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Abstract: Camera-based 3D reconstruction of physical objects is one of the most popular
computer vision trends in recent years. Many systems have been built to model different
real-world subjects, but there is lack of a completely robust system for plants. This paper
presents a full 3D reconstruction system that incorporates both hardware structures
(including the proposed structured light system to enhance textures on object surfaces) and
software algorithms (including the proposed 3D point cloud registration and plant feature
measurement). This paper demonstrates the ability to produce 3D models of whole plants
created from multiple pairs of stereo images taken at different viewing angles, without
the need to destructively cut away any parts of a plant. The ability to accurately predict
phenotyping features, such as the number of leaves, plant height, leaf size and internode
distances, is also demonstrated. Experimental results show that, for plants having a range of
leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms
successfully predict phenotyping features in the target crops, with a recall of 0.97 and a
precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and
internode distance.
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1. Introduction

Automation is necessary in the agricultural industry to help accelerate the rate of increased crop
productivity through genetic improvement techniques, in order to help cope with the rapid increase
in human population and future demands on worldwide food security. Phenotyping of new and old
varieties under varying environmental conditions to assess their suitability presents a challenge [1,2].
There is a need for developing novel, field-deployable systems with semi- or fully-automatic processing
of plant phenotypes for a suite of vegetative traits that can aid in our understanding of the relationships
between genetic information and food productivity. The critical elements of such systems are the sensors
that help to automate phenotyping and contribute knowledge to the final understanding of this complex
relationship. Most of the sensors used in agriculture have limited resolution or dimensionality and are
not able to acquire the full scope of available information about plants, such as their structure and leaf
texture. This leads to a limitation in distinguishing different types of deficiencies [3]. Advanced sensors,
like cameras, that can characterize spatial and color information from natural objects will play a crucial
role in the future development of agricultural automation [4,5].

Recent methods for sensor-based 3D reconstruction have been developed for a wide range of
applications. A method for 3D shape scanning with a time-of-flight (ToF) camera has been described
in [6]. The ToF camera technique can measure depth information in real-time, and when the method [6]
is used to align depth scans in combination with a super-resolution approach, some mitigation of
the sensor’s typically high signal noise level and systematic bias can be achieved. In [7], a “visual
structure-from-motion system” for 3D reconstruction is implemented via feature extraction, image
matching and dense reconstruction algorithms. This structure-from-motion implementation works
successfully on rigid, enclosed (i.e., non-porous) objects, with the use of a single camera capturing
images from multiple viewpoints. A stereo vision technique applied to 3D reconstruction is introduced
in [8]. This work provides a framework to create visually realistic 3D reconstructions of solid objects,
including the steps of stereo image acquisition, feature detection, feature matching, camera calibration
matrix calculation, point cloud generation and surface reconstruction. A stereo vision-based 3D
reconstruction system for underwater scenes is proposed in [9]. This system yields promising depth map
results in exploring underwater environments. There is a great deal of work that utilizes consumer-grade
range camera technology (e.g., the Microsoft Kinect) [10] for scene reconstruction. The Kinect, which
works in a similar way to a stereo camera, was originally designed for indoor video games. Due to
its robustness and popularity, it is being studied for use in many research and industrial applications.
In [11], the Kinect device was utilized to reconstruct dense indoor scenes.

A number of stereo vision-based methods have been developed for 3D modeling of plants and
leaves. The research in [12] presents a combination of binocular stereo vision and structure-from-motion
techniques [7] for reconstruction of small plants from multiple views. The 3D reconstruction results for
the plant canopy include height, width and volume of the plant, as well as leaf cover area. In [13], color
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and ToF cameras were used to model leaves through a combination of hierarchical color segmentation
and quadratic surface fitting using ToF depth information. A moving robot arm holding a camera
was additionally employed to inspect the quality of leaf segmentation. The study [14] shows how the
stereo and ToF images can be combined for non-destructive automatic leaf area measurements. In [15],
the Microsoft Kinect was utilized in combination with the Point Cloud Library [16] to provide measures
of plant height and base diameter in “tower mode”. In [17], Kinect-based visualization of potted
greenhouse tomato plants in indoor environments is presented with a method of automatic plant stem
detection. The work in [18] is mostly similar to [15] with the addition of depth information-based leaf
segmentation. A novel 3D mesh-based technique was presented in [19] for temporal high-throughput
plant phenomics. Based on the plant meshes reconstructed using commercial software for 3D
scanning [20], this study provided mesh segmentation, phenotypic parameter estimation and plant organ
tracking over time to yield promising measurement accuracies of stem height and leaf size. In [21],
the Kinect sensor was assessed to determine its best viewing angles to estimate the plant biomass based
on poplar seedling geometry. The purpose of [22] is to analyze the accuracy of a structure-from-motion
combined with the multiview stereo method for tomato plant phenotyping at the organ level, based on
the reference data provided by a close-up laser scanner. The extracted 3D features herein include leaf
area, main stem height and convex hull of the complete plant. In [23], the first steps of utilizing 3D
light field cameras were introduced for phenotyping large tomato plants in a greenhouse environment.
Promising results of 3D reconstructed greenhouse scenes were shown in this work with several aspects
related to camera calibration, lens aperture, flash illumination and the limitation of the field of view.
There are recent studies that use 3D laser scanning for plant phenotyping. In [24], a surface feature
histogram-based approach is introduced to adapt to laser scans of plants for the purpose of plant organ
classification. Local geometric point features are used to describe the characteristics of plant organ
classes. Classification results of grapevine and wheat organs are shown with very high reliability in this
study. High throughput phenotyping of barley organs based on 3D laser scanning is presented in [25].
By combining the advantages of a surface feature histogram-based approach with a parametric modeling
of plant organs, this work shows automatic parameter tracking of the leaves and stem of a barley plant
over time.

