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Abstract

Combining Data-driven models with Physics-based Approaches for Computational
Molecule Characterization and Generation

by

Jie Li

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor Teresa Head-Gordon, Chair

Theoretical studies of molecules have historically relied on deterministic algorithms, stochas-
tic simulations, and physical models. Recently modern data-driven methods are starting
to infiltrate into various fields of molecular science, opening new possibilities for solving
problems that are difficult to tackle through traditional approaches. The accumulation of
data, advancement of machine learning algorithms and improvement in hardware enables a
plethora of data-driven approaches to surpass traditional methods in terms of accuracy and
efficiency, but questions remain about how well these data-driven methods can generalize to
unseen data to do true prediction. In this dissertation, I will show that when data-driven
models are combined with physics-based approaches, through either feature design, or ex-
erting constrains on the machine learning models, new standards can be established in the
fields of molecule characterization and generation.

Nuclear magnetic resonance (NMR) chemical shifts (CS) are extremely sensitive to the local
atomic environments for different nuclei in a molecule, and therefore is a common technique
in molecule characterization. In chapter 2, I focus on the design of the UCBShift predictor
for CSs for proteins in aqueous solution. The UCBShift method uniquely fuses a trans-
fer prediction module, which employs sequence and structure alignments to select reference
chemical shifts from a database, with a machine learning model that uses carefully curated
and physics-inspired features, to predict CSs for proteins with higher accuracy and better
reliability compared to all popular methods such as SHIFTX2 and SPARTA+. This chap-
ter further delineates how UCBShift benefits from realistic data that has not been heavily
curated, and surpasses existing CS calculators in terms of real-world performance without
eliminating test predictions ad hoc.

However, in order to achieve rigorous and consistent improvement for an arbitrary molecular
system, carefully curated feature sets specifically for proteins can be limiting, and we seek
features from theoretical calculations. In Chapter 3 I describe the development of a novel
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neural network model which employs quantum mechanical (QM) features from affordable
Density Functional Theory (DFT) calculations, along with geometric features of the molec-
ular systems, to predict NMR chemical shieldings. The resulting iShiftML model predicts
chemical shieldings approaching the highest level of accuracy under the modern theoreti-
cal framework of CCSD(T) in the complete basis set limit, but without the computational
burden that limits its applicability to large systems. Not only does the iShiftML model
demonstrate excellent predictive performance when compared with small molecule gas phase
experimental CSs, but it also offers a capability to predict chemical shifts for much more
complex natural products, and can be used for differentiating diasteromers based on chemi-
cal shift assignments. This chapter unveils new possibilities for integrating machine learning
and QM calculations for accurate and transferable molecular characterization.

In Chapters 4 an 5, my research addresses fundamental issues for large and small molecule
generation relevant to proteins and drug molecules. Chapter 4 describes the Int2Cart method
that uses a recurrent neural network to predict the correlations between bond lengths, bond
angles and backbone torsion angles and amino acid sequence of a protein. By incorporating
these correlations, proteins reconstructed from just torsion angles display not only physically
more accurate bond lengths and bond angles, but the reconstructed proteins are closer to
their crystal structures than under the common assumption that bond lengths and bond
angles are fixed, or that coming from a static library that only relies on local residue geome-
tries. I have also shown potential applications of this method in estimating model quality for
AlphaFold2 predicted structures, and reconstructing intrinsically disordered protein (IDP)
ensembles with decreased steric overlap. Chapter 5 describes the combination of deep gen-
erative networks trained by reinforcement learning and physical docking study. I developed
the iMiner method, which generates de novo drug-like molecules with an augmented binding
potency towards specific protein targets, facilitating the discovery of potential new therapeu-
tic targets. SARS-COV-2 Main Protease was used as an example to show that our generated
molecules cover a broader chemical space than crowdsourcing efforts, and the newly gener-
ated molecules exert optimized interactions and correct shape for the compatibility with the
binding pocket.

To summarize, this dissertation contains multiple methods that harmonize data-driven mod-
els and physics-based approaches in the area of NMR spectroscopy, protein structure mod-
elling and de novo drug discovery, which provides a new perspective for researchers striving
to leverage computational methods in molecular science and chemical biology.
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CHAPTER 1

Introduction

Computational chemistry has undergone a transformation under modern developments of
data and machine learning (ML) algorithms, illuminating new paths to tackle theoretical
chemistry problems that previously did not have a straightforward solution.[1, 2, 3, 4, 5, 6,
7, 8, 9, 10, 11, 12, 13, 14, 15] Unlike the clear layout and formulation of model equations
to describe a molecular system, and a well-defined progression of numerical steps to reach
solution (deductive reasoning), ML instead uses a “non-algorithmic” formulation to “train”
parametric or non-parametric models from a great abundance of data[16], so that new pre-
dictions can be made from data inference (inductive reasoning). Because the fundamentals
of modern ML are statistics and pattern matching, the generalizability of a ML model de-
pends on both the amount of data used for training models, and the formulation of data
representations and/or model architectures that better exploits that data.

Given the accumulation of more and better quality data, along with improvements in
theoretical methodologies and hardware that can generate high quality data with unprece-
dented speed, modern ML methods are often based on large neural network (NN) models
with a huge amount of parameters, which distinguishes them from early-day ML methods
that rely on much simpler model architectures.[17] However, that does not mean modern ML
methods are universally better than simple models and statistical approaches for chemical
applications, especially when existing data are scarce, or generation of new data is time
consuming.[16] Depending on the amount of data available, some of the most successful and
popular ML approaches used for chemical science applications today also include statisti-
cal learning methods that are based on decision trees together with ensemble learning and
gradient boosting, exemplified by random forest[18] and XGBoost[19] approaches; kernel
based methods that have evolved from support vector machines (SVMs)[20] to kernel ridge
regression (KRR)[21] and Gaussian process regression (GPR)[22]; and deep learning models
spanning from fully-connected NNs to more advanced architecture designs, including con-
volutional neural networks (CNNs)[17], recurrent neural networks (RNNs)[23], graph neural
networks (GNNs)[24], and most recently large pretrained transformers like ProteinBERT[25],
TAPE[26] and ESM[27].

Along with ML methods that were mainly developed by statisticians and computer sci-
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entists, more domain-specific ML research in chemistry includes better representation of the
molecular systems in terms of more physical descriptors of molecules and model architectures
that encompass constraints based on physical laws.[28] For example, physically inspired fea-
ture representations may find less discrepancy between molecules used for training and those
that extrapolate to real-world predictions. The recognition of fundamental symmetries of
a certain molecular property, such as invariance or equivariance under translation, rotation
or permutation operations may also greatly help reducing data requirements for training,
and improving performance of the final model.[29, 30, 31] Finally, ML models designed with
physics in mind are usually more interpretable in regards the theories behind them compared
to “black-box” ML models that we neither fully understand nor have close control over in
how they work.[32]

While ML methods have achieved better accuracy and improved efficiency for molecu-
lar characterization applications, molecule generation is a whole new area of research that
has been fully empowered by the accumulation of data and advancement of deep learning
generative models.[5] ML models can now “learn” from distributions of data with properties
of interest, and propose new molecules with similar properties. When combined with an
evaluation metric, a feed-back loop can be established that automates the generation of new
molecules with even better properties[33, 34, 35, 36], revolutionizing areas where designing
new molecules with better characteristics is the main purpose, such as materials science,
catalyst design and drug discovery.

In this introduction chapter of my dissertation, I will describe my research work at
the frontline of combining data-driven models with physics-based approaches for molecule
characterization and generation. First, I will give theoretical background about machine
learning and how it has been broadly applied in the molecular sciences. I will then introduce
physics-inspired ML models for molecule characterization, exemplified by the prediction of
experimental nuclear magnetic resonance (NMR) chemical shifts for aqueous proteins [37]
and computed chemical shifts from theoretical models for arbitrary molecular system with
H, C, N and O atoms.[38] I will also briefly discuss how ML can be used for automatically
analyzing transmission electron microscope (TEM) images for nanoparticles and identifying
morphologies of synthesized products without human intervention.[39] Next I discuss how
proteins can be rebuilt with higher quality using only torsion angles, by predicting more
accurate bond lengths and bond angles from learning their correlations with torsion angles
and amino acid sequence.[40] Finally, I present how a deep learning generative model when
combined with physical docking simulations and empirical drug-likeliness metrics, can gen-
erate chemically diverse molecules that have optimized shape and non-bonded interactions
with a target protein pocket of interest.[36]
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1.1 Machine learning models for chemistry†

Many modern ML models are based upon artificial neural networks (ANN), architectures
that mimic the neuronal connections in a mammalian brain, that perform successive lin-
ear transformations and non-linear activations of input data to approximate an arbitrary
function. In the context of molecular characterization, this architecture best describes a
supervised learning task of predicting molecular properties from input representations of a
molecular system, such as a protein, a crystal structure, or a drug molecule, etc. The term
“supervised learning” corresponds to a set of labelled data on which the model is trained in
order to minimize the error for the mappings between input features and the target outputs.

