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Strains, functions and dynamics in the 
expanded Human Microbiome Project
Jason Lloyd-Price1,2*, Anup Mahurkar3*, Gholamali Rahnavard1,2, Jonathan Crabtree3, Joshua Orvis3, A. Brantley Hall2, 
Arthur Brady3, Heather H. Creasy3, Carrie McCracken3, Michelle G. Giglio3, Daniel McDonald4, Eric A. Franzosa1,2, 
Rob Knight4,5, Owen White3 & Curtis Huttenhower1,2

The human microbiome is an integral component in the maintenance 
of health1,2 and of the immune system3,4. Population-scale studies have 
aided in understanding the functional consequences of its remarkable 
inter-individual diversity, the earliest of which include MetaHIT5,6 and 
the Human Microbiome Project1 (referred to here as HMP1). Studies 
continue to focus on the gut7–9, with fewer population-scale cohorts 
investigating vaginal10, oral11, or skin12 microbial communities. HMP1 
remains the largest body-wide combined amplicon and metagenome 
survey of the healthy microbiome to date.

Here we report on an expanded dataset from the HMP (HMP1-II), 
consisting of whole-metagenome sequencing (WMS) of 1,631 new 
samples from the HMP cohort13 (for a total of 2,355; Extended Data 
Fig. 1a; Extended Data Table 1a; Supplementary Table 1). New samples 
greatly expand the number of subjects with sequenced second and third 
visits, and primarily target 6 body sites (from 18 total sampled): anterior 
nares, buccal mucosa, supragingival plaque, tongue dorsum, stool, and 
posterior fornix. After quality control (Methods), the dataset consisted 
of 2,103 unique metagenomes and 252 technical replicates, which were 
used in all the following analyses. Profiles, raw data, and assemblies 
are publicly available at http://hmpdacc.org (Extended Data Table 1b) 
and https://aws.amazon.com/datasets/human-microbiome-project/.

Body-wide strain diversity and ecology
The diversity and spatiotemporal distributions of strains were first 
investigated using StrainPhlAn14 (Fig. 1), which identifies the domi
nant haplotype (‘strain’) of each sufficiently abundant species in a 
metagenome (Methods, Supplementary Table 2). Most previous 
culture-independent strain surveys have targeted only the gut15,16, 
and body-wide phylogenetic distances (quantified using the Kimura 
two-parameter distance17) suggest that all other habitats possess 
greater strain diversity (Fig. 1a). Consistent with previous observa-
tions15,18, strain profiles were stable over time, with differences over 
time consistently lower than differences between people (Fig. 1a, b).  

Nevertheless, technical differences were even lower, indicating a base-
line level of intra-individual strain variation over time (Extended 
Data Fig. 2b).

Several species exhibited differentiation into body site-specific 
subspecies clades (Fig. 1c; Extended Data Fig. 2e–u), defined here 
as discrete phylogenetically related clusters of strains, according to a 
silhouette-based score of niche association (Methods). This is readily  
visible in extreme cases, such as Haemophilus parainfluenzae  
(Fig. 1d), in which distinct subspecies clades are apparent in the suprag-
ingival plaque, buccal mucosa, and tongue dorsum. Other species with 
notable site-specific subspecies clades included Rothia mucilaginosa, 
Neisseria flavescens, and a Propionibacterium species. Some species did 
not sub-speciate within body sites, but instead specialized in clades dif-
fering among individuals (for example, Eubacterium siraeum (Fig. 1e), 
or Actinomyces johnsonii (Extended Data Fig. 2d)); others showed no 
discrete subspecies phylogenetic structure at all in this population (for 
example, Streptococcus sanguinis, Extended Data Fig. 2u). Interestingly, 
no subspecies clades were found to be specific to either of the two cities 
in the study (Extended Data Fig. 2a), although geographically locali
zed subspecies population structure has been observed in cohorts with 
greater geographic range15.

Culture-independent strain profiling, in combination with the 16,903 
NCBI isolate genomes used as references in this analysis19, provided a 
new quantification20 of how well covered human microbial diversity is 
by these references (Fig. 1f). Well-sequenced species such as Escherichia 
coli (Extended Data Fig. 2c) and the lactobacilli showed little divergence 
from reference isolates. However, many prevalent and abundant spe-
cies in the body-wide microbiome diverged markedly from the closest 
available reference genomes. Notable clades lacking isolate genomes 
representative of those in the microbiome included Actinomyces  
(Fig. 1b), Haemophilus parainfluenzae (Fig. 1d), Eubacterium rectale, 
and several Streptococcus and Bacteroides species, and these represent 
priority targets for isolation.

The characterization of baseline microbial and functional diversity in the human microbiome has enabled studies of 
microbiome-related disease, diversity, biogeography, and molecular function. The National Institutes of Health Human 
Microbiome Project has provided one of the broadest such characterizations so far. Here we introduce a second wave 
of data from the study, comprising 1,631 new metagenomes (2,355 total) targeting diverse body sites with multiple 
time points in 265 individuals. We applied updated profiling and assembly methods to provide new characterizations 
of microbiome personalization. Strain identification revealed subspecies clades specific to body sites; it also quantified 
species with phylogenetic diversity under-represented in isolate genomes. Body-wide functional profiling classified 
pathways into universal, human-enriched, and body site-enriched subsets. Finally, temporal analysis decomposed 
microbial variation into rapidly variable, moderately variable, and stable subsets. This study furthers our knowledge of 
baseline human microbial diversity and enables an understanding of personalized microbiome function and dynamics.

1Biostatistics Department, Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA. 2The Broad Institute, Cambridge, Massachusetts 02142, USA. 3Institute for Genome 
Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA. 4Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA. 5Department 
of Computer Science & Engineering, University of California San Diego, La Jolla, California 92093, USA.
*These authors contributed equally to this work.

OPEN

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

http://www.nature.com/doifinder/10.1038/nature23889
http://hmpdacc.org
https://aws.amazon.com/datasets/human-microbiome-project/


ArticleRESEARCH

6 2  |  N A T U RE   |  V O L  5 5 0  |  5  o c t o b e r  2 0 1 7

Owing to improvements in methodology and reference genomes, 
new species-level taxonomic profiling included eukaryotes, viruses, 
archaea, and an additional 54 bacterial species in these metageno
mes relative to HMP1 data1. The latter contained prevalent bacte-
ria such as Bacteroides dorei, Bacteroides fragilis, Alistipes finegoldii, 
Alistipes onderdonkii, and unclassified species of Subdoligranulum and 
Oscillibacter. The former included Methanobrevibacter, Malassezia, 
and Candida (Extended Data Fig. 1c), as well as several viruses: 
Propionibacterium phage in the anterior nares, Streptococcus phages 
in oral sites, and a Lactococcus-targeting C2-like virus in stool. 
Searching for co-occurrence patterns with non-bacterial species 
(Fisher’s exact test, presence/absence threshold of 0.1% relative abun-
dance; Supplementary Table 3), we found that Methanobrevibacter 
smithii tended to co-occur with several Clostridiales species in the gut, 
including members of Ruminococcus, Coprococcus, Eubacterium, and 
Dorea (false discovery rate (FDR) less than 0.1), reinforcing previous 
observations21 and consistent with co-occurrence patterns of meth-
anogens and clostridia in lean versus obese individuals22. Prominent 
Streptococcus phages, which were the most abundant species in the 
oral cavity, also co-occur with numerous Streptococcus species in oral 
sites, suggesting that the virus predominantly exists as a prophage, as 
observed previously23.