This paper describes a novel 3D reconstruction system for plants that incorporates a number of
unique hardware-based stereo features: multiple pairs of high-resolution color digital cameras, visible
structured lights, ease of configuration adjustment and the ability to work indoors and outdoors. There
are three principal contributions of this research. First, a custom mechanical structure for multi-view
3D reconstruction of plants was designed that consists of an arc to hold ten high-resolution digital
color cameras, a plant-stationary mount for two visible structured lights and a target turn-table for a
360-degree view of the plant. Second, a custom design for structured lights was created that projects
random-dot patterns onto the target to enhance the uniqueness of the visual texture on the object surface,
so that significantly better stereo matching results can be obtained. Computer control of illumination
synchronization and intensity allows the system to adapt to indoor and outdoor scenes. Third, a complete
hardware and software solution (including camera calibration, structured light control, stereo matching,
the proposed 3D point cloud generation and registration, point cloud noise removal and segmentation and
the proposed 3D leaf detection and 3D plant feature measurement) is created for both 3D reconstruction
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and non-destructive phenotyping measurement (plant height, number of leaves, leaf height and width
and internode distances) of plants.

2. System Design

The 3D image data were based on digital color images of individual plants taken by ten
electronically-controlled, high-resolution, digital single-lens reflex cameras (Model EOS Rebel T3,
Canon Inc., Tokyo, Japan). The ten cameras, each equipped with a zoom lens (Model EF-S 18–55 mm
1:3.5–5.6 IS II, Canon Inc., Tokyo, Japan), were organized into five stereo camera pairs aimed at the
target object and held fixed relative to one another on an arc at 25, 40, 55, 70 and 85 degrees relative to the
ground plane. Figure 1 shows the mechanical structure of our 3D reconstruction system, where Figure 1b
shows the arc and cameras. One camera in each stereo pair was mounted “upside down” relative to the
other in order to place the lens centerlines on exactly parallel optical axes with their pairwise baseline
set to 89 mm. A Universal Serial Bus (USB) hub was used to connect all cameras to a computer and to
allow complete control of the cameras by an open-source software application digiCamControl [26]. All
ten color images, with a resolution 1920 × 1280 pixels, were captured and transferred to the computer
at once via the USB. Because a difference in image resolution might dramatically affect the processing
speed of the system from image transfer, segmentation and stereo matching to point cloud processing,
we selected the resolution of 1920 × 1280 as the best trade-off between speed and quality, so that
highly-accurate results can be obtained in an acceptable processing time. Camera parameters, including
focal length, aperture, shutter speed, ISO and white balance, were manually set to achieve the best quality
images for camera calibration and stereo matching.

(b) Arc holding ten cameras (c) A pair of cameras(a)

(b)

(c)(d)

(d)

(d) Structure light device and its power adapter

NIKKOR-P f/2.5
105mm lens

Random-dot 
pattern 
inside(e)

(f)

Bridgelux
LED

Adapter for light 1

Adapter for light 2

Relay with NI USB-6008

Figure 1. Mechanical structure (a) of the 3D reconstruction system: (b) the arc holding
ten Canon EOS Rebel T3 cameras; (c) a pair of cameras where the second camera is upside
down relative to the first one; (d) structured light devices and their power adapters with a
relay controlled by a digital I/O control NI USB-6008; (e) a turn-table that rotates the plant
360 degrees; and (f) the target plant.



Sensors 2015, 15 18591

A structured illumination system was designed to provide plant-stationary active visual texture
enhancement of plant foliage from all camera viewpoints. The system utilized two telephoto 105-mm
focal length lenses (Model NIKKOR-P f/2.5, Nikon Co., Tokyo, Japan), each equipped with a
high-power, 29 mm-diameter LED array (Model BXRC-40E10K0-L-03, Bridgelux Inc., Livermore, CA,
USA, white color, maximum 10,000 luminous flux and correlated color temperature of 4000 K), designed
to project two grayscale, random-dot patterns printed in high resolution on clear film onto the scene.
The brightness and strobe synchronization of the LED arrays could be controlled by a dimmable LED
power supply (Model HLG-120H-42B, MEAN WELL Enterprises Co., Guangzhou, China) configured
with a solid state relay connected to the computer via USB through a digital I/O device (Model USB
6008, National Instruments Co., Austin, TX, USA). Figure 1d shows the structure light device and its
power adapter.

For enhanced visual texture generation, a random-dot pattern was created using a 3000 × 3000
pixel grayscale image with a printed resolution of 1200 dots-per-inch, where a 30% Hurl noise was
applied to a transparent background. This projected pattern is hence able to support the segmentation
and matching algorithms at a three pixel-wide resolution of approximately 1 mm on the leaf surface
of a plant. Figure 2 shows the random-dot pattern projected onto white and black surfaces (a piece of
paper and a cloth curtain) and plants. The dot pattern, printed on a 38 mm-diameter transparency film
(Figure 2a), was placed between two transparent glass windows for support and inserted into the focal
plane of the structured light cylinder (Figure 1d). The pattern projection was done with an object distance
of approximately 1.5 m to provide good depth of focus. Figure 2b,c shows that even when the object is
completely white or black, the structured light can still create added visual texture. In Figure 2d–f, dot
textures are created effectively on the leaf surface of the cabbage and cucumber plants and tomato leaves.
The two structured light devices were mounted on two arms at a 90-degree top view and a 45-degree side
view, respectively. Both of these arms were mounted in a fixed position relative to the plant (Figure 1d,e).

A turn-table was utilized to account for the target plant not being simple, i.e., its leaves are curved
or overlapping, causing portions of the plant to be occluded when using a single view angle of the arc
relative to the plant. The current choice of optics in the illumination system supports object sizes up to
30 cm × 30 cm × 50 cm.