The most basic computing element of an ANN, the simple perceptron[41], is capable of
performing linear or logistical regression and classification with appropriate activation func-
tions (Figure 1.1), and can perform Boolean operations such as the simple OR and AND
functions. A slightly more complex architecture is needed when executing the exclusive XOR
function that requires a pre-processing “hidden” layer between the input and output layers
to appropriately define the linear decision boundaries that separates its solution space. Such
early shallow ANN architectures, using everything from hand-crafted features to molecular
structures, have successfully predicted more than 20 different types of physiochemical prop-
erties of a molecule, such as water solubility, Henry’s law constant, heats of formation, and
crystal packing.[42]

The universal approximation theorem states that a single hidden layer with many simple
perceptrons and suitable activation functions can represent any function of {x} to predict
f(y|{x}), regardless of complexity or how non-linear is its solution space. However what is
not guaranteed is that there is a universal procedure for how to learn the transformation
{x}→ f(y|{x}) using a single layer architecture, nor what is the best feature representation
of {x} to ensure that it will perform well on previously unobserved target function data. The
DL network learns the input-output representations by minimizing a loss function through
adjustments of the weights that connect the neuronal nodes of its architecture. Hence most
of the recent excitement in ML is centered around deep learning (DL) architectures, an
approach that replaces a single hidden layer with many, many hidden layers, each composed
of many artificial neurons, and the rapidly evolving meta-heuristics used to calculate with
them.

One of the most classical examples of a DL architecture are the CNNs that were originally
introduced and popularized by LeCun for handwriting and other image recognition tasks[43].
CNNs are neural networks that use convolution operations (in actuality a cross-correlation
operation) in place of general matrix multiplication (as in standard ANNs) in at least one of
their layers. During the learning process the convolutional layers typically generate multiple
feature maps that when aggregated together represent new formulations of the input data.

†Partly reproduced with permission from: Haghighatlari M*, Li J*, Heidar-Zadeh F*, Liu Y, Guan X,
Head-Gordon T. Learning to make chemical predictions: the interplay of feature representation, data, and
machine learning methods. Chem. 2020, 6(7):1527-1542. (* denotes equal first authors)
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Figure 1.1: Illustration of using convolution neutral networks to predict magnetic properties
of a molecule. The use of a simple perceptron of an ANN as part of the transformation of a
3D representation of a molecule with convolutions accumulated through layers of a CNN to
yield atomic magnetic properties in a molecular framework, such as a chemical shift
prediction.
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Figure 1.1 pictorially displays how the input data is “transformed” by the processing units
of the convolution through many layers. In order to aid the learning strategy of a CNN,
the sparser L connections between L convolutional layers have been recently replaced by a
“denser” network of L(L+1)/2 direct connections, also known as a “DenseNet”[44]. In this
case the feature maps of all preceding layers are used as inputs to a current convolution
layer, and its own resulting feature maps are then used as inputs into all subsequent layers
of the deep layered architecture.

In addition, many sequential models that have been designed for natural language or tem-
poral data processing have also proven useful for chemistry applications. Small molecules
can be represented as 1-dimensional strings using SMILES[45], InChi[46] or SELFIES[47],
and protein sequences can be resembled as another “language” using the 20 amino acids
as its alphabet. Therefore, sequential models like RNNs and transformers that can easily
capture spatial-temporal correlations are highly appropriate for molecular systems. The la-
tent representations of the molecules after encoding by an NN can be used for predicting
atom or molecule level properties. Alternatively, the latent representations can be used to
decide which token is the next one by sampling from a predicted token distribution using
partial strings as input, and predict (or sample) tokens in an auto-regressive manner. Most
recently, large language models that have human-level understanding of the physical world
are created using combinations of un-supervised pre-training and fine-tuning techniques such
as reinforcement learning. Many of these techniques are also applicable in the chemical sci-
ences, enabling sequential generative models to design new molecules with certain properties
that we need.

It might be most intuitive to consider molecular structures as graphs, in which each atom
defines a node and bonds between atoms defines edges. For 3-dimensional conformations of
molecules, they can also be considered as fully-connected graphs with atomic distances as
edge features. Therefore, graph neural networks (GNNs) build physical inductive biases in
the models to allow them to surpass other NN architectures in various molecular property
prediction tasks, including QM properties such as energies and forces[48, 49, 50, 51, 52], phys-
iochemical properties such as hydrophobicity [53, 54, 55] or toxicity [56, 57, 58]. Recently,
building equivariance properties into GNNs has been proven to help reduce the amount
of data needed for training, allowing models to be trained with more expensive ab inito
data. Physics-constrained equivarient models have been introduced, such as NequIP that
based upon spherical harmonics for convolution filters[29], NewtonNet that borrows NN
design from Newton’s equations[30], and PaiNN that directly builds equivariance into the
model[31].

The primary distinction of a DL architecture is its much greater network capacity rela-
tive to early ANN’s, and thus its greater advantage in handling much larger data sets than
previously possible. The DL approach has also advanced through learning heuristics that
are better established relative to early ANNs[59]: regularization through choice of appropri-
ate loss functions, back-propagation and back-propagation through time, data augmentation
using noise injection or non-linear transformations, and the use of dropout and batch nor-
malization; adaptive learning strategies that bear strong equivalence to a Newton step using
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preconditioners that are combined with stochasticity in the gradients as per methods like
RMSProp[60] and Adam[61]; and finally the finetuning of the “hyperparameters” in all of
these learning choices through formulations of validation data sets and through methods
such as early stopping and ensemble prediction.

As such, DL is ready for prime time in the chemical sciences as their architectures can
be adapted to many types of problems, their hidden layers reduce the need for feature
engineering, and they have benefited from several important regularizations that allows them
to efficiently learn from high-dimensional data. At the same time DL approaches are not
always suitable as general-purpose ML methods because they have orders of magnitudes
more parameters to optimize and thus require much more expertise to tune (i.e. to set the
architecture and optimize the hyperparameters), and especially because they require a very
large amount of well-curated labelled data. We note that a DL model is characterized as
being overfit when the test error increases from the minimum of the bias-variance trade-off
curve[59], reaching a maximum when the DL model is merely interpolating on the training
data. However, very recent work has shown that increasing model capacity beyond the point
of interpolation results in improved performance for reasons that are not well understood.[62]

Alternatively, machine learning methods such as GPR and KRR can be traced back to
the advent of Support Vector Machines (SVMs), which formulate a clever choice of kernel
to capture the similarities of a collection of data points. If the optimal kernel is found, the
simplest linear regression is sufficient to predict the target value from its input data using
similarity to the input features of the training dataset. As such kernel methods are powerful
supervised classifiers that optimize non-linear decision boundaries directly. They have been
found to be superior to multiple linear regression and radial basis function neural networks
when applied to chemical toxicity prediction for example[63]. More recently, KRR has re-
alized excellent performance on regression prediction for molecular properties such as NMR
chemical shifts for small molecules either in solution[64, 65] or in the solid state[66]. In this
case the physical understanding of a chemical system helped in the creation of a reasonable
kernel function. Specifically the SOAP kernel[67] is explicitly designed to faithfully represent
an atomic environment of a molecule with uniqueness. Furthermore kernel methods natu-
rally incorporate symmetry functions for which it is often desirable to enforce translational
or rotational invariances that may be relevent to the chemical prediction[67, 68].

While kernel methods work very well in practice, and are robust against overfitting even
in high-dimensions, they are tricky to tune due to the importance of picking the right kernel,
and if the kernel function is not smooth enough in the space of the atomic environment,
the resulting kernel-based method will suffer from outliers in the training dataset that will
degrade prediction performance. They also require the storage of and operation on all of
the support or feature vectors, which can be prohibitive for application to large datasets.
Especially in the case of KRR and GPR, because the similarity kernel needs to be applied
between the pairwise features with all data examples in the training dataset, its unfavorable
scaling with the number of training examples prevents it from benefiting from large datasets,
although a number of strategies including parallelization can mitigate their cost[69].

Often statistical models such as decision trees are preferred over kernel methods as they
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are more robust to outliers, are much more computationally scalable, and do not require
the luck of finding the kernel function as they quite naturally model non-linear decision
boundaries thanks to their hierarchical structure.[59] In a statistical learning model such as
decision trees, training comprises the optimal splitting of the features driven by a decrease
in the maximum entropy loss function from information theory. Decision tree models are
equally suited for big or small datasets because once the cutting points have been identified,
the application of the algorithm to new data is just a constant of time. The classification or
regression prediction from a statistical model are also easier to interpret compared to other
parametric models, because the splitting reveals causal relationships which are easy to un-
derstand and explain. For example, by analyzing the number of times each feature is used in
a node to split data in a decision tree, we can understand the relative importance of different
features and to determine those that are most influential for the predicted property[70]. But
of all machine learning techniques, decision trees are amongst the most prone to overfitting
because we cannot know a priori how to formulate the smallest tree that completes the
learning task, and all practical implementations must mitigate this challenge. This has led
to specialized approaches such as pruning or bagging and boosting to prevent overfitting, as
well as other regularization techniques also developed in deep learning such as early stopping
and ensemble learning for which decision trees benefit from becoming “random forests”[59].
Statistical learning models have been successfully applied to molecular property predictions,
as in the example of modeling of different quantitative structure-activity relationships with
a decision tree based on random forest optimization[71], and are starting to replace the use
of SVMs in classification tasks more broadly.