Core pathways of the human microbiome
Strong prevalence (‘coreness’) of a molecular function across niche- 
related microbial communities can be explained by either broad  
taxonomic distribution of the function (as in the case of essential 
housekeeping functions), or specific enrichment of the function among 
taxa inhabiting that niche (possibly because the function is selectively 
advantageous there). We investigated these mechanisms among core 
metabolic pathways of the human microbiome by functionally pro-
filing all HMP1-II samples using the program HUMAnN224 (Fig. 2; 
Extended Data Fig. 3, Supplementary Table 4, Methods). We focused 
on 1,087 metagenomes representing the first sequenced visit from each 
subject at the 6 targeted body sites. We considered a pathway to be 
‘core’ to a specific body site (niche) if it was confidently detected in 
more than 75% of individuals with strong taxonomic attribution and 
a taxonomic range consistent with the human microbiome. From a 
starting set of 857 quantifiable pathways from the MetaCyc25 database, 
we detected 950 instances of a pathway being core to a body site: 258 
pathways were core to at least 1 body site, 176 were core to body sites 
from multiple body areas, and 28 were core to all 6 targeted body sites 
(Fig. 2a; Extended Data Fig. 3a). For convenience, we refer to these 
classes as core pathways, multicore pathways, and supercore pathways, 
respectively.
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Figure 1 | Personalization, niche association, and reference genome 
coverage in strain-level metagenomic profiles. a, Mean phylogenetic 
divergences17 between strains of species with sufficient coverage at 
each targeted body site (minimum 2 strain pairs). b, Individuals tended 
to retain personalized strains, as visualized by a principal coordinates 
analysis (PCoA) plot for Actinomyces sp. oral taxon 448, in which 
lines connect samples from the same individual. c, Quantification of 
niche association (Methods; only species with sufficient coverage in 
at least five samples at two or more body sites). Higher values indicate 

greater phylogenetic separation between body sites. d, PCoA showing 
niche association of Haemophilus parainfluenzae, showing subspecies 
specialization to three different body sites. e, PCoA for Eubacterium 
siraeum. f, Coverage of human-associated strains by the current 16,903 
reference genome set (Methods). Top 25 species by mean relative 
abundance when present (>0.1% relative abundance) are shown 
(minimum prevalence of 50 samples). Sample counts in Supplementary 
Table 2, and distance matrices are available from Extended Data Table 1b.
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To distinguish between coreness resulting from broad taxonomic 
distribution versus niche-specific enrichment, we classified path-
ways according to their taxonomic range (quantified as the fraction 
of non-human-associated genera to which they were annotated in 
the BioCyc database collection). While the majority of pathways were 
annotated to fewer than 10% of genera, core pathways were annotated 
to 34% of genera, multicore pathways to 48%, and supercore pathways 
to 70% (median values; all enrichments over background had P < 0.001 
by Wilcoxon rank-sum tests). Thus, coreness to a human body site 
is often associated with broad taxonomic distribution, and pathways 
that are core to more body sites tend to be more broadly distributed 
(Spearman’s r = 0.40; P < 0.001; Extended Data Fig. 3b). Extreme exam-
ples included biosynthesis of coenzyme A biosynthesis (see Fig. 2a) and 
of adenosine nucleotides (Extended Data Fig. 3e)—two ‘housekeeping’  
functions that are broadly distributed across not only the human 
microbiome, but also across all microbial life26,27. While we lack dispen-
sability information for entire MetaCyc pathways, we found that indi-
vidually essential gene families were considerably more prevalent than 
non-essential families across these samples (median 0.94 versus 0.24; 
Wilcoxon rank-sum test, P < 0.001; Methods), consistent with essential 
functions being core to many body sites.

Conversely, 19 out of the 176 multicore pathways (including 2 
supercore pathways) were confidently not broadly distributed, defined 
conservatively as being annotated to fewer than 10% of non-human- 
associated genera in BioCyc, and reconstructed from fewer than 10% of 
pangenomes in the HUMAnN2 database (Extended Data Fig. 3a, 4c). In 
these cases, coreness to multiple human body areas is better explained 
by enrichment among human-associated taxa, and may be indicative 
of functional adaptation to the human host as a broader niche. Notably, 
of these 19 pathways, 13 (68%) were more than twofold enriched in 
human-associated genera than in non-human-associated genera in 

BioCyc, although this was not required by their definition. Human 
microbiome-enriched pathways included vitamin B12 biosynthesis 
(adenosylcobalamin salvage from cobinamide), a process commonly 
performed by the microbiota that must be supplemented in germ-free 
mice (Fig. 2b). Vitamin B12 biosynthesis was also core in the oral cavity,  
where salivary haptocorrin may protect it for later absorption in the 
small intestine28. Fermentation to propionate (a short-chain fatty 
acid) was also specifically enriched in the oral and gut environments 
(Extended Data Fig. 3f). Short-chain fatty acids are noteworthy for their 
proposed role in the maintenance of gut health29, whereas their role in 
the oral cavity is less well studied.

Finally, a number of core pathways were specifically enriched in indi-
vidual body sites. We identified a single site-enriched core pathway 
from the anterior nares, seven from the oral body area (notably, there 
were few that were enriched for a single oral site), ten from stool, and 
three from the posterior fornix (Extended Data Fig. 3d). Examples of 
site-enriched pathways included nitrate reduction in the oral cavity 
(a known oral microbiome process related to nitrate accumulation 
in saliva30; Fig. 2c) and mannan degradation in the gut (mannan is a 
plant polysaccharide found in human diet31; Extended Data Fig. 3g). 
Such site-enriched pathways are suggestive of functional adaptation by 
the microbiota to a particular niche within the human body. Hence, 
whereas many core functions of the human microbiome reflect broadly 
distributed, globally essential metabolic processes, others are poten-
tially indicative of microbial community adaptation to specific body 
sites or to the human host in general.

Characterization of temporal variability
The new availability of body-wide WMS samples at multiple time 
points per individual allowed us to characterize further the dyna
mics of microbial community composition at the species level (Fig. 3).  
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Figure 2 | Core and distinguishing functions of human body site 
microbiomes. a, In total, 28 metabolic pathways were core at all 6 major 
body sites (‘supercore’ pathways). An, anterior nares; Bm, buccal mucosa; 
Pf, posterior fornix; S, stool; Sp, supragingival plaque; Td, tongue dorsum. 
Two supercore pathways and b, 17 additional pathways were core in 
multiple body areas and enriched among human-associated taxa (‘human 
microbiome-enriched’ pathways). c, 21 pathways were considerably more 

abundant at 1 body site than at sites from all other body areas (‘body 
site-enriched’ pathways). Heat map values reflect the first quartile of 
relative abundance (heat maps are expanded in Extended Data Fig. 3). In 
pathway bar plots, total (community) abundance is log-scaled, and the 
contributions of the top seven genera are proportionally scaled within the 
total. ‘Other’ encompasses contributions from additional, known genera; 
‘unclassified’ encompasses contributions of unknown taxonomy.
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Community-wide species retention rates were comparable to pre-
vious observations at all body sites except the posterior fornix32,33  
(Fig. 3a). To characterize the dynamics of individual species, we deve
loped a Gaussian process model (Methods) that decomposed variability 
in abundance into four components: constitutive differences between 
subjects, time-varying dynamics (change measurable at a scale of  
several months), biological noise (true variation that appears instanta-
neous relative to our sampling), and technical noise (between technical 
replicates).

This analysis indicated which species at which body sites varied most 
between individuals, temporally, or rapidly (Fig. 3b, Supplementary 
Table 5, Extended Data Fig. 4d–f). In the gut, Bacteroidetes species, and 
in particular the Bacteroides genus (Extended Data Fig. 5), exhibited 
primarily inter-individual variation, whereas Firmicutes were more 
temporally dynamic within individuals. Species abundances in the 
oral and skin microbiomes, meanwhile, exhibited greater time-varying  
dynamics and biological noise overall, and were less personalized, 
consistent with previous stability assessments18. A more detailed look 
(Extended Data Fig. 5) showed that some species possessed very similar 
dynamics when detected in multiple body sites (for example, Rothia 
dentocariosa). Others, often those with site-specific subspecies clades 
analysed above, possessed different dynamics between body sites 
(for example, Haemophilus parainfluenzae). On a broad scale, these 
species dynamics are in agreement with a previous analysis of whole- 
community dynamics in the same cohort34.

We repeated this Gaussian process analysis to characterize the 
dynamics of pathway abundances for all core pathways identified above 
(Fig. 3c, Supplementary Table 5). Pathway abundances at all body sites 
except the posterior fornix were less personalized than the taxa that 
encoded them (farther from the inter-individual vertex), consistent 
with the hypothesis that community assembly is primarily mediated by 
functional niches rather than a requirement for specific organisms35,36. 
Time-varying pathways were enriched for amino acid biosynthesis  
(P = 0.00025; Wilcoxon rank-sum test), whereas inter-individual 

pathways were enriched for vitamin B biosynthesis (P = 0.00062). By 
contrast, the vaginal microbiome showed a large personal component, 
at both the species and pathway levels (all well-fit pathways near the 
inter-individual vertex), consistent with variation among stable com-
munity state types in the vaginal microbiome37. Functional dynamics 
in the gut were relatively slow, possibly reflecting trends in response 
to long-term factors such as dietary patterns. Conversely, dynamics 
in oral cavity sites were rapid, in particular in the buccal mucosa, in 
accordance with the enrichment of the habitat for fast energy harvest 
and much greater environmental exposure.