3. Software Algorithms

The algorithm consists of four main stages. First, stereo camera calibration is done after receiving
images from the ten cameras. Second, a stereo matching step is performed with GPU (graphics
processing unit) accelerated background/foreground segmentation, block matching and disparity
bilateral filtering. An intermediate process of reprojecting disparity values to a 3D real-world point cloud
is executed after the second step. Third, the output point clouds from the previous stage are merged by a
registration algorithm. Afterwards, the final point cloud of a plant is segmented to extract phenotyping
features. Figure 3 shows the diagram of the proposed algorithm.
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(a) (b) (c)

(d) (e) (f)

Figure 2. Random-dot pattern projected onto surfaces and plants: (a) the dot pattern printed
on a transparency film (in this figure, it is under a transparent window); (b) an image of
the pattern projected (with maximum brightness) on a piece of white paper; (c) an image
of the pattern projected on a black curtain; (d) the pattern projected on a cabbage plant;
(e) cucumber plant; and (f) a compound leaf from a big tomato plant.

3.1. Stereo Camera Calibration

Camera calibration plays a crucial role in many computer vision tasks and is particularly important
in stereo vision systems. The precision of the camera calibration directly impacts the accuracy of the
estimation of actual object distances. The problem of determining distance information is substantially
simplified when an accurate calibration method is applied. In this paper, we utilize the methods in [27,28]
and a classical black-white chessboard to calibrate the cameras. Each stereo camera pair, having a
baseline of 89 mm, has its own viewpoint of the target plant; we therefore do calibration of the five
camera pairs independently. Our chessboard has 54 square-blocks in a 9 × 6 pattern, where each square
has a size of 25.4 mm× 25.4 mm. Accurate chessboard size is required to give an accurate estimation of
plant features. For the calibration procedure, the chessboard was positioned at 10 different angles in each
of the camera pair’s viewpoints so that the system can support plant heights up to 50 cm. Chessboard
square corners are detected with subpixel accuracy as the input of the calibration method; and the output
includes intrinsic, distortion and extrinsic matrices of the two cameras and the perspective transformation
matrix, which will be needed in reprojecting depth information to real-world coordinates.
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Calibration

Calibrate the five stereo camera pairsCapture images from 
ten cameras at once

Create point 
clouds based 
on disparity 

values

GPU based stereo matching 

Segment background 
and foreground

Do stereo block 
matching

Do disparity 
bilateral filtering

Point cloud registration

Initially align 
point clouds

Register 
point clouds

Reconstruct 
surface

3D features extraction of plants 

Detect 
leaves

Extract features: plant height, number of leaves, 
leaf size, and internode distances

Figure 3. Block diagram representation of the software algorithm.

3.2. Stereo Matching

3.2.1. Background and Foreground Segmentation

All plant images have to be rectified using the calibration matrices obtained from the previous step
to ensure accurate stereo matching performance across all views. The images are then segmented using
a GPU-based mean shift segmentation [29,30] to isolate image regions belonging to the target object.
Mean shift is a nonparametric iterative algorithm that defines a window of interest around the data points
and computes the mean of the data points, then shifts the window center to the mean and repeats the
algorithm until it converges. The mean shift segmentation method is a fast and effective technique for this
application in which we need to segment the plant from the background, i.e., binary segmentation. This
preprocessing step is compatible with the idea of using structured light, where the image background
becomes removable while the structured light is running and ambient light in the room is turned off.
Figure 4 shows an example of segmenting a cabbage plant (and its soil) with and without using the
structured light. We use the same parameter set (the spatial window radius is 11; the color window
radius is 7; the minimum segment size is 10; and background threshold is 10) in both cases. When the
structured light is used, the plant and soil can be completely isolated from the background (Figure 4d),
which helps improve the accuracy of stereo matching. In the case when no structured light is used, the
background cannot be separated from the plant and soil; as in Figure 4c, there are low intensity pixels on
the background, which the automatic segmentation algorithm cannot accurately assign to the background
or object.
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(a) (b) (c) (d)

Figure 4. Segmentation of a cabbage plant and its soil from the background. The plant
(a) without and (b) with using structured light; segmentation results of (c) without and
(d) with using structured light; note that (c,d) are the results of binary segmentation in which
the plant and its soil are necessarily isolated from the black background; and (c) indicates
segmentation failure.

3.2.2. Stereo Block Matching

There are currently a number of effective stereo matching algorithms, such as belief propagation [31],
census correlation [32] and graph cuts [33]. Here, the focus is on achieving superior matching using an
optical mechanism of creating enhanced texture over the object surface. Descriptors, like local binary
patterns [34,35], can be used to enhance the texture for stereo matching; however, those descriptors
originate from the image itself, i.e., there is no additional support information from the surrounding
environment. The proposed structured light physically adds dot texture to the scene so that the structured
light-based matching result is significantly improved when applying the same stereo matching algorithm.
Considering the trade-off between accuracy and processing time, we utilize GPU-based block matching
for fast processing speed, giving high quality results with the structured light.

3.2.3. Disparity Bilateral Filtering

For further improvement of the quality of depth information, an effective joint bilateral filter is
proposed in [36] to preserve the disparity discontinuity, i.e., to maintain the object’s edge. This filter
works under the assumption that color information is a high-weight factor in determining the disparity
discontinuity. Defining the disparity map obtained from the block matching algorithm to be D, the
reference image (the original image from the left camera was the reference for this enhancement step) to
be Ir and the window radius of the bilateral filter to be r. At every pixel p = {x, y}, we define:

~dp = {D(x− 1, y), D(x, y − 1), D(x+ 1, y), D(x, y + 1)}
~uxp = {x− r, x− (r − 1), ..., x+ (r − 1), x+ r}
~uyp = {y − r, y − (r − 1), ..., y + (r − 1), y + r}

then the disparity map can be updated sequentially as:

D(x, y) = argmin
d∈~dp

∑
ux∈~uxp

∑
uy∈~uyp ω(u

x, uy)τ(ux, uy, d)∑
ux∈~uxp

∑
uy∈~uyp ω(u

x, uy)
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where:

ω(ux, uy) = e

(
− ||Ir(x,y)−Ir(u

x,uy)||2

2σ2r

)
e

(
− (x−ux)2+(y−uy)2

2σ2
d

)
τ(ux, uy, d) = min(λζ, |D(ux, uy)− d|)

where σr and σd are intensity and distance smoothing parameters, respectively (the first factor of
ω(ux, uy) is the range kernel for smoothing differences in intensities, and the second is the spatial kernel
for smoothing differences in coordinates); λ = 0.2 is a constant to reject outliers; and ζ is a threshold
for edges. Notice that the parameter ζ is defined for the pixels around depth discontinuities; therefore,
each pixel needs to be checked to determine if it is on a depth edge before it is processed. To improve
the speed, a GPU implementation was used for this post-processing step.

Figure 5 presents stereo matching outcomes, from the example images in Figure 4, of the block
matching (BM) and belief propagation (BP) algorithms with the use of the disparity bilateral filter (DBF)
and the structured light (SL). This figure shows that structured light can help to improve the matching
significantly. The first row of Figure 5 shows the outcome when using BM, and the second row is for BP.
The same parameter sets were used for each application of BM and BP. For BM, the number of disparities
was 256, the window size was 17, the texture threshold was 60 and a Sobel pre-filter was used. In the
case of BP, the number of pyramid levels (for multiscale processing) was four; the number of iterations
at each pyramid level was nine; and the number of disparity levels at the first pyramid level was eight.
Parameters for DBF were 10 iterations and a filter radius of 41. The first two columns of Figure 5 show
matching results without using SL, and the remaining two columns use SL. BM is preferred over BP
because of its straightforward implementation, fast processing time and high quality outcome when used
with DBF and SL.

(b) (d)(a) (c)

(e) (f) (g) (h)

No DBF, no structured light DBF, no structured light No DBF, with structured light DBF, with structured light

Figure 5. Results of the block matching (BM) (first row) and belief propagation (BP)
(second row) algorithms with the use of disparity bilateral filtering (DBF) and structured
light (SL): (a) BM result without SL; (b) BM + DBF result without SL; (c) BM result with
SL; (d) BM + DBF result with SL; (e) BP result without structured light (SL); (f) BP + DBF
result without SL; (g) BP result with SL; and (h) BP + DBF result with SL. The BM + DBF
algorithm with SL is used in our system.



Sensors 2015, 15 18596

3.3. Point Cloud Creation from Disparity Values

The final disparity map is converted to a 3D point cloud by calculating the coordinate (X, Y, Z) of
each point as:  X

Y

Z

 =

 x′/w′

y′/w′

z′/w′


where x′, y′, z′ and w′ are computed based on the 4 × 4 perspective transformation matrix Q (obtained
via camera calibration) and the disparity map D:

x′

y′

z′

w′

 = Q


x

y

D(x, y)

1


The whole plant can be easily extracted in 3D space based on its distance (Z values) to the camera.

Note that there is a quantization effect in the disparity map, as well as in the 3D point cloud. In our
system, the target plant is positioned at approximately 1.4 m from the camera, and its depth resolution
(the distance between two successive disparity values) can be estimated using the function:

q = −0.0019Z2 + 0.0109Z − 0.0031

where Z and q are in meters. For our case, q is approximately 8 mm. This function is built based on
manual measurement of disparity values and actual object distances. Figure 6 shows disparity and depth
resolution estimated in the stereo system as a function of the actual distance.
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Figure 6. Estimation of the depth resolution of our stereo system as a function of the target
distance from 1–1.82 m away from the camera: (a) Plot of disparities versus actual distances
and (b) Plot of depth resolutions versus actual distances.

3.4. Point Cloud Registration

In the usual method, to register two point clouds, the following procedure is sequentially executed on
the two clouds: (1) noise removal; (2) 3D keypoint detection; (3) 3D descriptor extraction; (4) 3D
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correspondence and filtering; (5) initial alignment of the source to the target cloud; and (6) cloud
registration [16]. Noise removal is based on 3D cluster extraction, and those clusters having a number
of points below a threshold might be discarded. SIFT (scale-invariant feature transform) and estimation
of normals are popular in detecting 3D keypoints and extracting their descriptors. Correspondences
between two point clouds are then found and filtered using the detected keypoints and descriptors
from the previous step. The initial alignment matrix (from the source to the target point cloud) is
then calculated using the two keypoint lists and the correspondences. Afterwards, an iterative closest
point algorithm (ICP) is used to register the two clouds based on the calculated initial alignment matrix
and the predefined parameters of maximum correspondence distance, maximum iterations and outlier
rejection threshold.

In our system, camera positions are fixed, with sightlines at 25, 40, 55, 70 and 85 degrees from
horizontal, respectively, and aimed at the target object. Hence, there are known relationships between
each of the stereo camera pairs, and the five pairs can be calibrated. This leads to an initial alignment
matrix that can be estimated directly from the two point clouds created in two stereo camera views.
Consequently, the steps of noise removal, keypoint detection, descriptor extraction and correspondence
filtering are skipped in this implementation. The method in [37] is used to estimate the transformation
of the source to the target point cloud based on four congruent points. By computing the best rigid
alignment according to the LCP (largest common point set) measure, this method is effective and robust
to noise without the need of pre-filtering or denoising the data. Let C1, C2, C3, C4 and C5 be the
point clouds obtained from the views of 85, 70, 55, 40 and 25 degrees, respectively. The transformation
matrices T13, T23, T43 and T53 are predefined, where Tij represents the transformation of the source cloud
i to the target cloud j. Then, we have:

C ′1 = T13C1

C ′2 = T23C2

C ′4 = T43C4

C ′5 = T53C5

where C ′i is a transformed cloud of Ci according to Tij . An ICP algorithm is executed for each pair of
C ′1 and C3, C ′2 and C3, C ′4 and C3 and C ′5 and C3, respectively, to optimize the overlap between the each
pair of clouds:

C ′′1 = C ′1 ⊕ C3

C ′′2 = C ′2 ⊕ C3

C ′′4 = C ′4 ⊕ C3

C ′′5 = C ′5 ⊕ C3

where⊕ represents the registration using ICP. Lastly, the final registered point cloud is the merger of the
clouds C ′′1 , C ′′2 , C3, C ′′4 , C ′′5 :

C = C ′′1 + C ′′2 + C3 + C ′′4 + C ′′5

where + is a merging operator. Notice that ICP is ill-conditioned for small, quantized, near-planar point
clouds when it is executed alone. By doing the LCP-based method and then ICP, registration of two
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clouds does not meet the ICP ill-condition and is optimized for the largest overlap between the clouds.
Optional steps can be done after having C, such as noise removal based on clustering and voxel grid
conversion to reduce the number of points in the cloud. These steps help optimize processing speed and
simplify the output for the extraction of 3D features. Transformations of the clouds obtained in different
turn-table angles (resolution of 45 degrees) are also precomputed and optimized in the same manner.

Due to the quantization effect, two successive disparity levels of the point cloud obtained in this
system at a distance of 1.4 m have a resolution of approximately 8 mm. Thus, surface reconstruction
is needed to smooth and reform the point cloud to fix the quantization problem. Poisson surface
reconstruction is utilized to improve the accuracy of plant feature measurement. Figure 7 shows the
sample results of the merged point cloud and surface reconstruction, where five point clouds at different
camera view angles are used as the input. To get the results shown in Figure 7, the original result of
the Poisson surface reconstruction has to go through superfluous vertex/face removal steps: conditional
vertex/face selection, faces-having-long-edges selection and isolated face removal.

85o 70o 55o

40o 25o

Merged point cloud Surface reconstruction

Figure 7. Point clouds from different view angles (top row) and their merged point cloud
and surface reconstruction results (bottom row).

3.5. 3D Feature Extraction of a Plant

This section describes the algorithms used for estimating plant height, the number of leaves, leaf
size and internode distances. Before feature extraction, the reconstructed point cloud is processed using
a clustering method to divide the unorganized cloud into smaller parts so that plant features can be
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recognized effectively. The Euclidean clustering method is utilized by making use of 3D grid subdivision
with fixed width boxes [38].

• Plant height: Plant height was defined as the absolute difference in the Z direction between the
minimum and maximum 3D coordinates within the whole point cloud.
• Number of leaves/leaflets (leaf detection): To enumerate the number of leaves/leaflets, a cluster is

considered a leaf/leaflet when these three Boolean conditions are satisfied:

Csize = (Evalmax > Thrsize)

Cdirection =

(
Evalmax

Evalsum
< Thrdirection

)
Cposition = (Centroid > Ratio× PlantHeight)

where Evalmax is the maximum eigenvalue of the cluster; Evalsum is the sum of all eigenvalues;
Thrsize and Thrdirection are thresholds for the conditions Csize and Cdirection, respectively; Ratio
is a number defining locations for leaves; and Cdirection implies that the magnitude of the dominant
direction should not be much larger than that of other directions. Figure 8 shows a leaf detection
result of a three-leaf cucumber plant, where its cloud is color-coded and displayed with bounding
boxes using the Point Cloud Library [16].

(a) (b)

Figure 8. 3D model of a cucumber plant (a) and its leaf detection result (b), where each part
of the plant is color-coded and the bounding boxes of leaves are shown.

• Leaf size: Based on the detected leaves, a bounding box for each leaf is determined by using the
leaf eigenvectors and centroid. The product of the width and length of the bounding box is defined
as the leaf size.
• Internode distance: The internode distance is the distance between two leaf nodes along a plant

stem. Detecting nodes in a 3D point cloud is not a simple task; therefore, the following method
is used to estimate the internode distances: leaf centers are projected onto the principal axis of
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the whole plant, then the distance between these projected points is considered as the internode
distance. Figure 9 illustrates this method of internode distance estimation.

Node

Actual internode

Leaf center

Leaf center

Estimated internode

The original internode image is from 
http://pixgood.com/internode-plant.html

Figure 9. Illustration of internode distance estimation, where leaf centers are
projected onto the plant’s principal axis. (The original internode image is from
http://pixgood.com/internode-plant.html).

4. Experimental Results

A computer (CPU Model Core i7 at 3.4 GHz, Intel Co., Santa Clara, CA, USA, with 12-GB
DDR3 random-access-memory) was used for all processing steps, except that a 1152-core GPU (Model
GeForce GTX 760, NVidia Co., Santa Clara, CA, USA) graphics card was utilized for implementing
the GPU-based stereo matching algorithms. Experiments were executed on eight cabbage plants, eight
cucumber plants and three tomato compound leaves. These plant species were selected as examples of
plants with: long leaves, leaves spreading vertically, very small leaves, curved leaves, long branches,
overlapped leaves, leaves having natural texture (Figure 10j,k,p) and compound leaves with leaflets
attached to a rachis. The ground truth plant heights were measured manually based on the distance
from the plant’s base to the top point of the highest leaf. In the same manner, the ground truth internode
distances were manually determined based on the distance between two leaf nodes along a plant stem,
as illustrated in Figure 9. The ground truth leaf sizes were measured by the steps of cutting off the
leaves, scanning their images and then creating a ruler-based mapping from a pixel unit to a real-world
unit (mm) for the leaves. Leaf detection accuracy and errors in estimating the plant height, leaf size
and internode distance were quantified. Figure 10 shows the reconstructed 3D models of the 19 plants.
Table 1 presents a brief description of the plants consisting of plant height and number of leaves. In
this experiment, at least five views (at one turn-table angle) were needed to successfully reconstruct a
whole plant. The cucumber (Figure 10i) and the three tomato compound leaves (Figure 10q–s) required
15 views (five views at a turn-table angle × three turn-table angles with a difference of 45 degrees)
because of the high degree of self-overlap and curve-shaped leaves in these species.
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(a) (b) (c) (d) (e) (f) (g)

(h) (i) (j) (k) (l) (m) (n)

(o) (p) (q) (r) (s)

Figure 10. 3D model results of eight cabbage plants (a–h), eight cucumber plants (i–p) and
three compound leaves from tomato plants (q–s).

