journal.pcbi.1011640.t001
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Fig 3. Posterior median (solid line) and 95% credible intervals (CI) indicated by the orange shaded areas of the effective

reproductive number estimates (Re) through time for HIV epidemic in Odesa, where the black dotted line represents the

epidemiological threshold of Re(t) = 1. The gray shaded region in the figure represents the duration of the transmission reduction

intervention project (TRIP) on HIV transmission.

https://doi.org/10.1371/journal.pcbi.1011640.g003

Fig 4. Median (solid orange line) and 95% credible intervals indicated by the shaded orange areas for the effective reproductive

number estimates (Re) through time. Gray shading in the graph represents the rough duration of influenza monitored in New

York state for each season, spanning from epidemiological week 40 to week 20 of the following year. Seasons where A/H3N2 was not

the dominant influenza virus subtype are cross-hatched.

https://doi.org/10.1371/journal.pcbi.1011640.g004
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than 1. For the 2000/2001 and 2002/2003 seasons, where almost all infections were attributed

to other sub-types of influenza viruses as indicated by the surveillance data and previous work

[47, 59], we observe the 95% CI of the estimated peak cover values from 0.68 to 1.3 and from

0.48 to 1.4, respectively. This suggests that their true Re values might have fallen below 1. Simi-

lar to the results given by the non-parametric coalescent with sampling analysis [47], we cap-

ture a minor peak in the 1995/1996 season, where the inferred Re is slightly above one. This

again echoes with the fact that the influenza case composition during the 1995/1996 season

was characterized by a mix of A/H1N1 and A/H3N2 infections [60]. This diversity in infection

types led to a less significant elevation in the effective reproductive number for that specific

year.

3.4 Ebola epidemic in West Africa

Using EBDS model assisted by the HMC sampler, we are able to analyze the 2014 Ebola epi-

demic in West Africa using the full 1610-sequence alignment and metadata of sampling times

taken from the work by Dudas et al. (2017) [2]. Previously, researchers have applied birth-

death models extensively for the phylodynamic analysis of the Ebola outbreak. Stadler et al.
(2014) adopted a series of birth death models to capture the early trend of the infection of

Ebola virus in Sierra-Leone [61]. They used 72 Ebola samples from late May to mid June 2014

with three epochs, and estimated the corresponding effective reproductive number in each

period. Zhukova et al. (2022) applied the multi-type birth death models to the 1610 sequence

data [62]. However, their analysis was based on the maximum likelihood estimation. To dem-

onstrate the scalability of our method, we also take the 1610 sequence data and fit the EBDS

model with 24 epochs for a finer time resolution to provide more precise estimation of the

effective reproductive number. Here, we employ a Bayesian bridge MRF prior on rate incre-

ments to avoid spurious rate variations while capturing significant rate shifts.

Our inference results give an estimated posterior mean effective reproductive number at

the beginning of the epidemic before December 2013 as 1.65 (95% CI: 0.41–3.05). Dudas et al.
(2017) show that after the international border closure of Sierra Leone on 11 June 2014, fol-

lowed by Liberia on 27 July 2014, and Guinea on 9 August 2014, the relative contribution of

international border to overall viral migration is significantly lower [2]. The change-point

probability is the highest from August to September. As shown in Fig 5, this finding stands

clearly compatible with our EBDS inference that demonstrates a drop of Re from 1.3 (posterior

mean, 95% CI: 1.01–1.59) to 0.79 (95% CI: 0.62–0.91) after September 2014 when the interna-

tional travel restrictions are in place across the three countries.

4 Discussion

Birth-death models serve as fundamental tools for modeling the temporal progression of epi-

demics. In extending the work of Stadler et al. (2013) and Gavryushkina et al. (2014) [9, 17],

we have provided a systematic representation of the EBDS model for phylodynamics that pro-

motes scalability. Our general re-formalization of the EBDS likelihood identifies that its com-

putation is simply OðN þ KÞ, foreshadowing an OðNKÞ algorithm to deliver its gradient wrt

time-varying birth, death or sampling rates across K epochs. This optimal scaling enables

HMC sampling to more efficiently explore the high-dimensional joint distribution of rates as

we increase the number of sequences and the number of model epochs to learn these processes

at a finer time-resolution. HMC also emits an agnostic approach to incorporate a variety of

prior assumptions about these time-varying trends, without the need to hand-craft specialized

transitions kernels for specific priors. Moreover, as suggested by Ji et al. (2020) [25], we take
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measures to enhance the efficiency of our HMC sampler by preconditioning the mass matrix

based on the Hessian of the log-prior.