Gene family discovery by assembly
We next sought to establish an expanded gene catalogue based on 
assembly of the expanded set of metagenomes. On the basis of exten-
sive benchmarking, we chose a custom assembly protocol using the 
IDBA-UD38 algorithm (Methods). Compared to the 725 assemblies 
generated in HMP11,13, this protocol led to improvements in average 
assembly size, median contig length, and N50 length (Supplementary 
Table 6). Median metagenome assembly sizes ranged from 2.9 mega
bases (Mb) for the posterior fornix to 127.6 Mb for stool. To help detect 
new genes and improve overall assembly quality, we created additional 
co-assemblies from the combined set of reads from the same individual 
sampled at the same body site across multiple visits. In total, 406 and 
240 co-assemblies were created by combining 2 and 3 visits, respectively 
(Supplementary Table 6), and the assembly sizes were on average 86% 
larger than single assemblies: the median assembly size increased from 
84.8 Mb to 158.4 Mb, and the median of the maximum contig size in 
each assembly increased from 152 kilobases (kb) to 167 kb (Fig. 4a–c). 
Gene finding was performed on contigs using the MetaGeneMark24 
sequence analysis tool (Fig. 4d; Supplementary Table 7). In  
co-assemblies, the average number of genes detected increased from 
118,177 to 213,741, whereas the mean gene length remained similar 
(614 compared to 610 nucleotides). Functional assignments were made 
using Attributor (Methods) based on several sequence-based searches, 
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Figure 3 | Temporal dynamics of individual species and microbial 
pathways at each targeted body site. a, Jaccard similarity is maximal 
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subject similarity always exceeds between-subject similarity. b, Gaussian 
process decomposition of the variance in species abundances (each point 
is one species; filtering criteria in Methods) into three biologically relevant 
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noise was estimated (Supplementary Table 5) but not visualized. Species 
with high inference uncertainty (s.e.m. on the ternary diagram > 0.2) 
are grey and the inference is biased towards the centre of the diagrams 
(Methods). Labelled version in Extended Data Fig. 5. c, Same as b, but 
for abundances of all core pathways. d, Illustrative time series showing 
dynamics at different locations within the ternary plots (Extended Data 
Fig. 4d–f for real examples). Sample counts in Supplementary Table 1.
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and classified according to specificity. Approximately 35–45% of genes 
received specific functional annotations, and around another 30% 
received annotations at the domain, family, or motif level (Extended 
Data Fig. 6). In all cases, the number of genes in each specificity cate-
gory increased in the co-assemblies, although the percentages remained 
similar. Therefore, although more genes were predicted from the  
co-assemblies, their annotations are as specific as in single assemblies.

The number of distinct, well-covered Pfam39 domains detected by 
reference-based versus assembly-based profiling tended to correlate 
strongly within the same sample (Spearman’s r = 0.92; Extended Data 
Fig. 7d), suggesting that the two methods provide similar relative rank-
ings of community functional diversity. In addition, the two methods 
tended to co-detect most Pfam domains that were core to a body site 
(greater than 75% prevalent; Extended Data Fig. 7e). While reference- 
based profiles called the presence of Pfam domains based on the anno-
tations of characterized proteins, they could be directly detected in 
assemblies through profile alignment, thus capturing novel sequence 
diversity. Indeed, assembly tended to detect (median) 19% more Pfam  
domains per sample than the reference-based approach, which  
conversely tended to detect established Pfam domains with greater 
sensitivity. This effect was particularly notable in the anterior nares 
site, where reduced microbial sequencing depth limited the sensitivity 
of assembly relative to reference-based profiling.

Compared to external datasets, total non-redundant gene clusters 
were similar to MetaHIT in the stool6 (HMP1-II contained 7,780,363 
gene clusters, MetaHIT had 9,879,896); relative to existing moist skin 
site metagenomes12, HMP1-II represented a 780% increase (170,206 
gene clusters to 1,326,693). However, even with thousands of deeply 
sequenced human microbiomes in this study, microbial gene family  
space is not yet saturated for any of the six examined body sites  
(Fig. 4e).

Conclusions
Here we provide and analyse the largest known body-wide metageno
mic profile of the human microbiome to date. The associated deep, 
longitudinal shotgun sequencing has enabled a broad-scale charac-
terization of new aspects of the personalized microbiome. New strain 
profiling techniques14 distinguished temporally stable subspecies 
population structures for several species, some unique to individuals 
and others associated with particular body sites. Species with human 
microbiome strain diversity under-represented in isolate genomes 
were identified, to be prioritized for isolation and sequencing. New 
taxonomic profiling resolved co-occurrence patterns between bacterial 
abundances and several archaea, eukaryotes, and viruses. New func-
tional profiling methods24 identified pathways required for microbial 
colonization of the human body, differentiating those enriched for the 
human habitat from those universal to microbial life. Gaussian process 
models characterized microbial and functional variation over time,  
and identified the composition of the gut community (Bacteroidetes 

species in particular) as highly personalized compared to other sites. 
This example implies that the gut Bacteroidetes/Firmicutes balance 
may not be a defining attribute of an individual’s gut microbiome; 
instead, individuals carry a ‘personal equilibrium’ among Bacteroidetes, 
with a group of phylogenetically diverse, temporally variable Firmicutes 
fluctuating atop this core.

Many key properties of the human microbiome remain to be char-
acterized even in healthy cohorts, in addition to microbiome contri-
butions to disease. Further investigation will be required to determine 
the functional origins and consequences of subspecies structures 
identified here. Such structures must also be investigated comprehen-
sively across populations, including variations in geography, genetic 
background, ethnicity, and environment (for example, outside of 
the HMP1-II’s North American focus). Notably, the evidence in this 
study suggests that, even in this relatively homogeneous population 
with extensive metagenomic sampling, the full complement of extant 
microbial genes has not yet been sequenced. Similarly, although an 
updated covariation analysis between metadata and microbial features 
(Supplementary Note; Extended Data Figs 8 and 9) revealed several 
novel associations, most variance in the microbiome is not explained 
by measured covariates. The HMP1-II, for example, did not measure 
transit time8, immune status, or the participants’ detailed diet and 
pharmaceutical history, limiting our ability to assess these important 
factors. Finally, our understanding of the dynamics and responses of 
microbial communities must be expanded from the descriptive mod-
els here to include the rapid effects of acute perturbations. For this, 
studies with longer, more densely sampled time courses in the pres-
ence of controlled perturbations will be required, beyond the three 
time points used here. To rationally repair a dysbiotic microbiome, 
it is thus necessary to deepen our understanding of the personalized 
microbiome in human health.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Data reporting. No statistical methods were used to predetermine sample size, 
as the data included here were derived from biospecimens previously collected 
during the first wave of Human Microbiome Project studies. As no treatment or 
phenotype groups were included, no randomization of experiments or blinding 
were performed.
HMP1-II samples and metagenomic sequencing. Sample collection, storage, 
handling, and WMS sequencing were performed as in the HMP11. Details on IRB 
review, informed consent, subject exclusion criteria, the sampling protocols, and 
timeline can be found in previous publications1,13,40. All metagenomes analysed 
here were obtained from the SRA after human DNA removal by the SRA using 
BMTagger (Extended Data Fig. 7a). All SRA native format read files were con-
verted to FASTQ for further analysis using the fastq-dump utility from the SRA 
SDK toolkit19.
Quality control of nucleotides, reads, and samples. One or more SRA read 
files from each sample were concatenated per read direction to create a single 
pair of FASTQ files for each sample. These FASTQs were converted to unaligned 
BAM using Picard (http://broadinstitute.github.io/picard/) and exact duplicates 
were removed with a modified version of the Picard EstimateLibraryComplexity  
module. Finally, all reads were trimmed and length filtered (-q2 -l60) using the 
trimBWAstyle.usingBam.pl script from the Bioinformatics Core at UC Davis 
Genome Center(https://github.com/genome/genome/blob/master/lib/perl/
Genome/Site/TGI/Hmp/HmpSraProcess/trimBWAstyle.usingBam.pl).

After taxonomic profiling (below), ecologically abnormal WMS samples were 
identified for further per-sample quality control based on median species-level 
Bray–Curtis dissimilarity to other samples from the same body site. If the median 
dissimilarity of a sample exceeded the upper inner fence (1.5 times the interquartile 
range above the third quartile) for all median dissimilarities from its body site, 
the sample was labelled an outlier and discarded. This process removed 86 (3.6%) 
WMS samples that were highly atypical for their respective body sites. Downstream 
analyses used the remaining 2,355 samples.
Taxonomic and strain profiling. Taxonomic profiling of the metagenomic samples 
was performed using MetaPhlAn220, which uses a library of clade-specific markers 
to provide panmicrobial (bacterial, archaeal, viral, and eukaryotic) profiling (http://
huttenhower.sph.harvard.edu/metaphlan2). MetaPhlAn2 profiles recapitulated 
observed ecological patterns from HMP1 (Extended Data Fig. 1b), and agreed 
with direct read mapping to reference genomes. Mapped reads covered an average 
of 81.7% (median 92.8%) of the reference genomic sequence of each modestly 
dominant strain (comprising at least 5% of the community) across all samples. 
Mean coverage depth (total base pairs in aligned reads divided by total base pairs 
in reference genome) for these strains over all samples was 3.9×, with depth-of- 
coverage means varying widely by body site from 0.04× (right antecubital fossa) 
to 11.1× (tongue dorsum) (Supplementary Table 8). Batch effects were not visible 
in the first two axes of variation within each body site (Extended Data Fig. 1d).