Table 1. List of the 19 plants used for the experiments.

Plant Figure 10 Height + No. of Leaves Brief Description

Cabbage 1 (a) 114 4 Good leaf shape
Cabbage 2 (b) 150 4 1 vertically-long leaf
Cabbage 3 (c) 140 4 1 small and 2 curved leaves
Cabbage 4 (d) 114 4 Long branches
Cabbage 5 (e) 130 4 2 overlapped leaves
Cabbage 6 (f) 139 3 Long and thin branches
Cabbage 7 (g) 105 3 1 leaf attaches to plant stem
Cabbage 8 (h) 229 2 1 curved leaf

Cucumber 1 (i) 242 3 Tall, big leaves
Cucumber 2 (j) 117 4 2 brown-textured-surface leaves
Cucumber 3 (k) 131 3 2 brown-textured-surface leaves
Cucumber 4 (l) 115 2 1 small leaf
Cucumber 5 (m) 113 1 Good leaf shape
Cucumber 6 (n) 123 2 1 small leaf
Cucumber 7 (o) 132 2 1 leaf attaches to plant stem
Cucumber 8 (p) 116 2 1 yellow-textured-surface leaf

Tomato 1 (q) 192 * 6 Long and curved leaves
Tomato 2 (r) 253 * 8 Long and curved leaves
Tomato 3 (s) 269 * 8 Long and curved leaves

+ Unit in mm; * length of the compound leaf.
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In this system, the parameters of the mechanical structure were fixed, while parameters for the
software algorithms were adapted to optimize the performance in phenotyping different species. Table 2
shows the parameters used for the GPU-based stereo matching and point cloud registration to 3D feature
extraction steps. This system required parameter tuning so that high quality results can be obtained.
With the selected parameters used in the segmentation step, each plant was completely separated from
the background, which helps to improve the stereo matching results significantly. The actual distance
of the target plant to the cameras was chosen from 1.2 m–1.7 m, so that all data points outside that
range (i.e., background noise) were discarded when reprojecting disparity values onto 3D space. In the
feature extraction step, individual parameters, such as clustering tolerance, minimum cluster size, leaf
size threshold, leaf direction threshold and ratio for leaf location, might be adjusted for each point cloud
in order to correctly detect all leaves.

Table 2. Algorithm parameters used for the experiments.

GPU-Based Stereo Matching Point Cloud Registration 3D Feature Extraction *

Plant
segmentation

Spatial win-size 11
Registration

Max distance 25
Clustering

Tolerance 0.03
Color win-size 7 Max iteration 103 Min cluster size 4000
Min segment size 10 Outlier rejection 25 Max cluster size 105

Threshold 10
Poisson surface
reconstruction

Octree depth 12
Leaf
detection

Size threshold 0.005

Stereo block
matching

No. of disparities 256 Solver divide 7 Direction threshold 0.7
Win-size 17 Samples/node 1 Ratio: leaf location 0.25
Texture threshold 60 Surface offset 1

* Parameters vary depending on
Bilateral filter

Filter size 41 Face removal w.r.t. edge length 0.05
leaf shape

No. of iterations 10 Noise removal w.r.t. No. of faces 25

Table 3 presents average measurement accuracies in plant phenotype estimation using the features
extracted from 3D reconstruction when using the structured illumination system. Figures 11 and 12
show leaf detection accuracies (in terms of precision and recall) and plant height errors accordingly.
In Figure 11, the precision and recall were computed based on the number of correct detections (true
positive), the number of incorrect detections (false positive) and the number of missed detections (false
negative) to show the robustness of the detection. The leaf/leaflet detection accuracies were 93.75%,
100% and 100% for cabbage, cucumber and tomato, respectively. The main source of error in estimating
the phenotyping measurements in cabbage was because the cabbage plants had smaller leaves than the
cucumber and tomato. Additionally, cabbage leaves had greater curvature and vertical spread. Positive
and negative errors were presented in Figure 12 to explain that the actual plant height was mostly larger
than the estimated height. The average plant height error for all plants is 11.18 mm. The percentage
of error in Table 3 was computed as a normalized value, so that we could directly compare the results
between different types of plants. The average error in estimating leaf and internode features, as a
percentage of plant height across all three species was, 4.87%, 3.76% and 7.28% for leaf length, width
and internode distance, respectively. The main reason for the higher internode distance error was that
this distance was estimated based on the plant’s principal axis (as aforementioned in Figure 9), which
was approximated by the most dominant eigenvector of the plant. The approximation of the principal
axis by the dominant eigenvector was somewhat inaccurate when leaves or branches of the plant spread
unexpectedly in different directions.
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Table 3. Average accuracy in plant phenotype estimation from 3D reconstruction.

Plant Features Cabbage Cucumber Tomato Average

Leaf
height

Error (mm) 6.86 5.08 10.16 6.6
% error * 5.58% 4.36% 4.36% 4.87%

Leaf
width

Error (mm) 5.08 4.83 5.33 5.08
% error * 4.16% 3.9% 2.31% 3.76%

Internode
distance

Error (mm) 9.65 7.87 21.34 10.92
% error * 7.67% 6.3% 8.49% 7.28%

* Percentage of error over plant height.
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Figure 11. Evaluation of the number of detected leaves/leaflets in terms of precision and
recall, from the 3D reconstructed cabbage, cucumber and tomato plants.