1.2 Physics-inspired machine learning models for

chemical shifts prediction

NMR chemical shifts are highly sensitive observables dependent on 3-dimensional atomic
details and environment of a molecular system. Due to its high accuracy from experimental
measurements and high sensitivity to molecular compositions, detailed geometries, short-
range atomic environments, and long-range ring currents, NMR chemical shifts have been
widely used by experimentalists to model structures or validate structure correctness in
systems ranging from small organic molecules to large biopolymers, both in crystalline form
and in solution phase.[72, 73, 74, 75, 76]

However, it is not always straightforward to directly utilize the information contained in
an NMR spectrum. Atoms that have similar atomic environments will be hard to distinguish
using chemical shifts alone, and it is usually a painstaking step to assign various peaks
from an NMR spectrum to individual atoms in a molecule. Furthermore, measured NMR
signals only reflect highly averaged properties from rapidly evolving dynamic conformations
of the molecules, which makes it more challenging to elucidate the relationship between
measured chemical shifts and a static molecular picture. Therefore, computational methods
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are indispensable tools to help scientists utilize experimental NMR chemical shifts more
efficiently and easily.

When a molecule with atoms that have non-zero nuclear spin is under a uniform magnetic
field, the orbital motions of the electrons create an electric current which generates an induced
magnetic field according to the formula[77]

Bin(r) =
1

c

∫
d3r′j(r′) × (r − r′)

|r − r′|3
(1.1)

where j(r) is the electric current that scales with the external magnetic field Bext. The
relationship between Bin and Bext can therefore be described as:

Bin(r) = −σ̂(r)Bext (1.2)

The magnetic shielding tensor elements σab describe the influence of the external field on
the induced field at different Cartesian directions, and can be evaluated by[78]:

σab =
d2E(MA,Bext)

dMA
a dBb

∣∣∣∣
Bext=0,MA=0

(1.3)

where E is system energy, MA is the nuclear spin of nucleus A, “d” stands for total derivative,
and a, b correspond to Cartesian indices.

Due to the ensemble averaging effect in most experimental NMR measurements, only the
isotropic component of the chemical shielding tensor is observed. Therefore, the isotropic
chemical shielding value σ is defined as the mean of the diagonal elements from the whole
shielding tensor[78]:

σ(r) =
Tr[σ̂(r)]

3
(1.4)

Finally, the most widely used concept of chemical shifts are defined as the chemical
shielding offset between the nucleus under investigation and that of a standard substance,
usually tetramethylsilicane (TMS) for 1H and 13C chemical shfts. Namely,

δ = σref (r) − σ(r) (1.5)

These set of equations completely describe the relationship between a fixed molecular con-
figuration {r} and the chemical shifts for each atom in the molecule, with good accuracy
assuming the energy of the molecule E can be calculated with high quality theory. However
two issues arise that make NMR CS predictions difficult: (1) First, highly accurate calcu-
lations of chemical shielding tensors from first principles can be prohibitively expensive for
large molecular systems of interest, and (2) the calculations may not account for external
factors such as solvation effects, vibrations in the molecular geometries, and the conforma-
tional flexibility of the molecules. Various empirical tools have been developed to mitigate
these difficulties. [79, 80, 38] Specifically, I will present two physics-inspired data driven
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approaches to improve the accuracy and efficiency of chemical shift predictions and their
applications in real world structure identification.

In the first application we explore how to improve accuracy and robustness for chem-
ical shift calculations for aqueous proteins. Existing methods like SPARTA+[81] and the
SHIFTX+ component of SHIFTX2[82] uses backbone geometric features such as bond torsion
angles and residue biological similarity properties like block substitution matrix (BLOSUM)
numbers to predict chemical shifts using simple feed-forward neural networks or Bagging and
Boosting ensemble models. SHIFTX2 also took advantage of existing experimental databases
and introduced an alignment-and-transfer technique to fully exploit sequence homology and
make more accurate predictions.[82] Specifically, engineered features that are insensitive to
the instantaneous conformations of a protein in the thermalized ensemble while still having
sufficient discriminatave power for chemical shifts of nuclei in different atomic environments
are ideal to build into a model that reproduces experimental chemical shifts in a complex
aqueous environment. For example, categorical features like whether a residue is involved
in a hydrogen bond, or the secondary structure type of a residue are “stable” features that
are consistent among different conformations of the structure in the ensemble while distinct
enough to aid the differentiation of chemical shifts for different atoms in the molecule.

Built upon this idea, Chapter 2 describes the UCBShift method that combines a tree-
based ensemble regression model using stable features extracted from high quality protein
X-ray crystal structures and a structure homology based alignment method.[37] I have used
numerical and categorical features extracted from the geometries and biophysical proper-
ties of a tripeptide to predict backbone atoms and sidechain β-carbon chemical shifts of the
central residue. The features were designed with uniqueness, universality and ease of calcula-
tion in mind, which include backbone and sidechain torsion angles, BLOSUM numbers that
represent likelihood of residue substitution, secondary structure assignments using DSSP
program[83], hydrogen bond geometries, as well as many non-linear transformations and
combinations of geometric features inspired by physical models. These features are unique
to the protein structure itself, as well as being invariant to the translation and rotation
and hence being universal for the molecular fragment of interest. We have also taken into
account crystal waters in the evaluation of relevant features like hydrogen bond geometries
to allow more faithful reflection of the physical nature of solvation. Furthermore, we have
redesigned a structure based alignment module to directly transfer the chemical shifts from
the experimental database to the query protein when the structure homology is sufficiently
high. The resulting UCBShift algorithm achieved significantly lower root-mean-square-error
(RMSE) when compared to SPARTA+ and SHIFTX2 when evaluated on an independently
generated test dataset, and has shown superior capability to select the native state from
misfolded decoys in two test examples.

Such feature extracted methods are ideal for the molecular systems they have been de-
signed for, but they are not expected to generalize to a different system. For example, the
chemical shift predictors for aqueous proteins cannot be used to predict chemical shifts for
small organic molecules in the gas phase, for example. By contrast, QM methods can be much
more rigorous and predictive regardless of the application domain. The gold standard for QM
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is coupled-cluster theory with single and double excitation and perturbative-approximated
triple excitations [CCSD(T)] when combined with a complete basis set (CBS) or a suffi-
ciently large one for various molecular properties calculations, including magnetic properties
such as chemical shieldings.[80, 84, 85] The issues with this method is its extremely unfor-
giving scaling with system size, which make any calculation using CCSD(T)/CBS essentially
impractical for systems with more than 10 heavy atoms using current day computers. Alter-
natively, one could employ density functional theory (DFT) using gauge-including projector-
augmented waves (GIPAW) to calculate chemical shieldings.[86] While these methods have
a much more acceptable scaling, their accuracy are far from ideal (likely due to the fact
that Kohn-Sham theory does not address magnetization properties), which also limits their
applications.[87, 88, 89] Some existing work has tried to bridge these two QM approaches
using ML, mostly by exploring the ∆-learning idea of using low level DFT to learn CCSD(T)
as a correction. The work by Unzueta, et al. uses the atomic environment vector (AEV) as
geometry-dependent features to predict the difference between a cheap DFT calculation with
small basis set and one with the same DFT theory but a large basis set[79], while Büning
and Grimme take one step further in predicting the difference between DFT and CCSD(T)
level chemical shifts for small molecules.[80] In a different route, Guan, et al. employed the
idea of transfer learning to train their model first on DFT calculated chemical shifts and
then fine tune with experimental data.[90]

In chapter 3, I present our development of the iShiftML method, a machine learning ap-
proach that better connects to the physical nature of chemical shieldings, predicting close to
CCSD(T) level chemical shieldings from intermediate QM magnetic tensor elements calcu-
lated from a cheap DFT calculation, (i.e. ωB97X-V/pcSseg-1).[38] The diamagnetic (DIA)
and paramagnetic (PARA) shielding tensor elements from the DFT calculations, together
with geometric-dependent atomic environment vectors (AEVs) were used as input features
into a feed forward NN to predict the weights of these low level matrix elements, and the
final chemical shielding prediction is given by multiplying these predicted weights with the
matrix elements. When trained through a novel active learning workflow that progressively
adds most underrepresented data containing more heavy atoms into the training dataset,
we can consistently improve model performance while keeping minimal cost on calculating
chemical shieldings using high level QM approaches.

Since the features utilized in this model are quite universal, our model illustrated excep-
tional generalizability in subsequent comparisons to experiments for systems that are much
bigger than any molecule included in the training dataset. We demonstrated near 50% er-
ror reduction in predicting chemical shifts compared with the same low-level theory used
to provide input features for the model on natural products that contain several dozens of
heavy atoms and complex ring systems, although our model has been trained with at most 7
heavy atoms without complicated bonding. This superiority was also reflected in our model’s
capability to recognize the correct structure of a natural product from its diastereomers, by
inspecting the difference between calculated chemical shifts for the assumed structures and
the experimentally measured chemical shifts.[38]
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1.3 Unsupervised characterization of transmission

electron microscope images

In addition to performing regression tasks on numerical observables, data-driven models
can also enable new applications such as image analysis. Transmission electron microscopy
(TEM) is a widely used experimental technique to characterize the morphology of nano-scale
materials, such as metal nanoparticles (mNP). The rapid advancement in automated high-
throughput electron microscopy enables the collection of TEM images at an unprecedented
speed, which allows the scale of NP shape characterization to increase by orders of magnitude,
which far exceeds what a human analyst is able to process.[91, 92, 93, 94] Hence, data-driven
methodologies for image analysis can play an essential role here.