Strain characterization was performed using StrainPhlAn14. StrainPhlAn charac-
terizes single-nucleotide variants in the MetaPhlAn2 marker genes for an organism.  
For a given sample, we required a minimum of 80% of markers for a given  
species to have a minimum mean read depth of 10×, to ensure sufficient data to 
perform haplotype calling. In total, 151 species satisfied these requirements in at 
least two WMS samples (Supplementary Table 2). Distances between strains were 
assessed using the Kimura two-parameter distance17 (available from Extended Data  
Table 1b). Both MetaPhlAn2 and StrainPhlAn were used with their default settings.

Reference genome coverage was scored by the complement of the asymmetric 
phylogenetic distance (1 − UniFrac G41) between HMP1-II strains and reference 
genomes. All coverage estimates are presented in Supplementary Table 2.
Niche-association score. Species with niche-associated subspecies clades were 
detected by a measure similar to the silhouette score, which compares the mean 
phylogenetic divergence of strains within each body site to the divergence of strains 
(within the same species) spanning body sites. Specifically, we first define a body 
site dissimilarity score D(u, v) for a given species at body sites u and v as:
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where Sx is the set of samples that pass the StrainPhlAn coverage requirements in 
body site x, and d(i, j) is the Kimura two-parameter distance between dominant  
haplotypes in samples i and j. The niche-association score A for each species (Fig. 1b)  
was then defined as the maximum observed D(u, v) over all directed pairs of body 
sites u and v where the StrainPhlAn coverage requirements were met for at least 
five samples in both sites. That is, for a set of body sites B:

= ∈ ∈ ≠ ≥ ≥A D u v u B v B u v S Smax{ ( , ), , , , 5, 5}u v

One concern with this score is that greater technical difficulty in single-nucleotide- 
variant calling in one site may result in apparent niche association where there 
is none. This is not a concern here, however, as all sites for which the niche- 
association score was calculated were oral sites with similar technical variability  
(Fig. 1a). This is a by-product of the limitation that the species were required to 
have a sufficient presence (five samples passing the StrainPhlAn coverage require-
ments) at multiple sites, which was not possible outside of the ecologically more 
similar set of oral sites.
Functional profiling. Functional profiling was performed using HUMAnN224 
(http://huttenhower.sph.harvard.edu/humann2). In brief, for a given sample, 
HUMAnN2 constructs a sample-specific reference database from the pangenomes 
of the subset of species detected in the sample by MetaPhlAn2 (pangenomes are 
precomputed representations of the ORFs of a given species42). HUMAnN2 then 
maps sample reads against this database to quantify gene presence and abun-
dance on a per-species basis. Remaining unmapped reads are further mapped by 
translated search against a UniRef-based protein sequence catalogue43. Finally, 
for gene families quantified at both the nucleotide and protein levels, HUMAnN2 
reconstructs pathways from the functionally characterized subset and assesses 
community total, species-resolved, and unclassified pathway abundances based 
on the MetaCyc pathway database44.

Analyses of metabolic pathway coreness were focused on 1,087 HMP1-II 
metagenomes representing the first sequenced visit from each subject at the six 
targeted body sites. Follow-up samples and technical replicates for a given (subject, 
body site) combination were excluded to avoid biasing population estimates in 
their direction. We defined a ‘core’ pathway at a particular body site as one that was 
detected with relative abundance >10−4 in at least 75% of subject-unique samples. 
We further filtered these highly prevalent pathways to ensure sensible taxonomic 
range and confident taxonomic attribution. Specifically, a potential core pathway 
was excluded either if its BioCyc44-annotated taxonomic range did not include 
any human-associated microbial genera (defined as genera detected in at least 5 
HMP subjects with relative abundance >10−3), or if >50% of pathway copies had 
‘unclassified’ taxonomic attribution in >25% of samples. These filtering criteria 
yielded a total of 950 core (pathway, body site) associations covering 258 unique 
MetaCyc pathways. Notably, these numbers were reasonably insensitive to the 
exact parameter settings described above, provided that the overall definition of 
coreness encompassed (1) a majority population prevalence (that is, >50%), (2) 
a non-extreme detection threshold [that is, below (number of pathways)-1], and 
(3) some form of taxonomic filtering to limit false positives (for example, to rare 
variants of otherwise common pathways; Supplementary Table 9).

We quantified the taxonomic range of a pathway as the fraction of unique genera 
to which it was annotated in BioCyc. We subdivided this measure into ranges over 
‘human-associated’ and ‘non-human-associated’ genera (as defined above), and 
focused on the latter measure to avoid circular reasoning (a function that is broadly 
distributed across human-associated taxa would be enriched in the human micro-
biome by definition). As a further control, we also directly applied HUMAnN2 to 
its underlying pangenome database to associate pathways with >4,000 microbial 
species. To conservatively define core pathways as ‘enriched to the human micro
biome,’ we required them to be annotated to <10% of non-human-associated 
genera in BioCyc, and also directly annotated to <10% of non-human-associated 
pangenomes. The second criterion further reduced cases of rare variants of com-
mon pathways (as defined by MetaCyc) being called as enriched in metagenomes 
owing to cross-detection of the common pathway.

We defined a core pathway to be strongly enriched in a particular body site 
if the first quartile of the abundance of the pathway at that site was >2× larger 
than the third quartile of abundance at sites from all other body areas (that is, the 
focal and background abundance distributions must be very well separated, as 
opposed to just significantly different). Notably, this definition only requires core 
pathways at oral body sites to separate well from non-oral sites, and not other oral 
sites (very few core pathways at oral body sites were strongly enriched relative to 
other oral sites).

We investigated the relationship between coreness and essentiality of func-
tions using a dataset of around 300 essential COG45 gene families determined in 
E. coli46 (the ‘Keio collection’). We computed COG abundance across the 1,087 
metagenomes introduced above by summing the abundance of individual UniRef 
gene families (as computed by HUMAnN2) according to UniProt-derived COG 
annotations47. We considered a COG to be confidently detected in a sample if 
its relative abundance exceeded 10−4. Among detected COGs, essential COGs 
(n = 272) were both more globally prevalent than non-essential COGs (n = 3,629; 
median 0.94 versus 0.24) and core to more body sites (mean 4.7 versus 1.2; core 
defined here as >75% prevalent within-site); both trends were highly statistically 
significant (P < 0.001) by Wilcoxon signed-rank tests and robust to a smaller detec-
tion threshold (10−6).
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Gaussian process dynamics modelling. A Gaussian process is a nonparametric 
probabilistic model for performing inferences about sampled continuous func-
tions. This section covers the justification of the specific Gaussian process model 
used to model microbial and functional abundances (referred to here as ‘features’) 
in the microbiome, and discusses its assumptions, advantages and drawbacks. 
Implementation details are presented in the following section.

In a Gaussian process, the joint distribution of the modelled function at any 
finite set of points follows a multivariate normal distribution. Without loss of 
generality, Gaussian processes can be parameterized solely by their covariance 
function or kernel, defining the covariance of the output between any pair of 
sample points. This pairwise definition permits the use of the irregular temporal 
sampling present in the HMP1-II dataset (Extended Data Fig. 4a). The shape of 
the covariance function of the Gaussian process determines several properties 
of the modelled function, such as its smoothness, how quickly it changes, and 
which features of the input vector it is sensitive to. Our first goal here was thus 
to assess the strength of the evidence for several common covariance functions 
describing biologically meaningful behaviours, and to determine which compo-
nents should be included in a parsimonious model that captures the observable 
dynamics for the majority of features. The candidate set of covariance functions 
we considered includes: fast variation (‘biological noise’), inter-individual differ-
ences, an Ornstein–Uhlenbeck process, a squared-exponential covariance func-
tion, and seasonal dynamics with a period of one year (formulae can be found in 
Supplementary Table 10).