Without structured light, many of the leaves of the plants in this study could not be matched correctly
using the block matching algorithm, as mentioned in Figure 5a,b, illustrating the benefit of enhancing
the visual texture of plants using structured illumination. In some cases, the leaves had sufficient natural
texture to allow successful stereo matching, as in Cucumber 2, 3 and 7. However, sometimes, the natural
texture was actually a defect, like a scar or insect damage on the leaf, that created the texture and was
not a feature of the plant, but of the environment. The system generally had to work with leaves where
the plants were healthy and had less leaf texture. A comparison of the algorithm performance between
plant images without and with using structured light to enhance the leaf texture is shown in Figure 13.
The disparity result obtained when using structured light was slightly better than that obtained without
using structured light in the leaf areas with less natural texture.
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Figure 12. Errors of plant height (calculated by differentiating the ground truth from the
estimated one) of the cabbage (a) and cucumber plants (b). Notice that plant height was not
determined for tomato compound leaves, because these leaves were imaged individually and
are parts of a plant.
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Figure 13. Comparison between without and with using structured light (SL) on textured
leaves. The disparity result of using SL is slightly better than that without using SL in
the regions of less natural textures (marked by red rectangles and ellipses). Note that the
colorized disparity images are presented here, instead of grayscale ones, for better illustration
of the differences.
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A comparison of the system performance for plants having different leaf sizes, leaf shapes and number
of leaves was conducted. Figure 14 shows the results for plants having big leaves versus plants having
small leaves, plants having curved leaves versus flat leaves, plants having many leaves versus plants
having fewer leaves and plants having long-shaped leaves versus plants having round-shaped leaves.
When comparing leaf size, we found that larger leaves are easier to detect than the small leaves. The
main reason for the superior detection of larger leaves is that, at the image resolution of 1920 × 1280
pixels, leaves having a size of 40 mm or less at a distance of more than 1.2 m were tiny objects in the
image, and they might give more errors in the stereo matching (with a predefined matching window size
for all kinds of leaves in a plant) and point cloud registration (clouds having more points were easier
for registration and reconstruction) steps. The internode distance error for the plants having small leaves
was significantly higher than for plants having big leaves. Estimation of internode distances was affected
by calculation of a plant’s principal axis. Big leaves spreading unexpectedly in different directions might
make the plant’s principal axis be appear at a different position than the plant’s stem; therefore, it yielded
higher errors in the estimation of internode distances. Leaf size errors were approximately the same in
the cases of “curved-leaf vs. flat-leaf”, “many-leaf vs. fewer-leaf” and “long-shaped vs. round-shaped
leaf”; indicating that leaf shape and the number of leaves did not actually affect the estimation. Note that
in the system, a plant was imaged from many different views in order to have the full shape of the leaves
in 3D; thus, it was presumed that acceptable 3D models of leaves were used for the feature extraction
step. However, internode distance errors were notably different for various leaf sizes, leaf shapes and
numbers of leaves. Curved and long leaves yielded high errors in the internode distance estimation.
Plants having fewer leaves gave highly accurate internode evaluation. Vertical error bars in Figure 14
confirm the significant differences between the internode distance errors in terms of leaf size, leaf shape
and the number of leaves.

In the present practice, plant phenotype features are manually measured by destroying the plant, with
high human time consumption. As reported in [39], it normally took more than 2 h for two people to
destructively measure the total leaf area of a single row of some large pepper plants. The study [19] stated
that manual phenotypic analysis required approximately 30 min per plant. It took an average of 20 min
per plant for manual measurement of our experimental plants. Our system, which is non-destructive,
fully utilized C++ and CUDA C languages to create a 3D model of a plant from five stereo image pairs.
It required approximately 4 min of processing time in total, which includes: less than 4 s (1.5% of the
total time) for transferring the images from the ten cameras via the USB to the computer (camera shutter
speed is 250 ms), approximately 5 s (2%) for plant segmentation, 0.3 s for stereo matching, less than
4 s (1.5%) for disparity bilateral filtering, 0.08 s for reprojection of disparity values to the 3D cloud,
180 s (75%) for cloud registration (variable depending on the number of data points and complexity of
the transformation between the source and target point clouds), approximately 40 s (17%) for Poisson
surface reconstruction and less than a second for leaf detection and 3D feature extraction. By utilizing a
GPU, plant segmentation was approximately 20-times faster than the CPU-based implementation [30].
The processing time of the block matching and disparity bilateral filtering was approximately improved
by 30- and 10-times [36], respectively. We plan to implement the steps of point cloud registration and
processing on a GPU for future deployment of the system, so that a total time of approximately 1 min
for a complete 3D plant model is expected.
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Figure 14. Comparison of the percentage of error in plant height estimation for plants having
different leaf sizes, leaf shapes and numbers of leaves. Errors for leaf length, leaf width and
internode distance were considered in order to understand which types of plant leaves yield
higher errors. From left to right, top to bottom: plants having big leaves versus plants having
small leaves, plants having curved versus flat leaves, plants having many versus fewer leaves
and plants having long-shaped versus round-shaped leaves.

It was not possible to directly compare the existing systems to ours where different plant features,
cameras and software configurations were used. Table 4 summarizes and compares various camera-based
3D reconstruction systems for plants in terms of their system configuration, features, methods, accuracy
and processing speed. Comparing and analyzing such systems enabled us to highlight their advantages
and disadvantages. Additionally, it allowed us to relate the performance of our system to the existing
ones via the percentage of absolute errors and total processing time. In terms of leaf detection, our system
yielded a substantially better accuracy (97%) than that of [18] (68%). Our plant height error, 8.1%, was
smaller than the 9.34% of [19]. The leaf width and height errors obtained from our system, 3.76% and
4.78%, greatly outperformed the 5.75% and 8.78% errors of [19]. Our full 3D reconstruction system
required approximately 4 min for the whole process from image capturing to plant feature extraction in
comparison to 20 min of [19] and 48 min of [22], respectively, where commercial 3D modeling software
were utilized. It took a minute for full 3D leaf segmentation and modeling in [13]. In a single view, the
systems in [14,39] required more than an hour and 5 min respectively, to process a large plant.