A fully automated algorithm for TEM image analysis should be able to perform two tasks:
particle detection, which includes identification and segmentation of particles of interest,
and information extraction, which generally involves the characterization of the shapes of
the particles based on their aspect ratios and other such attributes. Multiple algorithms
exist for automatic particle detection.[93, 95, 96, 97, 98, 99, 100, 101, 102, 103] However,
these algorithms do not explicitly consider the differentiation between particles with different
shape attributes, which might limit their application to only analyzing homogeneous samples
and not suitable for analyzing TEM images that may contain particles with multiple shape
morphologies. Existing algorithms that are capable of classifying particles based on shape
attributes usually requires predefined shape categories and is therefore not applicable to
unexplored NP systems with the synthesis outcomes unknown a priori.[97, 98, 101, 102]
Therefore, an unsupervised algorithm that is capable of automatically analyzing TEM images
without human intervention would be beneficial to address the pressing needs in greater
automation in the material sciences.

In a collaboration with Wang and Alivisatos, we have developed the AutoDetect-mNP al-
gorithm that automatically extracts particle shape features from a collection of TEM images
and clustering the particles based on shape attributes, requiring minimum human input in
the process.[39] Figure 1.2 describes the process of the algorithm. We have provided flexibil-
ity in the particle detection algorithm, because different NP systems might require different
particle detection attributes to achieve optimal performance. Multiple shape features were
extracted from the recognized particles, including solidity, convexity, area, eccentricity, as-
pect ratio, and circularity.[104, 105, 97, 106, 107] Based on the convexness of the recognized
particles, some irregular particles were further broken down using the ultimate erosion of
convex shapes (UECS) algorithm[102], while the other “particles” due to failed detections
were discarded.

Particles were then classified based on the four geometrical shape descriptors using K-
means clustering followed by naive Bayes classification. The K-means step determines the
mean and standard deviations of the descriptors in each category, and each extracted particle
was classified into one of the K classes that maximizes the joint probability of all geometric
descriptors belonging to that class. To enable fully automatic clustering of particles into the
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Figure 1.2: Scheme of the AutoDetect-mNP algorithm. The algorithm can be divided into
four parts: particle detection, feature extraction, filtering and resolution of irregularly
shaped particles, and classification of particle shapes.†

optimal number of classes, we have also introduced the Pmax metric to determine K values
according to data distributions. Pmax is defined as the maximum off-diagonal element from
the confusion matrix P (K), where

Pij =
E[pj(xi)]

E[pi(xi)]
, i, j ≤ K (1.6)

with pi(x) describes the likelihood of data point x belongs to class i. Therefore, Pmax is
the maximum relative probability that any particle is erroneously classified into a different
category. The optimal K that minimizes Pmax means that the number of categories identified
from the dataset ensures any pariticle has a minimal chance of being assigned to the wrong
category. Finally, the number of particles in each category was calculated, and features of
the classified particles were further analyzed.

The novelty and uniqueness of our algorithm resides in the fact that we are able to
cluster and classify extracted particles in a completely unsupervised and automatic fashion
such that there is no need to pre-define the shape categories that exist in the dataset.
We also do not require training a parametric model using human-labelled data that are
both labor intensive and prone to biases. The results of the AutoDetect-mNP algorithm
was first evaluated on two data sets of gold nanoparticles (AuNPs) with different shapes
comprised of short and long rods and triangular prisms. When compared with two previous

†Figure reproduced with permission from: Wang X*, Li J*, Ha HD, Dahl JC, Ondry JC, Moreno-
Hernandez I, Head-Gordon T, Alivisatos AP. AutoDetect-mNP: an unsupervised machine learning algorithm
for automated analysis of transmission electron microscope images of metal nanoparticles. Jacs Au. 2021,
1(3):316-327. (* denotes equal first authors)
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methods[97, 102], our algorithm has showed to be the most accurate in determining the
counts of NPs with different morphologies from a collection of 20 TEM images, and our
method is the only one to differentiate between long and short rods. Furthermore, we
also found our algorithm runs significantly faster than previous methods, which enables
our method to be applied to larger datasets and images with higher resolution to avoid
information loss. We have also demonstrated successful applications of AutoDetect-mNP to
more challenging NP systems beyond AuNPs, which showed that our algorithm can serve
as a general and unbiased metric for reporting shape and shape attribute distributions of
various mNP systems using TEM or similar image acquisition strategies. This development
facilitates future research on automated platforms for high-throughput mNP synthesis and
time resolved characterization of mNP reactivity.

1.4 Better modelling of protein structures using

machine learning

Deep learning modelling of molecular structures has been an especially important and popu-
lar application of data-driven models in molecular science. This is illustrated by the success
of AlphaFold and similar models in predicting protein structures with atomistic accuracy
from 1-dimensional amino acid sequences. The strength of these data-driven models present
in solving problems that are difficult to tackle with traditional methods.[108, 7, 109, 27]
Unfortunately, many of these applications utilize “black box” models that do not have a
straightforward explanation on why they work, nor can we obtain physical insight from
these models.

For the purpose of protein structure modelling, internal coordinates of a protein provide
a compact description of the protein geometry, which is frequently used during geometry
optimizations and NMR structure determination.[110] Due to the relatively small varia-
tions of bond lengths and bond angles in a protein, they are often treated as fixed values
in many protein modelling applications, such as fragment-based protein folding and loop
modelling.[111, 112] This treatment indeed reduces the complexity of the problem, but also
risks decreased accuracy when building models with less degrees of freedom.

These missing correlations among internal coordinates can be largely recovered using a
deep neural network, and by considering these subtle correlations between internal coordi-
nates, more accurate protein structures can be reconstructed from torsion angles alone.

As I will show in Chapter 4, we found there are meaningful correlations between bond
lengths and/or bond angle variations with backbone torsion angles and amino acid type.
The Int2Cart method predicts bond lengths and bond angles of a protein given the back-
bone torsion angles and amino acid types.[40] Specifically, the DL model exploits a statistical
analysis of a large collection of protein structures in the Protein DataBank, from which we
found strong correlations between backbone bond lengths and bond angles with backbone
torsion angles ϕ, ψ and ω. Even though the observed distributions of backbone bond lengths
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and bond angles did not show significant variation between amino acid types, further break
down of the bond length and angle distributions as a function of both backbone torsions and
residue type exhibit notable variations across all 20 amino acids. To capture deeper corre-
lations beyond a single residue, we have trained a recurrent neural network (RNN) model to
predict accurate bond lengths and bond angles in the backbone by taking torsion angles and
amino acid types as input. The predictions were then used to rebuild the protein structures.
We found that we could significantly reduce error in bond length and bond angle predictions
when compared with that assuming fixed values for these geometric characters, but more
importantly the reconstructed protein structures illustrate less structural discrepancy when
compared with the crystal structures, both in terms of reduced backbone root-mean-square-
deviation (RMSD), and diminshed loss of secondary structure. We have also showed the
superiority of our model compared to a method that uses bond geometries dependent on
localized torsion angle and amino acid information on a single residue.[113]

Finally, the usefulness of the Int2Cart algorithm was demonstrated in two applications.
We first show that the agreement between predicted bond lengths and bond angles from
Int2Cart and those from an AlphaFold2 modelled structure indicate model quality in terms
of AlphaFold2’s internal confidence estimations, which supports using Int2Cart for structure
validation and refinement. Second, the method was tested on an intrinsically disordered
protein (IDP) ensemble showing that it is able to decrease structure modelling error as well
as reducing steric clashes. This result indicates the method is generalizable to a different
type of proteins than folded ones.

1.5 Deep generative models for drug discovery

The discovery of new molecules has traditionally relied on general chemical principles aided
by domain expertise. Even though various theoretical models and computational tools ex-
ist, they typically aid as opposed to replicate an expert chemist’s capability to design new
molecules. This was the state of affairs until recently with the advent of deep learning mod-
els that also demonstrate versatility in generative tasks such as new molecule generation.[5]
Given that molecular structures can be represented as computer-readable data (strings,
graphs), combined with the accumulation of molecules in public databases, it is less surpris-
ing that a well-trained ML algorithm is able to generate novel molecules that have never
been proposed before; this is especially the case for drug discovery.[114, 115, 116, 117, 118,
119, 120, 121, 122, 123]

The true power of these generative models is their potential to be fine-tuned using ex-
ternal feedbacks. Reinforcement learning (RL) is a quite successful technique to improve a
generative model when coupled with an external evaluator. In terms of drug discovery, gen-
erated molecules can be evaluated through in silico docking simulations, which evaluates the
potency the molecule binds with a given biomolecule target. Due to the computational cost
of docking simulations, many previous algorithms have trained a separate machine learning
model to predict the binding potency of a generated molecule to a biological target using
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experimental datasets specifically for the target.[118, 119, 120, 122, 123] However, these net-
works may not generalize to unseen ligand structures, hence leading the optimization through
RL in the wrong direction. It is therefore worthwhile to explore how to build more physical
evaluation metrics into the RL workflow to improve the quality of generated molecules in
terms of binding potency to the specified protein target.

In the final chapter of this dissertation, I will present the iMiner approach that combines
deep RL with real-time molecular docking for de novo molecule generation based on a bio-
logical target.[36] By encoding molecular structures as one-dimensional strings, we trained
a generative model based on a recurrent neural network (RNN) that creates brand new
molecules inside the drug-like chemical space. To improve the chemical validity of the gener-
ated molecules, previous methods that use SMILES representations require special treatment
in the model.[118] Instead, we have used a special encoding of SELFIES strings to make sure
generated molecules are valid through a better chemistry syntax.[47] Docking simulations
with AutoDock vina[124] were used to provide more physical estimations of binding affinity
between the proposed molecules and a predefined protein pocket. We have also developed
an empirical drug-likeness metric to pose constraints on where the generative model should
explore. When combined with an advanced RL algorithm to train the model, new molecules
generated have noticeable improvement in terms of docking score while maintaining drug-
like properties. Furthermore, we have collected generated molecules with better binding
potency throughout the training process, instead of using molecules from the final trained
model. Further down-selection steps based on a separate docking software Glide[125] to find
consensus, and other physical, biological or empirical filters were applied[126, 127], which
ensures none of the generated drug molecules will be obvious non-starters during the drug
development process.