All candidate covariance functions describe stationary processes, given the 
inherently limited state space of relative abundances, although they differ in their 
temporal dynamics and in their implications for the biological systems that gene
rate these behaviours. "Fast variation," meaning variation on a timescale faster than 
measurable, is represented by a Gaussian white noise process. Inter-individual 
differences are modelled by constant covariance between samples from the same 
person. The two time-varying components, the Ornstein–Uhlenbeck process 
and the squared-exponential covariance function, both describe monotonically 
decreasing covariance as the difference in time between two samples increases; 
that is, time points closer to one another will be more similar than those farther 
apart. These two functions primarily differ in the smoothness of the underly-
ing function. The Ornstein–Uhlenbeck process is the only stationary Markovian 
Gaussian process with non-trivial covariance over time, and produces functions 
that are not differentiable, and thus very jagged, resembling Brownian motion. 
For example, this covariance function is expected for the abundance of a slowly 
changing feature under continuous stochastic perturbation from the environment. 
Meanwhile, the squared-exponential covariance function describes functions that 
are infinitely differentiable, and are thus extremely smooth. This function implies 
a considerable amount of latent state relevant to the process generating the abun-
dance of the feature. Both of these time-varying covariance functions are para
meterized by their length scale, the characteristic time scale at which the function 
changes. Lastly, the seasonal component is represented by the canonical periodic 
covariance function from Gaussian process literature, with its period fixed at one 
year, but with an unknown length scale. Here, a model refers to a combination of 
these covariance functions.

Models were compared based on their marginal likelihoods (also termed ‘evi-
dence’), reported in bits (that is, log2 ratio of marginal likelihoods = log2 Bayes 
factors) of evidence against a given model when compared to the best model 
for a feature (Supplementary Table 10). More than 3.3 bits is considered strong 
evidence against a model, and more than 6.6 bits is considered decisive. Marginal 
likelihoods were estimated from Markov chain Monte Carlo (MCMC) samples of 
the posterior distribution by a truncated harmonic mean of the un-normalized 
posterior distribution at the sampled points. Truncation was performed, as this 
estimator is known to have poor convergence characteristics because MCMC  
samples with very low likelihoods have an unreasonable influence on the  
harmonic mean. Comparisons were performed for models fit to the abundances 
of the top 10 most prevalent species (with at least 70% non-zero abundances) 
and top 5 most abundant pathways at each targeted body site (Supplementary  
Table 10). Comparisons were also performed for a set of simulated features 
with known dynamics (‘controls’), which were sampled from the corresponding 
Gaussian process with 5% of variance due to technical noise and the remaining 
variance distributed evenly between components.

To determine which of these components have statistical support in the data, we 
employed a standard greedy search through the space of possible models, which 
starts from the simplest model (all variation is technical) and iteratively rejects 
simpler models in favour of a more complex one if the evidence against the sim-
pler model exceeded six bits. The set of more complex models considered at each 
iteration are those with only one more parameter, and contain the simpler model 
as a special case (pseudocode presented in Supplementary Table 6). This procedure 

selected models that included the two simplest components, biological noise and 
inter-individual differences, 47 and 53 times among the 72 features tested, respec-
tively. Among more complex components, the Ornstein–Uhlenbeck component 
was selected 13 times, whereas neither the squared-exponential covariance func-
tion nor the seasonal component were selected for a single tested feature. These 
trends were robust to increases in the model rejection threshold, with the evidence 
for the Ornstein–Uhlenbeck component remaining significant to at least 10 bits, 
whereas the squared-exponential covariance function and seasonal components 
are only selected for more lenient thresholds (≤4 bits). We note, however, that this 
procedure had difficulty identifying the squared-exponential covariance function 
and seasonal components in control samples that included other components (in 
particular, biological noise), indicating that these components are difficult to dis-
tinguish given the available temporal sampling pattern. Thus, although the data 
clearly currently prefer the Ornstein–Uhlenbeck component over the squared- 
exponential covariance function, and do not support the inclusion of a seasonal 
component, we are not sufficiently powered to eliminate these as potentially sig-
nificant contributors to the dynamics of the microbiome. Finally, the null model 
with only technical noise was rejected for 71 out of the 73 features, often with very 
high evidence (median 69.6 bits).

For the remainder of the analysis, we thus converged on a model with four com-
ponents: inter-individual differences, an Ornstein–Uhlenbeck process, biological 
noise, and technical noise. Let U, T, B, and N be the respective magnitudes of these 
components, and l be the timescale of the Ornstein–Uhlenbeck process. Estimation 
of these parameters (hyperparameters in Gaussian process nomenclature) was 
performed by fitting a Gaussian process with the following covariance function 
to all features (species and pathways) with at least 75% prevalence within a site  
(Fig. 3, Supplementary Table 5):

=







+ + ⋅ =








= + ⋅ =

− −
k i j U Te B t t s s N i j( , ) ( ) ( ) ( )

t t
l i j i j
i j

This function describes the covariance between samples i and j, where tx and sx 
are respectively the sampling date and subject identifier of sample x. All four para
meters were fit simultaneously by MCMC (next section). Since the three magnitude 
components must sum to the variability of the population, this can be seen as a 
decomposition of variance into sources of variability that differ in their temporal 
signature. As we are interested only in the three biological components here, we 
therefore normalize out the estimated technical noise component (that is, [U, T, B] 
N) before visualizing the decomposition on a standard ternary plot (Fig. 3b, c). For 
illustration, we show three examples that illustrate the three types of dynamics on 
a plot designed to allow a direct comparison between the data and the fit Gaussian 
processes (Extended Data Fig. 4d–f).

The identifiability of any component of a time-dependent model is limited by 
the temporal sampling pattern available. The current dataset contains only up 
to three time points per person, with the time between samples roughly evenly 
distributed between one month and one year for each body site (Extended Data  
Fig. 4a). Processes too fast to measure will contribute to the biological noise  
component, whereas processes much slower than the maximum time intervals 
available contribute to the inter-individual component. We tested what time scales 
would be detected by the Ornstein–Uhlenbeck component, and which would 
contribute to the inter-individual or biological noise components, by simulating 
data from Ornstein–Uhlenbeck processes of varying length scales and performing 
parameter fits (Extended Data Fig. 4b). These show that the time-varying com-
ponent is sensitive to processes with characteristic length scales of around 3 to  
24 months.

We note that the resolution of the time-varying component is only possible 
because of the large spread in the time differences between samples available in the 
HMP1-II dataset (Extended Data Fig. 4a). In another common longitudinal study 
design, in which a small number of samples are gathered per person with a fixed 
time interval between them, this would not be possible, although this design may 
make the analysis simpler (samples can be grouped by time point and a method 
such as Gaussian processes would not be necessary). Likewise, richer longitudinal 
data in the form of longer time series would allow even more to be inferred about 
the dynamics of the microbiome. Of particular interest, this would enable differ-
ences in the temporal component(s) to be resolved between people. Here, with only 
up to three time points per person, the fit model parameters describing temporal 
changes (B, T, and l) are only a best-fit over the population. Such a sampling pattern 
would also provide the opportunity to differentiate more conclusively between 
the Markovian Ornstein–Uhlenbeck process and other possible non-Markovian 
processes (such as described by the squared-exponential covariance function, or 
an intermediate such as the Matérn covariance functions), indicative of latent state 
or time-delayed events in the microbiome.
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The HMP1-II dataset also includes many technical replicates (252 in total), 
which were instrumental in distinguishing the two fast-varying components (bio-
logical and technical noise). We encourage the addition of a non-trivial number 
of technical replicates in future longitudinal studies, not simply for validation but 
also to allow a quantitative characterization of diversity that is not captured in 
the remainder of the experiment owing to limited sampling rates. Since technical 
noise is also estimated with the other variance components, estimates of the rela-
tive magnitude of the technical noise are also reported (Supplementary Table 5). 
The proportion of variance due to technical noise was generally lower for species 
abundances (median of 5.4%, 90th percentile of 19.3%) than for pathways (median 
of 16%, 90th percentile of 44%), consistent with the observation that true biological 
variation between pathway abundances is lower than between species abundances1. 
Noise levels in pathways were predominantly influenced by body site, with path-
ways in the anterior nares having the greatest noise (median of 40%).

We assessed the accuracy of the parameter fitting process under these noise 
conditions by simulating samples from mixtures of the three components and 
performing parameter fits for each targeted body site (Extended Data Fig. 4c). 
For all noise levels, pure components were always inferred with high confidence, 
with inter-individual differences being the most identifiable. Mixtures of inter- 
individual dynamics with biological noise were also confidently recovered, whereas 
mixtures of inter-individual and biological noise were more variable, and mix-
tures of inter-individual and time-varying dynamics were biased towards a greater 
influence of time-varying dynamics. Thus, when the time-varying component is 
present, parameter estimates should be considered biased away from the inter- 
individual corner of the ternary diagram. Mixtures of all three components had the  
greatest uncertainty. Among body sites, inferences at the anterior nares and poste-
rior fornix sampling distributions were the most unreliable, owing to the relatively 
limited number of samples at these sites (Extended Data Fig. 4a), reflected as a 
large number of highly uncertain features at these sites (Fig. 3). At 20% technical 
noise (the 90th percentile of the noise distribution for species), parameter estimates 
degrade noticeably, and tend towards the mean of the prior (an even mixture of all 
components). This therefore results in the low-confidence species and pathways 
tending to locate towards the centre of the ternary diagrams (Fig. 3).