Through three viral epidemic examples, we show that our HMC-assisted approach consid-

erably accelerates Bayesian inference across three very different choices of prior models. Our

preconditioned HMC sampler achieves roughly 10- to 200-fold increase over the widely used

MH-MCMC sampler in terms of the minimum ESS per unit-time. The enhanced efficiency

gains are particularly beneficial given the increasing use of phylodynamic inference tech-

niques, often in resource-limited settings, in conducting real-time evaluations of outbreak

patterns.

For applying our model in phylodynamic analyses of disease epidemics, we first examine

our EBDS model on the effects of TRIP for reducing the transmission of HIV in Ukraine, and

our inference results support a decreased rate of transmission following the TRIP intervention.

Applied to seasonal Influenza in New York city, our model is able to accurately capture the

complex pattern of variation in Re during each influenza season. Applied to the Ebola outbreak

in West Africa, our model supports the effect of international travel restrictions characterized

as a noticeable decrease in Re following the border closure of the three countries in West

Africa.

In the EBDS model, Stadler and colleagues [9] have indicated that the three rate parameters,

λ, μ, and ψ, cannot be simultaneously identified. This issue of unidentifiability in complex

birth-death processes has also been recently discussed by Louca and Pennell (2020) [63]. In

our own empirical analysis, problems related to unidentifiability seldom manifest when we

restrict ourselves to estimating no more than two time-varying rate parameters. Instead, the

primary challenge appears to be the multimodal nature of the posterior distribution. Legried

and Terhorst (2022) have demonstrated that, under certain conditions, piecewise constant

Fig 5. Median (solid line) and 95% credible intervals indicated by the shaded areas of the effective reproductive number estimates (Re) through

time for Ebola outbreak in west Africa. The black dotted line represents the epidemiological threshold of Re = 1.

https://doi.org/10.1371/journal.pcbi.1011640.g005
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birth-death models can be reliably inferred and differentiated [64]. Furthermore, Kopperud

et al. (2023) showed that rapidly changing speciation or extinction rates can be accurately esti-

mated [65]. This lends credence to the identifiability of patterns we observed in our phylody-

namic analysis of pandemics such as the seasonal influenza and the Ebola outbreaks.

Current methods to estimate the expected Hessian averaged over the posterior distribution

improves upon the previous work [66] by avoiding excessive computational burden. However,

it relies on numerical approximations to compute the Hessian, leaving room for potential per-

formance enhancements. To further optimize the methodology, we can advance beyond ana-

lytical solutions solely for gradients and extend them to encompass the analytical Hessian.

This would smooth the path of updating the adaptive mass matrix, offering opportunities for

better outcomes in terms of both efficiency and accuracy.

In many scenarios, the examination of EBDS models is contingent upon having some pre-

liminary understanding of how to identify the epoch switching time and the length of duration

of each epoch. However, it is possible that information available through epidemiological sur-

veillance is insufficient. Moreover, the choice of epoch duration can be related to the uncer-

tainty in the timing of the rate shifts [32]. In this study, our strategy aims to increase the

number of epochs and leverage regularizing priors, striving to achieve a refined grid of time-

lines. Nevertheless, constraints persist on the maximum epochs feasible with our HMC algo-

rithm, particularly when confronted with computational limitations or models exhibiting

multimodality challenges. One possible solution entails simultaneously inferring epoch dura-

tion, epoch switching times, and rate parameters via the reversible-jump MCMC method [34].

However, this method requires one to integrate across models with differing dimension,

which demands substantial effort and might be impractical for large datasets.

Considering these cases, if the piece-wise constant model assumptions can be lifted so that

we can obtain a smoothly differentiable likelihood function, it would inherently help the gradi-

ent’s derivation concerning node ages and epoch switching times. This advancement would, in

turn, improve our current implementation, empowering us to infer, rather than presuppose,

epoch switching times, with better scalability prospects. It would also enhance the sampling

efficiency from joint phylogeny posterior distributions, by enabling us to take advantage of

recent work by Ji et al. (2021), yielding a pronounced improvement in the analytical capacity

of our models [27].