The whole iMiner workflow was validated using SARS-COV-2 main protease (mPro)
as a working example, for which we suggested 54 molecules as potential drug candidates.
The efficient exploration of chemical space with better binding potency to a given target is
demonstrated by comparing molecules proposed by iMiner with those collected in the COVID
moonshot project, a crowd-sourced effort in finding an effective mPro inhibitor.[128] Our
molecules present optimized structures and precise non-bonded interactions with the binding
pocket of mPro according to docking poses, while being chemically diverse in scaffold and
molecular composition. We would expect the method to work well for developing inhibitor
molecules for other types of proteins relevant to diseases, or exploring variations on existing
molecules that can improve potency. Therefore, it can potentially accelerate hit discovery
and hit-to-lead optimizations in drug discovery pipeline.
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Tim Green, Chongli Qin, Augustin Ž́ıdek, Alexander WR Nelson, Alex Bridgland, et al.
Improved protein structure prediction using potentials from deep learning. Nature,
577(7792):706–710, 2020.

[7] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Ž́ıdek, Anna
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CHAPTER 2

Accurate prediction of chemical shifts
for aqueous protein structure on
“Real World” data†

2.1 Introduction

Chemical shifts are a readily obtainable NMR observable that can be measured with high
accuracy for proteins, and sensitively probe the local electronic environment that can yield
quantitative information about protein secondary structure[1, 2, 3], estimation of backbone
torsion angles,[4, 5] or measuring the exposure of the amino acid residues to solvent.[6]
But in order to take full advantage of these high quality NMR measurements, there is a
necessary reliance on a computational model that can relate the experimentally measured
NMR shifts to structure with high accuracy. Existing methods for chemical shift prediction
rely on extensive experimental databases together with useful heuristics to rapidly, but non-
rigorously, simulate protein chemical shifts. As of yet, quantum mechanical methods which
would in principle provide more rigor to chemical shift prediction are still in progress.[7]

The heuristic chemical shift back-calculators are formulated as approximate analytical
models such as shAIC,[8] PPM,[9] and PPM One,[10] empirical alignment-based methods
such as SHIFTY[11] and SPARTA,[12, 13] 3D representations for machine learning of chem-
ical shifts in solid state NMR for small molecules,[14, 15] and feature-based methods in-
cluding SHIFTCALC,[16] SHIFTX,[17] PROSHIFT,[18] Camshift, [19] and SPARTA+;[20]
in the case of SHIFTX2 [21] both alignment and features are utilized. Some of the most
successful alignment-based methods rely on the fact that proteins with similar sequences
will also share similar structures which lead to their exhibiting similar chemical shifts. This
idea was first exploited by the program SHIFTY[11] which “transferred” the chemical shifts

†Reproduced with permission from: Li J, Bennett KC, Liu Y, Martin MV, Head-Gordon T. Accurate
prediction of chemical shifts for aqueous protein structure on “Real World” data. Chemical science. 2020,
11(12), 3180-3191.
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from known sequences in the database to the query sequence based on a global sequence
alignment. Higher accuracy was achieved in the formulation of SHIFTY+ by replacing the
global sequence alignment with a local sequence alignment, and is included in the most
recent chemical shift prediction program SHIFTX2.[21] Alignment-based methods in gen-
eral yield predictions with higher accuracy when a good sequence homologue is found in
the database, and the constant increase in the number of sequences and associated chemical
shifts deposited into the Biomolecular Magnetic Resonance Bank (BMRB),[22] suggests that
a similar sequence to the query sequence will continue to increase steadily.

On the other hand, methods that are based on sequence alignments will by definition
fail if sequence similarity between the query sequence with any sequence in the database is
too low, as well as the possibility that similar sequences can adopt very different structural
folds.[23] For query sequences with low sequence identity, the analytical or feature extrac-
tion methods predict secondary chemical shifts (i.e. from a random coil reference[24]) by
providing data input formulated as hypersurfaces of structural data attributes such as back-
bone ϕ, ψ angles and hydrogen bonding derived from X-ray structures or calculated from
quantum mechanics, or physical data observables such as ring currents,[25, 26] electric field
effects,[27] or Lipari–Szabo order parameters,[28] that can be generated from easily parsed
computational models. These feature extracted data are then used to establish empirical hy-
persurfaces such as used in SHIFTS[7, 29] and Camshift, [19] or to train a machine learning
algorithm in the cases of PROSHIFT,[18] SPARTA+,[20] and the SHIFTX+ component of
SHIFTX2.[21]

In the evaluation of chemical shifts calculators like SPARTA+ and SHIFTX2, extensive
effort has been put into making the test dataset as clean as possible. However, for chemical
shifts of real-world proteins, large deviations from predicted values are typically considered
as “outliers” and removed from the test dataset post-prediction.[20] The definition of outliers
can be arbitrary and results in higher test performance than operating on a real-world data
set that may not necessarily be plagued by experimental errors. In this work we examine
the current performance of feature extracted methods represented by SPARTA+, as well
as the combination of sequence alignment and feature extracted method as implemented in
SHIFTX2 on a randomly selected test dataset with minimal data filtering. First we assess
the performance in terms of root mean square error (RMSE) with respect to experimental
chemical shifts for SPARTA+ and SHIFTX2 when evaluated on a fully independent set
of test proteins with high-resolution (<2.4 Å) X-ray structures. We use chemical shift data
deposited in the BMRB, in which protein chemical shifts have been re-referenced with respect
to high-resolution X-ray structures using RefDB developed by Wishart and co-workers.[30]
We also assess SPARTA+ and SHIFTX2 performance when eliminating putative outliers as
determined by test data set filtering using PANAV,[13] or removing test proteins with >30%
sequence identity to the training set, which are dataset preparation steps that provide a
more fair comparison to the two standard chemical shift calculators.

Furthermore, we show that higher accuracy for chemical shifts can be achieved with an
enhanced hybrid algorithm, UCBShift, that makes predictions using machine learning on a
more extended set of extracted features and transferring experimental chemical shifts from
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a database by utilizing both sequence and structural alignments. Although we find that we
can realize better RMSEs if we also filter the different aspects of the test data, the resulting
UCBShift chemical shift prediction method on all of the data including outliers yields RMSEs
that will be at the level of 0.31, 0.19, 0.84, 0.81, 1.00 and 1.81 ppm for H, Hα, C’, Cα, Cβ
and N respectively when evaluated on any independently generated test sequence.

The improved chemical shift performance of UCBShift can be utilized in several predic-
tive contexts such as detection of erroneous chemical shift assignments and errors in reference
shifts, to refine single folded structures[31] or refinement of ensembles such as we have done
in our Experimental Inferential Structure Determination Method (EISD)[32, 33] for folded
and intrinsically disordered proteins (IDPs). To illustrate the usefulness of the UCBShift
method, we consider the discrimination among alternative folds or selection of native struc-
tures among structural “decoys”. We determine that UCBShift is able to identify the native
structure of two different proteins that comprise two different decoy data sets with certainty
by examining the correlation between predicted and experimental chemical shifts, with sig-
nificant improvement over SPARTA+ and SHIFTX2 prediction methods when sequence or
structural homology is available.

2.2 Methods

Preparation of training and new testing datasets

A high-quality database of protein structures and associated accurately referenced chem-
ical shifts are crucial for composing a machine learning approach that can make reliable
predictions of the chemical shifts, and for faithfully comparing the performance of existing
alternative approaches such as SPARTA+ and SHIFTX2. Several publicly available data
sources, including the SPARTA+ training set and the training and testing set for SHIFTX+,
were combined into a single training dataset that captures the structure and chemical shift
relationship. Since all of these data were used in the development of the original SPARTA+
and SHIFTX2 methods, it ensures that corrections for chemical shift reference values were
included in our dataset as well.

Unlike previous incarnations of these data sets, which stripped out all presence of crys-
tal waters and ligands, we generated a data set that retained the small molecules in the
crystal structures. Our hypotheses is that for crystal waters especially, they often are
highly conserved and functional, and are likely highly populated even in solution NMR
experiments.[34, 35] Any reported hydrogen atoms in the Research Collaboratory for Struc-
tural Bioinformatics protein databank (RCSB or PDB) structures[36] were removed and a
systematic approach for adding a complete set of hydrogens used the program REDUCE[37]
to keep consistency in the structural data used across all approaches. To ensure more ro-
bust training, for each atom type, residues with chemical shifts deviating from the average
by 5 standard deviations and residues that DSSP[38] failed to generate secondary structure
predictions were removed, which accounted for the removal of 40, 5, 18, 147 and 1 training
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examples for H, Hα, Cα, Cβ and N shifts, respectively. When stereochemically inequivalent
Hα were present, their shifts were averaged. In the creation of data for each of the individ-
ual atom types, any residues that do not have recorded chemical shifts in the database were
eliminated.