We note that for a particular feature (microbe or pathway abundance), each of 
the non-technical components represents the sum of all processes with that tem-
poral signature that affect that feature, and these do not necessarily reflect intrinsic 
properties of the feature. Examples of extrinsic processes that are likely to produce 
biological noise include, among others, day-to-day dietary differences, the timing 
of sample collection relative to meals, tooth brushing and other personal hygiene, 
spatial variation of the microbiome within subjects (for example, gradients across 
the stool), and weekend/workday differences. Extrinsic sources of inter-individual 
differences may arise from culture/ethnicity (ethnicity is strongly associated with 
the abundances of several microbes1), differences in habits (for example, habitual 
versus infrequent tooth brushers and flossers), and long-term dietary differences, 
among others. Finally, time-varying processes may include properties such as 
weight or slowly changing preferences in diet.
Gaussian process parameter optimization details. All parameter fits and model 
comparisons were performed by MCMC sampling with the GPstuff toolbox ver-
sion 4.6 in MATLAB. Before fitting, relative abundances were first arcsine square-
root transformed, filtered for outliers using the Grubbs outlier test (significance 
threshold 0.05), and standardized to have zero mean and unit variance. A gamma- 
distributed prior with shape 3.1 and mean 10 months was imposed on the  
lengthscale parameter of all time-varying components. These parameters for l were 
selected based on the intervals between samples, and guarantee that the model is 
identifiable when the biological noise and/or inter-individual difference compo-
nents are included by ensuring that l is neither too short nor too long. All para
meters of all models were fit simultaneously. All models were fit using a Gaussian 
likelihood. This function performs poorly for highly non-Gaussian distributions, 
which frequently occur in microbiome data in the form of zero-inflated abun-
dance distributions. For this reason, the dynamics analysis was performed for 
highly prevalent features (species with ≥ 75% prevalence within a site, and core 
pathways). One exception was made for this: species with mean abundance when 
present at ≥ 2% and non-zero in at least 50 samples were also included, so as to 
include important species such as Prevotella copri that have lower prevalence but 
exceptional abundance when present. Other models specifically accounting for 
zero-inflation (both technical and real) will be needed to study the dynamics of 
the rarer microbiome.

Evidence presented in Supplementary Table 5 was calculated from 5 MCMC 
chains per model, with 150 samples after a 20 sample burn-in, which were started 
from a random point in the prior distribution. Parameter estimates presented in 
Fig. 3 and Supplementary Table 5 were fit with the additional constraint that 
U + T + B + N = 1, to eliminate an additional degree of freedom from the model. 

A Dirichlet(1, 1, 1, 1) prior was imposed on [U, T, B, N]. For each feature tested 
here, a more thorough MCMC sampling was performed than for the model  
selection, consisting of 10 chains with 200 samples each (after 30 burn-in and 
thinning every other sample), starting from a random point from the prior dis-
tribution. In all cases, all parameters were fit simultaneously. Convergence was 
assessed with the R̂ statistic48. Over all 196 species and 950 pathways tested, 97% 
of R̂ statistics were <1.1 for all parameters (median 1.01, max 1.17), indicating 
good convergence.
Association testing between microbiome features and phenotypic covariates. 
Associations between microbial and pathway abundances and metadata were 
determined using MaAsLin1,49. MaAsLin tests a sparse multivariate generalized 
linear model against each feature independently. Relative abundances were first 
arcsine square-root transformed for variance stabilization, and the Grubbs test was 
used (significance level 0.05) to remove outliers. A univariate prescreen was applied 
using boosting to identify potentially associated features, and significantly associ-
ated covariates among the remaining features were identified with a multivariate 
linear model without zero-inflation. Unless otherwise stated, a final FDR < 0.1 
(Benjamini–Hochberg controlled across feature tests) was used as a significance 
threshold.

The same model was applied to all features (microbial and pathway) during 
this analysis and included the following covariates: broad dietary characterization, 
whether the subject was breastfed, temperature, introitus pH, posterior fornix pH, 
gender, age, ethnicity, study day processed, sequencing centre, clinical centre, num-
ber of quality bases, percentage of human reads, systolic blood pressure, diastolic 
blood pressure, pulse, whether the subject had given birth, HMP1/HMP1-II, and 
BMI. A summary of these metadata can be found in Extended Data Table 1a. Of 
note, several recently identified confounders such as transit time8 for stool samples 
were not collected during sampling.
Benchmarking and assembly protocol design. We benchmarked several assem-
blers including IDBA-UD38, MetaVelvet50, SOAPDenovo251, Newbler (Roche, 
Basel, Switzerland), Ray52, SPAdes53, and Velvet54 using eight samples (SRS017820, 
SRS014126, SRS052668, SRS017820, SRS048870, SRS020220, SRS057205 and 
SRS017820) across five body sites that represented a range of metagenomic com-
plexity. On the basis of the assembly size, median length, fragmentation level, and 
N50 length, we chose IDBA-UD to process all HMP1-II samples.
Digital normalization. Following quality control, sequence reads for each sample 
were run through a ‘digital normalization’ pipeline before assembly. This process 
was designed to reduce, as much as possible, the volume of information from 
the most dominant source taxa (without sacrificing the ability to assemble what 
remains) so that lower-abundance taxa could be assembled more evenly, instead 
of having their reads discarded by the assembler software as not being sufficiently 
covered (compared to the dominant taxa).

Median k-mer coverage was first estimated for all reads using the khmer Python 
library55. These data were then used to filter input reads so as to normalize k-mer 
coverage within preselected bounds: for each k-mer of length 20 nucleotides in 
each read, the total number of observations of the k-mer was used as a proxy for 
coverage. Reads for which median k-mer coverage was already greater than 20 were 
discarded. Remaining reads were then trimmed at the first instance of a single-copy 
k-mer (representing putative error sequences). Reads with a post-trim length of 
less than the k-mer length (20 nucleotides) were also discarded. Surviving reads 
were trimmed again, this time at the first instance of a high-abundance (>50×) 
k-mer; again, reads whose post-trim length was less than 20 nucleotides were dis-
carded. For remaining reads, we re-normalized (based on median k-mer coverage 
as in the first step) to remove all reads whose median k-mer coverage was >5×. 
This is a more aggressive filter on putatively redundant sequences, after elimina-
tion of initial reads with highly-overrepresented (redundant) k-mers or severely 
under-represented (error) k-mers.

For subsequent assembly after this quality control and normalization, we 
increased k to 32 nucleotides (to maximize sensitivity on the remaining reads) 
and built an overlap graph from all remaining reads. This graph was then parti-
tioned into groups of reads with a high likelihood of internal overlap, separating 
components at precomputed ‘stoptags’: k-mer sequences automatically identified 
by khmer in its initial profiling scan as unreliable assembly-traversal nodes. Reads 
were then extracted from each such partition into separate FASTA files. Each par-
tition was tested for more coherent subgroups, beginning with the least consistent 
(ranked in order of graph separability). Re-partitioning was carried out as above, 
but with more aggressive parameters: stoptags in the initially-computed overlap 
graph were explicitly detected and removed before re-partitioning (which included 
the generation of new stoptags from the remainder of the graph after removal of 
the earlier ones). The least-consistent read group was broken into sub-partitions 
exactly once in this way: further iteration risks overfitting and is not guaranteed 
to converge to a meaningful result.
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IDBA-UD assembly and post-processing. Following digital normalization, each 
final partition was assembled independently of the others with IDBA-UD. For 
values of k in (20, 30, 40,..., 80), IDBA-UD will attempt to assemble its partition (via 
de Bruijn graph methods) using k-mers of size k, and will then merge and extend 
results from all passes to produce a final assembly of that partition (requiring a 
minimum contig length of 100 nucleotides). For each sample (or pool), all (inde-
pendently produced) partition assemblies were then concatenated. As a final step 
to reduce any redundancy present in the final concatenated assembly, we merged 
and extended all assembled contigs (across all partitions), based on overlaps of 
40 nucleotides or more, to produce a final ‘consolidated’ sequence collection.
Quality assessment. To assess assembly quality we undertook a number of post- 
assembly quality control checks, including an examination of the rate at which 
reads aligned to assemblies as well as identifying chimaeras, which are a potential 
problem caused by mis-assemblies.