In anticipation of future advancements that will improve upon standard HMC methods

and broaden the applicability of the current EBDS model, we present a comprehensive frame-

work in this manuscript. This framework facilitates phylodynamic analysis on large-scale

sequence data and employs regularization techniques to yield a finely-resolved grid that effec-

tively aids in our understanding of the impact of the pandemics.

Supporting information

S1 Text. Appendices with additional likelihood/gradient equations and real data analysis

details.

(PDF)

Author Contributions

Conceptualization: Yucai Shao, Andrew F. Magee, Marc A. Suchard.

Data curation: Yucai Shao, Andrew F. Magee, Tetyana I. Vasylyeva.

Formal analysis: Yucai Shao, Andrew F. Magee, Marc A. Suchard.

PLOS COMPUTATIONAL BIOLOGY Hamiltonian Monte Carlo sampling under episodic birth-death-sampling models

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011640 March 29, 2024 19 / 23

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011640.s001
https://doi.org/10.1371/journal.pcbi.1011640


Funding acquisition: Marc A. Suchard.

Investigation: Yucai Shao.

Methodology: Yucai Shao, Andrew F. Magee, Marc A. Suchard.

Project administration: Yucai Shao, Andrew F. Magee, Marc A. Suchard.

Resources: Tetyana I. Vasylyeva.

Software: Yucai Shao, Andrew F. Magee, Marc A. Suchard.

Supervision: Andrew F. Magee, Marc A. Suchard.

Validation: Yucai Shao, Andrew F. Magee, Marc A. Suchard.

Visualization: Yucai Shao, Andrew F. Magee, Marc A. Suchard.

Writing – original draft: Yucai Shao, Marc A. Suchard.

Writing – review & editing: Yucai Shao, Andrew F. Magee, Tetyana I. Vasylyeva, Marc A.

Suchard.

References
1. Nunes MR, Palacios G, Faria NR, Sousa EC Jr, Pantoja JA, Rodrigues SG, et al. Air travel is associated

with intracontinental spread of dengue virus serotypes 1–3 in Brazil. PLoS Neglected Tropical Dis-

eases. 2014; 8(4):e2769. https://doi.org/10.1371/journal.pntd.0002769 PMID: 24743730

2. Dudas G, Carvalho LM, Bedford T, Tatem AJ, Baele G, Faria NR, et al. Virus genomes reveal factors

that spread and sustained the Ebola epidemic. Nature. 2017; 544:309–15. https://doi.org/10.1038/

nature22040 PMID: 28405027

3. Lau MS, Grenfell BT, Worby CJ, Gibson GJ. Model diagnostics and refinement for phylodynamic mod-

els. PLoS Computational Biology. 2019; 15:e1006955. https://doi.org/10.1371/journal.pcbi.1006955

PMID: 30951528

4. Vasylyeva TI, Zarebski A, Smyrnov P, Williams LD, Korobchuk A, Liulchuk M, et al. Phylodynamics

helps to evaluate the impact of an HIV prevention intervention. Viruses. 2020; 12:469. https://doi.org/

10.3390/v12040469 PMID: 32326127

5. Attwood SW, Hill SC, Aanensen DM, Connor TR, Pybus OG. Phylogenetic and phylodynamic

approaches to understanding and combating the early SARS-CoV-2 pandemic. Nature Reviews Genet-

ics. 2022; 23(9):547–62. https://doi.org/10.1038/s41576-022-00483-8 PMID: 35459859

6. MacPherson A, Louca S, McLaughlin A, Joy JB, Pennell MW. Unifying phylogenetic birth–death models

in epidemiology and macroevolution. Systematic Biology. 2022; 71:172–89. https://doi.org/10.1093/

sysbio/syab049

7. Crawford FW. General birth-death processes: probabilities, inference, and applications. UCLA; 2012.

8. Yang Z, Rannala B. Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte

Carlo method. Molecular biology and evolution. 1997; 14:717–24. https://doi.org/10.1093/

oxfordjournals.molbev.a025811 PMID: 9214744
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