Before excluding redundant chains from the database, there were altogether 852 proteins
in the training dataset. Duplicate chains were identified and excluded from our dataset:
two chains are regarded as duplicates if the sequences and their structures are exactly the
same, or eliminating the shorter sequence if it is a sub-sequence of a longer sequence (which is
kept). However, 32 chains in the SPARTA+ dataset were retained because although they had
identical sequences, they were found to have different structures and thus different chemical
shifts. After excluding the duplicate chains by this prescription, the number of protein chains
in the training dataset decreased to 647. The filtering of the training dataset based on RCI-
S2 [39] in principle excludes flexible residues whose chemical shifts are harder to predict.
We did not exclude training data based on RCI-S2 as was done in some other chemical
shift predictors, because a complete training set that covers different prediction difficulties is
crucial for obtaining reliable performance for real-world applications. Table 2.1 reports the
total number of training data examples for each of the different atom types. In addition, the
RefDB database,[30] which is a database for re-referenced protein chemical shifts assignments
extracted and corrected from BMRB, was also compiled for the alignment-based chemical
shifts prediction.

Table 2.1: Total number of training and testing examples for chemical shift prediction for
each atom type. The training set is comprised of the combination of the SPARTA+
training set and the training and testing set for SHIFTX+, and removing all redundant
chains. We have developed a new test set comprised of 200 high-resolution proteins with
chemical shifts available from RefDB; the test data eliminates duplicate chains, and
residues with no deposited chemical shift values. The LH-Test set refers to the subset of
the total set of test proteins with only low sequence homology to other proteins such that
sequence or structural homology cannot be exploited. We also created two curated test sets
which additionally exclude paramagmetic proteins, some Hα chemical shifts that have
calculated ring current effect exceeding 1.5 ppm, and “outliers” detected by the PANAV
program [13]. Further information is provided in Methods and Appendix.

# of PDBs H Hα C′ Cα Cβ N
Train 647 72894 56149 58228 79611 70621 74896
Test 200 19120 11727 8231 13140 10139 15374
Test (curated) 200 18494 11240 7861 12533 9883 14610
LH-Test 100 8634 4979 3332 5685 4278 6576
LH-Test (curated) 100 8606 4950 3331 5251 4201 6480

Since the training dataset in Table 2.1 covers all of the data from SPARTA+ and
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SHIFTX2, a separate test dataset needs to be prepared for a fair comparison of all of the
chemical shift programs. Therefore, 200 proteins with high-resolution (<2.4 Å) X-ray struc-
tures and with chemical shifts available in the RefDB were selected at random to form a
separate test set that do not share the exact same sequence as training structures. These
structures were downloaded from RCSB and again hydrogens were added with the REDUCE
algorithm.[37] Erroneous chemical shifts assignments were removed from this test dataset,
which include 9 (H, Cβ, and N) chemical shifts that were significantly offset from the ran-
dom coil average; 8 Cβ chemical shifts from cysteines that show strong disagreement with
their expected chemical shifts under their oxidation state in the crystal structures, and all
C’ chemical shifts from 3 proteins that are anticorrelated with predictions from SPARTA+,
SHIFTX2 and UCBShift (see Appendix for details). It is essential to remove these chemical
shifts from the test set because of evidence for the existence of experimental or recording
errors in these data; but no further processing was done on the test set so that it is a good
representation of a “real-world” application.

A more carefully “curated” test dataset based on these 200 proteins was also prepared,
which additionally exclude paramagmetic proteins, some Hα chemical shifts that have calcu-
lated ring current effect exceeding 1.5 ppm, “outliers” detected by the PANAV program,[13]
and chemical shifts corrected by PANAV that are different from their original values by more
than 0.3 ppm for hydrogens, 1.0 ppm for carbons and 1.5 ppm for nitrogen. These additional
test filters are similar to the procedures used by SPARTA+ and SHIFTX2 in preparing their
test datasets.[20, 21] A complete list of the 200 testing proteins are given in the Appendix
(Table 2.B.1). As is inevitable, some of these 200 proteins share high sequence identity with
some of the training data, so we also generate test datasets after filtering out proteins with
>30% sequence identity to yield a low-homology test set (LH-Test) with 100 test proteins
(Table 2.1).

Machine learning for chemical shift prediction

The new UCBShift chemical shift prediction program is composed of two sub-modules: the
transfer prediction module (UCBShift-Y) that utilizes sequence and structural alignments
to “transfer” the experimental chemical shift value to the query example, and a machine
learning module (UCBShift-X) that learns the mapping between the feature extracted data
to the experimental chemical shift in the training data. The overall structure of the algorithm
is depicted in Fig. 2.1.

UCBShift-Y module. UCBShift-Y is similar in spirit to the SHIFTY+ component of
SHIFTX2, in that the experimental chemical shift for a given atom type in a given residue can
be transferred to the query protein when the sequence of the protein in the database is highly
similar or even identical to the sequence of the query protein. However, instead of relying on
the sequence alignment alone, we have developed an algorithm that relies on both sequence
alignment and structural alignment, which allows for proteins that are highly related in
structure but remotely related in sequence to be utilized. The use of structural alignments



CHAPTER 2 33

Figure 2.1: The overall design of the UCBShift chemical shift prediction algorithm. It
combines both a transfer prediction module that relies on both sequence and structural
alignments, and a machine learning module that trains a tree regression model on
augmented feature extracted data.



CHAPTER 2 34

also prevents proteins that have high sequence similarity but low structural homology to
mislead an algorithm to erroneous chemical shifts transfers.

For the UCBShift-Y module, a query sequence is first aligned with all sequences in the
RefDB database using the local BLAST algorithm,[40] and the PDB files for all sequences
generating significant matches are further aligned with the query PDB structure using the
mTM-align algorithm.[41] The alignments were further filtered to only keep those alignments
that have TM score greater than 0.8 and an RMSD with the query protein structure that
is smaller than 1.75 Å. For each of the aligned PDB sequences, its best alignment with the
RefDB sequence is determined using the Needleman–Wunsch alignment.[42] If the residues
are exactly the same, the shifts from RefDB are directly transferred to the target; otherwise,
the secondary chemical shifts from RefDB are transferred to account for the different chemical
shift reference states for different amino acids. To be more specific, the target shift for atom
A and residue I is calculated from the matching residue J:

δI,A = δrc,I,A + (δJ,A − δrc,J,A) (2.1)

where δrc,I,A and δrc,J,A are the random coil shifts for atom type A in residue I and J,
respectively, and δJ,A is the chemical shift for the matching residue in the database.

When multiple significant structural alignments exist for a given residue, the secondary
shifts from these references are averaged with an exponential weighting wI,

wI = e5(SNA×STM)+BIJ × 1(BIJ ≥ 0) (2.2)

given by the normalized sequence alignment score, SNA = Sblast/max(Sblast), where Sblast is
the blast score of the matching sequence, and max(Sblast) is the maximum blast score from
all blast hits; the structure alignment TM score STM is the pairwise TM score between the
query structure and the aligned structure, and BIJ is the substitution likelihood between the
residue in the query sequence and the residue in the matching sequence using the BLOSUM62
substitution matrix.[43] Weights with negative substitution scores are set to zero.

UCBShift-X module. The UCBShift-X module requires the formulation of feature
extracted data of a given atom type in a query residue, and the ability to map the feature
extracted data to the chemical shift value during the training. Similar to the SPARTA+
program or for the SHIFTX+ component of SHIFTX2, we have developed residue-specific
features for the query residue and the previous and next residues to the query residue, but
we have included more features and polynomial transformations of the features to improve
prediction. The feature extracted data generated from the PDB structures of individual
residues include:

• 20 numbers representing the score for substituting the residue to any other amino acid,
and taken from the BLOSUM62 substitution matrix[43]

• Sine and cosine values of the ϕ and ψ dihedral angles at the residue. Taking the sine
and cosine values of the dihedral angles prevents the discontinuity when the dihedral
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angle goes from +180◦ to -180◦. For the undefined dihedral angles, for example the ϕ
angle of a residue at the N-terminus and the ψ angle of a residue at the C-terminus,
both the sine and cosine values were set to zero.

• A binary number indicating whether χ1 or χ2 dihedral angles for the side chain exists
(existence indicator), and the sine and cosine values of these angles when they are
defined for the same reasons described for backbone dihedral angles.

• Existence indicators and geometric descriptors for the hydrogen bond between the
amide hydrogen and carboxyl oxygen, and between the Cα hydrogen and a carboxyl
group (so called α-hydrogen bonds). For each position in the query residue that hydro-
gen bonds can form, a group of five numbers describe the properties of the hydrogen
bond: a boolean number indicating its existence, the distance between the closest
hydrogen bond donor–acceptor pair, the cosine values for the angles at the donor hy-
drogen atom and at the acceptor atom, and the energy of the hydrogen bond calculated
with the DSSP model.[38] For the query residue, all hydrogen descriptors for amide
hydrogen, carboxyl oxygen and α hydrogen are included, but only the carboxyl oxygen
features are included for the previous residue, and the amide hydrogen features for the
next residue. These add up to 25 hydrogen bond descriptors for any given residue.

• S2 order parameters calculated by the contact model[28]

• Absolute and relative accessible surface area produced by the DSSP program.

• Hydrophobicity of the residue by the Wimley–White whole residue hydrophobicity
scales.[44]

• Ring current effect calculated by the Haigh–Mallion model.[25, 26] For each training
model for a specific atom type, the ring current for that atom type is included, while
the ring currents for other atom types are excluded from the feature set.

• The one-hot representation of the secondary structure of the residue produced by DSSP
program (composed of eight categories)

• Average B factor of the residue extracted from the PDB file.