To check for what portion of the reads were incorporated into the assembly, 
sample reads were aligned against their assembly using Bowtie v1, resulting in 
counts for reads with at least one alignment and for those that failed to align. Total 
reads include reads from the human host. Because human reads were masked 
as all Ns by SRA using BMTagger, the human reads would affect the portion of 
unaligned reads. To assess the effect, we counted the number of masked reads to 
obtain a count for human reads. These are summarized by body site in Extended 
Data Fig. 7c.
Assembly protocol validation. To examine the rates of chimaeric contigs and 
mis-assemblies, we undertook an assembly assessment of 2 mock datasets gene
rated during the HMP, one in which the community was created with all 21 
organisms in equal abundance (‘even’), and one with staggered abundances. We 
assembled these mock communities using the same protocol and aligned assem-
bled contigs for both sets against all 21 input genomes. We found that 94.21% and 
96.84%, respectively, of all assembled contigs aligned uniquely to a single reference 
genome for the even- and staggered-coverage mock communities (‘aligned’ here 
means aligned with ≥ 95% sequence identity over ≥ 95% of their length). Contigs 
aligned to closely related Staphylococcus and Streptococcus strains exhibited 
slightly more non-exclusive matching (or cross-matching) than contigs aligned 
to other strains. For the even set, an average of 97.85% of all Staphylococcus- and 
Streptococcus-aligned contigs were uniquely aligned to their reference strain, with 
an average of 92.98% for the staggered set, as compared to averages across all other 
strains of 99.89% (even) and 98.98% (staggered), neatly reflecting the inherent 
genetic ambiguity of these taxonomically narrow subgroups yet showing a very 
strong ability to distinguish between related strains.

Recovery statistics do not correlate well with input coverage in the staggered 
set, implying that our pipeline (given a minimum of 4× coverage) is robust against 
differences in relative abundance of up to three orders of magnitude at these scales. 
Phylogenetic proximity, in this case, seems to show a greater influence on unique-
ness of assembly (albeit still a very weak one) than does coverage. Fractions of 
contigs not aligning to any of the 21 reference strains (over ≥ 95% of their length 
at ≥ 95% identity) were 5.6% and 3.0% for the even and staggered sets respectively; 
we can thus postulate these proportions to be upper bounds on the combined rates 
of chimaeras and mis-assemblies produced by our pipeline, consistent with other 
chimaera assembly metrics56.
Annotation. Detection of ORFs within assembled contigs was performed using 
Metagenemark-3.2557. The resulting ORF sequences were used as input for 
searches against (1) UniRef10058 using RAPSearch259; (2) Pfam60 and TIGRfam61 
HMM models using hmmer-3.062; (3) TMHMM63 for the identification of trans-
membrane helices; and (4) a regular expression search for membrane lipopro-
tein lipid attachment sites for the identification of putative signal peptides. The  
latter three searches were run as implemented in the Ergatis workflow monitoring 
system64.

Annotation was assigned by Attributor (https://github.com/jorvis/Attributor) 
using a hierarchical scheme developed out of the IGS Prokaryotic Annotation 
Pipeline65. Attributor assigns common names, gene symbols, enzyme commission 
(EC) numbers and Gene Ontology (GO) terms, as applicable, based on a hierarchy 
of evidence including hits to HMM models, UniRef100 sequences, TMHMM pre-
dicted helical spans, and lipoprotein motifs. Assignments are exclusive, meaning 
that for each ORF, Attributor takes the strongest piece of evidence available and 
assigns all attributes possible based on that evidence. Attributes are not assigned 
from multiple sources to ensure that annotation attributes assigned to a single 
ORF do not conflict. Attributor annotation was output as gff3 and FASTA files 
(Extended Data Table 1b).
Rarefaction curves. Rarefaction curves were generated by extracting predicted 
polypeptides from the MetaGeneMark output for each sample, and estimating 
a ‘unique gene family’ count for rarefied sample size n as follows, using usearch 
v.8.1.1861 x6466: (1) Concatenate the MetaGeneMark predicted polypeptides from 

a random sampling of n samples that were not technical replicates, eliminating 
duplicates; (2) Sort sequences by decreasing length; (3) Cluster sequences at 90% 
identity (using usearch cluster_fast); (4) Retrieve the ‘unique gene family’ count 
from the results. The number of unique clusters was estimated from 50 random 
subsets for each n. This procedure was repeated for each body site for n = 1,10,20,... 
until the number of unique samples available at the body site.
Mapping reads to reference genomes. In addition to taxonomic and functional 
profiling as above, the individual raw reads of all samples were aligned directly to 
MetaRef42 reference genomes. Before alignment, all reads with 80% or higher per-
centage of Ns were discarded using the Biocode fastq::filter_fastq_by_N_content 
utility (https://github.com/jorvis/biocode/blob/master/fastq/filter_fastq_by_N_
content.py). Bowtie267 (v2.2.4) was then used to align reads to reference genomes 
using the default, paired-end alignment options and including the singleton reads. 
The resulting SAM files were converted to BAM, sorted, and then partitioned 
into two separate files per sample— one of only matching reads and the other of 
unaligned reads. This entire pipeline is encapsulated in the Biocode generate_read_
to_metaref_seed_alignment.py pipeline script (https://github.com/jorvis/biocode/
blob/master/sandbox/jorvis/generate_read_to_metaref_seed_alignment.py).
Mapping reads to assembled contigs. The quality-trimmed reads from each sam-
ple were mapped back onto the assembled contigs from that same sample using 
Bowtie (v0.12.9) with a 512 MB max best-first search frames value, Phred33 score 
quality setting, 21 base-pair seed length, and limit of 2 mismatches per seed. All 
alignments per read were reported (unless there were more than 20 for a given 
read) with hits guaranteed best stratum and ties broken by quality. Hits in sub- 
optimal strata were not reported.
Code availability. Code for the annotation pipeline and the Gaussian Process 
analysis are available from Extended Data Table 1b.
Data availability. Sequence data are available from the HMP DACC (http://
hmpdacc.org) or on Amazon (https://aws.amazon.com/datasets/human-micro-
biome-project/); WMS reads and accompanying metadata are available at the 
Sequence Read Archive (SRA; https://www.ncbi.nlm.nih.gov/sra) and the Database 
of Genotypes and Phenotypes (dbGaP; https://www.ncbi.nlm.nih.gov/gap) under 
two studies: SRP002163 (BioProject PRJNA48479), and SRP056641 (BioProject 
PRJNA275349). Public and private metadata from Extended Data Table 1 are avail-
able with the metagenomic taxon abundances table from the HMP DACC (https://
www.hmpdacc.org/hmsmcp2/), and through the dbGaP with accession number 
phs000228.v3.p1, respectively. All other data are available from the corresponding 
author upon reasonable request.
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Extended Data Figure 1 | Extended body-wide metagenomic taxonomic 
profiles in HMP1-II. a, The combined HMP1-II datasets include a total 
of 2,355 metagenomes (724 previously published and 1,631 new, including 
252 technical replicates). These span the project’s six targeted body sites 
(anterior nares, buccal mucosa, supragingival plaque, tongue dorsum, 
stool, and posterior fornix) in addition to at least 20 samples each from 3 
additional sites, of the 18 total sampled sites: retroauricular crease, palatine 
tonsils, and subgingival plaque. Metagenomes are now available for at least 
one body site for a total of 265 individuals. b, PCoA using Bray–Curtis 

distances among all microbes at the species level. c, Relative abundances 
of the most prevalent and abundant microbes (bacterial, viral, eukaryotic, 
and archaeal) among all body sites, as profiled by MetaPhlAn220. Prevalent 
eukaryotic microbes are shown at the genus level. d, Taxonomic profiles 
do not vary more between sequencing centres, batches, or clinical centres 
than they do among individuals within body sites. Ordinations show Bray–
Curtis principal coordinates of species-level abundances at each body 
site. Within-site ecological structure is as expected1, with no divergence 
associated with technical variables along the first two ordination axes.
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Extended Data Figure 2 | Geographic, temporal, and biogeographic 
strain variation. a, Mean distance (Kimura two-parameter) among strains 
from subjects either within or between three-digit zip codes (the finest 
degree of geographic information available). Data and sample sizes are in 
Supplementary Table 2. b, Mean strain divergences between different visits 
for the same subject and body site compared to the mean distance between 

the same visits for the same subject and body site (technical replicates) 
for each species. c–u, PCoA plots based on the Kimura two-parameter 
distance17 are shown for Escherichia coli (c), Actinomyces johnsonii (d), and 
all species (that is, those shown Fig. 1b ; e–u), sorted in descending order 
of their niche-association score (Methods). Distance matrices used to 
generate these PCoAs are publicly available (Extended Data Table 1b).
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Extended Data Figure 3 | Core and distinguishing functions of human 
body site microbiomes. This figure extends Fig. 3, with additional details 
and examples. a, 28 metabolic pathways were core (>75% prevalent) at all 
major body sites. We refer to these as ‘supercore’ pathways. b, Pathways 
core to greater numbers of body sites tended to have broader taxonomic 
ranges, with supercore pathways among the most broadly distributed 
(Tukey boxplots). c, 19 pathways (including two supercore pathways, 
starred in a) were core in multiple body areas and specifically enriched 
among taxa inhabiting the human microbiome (annotated to <10% of 
non-human-associated genera). Human-microbiome-enriched pathways 
include specific MetaCyc-defined variants of more broadly defined  
or distributed processes, for example, peptidoglycan biosynthesis  