Sensors 2015, 15 18607

Table 4. Comparison of various camera-based 3D reconstruction systems for plants.

Study Camera System Camera View Measures Environment Techniques Accuracy Processing Time

Alenya, 2011 [13]

ToF and
color cameras;

robot arm
Multiview for
leaf modeling Leaf size Indoor

Depth-aided color
segmentation, quadratic

surface fitting,
leaf localization

Square fitting
error: 2 cm2

1 min for
3D leaf

segmentation

Chene, 2012 [18] Kinect camera Top view Leaf azimuth Indoor

Maximally stable
extremal regions-based

leaf segmentation

Detection
accuracy 68%;

azimuth error 5% n/a

Heijden, 2012 [39]
ToF and

color cameras Single view
Leaf size
and angle

Greenhouse
(for large

pepper plants)

Edge-based leaf
detection, locally weighted

scatterplot smoothing-based surface reconstruction

Leaf height
correlation 0.93; leaf
area correlation 0.83

3 min for image
recording, hours for
the whole process

Paproki, 2012 [19]

High-resolution
SLR camera,

with 3D modeling
software [20]

Multiview for
full 3D

reconstruction

Plant height,
leaf width
and length Indoor

Constrained region
growing, tubular shape

fitting-based stem
segmentation, planar-symmetry

and normal clustering-based leaf segmentation,
pair-wise matching-based temporal analysis

Plant height
error 9.34%;

leaf width
error 5.75%;
leaf length

error 8.78%

15 min
for 3D

reconstruction [20],
4.9 min for

3D mesh processing
and plant

feature analysis

Azzari, 2013 [15] Kinect camera Top view
Plant height,
base diameter Outdoor

Canopy structure
extraction Correlation: 0.97 n/a

Ni, 2014 [12]

2 low-resolution
stereo cameras

with 3D modeling
software [7]

Multiview for
full 3D

reconstruction

Plant height
and volume,

leaf area Indoor

Utilizing VisualSFM
software [7],
utilizing [40]
to manually

extract plant features n/a n/a

Song, 2014 [14]

Two stereo
cameras;

ToF camera Single view

Leaf area
(foreground
leaves only)

Greenhouse
(for

large plants)

Dense stereo
with localized

search, edge-based leaf
detection, locally

weighted scatterplot
smoothing-based

surface reconstruction Error: 9.3%

5 min
for the

whole process
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Table 4. Cont.

Study Camera System Camera View Measures Environment Techniques Accuracy Processing Time

Polder, 2014 [23]
3D light-field

camera Single view
Leaf and

fruit detection

Greenhouse
(for large

tomato plants)

Utilizing 3D
light-field camera
to output a pixel

to pixel registered
color image

and depth map n/a n/a

Rose, 2015 [22]

High-resolution
SLR camera,

with 3D modeling
software [41]

Multiview for
full 3D

reconstruction

Plant height,
leaf area,

convex hull Indoor

Utilizing Pix4Dmapper
software [41]
to have 3D

models, plant
feature extraction Correlation: 0.96

3 min for
data acquisition,

20 min for
point cloud generation,

5 min for
manual scaling,

10 min for
error removal

Andujar, 2015 [21]

4 Kinect cameras
with 3D modeling

software [42]

Multiview for
semi-full

3D reconstruction
Plant height,

leaf area, biomass Outdoor

Utilizing Skanect
software [42]

to have
3D models,

utilizing [40] to
manually extract

plant features

Correlation: plant
height 0.99,

leaf area 0.92,
biomass 0.88 n/a

Our system

10 high-resolution
SLR cameras
organized into
5 stereo pairs;
2 structured

lights

Multiview for
full 3D

reconstruction

Plant height,
leaf width
and length,

internode distance Indoor

Texture creation
using structured

lights, mean shift-based plant
segmentation, stereo

block matching,
disparity bilateral

filtering, ICP-based point
cloud registration,

Poisson surface
reconstruction, plant

feature extraction

Leaf detection
accuracy 97%;

plant height
error 8.1%,
leaf width

error 3.76%,
leaf length

error 4.87%,
internode distance

error 7.28%

4 min
for the

whole process
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5. Conclusions and Future Work

A multi-stereo digital imaging system for 3D virtual reconstruction of whole plants at the macro
level was successfully designed, fabricated and tested. The system uses ten high-resolution color
digital cameras set up as five pairs of stereo imagers, mounted on an arc superstructure designed for
field deployment. A custom-designed structured light pattern illumination system was developed to
improve the performance of the software algorithms and to obtain better 3D models and more accurate
phenotyping measurements.

The ability to produce 3D models of whole plants created from multiple pairs of stereo images
captured at different angles of view, without the need to destructively cut off any parts of a plant, was
demonstrated. These 3D models allowed phenotyping features, such as the number of leaves, plant
height, leaf size and internode distances, to be estimated. For plants having an appropriate leaf size of
greater than 38 mm and a distance between leaves greater than 50 mm, the algorithms work successfully
with an accuracy of more than 97% for leaf detection and less than a 13-mm error for estimating plant
and leaf size and internode distance.

Future work should include: (1) automating and synchronizing the cameras and structured lights,
so that the system can be deployed in the field; (2) adding more structured lights and increasing their
projection range to help in reconstructing larger and more complicated plants; and (3) optimizing the
algorithm parameters to support a wider range of plant species with less parameter tuning.
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