• Half-sphere exposure of the residue[45]

• Polynomial transformations of some of the residue-specific features, such as the hy-
drogen bond distances (dHB), by including d2HB, d−1

HB, d−2
HB, d−3

HB, and the squares of
the cosine values of the dihedral angles are also included as additional features. These
polynomial quantities have been found to be correlated with secondary chemical shifts,
and have occurred in several empirical formulas for calculating chemical shifts.[3, 46]
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Unlike SPARTA+ and SHIFTX+, we have developed a pipeline with an extra tree
regressor[47] followed by random forest regressor[48] as the machine learning based pre-
dictor shown in Fig. 2.1. Both the extra tree regressor and random forest regressor are
ensembles of tree regressors that split the data using a subset of the features, and make
ensemble-based predictions via a majority vote. However, extra tree regressors split the
nodes in each tree randomly by selecting an optimal cut-point from uniformly distributed
cut-points in the range of the feature, while the random forest regressors calculate the locally
optimal cut in a feature by comparing the information entropy difference before and after
the split. The random forest regressor learns based on the predictions from the first tree
regressor and all the other input features, which can be regarded as a variant of the boosting
algorithm,[49] since it learns from the mistakes the first predictor makes. The pipeline was
first optimized using the TPOT tool[50] with 3-fold cross validation on the training set, and
all the parameters were fine-tuned using a temporal validation dataset with 50 structures
randomly selected from the training set. Because tree-based ensemble models are robust to
the inclusion of irrelevant features,[51] feature selection was not performed. A more detailed
analysis of the feature importance will be given in the Results.

Algorithmically, two separate random forest (RF) regressors are trained. The first RF
regressor (R1) only accepts features extracted from the structure and the prediction from the
extra tree regressor, and the second RF regressor (R2) additionally takes the secondary shift
output from UCBShift-Y, together with additional scores and coverage indicating the quality
of the alignments, and is trained using only a subset of the training data for which UCBShift-
Y is able to make a prediction. Based on the availability of UCBShift-Y predictions, the final
prediction of the whole algorithm is generated either by R1 (when no UCBShift-Y predictions
are available) or R2 (when UCBShift-Y is able to make predictions). Finally, the random
coil reference values are added back to the prediction to complete the total chemical shift
prediction, i.e. the predictions are calculated with

δpred =

{
fR1(X, fR0(X)) + δRC when UCBShift-Y generates no prediction

fR2(X, fR0(X), S) + δRC when UCBShift-Y generates predictions
(2.3)

where fR0 represents the first-level extra tree regressor, fR1 and fR2 are the two second-level
random forest regressors, X are all the features extracted from the structure, S are the
predictions from UCBShift-Y and the identity scores, and δRC is the random coil chemical
shift for the given residue.

2.3 Results

The performance of SPARTA+, SHIFTX2, and UCBShift are evaluated across the newly
created test dataset of 200 proteins (test) and the subset of 100 low sequence homology with
respect to the training set (LH-Test), each of which is uncurated or curated as described in
Methods (Table 2.2). The mean average errors (MAEs) and correlation coefficients (R2 ) are
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available in Table 2.C.1. In general, the performance of SPARTA+ is even across both the
curated test and curated LH-Test datasets. The average RMSE error for SPARTA+ (and
for all chemical shift predictors) on the uncurated Test and uncurated LH-Test datasets
increases further, in which we provide the minimum error and the maximum error for each
protein for SPARTA+ in graphical form in Fig. 2.C.1 and 2.C.2.

SHIFTX2 is seen to outperform SPARTA+ for chemical shift RMSE for all atom types
on the curated dataset when there is high sequence homology for which it was designed,
and it performs comparably to SPARTA+ on the curated data for target sequences with low
sequence similarity to the training data. However, we find that the actual performance on
curated data set is less accurate than the reported performance of the SHIFTX2 method.[21]
One possible explanation is that a sequence similarity analysis revealed that out of the
original 61 testing proteins of SHIFTX2, 4 proteins had 100% sequence alignment with
a protein in the training dataset, sometimes under different identification numbers (Table
2.C.2). This problem of training data leakage into the testing data of the original SHIFTX2
method could be a non-trivial source of the better performance of SHIFTX2 reported in the
literature. The protein-specific average RMSE error and the scatter plots for the SHIFTX2
predicted and experimental shifts are also given in Fig. 2.C.1 and 2.C.2 on the uncurated
test dataset.

By comparison we find that filtering of the test set for outliers that disagree with the
predictions, the elimination of paramagnetic proteins, and removing test shifts for hydrogen
due to potentially inaccurate and large ring currents effects has more limited effect on pre-
diction performance. To illustrate, the distributions of absolute errors from SPARTA+ for
paramagnetic proteins and diamagnetic proteins in the Test dataset are shown in Fig. 2.C.3
The error distributions are not that different for H, Hα, Cβ, and N, and while paramagnetic
proteins show higher prediction errors than diamagnetic proteins for the C’ and Cα data
types, they are not egregious errors.

We find that UCBShift outperforms SPARTA+ and the SHIFTX2 algorithm for chemical
shift prediction RMSE when tested on the uncurated test data set, the more carefully curated
test data, and regardless of the level of sequence homology. The protein-specific average
RMSE error and the scatter plots for the UCBShift predicted and experimental shifts are
also given in Fig. 2.C.1 and 2.C.2 on the uncurated Test dataset. Therefore UCBShift is more
accurate for real-world applications, where the types of proteins may be more diverse than the
test sets for SPARTA+ and SHIFTX2. In order to understand the improved performance of
UCBShift in particular, we analyze the components of the algorithm including the UCBShift-
X and UCBShift-Y modules, as well as the importance of the extracted features, utilizing
the full test set of 200 proteins in more detail below.

Analysis of UCBShift-Y module

The major difference of our transfer prediction module (UCBShift-Y) in comparison with
SHIFTY or SHIFTY+ is the inclusion of a structural alignment to select reference sequences
for transfer of the chemical shift value. There is a trade-off between the coverage UCBShift-
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Y can achieve and the average accuracy of the prediction, requiring tuning the thresholds
for accepting an imperfectly aligned protein as reference. Empirically we chose a relatively
permissive threshold for sequence alignment to enable sequences that do not have much
similarity with the query protein proceed to the next step in case it generates a good struc-
ture alignment. The thresholds for the TM score and RMSD in structure alignment were
optimized during training to ensure the reference structures are close enough to the query
structure. A TM score threshold of 0.8 was selected because NMR chemical shifts are sen-
sitive to local structures, and only a well-aligned structure provides reliable chemical shift
references.

We hypothesized that a structure-based alignment followed by sequence alignment would
be more reliable since it would (1) allow for transferring shifts from structurally homologous
proteins with low sequence identity, while also (2) ensuring that the transferred chemical shift
values are not from a protein that has high sequence similarity but low structural homology
with the query protein. This is confirmed in Fig. 2.2 which plots the difference of the RMSE
on amide hydrogen chemical shift prediction between our UCBShift-Y and SHIFTY+ as a
function of sequence identity. Plots for other atom types are given in Fig.2.D.1. Here the
sequence identity is defined as the ratio of the number of matched residues to either the
length of the query sequence or the length of the matched sequence, whichever is longer.
Furthermore, the UCBShift results are reported with a specifically designed “test mode”
which will not utilize sequences with more than 99% identity with the query sequence for
making the prediction; this practice ensures the testing performance is a more realistic
reflection of the actual performance when operating on input data which is not included in
the search database. It is evident that on average predictions on query sequences with low
sequence similarity but high structural homology are greatly improved with UCBShift-Y.

A particularly interesting example is the prediction for adenylate kinase (PDB ID: 4AKE)[53]
and its mutant (PDB ID: 1E4V),[54] both of which are identical but for a single substitution
of a valine for a glycine residue at position 10 (Fig. 2.3). Even with such high sequence
identity, these two proteins adopt quite different tertiary structures with a backbone RMSD
of 7.08 Å as can be seen from the overlay of their two structures in Fig. 2.3a. Hence while
the experimental chemical shifts for these two proteins have a root-mean-square difference
(RMSD) of 0.38 ppm for amide hydrogen shifts overall, the maximum H chemical shift differ-
ence is much larger at 1.34 ppm and is reflected in the surprisingly lower correlation (R-value
= 0.86) between the amide hydrogen shifts for two proteins given the high sequence similar-
ity (Fig. 2.3b). Therefore when using SHIFTY or SHIFTY+ for the 1E4V query sequence,
the best sequence match will be 4AKE, thus increasing the chemical shift prediction error
due to the huge structural deviation between the two proteins. Instead when using our
UCBShift-Y module it selects two alternative proteins, 1AKE and 2CDN, which share an
average sequence similarity of only 67% with the query protein. The correlation between the
predicted 1E4V amide hydrogen shifts with UCBShift-Y which chooses references based on
structural alignment and the experimental values are given in Fig. 2.3c, raising the R-value
to 0.94 and lowering the RMSE to 0.25 ppm.

Fig. 2.D.2 summarizes the results of UCBShift-Y vs. SHIFTY+ for chemical shift
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Figure 2.2: Difference between UCBShift-Y and SHIFTY+ for protein specific RMSEs for
amide hydrogens as a function of sequence identity. The presence of more negative values
indicates UCBShift-Y is making better predictions than SHIFTY+ across the range of
sequence identity. The better RMSE even at low sequence identity arises from finding a
structural homolog.

prediction for all atom types, validating that the structural alignments successfully found
better reference proteins for the query protein which improved the overall prediction quality.
In comparison with SHIFTY+, all atom types other than carboxyl carbon are improved in
accuracy; although predictions for the carboxyl carbons are at the same level of accuracy
as SHIFTY+, the failure to improve this atom type with UCBShift-Y is likely due to the
lower number of chemical shifts available for transfer prediction for this atom type. Finally
we note that our UCBShift-Y can be used as a standalone chemical shift predictor when
sequence and structural alignments exist and have available experimental chemical shifts.