(PWY-6471). d, ‘Site-enriched’ pathways are considerably more 
abundant at one body site than at sites from all other body areas. Black 
dots indicate the site where each site-enriched pathway achieved its 
peak abundance. Heat map values reflect the first quartile of relative 
abundance in a particular body site (coordinated with the percentile 
cutoff for a core pathway). e–g, Additional examples of the three pathway 
classes enumerated in a, c, and d, respectively. In each example, total 
(community) abundance is log-scaled, and the contributions of the top 
seven genera are proportionally scaled within the community total. ‘Other’ 
encompasses pathway contributions from genera outside of the top seven, 
and ‘unclassified’ encompasses pathway contributions from unidentified 
members of the community.
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Extended Data Figure 4 | See next page for caption.
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Extended Data Figure 4 | Sampling interval distribution, parameter fits 
for simulated samples, and examples of microbial species abundance 
dynamics and corresponding Gaussian process fits. a, Distributions of 
differences in time between samples at each targeted body site. Technical 
replicates are shown as Δt = 0. b, Parameter fits for simulated samples 
with U = 0, B = 0, T = 0.95, N = 0.05, and varying l (see Methods). 
Simulated samples were drawn with the real sample distribution and count 
from each site, to show how limitations in sampling at certain sites alter 
the fidelity of the fits. c, Parameter fits for five simulated samples with 
each of the three pure components (coloured red, green and blue), as well 
as all even mixtures of pairs of them (for example, yellow points are even 
mixtures of U and T), and even mixtures of all three (black), for differing 
levels of technical noise (N) and fixed l = 0.5. Uncertain inferences are 
more desaturated. d–f, Three examples of taxonomic profiles fit with the 
Gaussian process model are shown on plots designed to allow a direct 
comparison between the data and the fit Gaussian process, and allow 
the different dynamics to be visualized despite the limit of only up to 
three time points per person. Each example was chosen as an exemplar 
of one of the three non-technical components in the model. Insets 

denote confidence deciles of the MCMC samples. The abundance of 
Fusobacterium periodonticum in the tongue dorsum shows strong time-
varying behaviour (d), Bacteroides stercoris in stool shows mostly inter-
individual differences (e), and Gemella haemolysans in the buccal mucosa 
is dominated by biological noise (f). The plots show the absolute difference 
in arcsine square-root transformed microbial abundance (|Δx|) between 
pairs of samples from the same person against the difference in time 
between samples (points). A Gaussian-smoothed estimate of the standard 
deviation of the points is also shown (blue line, bandwidth three months), 
along with the expected difference from the fit Gaussian process (red 
line). The standard deviation of differences between technical replicates 
(points with Δt = 0 months) is also shown as the line stub at the origin, 
directly visualizing the level of technical noise. Biological noise is visible 
here as the difference between technical noise and the variance of the 
remaining points extrapolated to the origin. The time-varying component 
is visible as a gradual increase in the variance of the differences over time 
(that is, gradually increasing red and blue lines). Finally, inter-individual 
differences are visible by comparing the limit of the variance of the data 
with the variance of differences between subjects (green line).
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Extended Data Figure 5 | Gaussian process decomposition of temporal 
variance for metagenomic species abundances. The posterior mean 
of the decomposition of variance (Methods) is shown for each species 
(Supplementary Table 5), coloured by phylum. Uncertainty in the estimate 

was assessed by the square root of the mean squared distance on the 
ternary plot of MCMC samples from the posterior mean, and is codified 
with larger points indicating more certain estimates.
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Extended Data Figure 6 | Assembly annotation specificity for single 
and co-assemblies. a, Tukey boxplot of the percentage of proteins in each 
functional specificity category. b, An example Venn diagram for one set 
of single-sample supragingival plaque assemblies and their combined co-
assembly (co-assembly on bottom left), showing counts of shared genes 
(computed via strict alignment) between all combinations of assemblies; 
the co-assembly by itself contains 96.9% of all detected genes. c, Tukey 

boxplot of the number of Gene Ontology (GO) terms (generated using 
a GO Slim with around 1,700 terms) shared between single and co-
assemblies, unique to the co-assembly, or unique to one of the single 
assemblies, generated from a random selection of 250 assemblies across 
6 body sites. Co-assemblies capture GO terms that are not in individual 
assemblies.
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Extended Data Figure 7 | Sequencing statistics and assembly quality 
assessments. a, Tukey boxplots of total raw reads per sample among body 
sites upon retrieval from the SRA. b, Percentages of human reads marked 
by BMTagger per body site. c, Percentages of non-human (bacterial) reads 
aligned to assemblies showing assembly effectiveness (Methods; read and 
contig mapping to assemblies and reference genomes). d, Comparison 
of the number of unique Pfam domains detected in each sample by 
HUMAnN2 and in the assemblies, coloured by body site. Pfam domains in 

HUMAnN2 were considered ‘detected’ if UniRef50 sequences annotated 
with the domain were present in a sample at >10 reads per kilobase 
(around 1× coverage). Pfam domains were detected in the assemblies if 
they were found on a single contig by Attributor (Methods). e, Number 
of Pfam domains that were detected in at least 75% of samples (core’ 
domains) by each method, for each targeted body site. Pfams domains are 
stratified by unknown function.
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Extended Data Figure 8 | Metagenomic features abundances 
significantly associated with host phenotype. a, b, Significant 
associations of nontrivial effect size (FDR < 0.1 and |β| > 0.01) in a 
multivariate linear model (significance and coefficients in Supplementary 
Table 5) between taxon abundances (a) and pathway abundances (b).  
All detected associations are independent of all other metadata, 
including whether the subject was breastfed, the subject’s broad dietary 

characterization, temperature, introitus pH, posterior fornix pH, gender, 
age, ethnicity, study day processed, sequencing centre, clinical centre, 
number of quality bases, percentage of human reads, systolic blood 
pressure, diastolic blood pressure, pulse, whether the subject had given 
birth, HMP1/HMP1-II, and BMI (group sizes in Extended Data Table 1; 
see Methods). Non-significant associations here should not be considered 
evidence of no association.
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Extended Data Figure 9 | Updated associations in HMP1-II. a, HMP 
cohort subjects reported whether they were breastfed as infants. 
Remarkably, overall phylum Firmicutes abundances were lower even 
during adulthood (subjects’ current ages were 18–40) in individuals who 
had been historically breastfed. b, c, Differences associated with infant 
breastfeeding persisted in other clades and body sites, for example, oral 
Neisseria (b), although age-linked associations differed among taxa (for 
example, overall oral Neisseria decrease with age) (c). d–f, Examples of 

associations significant in the original HMP1 metagenome set1 that were 
retained in the larger HMP1-II dataset include: d, Bacteroides vulgatus in 
stool is significantly more abundant in Asian people compared to those 
of other ethnicities. e, Lactobacillus crispatus in the posterior fornix is 
negatively associated with vaginal pH. f, Bacteroides are significantly 
more abundant in individuals who have been breastfed as infants. Boxplot 
whiskers are defined by Tukey’s method.
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Extended Data Table 1 | Metadata summary and data availability

a, Overview of the characteristics of the 265 subjects for which shotgun metagenomes are available in the HMP1-II dataset. Group sizes are given for categorical data, mean ± s.d. and  
[minimum, maximum] are given for continuous data. Subjects with recent antibiotic or probiotic usage were specifically excluded from the study40. Transit time, an important recently identified 
confounder in gut microbiome studies68, was not collected as part of the sampling metadata. Metadata availability: public metadata are available with the metagenomic taxon abundances table  
(https://www.hmpdacc.org/hmsmcp2/); private metadata are available through dbGaP with accession number phs000228.v3.p1. b, All data products are available at the HMP DACC at the URLs given 
in the table. Data can be downloaded using standard protocols such as http, ftp, and the Aspera protocol.
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functional profiles (MetaPhlAn2, HUMAnN2, StrainPhlAn). R, Python, and Matlab 
were used to analyze the data and generate plots. Gaussian process modeling was 
performed with the GPstuff package in Matlab (scripts available from a link in 
Extended Data Table 2b). IBDA-UD was used for assembly, with a custom 
annotation pipeline described in the methods and available through a link in 
Extended Data Table 2b.
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Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
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No unique materials were used.
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Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.
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c.  Report whether the cell lines were tested for 
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12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

Characteristics of the human cohort are summarized in Extended Data Table 2a.
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This Article should have contained an associated Creative Commons 
statement in the Author Information section. This has been corrected 
in the online versions of the Article.
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