Analysis of the UCBShift-X module

The connection between features extracted from PDB files and the secondary chemical shifts
was explored using several machine learning methods, including neural networks with a single
hidden layer, deep fully-connected neural networks, residual neural networks, convolutional
neural networks, recurrent neural networks, as well as tree-based ensemble models. The
more complex and deeper neural networks performed well on the training dataset and vali-
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Figure 2.3: Analysis of the transfer prediction module for UCBShift which uses sequence
and structural alignment. (a) Structural alignment of adenylate kinase (4AKE, orange) and
the mutant G10V of adenylate kinase (1E4V, purple). (b) Correlation between
experimental chemical shifts of the amide hydrogen for 4AKE and 1E4V. (c) Correlation
between predicted amide hydrogen chemical shifts using UCBShift with experimental
values. In this case structural alignments instead of sequence alignments were used for
selecting references for the transfer prediction.

dation dataset, however their performance on the test data was found to be no better than
SPARTA+ or SHIFTX+, likely indicating that more feature extracted data is needed and/or
due to problems with data representation, to fully exploit the potential of these methods.
Thus the tree-based ensemble models stood out as a more competitive machine learning
predictor for chemical shifts with limited data. Even so, the learning curves for the random
forest models show that the cross-validation error steadily decreases as the number of train-
ing examples increases (Fig. 2.E.1), suggesting even better predictions can be achieved if
more training data were available.

The RMSE of the pipeline with extra tree regressor and random forest regressor but
without inputs from UCBShift-Y (R1) between the predicted chemical shifts and the observed
shifts is summarized in Table 2.3 and named UCBShift-X. It is found to be statistically better
for all the atom types when compared with SPARTA+, or the SHIFTX+ component of
SHIFTX2, which also use no sequence and/or structural alignments. The overall performance
of the UCBShift-X machine learning module is promising, and it also can be used as a reliable
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Table 2.3: RMSE for the individual elements of transfer prediction (UCBShift-Y) and
machine learning module (UCBShift-X) on the test dataset. The standalone UCBShift-Y
prediction when sequence and structural alignments exist and have available experimental
chemical shifts. The chemical shift prediction of the machine learning module
(UCBShift-X) which is trained independent of any transfer prediction. The prediction of
the R2 module with input from UCBShift-Y module, and the combined R1 and R2 modules
that defines the UCBShift calculator

UCBShift components H Hα C′ Cα Cβ N
UCBShift-X (R1) 0.44 0.25 1.17 1.08 1.28 2.49
UCBShift-Y 0.21 0.17 0.64 0.57 0.67 1.25
ML with UCBShift-Y input (R2) 0.19 0.15 0.66 0.57 0.70 1.23
UCBShift (utilizing both R1 and R2) 0.31 0.19 0.84 0.81 1.00 1.81

standalone predictor for chemical shifts, especially when no faithful alignment is found using
UCBShift-Y.

If we consider using the R2 module (which is trained using only a subset of the training
data for which UCBShift-Y is able to make a prediction), the errors of some atom types
further decrease (Table2.3). Interestingly, the averaged RMSE from R2 for H, Hα and N is
even smaller than the average RMSE of UCBShift-Y, indicating that the second ML module
is doing better than just combining the results from UCBShift-Y and from the first level
machine learning module R0 for these atom types. But given the uncertainties in sequence
and structural alignments or the lack of chemical shift data for UCBShift-Y, both the R1

and R2 machine learning modules are utilized to yield the final UCBShift algorithm and
results for chemical shifts as given in Table 2.3 for all the six atom types.

Analysis of the data representation

A further test is done to analyze the contributions of different features extracted from the
structural PDB files to the R0, R1, and R2 pipelines that define the UCBShift algorithm
(Fig. 2.1). Relative feature importance is calculated as the total decrease in node impurity
weighted by the probability of reaching a node decided with that feature, and averaged
over all the trees in the ensemble.[55] The results are analyzed on the predictions for amide
hydrogen as a working example, and are given in Table 2.4. For the R0 module we find
that the most predictive features are the backbone dihedral angles, the secondary structure,
BLOSUM numbers, hydrogen bond features, and the ring current effect which are included in
SPARTA+ and SHIFTX2. However, the polynominal transformations of the structural data
and half surface exposure are unique in our feature set, and they have very high importance
among all the features for the R0 component. Not surprisingly, the R0 input is nearly half
of the important features for R1, but the backbone dihedral angles and the polynomial
transformations account for an additional 25% of the important extracted features.
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Table 2.4: Importance of different input features into the R0, R1, and R2 pipelines of the
machine learning modules

Feature categories R0 R1 R2

Backbone dihedral angles 0.22 0.11 0.04
Transformed features 0.23 0.11 0.04
Secondary structure 0.17 0.005 0.001
BLOSUM numbers 0.11 0.02 0.005
Hydrogen bond 0.11 0.06 0.02
Half surface exposure 0.05 0.06 0.008
Ring current 0.04 0.03 0.005
Sidechain dihedral angles 0.03 0.03 0.005
Atomic surface area 0.02 0.01 0.002
B Factor 0.008 0.01 0.002
S2 order parameters 0.006 0.01 0.002
Hydrophobicity 0.002 0.001 0.0002
pH values 0.001 0.002 0.001
Prediction from R0 N/A 0.53 0.19
UCBShift-Y prediction N/A N/A 0.67
UCBShift-Y metrics N/A N/A 0.01

The UCBShift-Y prediction as well as the prediction from R0 are the dominant factors
for the R2 model; this result indicates the network is indeed trying to differentiate situa-
tions when UCBShift-X predictions are more reliable and when they are not so accurate
in comparison to R0 predictions, as well as based on the other structure-derived features.
Therefore, using machine learning to combine the predictions from feature-based prediction
and alignment-based prediction is a better strategy than doing a weighted average of the
two predictions. Finally features such as hydrophobicity and pH values, and to some extent
B-factors and S2 order parameters, seem to play a minor role in predictive capacity of the
ML module.

Application of UCBShift to protein structure discrimination

One practical application of an accurate protein chemical shift calculator is to detect native
structures based on the correlation between predicted and experimental chemical shifts.[56]To
illustrate UCBShift’s applicability to determine the native structure of a protein, we obtained
two decoy datasets that have a range of altered and misfolded structures as measured by the
α-carbon root mean square deviation (RMSD) with the native state. The average correlation
coefficients for each structure with available experimental chemical shifts of H, Hα and N
from BMRB 4429 (1CTF) and BMRB 4811 (1HFZ) are plotted over RMSDs to their native
structures in Fig. 2.4.
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Figure 2.4: Average correlation coefficients between predicted chemical shifts of decoyed
structures and observed chemical shifts versus Cα RMSD between decoyed structures and
native structure for PDB 1CTF (a and b) and 1HFZ (c and d). Results are visualized as
UCBShift-X compared to SPARTA+ (a and c) and UCBShift compared to SHIFTX2 (b
and d).

The decoy dataset for PDB structure 1CTF was obtained from the Decoy ‘R’ Us database[57]
which contains the native structure and 630 structures with a range of 1.3–9.1 Å in the α-
carbon RMSD, and the decoy dataset for PDB structure 1HFZ generated using 3DRobot[58]
which contains the native structure and 298 structures with a range of 0.4–4.2 Å in the α-
carbon RMSD. Using UCBShift-X alone has similar discriminative power for the native state
as SPARTA+, and predicted chemical shifts for lower RMSD structures also tend to have
better correlation with experimental values using UCBShift-X (Fig. 2.4a and c). The com-
plete UCBShift method shows greater discriminative power for the native state than found
with either SPARTA+ or SHIFTX2, in which we can differentiate between structures within
experimental resolutions (< 2 Å) against unlikely structures more easily, while still retaining
the highest correlation for the (experimental) native structure (Fig. 2.4b and d).
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2.4 Discussion and conclusion

Prediction of protein chemical shifts from structure has relied on robust and popular algo-
rithms such as SPARTA+ and SHIFTX2 that represent the 3-dimensional structure by a set
of extracted features that are presented to a machine learning algorithm, sometimes supple-
mented with direct transfer of experimental data taken on related proteins of a given query
sequence. In this paper, we tested the performance of SPARTA+ and SHIFTX2 on a large
test set of proteins not previously encountered in previous training and test sets, and showed
that SPARTA+ performs as reported and evenly across high and low sequence homology
test data, as expected. SHIFTX2 still outperforms SPARTA+ on test sequences with high
sequence homology, but not at the same levels expected from the reported RMSE literature
values.[52] This test dataset contains “outliers” which may be harder to predict, and hence is
a more faithful representation of actual real-world data. We have also developed and tested
a new generation algorithm, UCBShift, for solution chemical shift prediction for all relevant
protein atom types, and utilizing more small molecular structure information (water and
ligands), physically inspired non-linear transformation of features derived from structure,
together with a two-level machine learning pipeline that exploits sequence as well as struc-
tural alignments to achieve this current state-of-the art performance. The feature extraction
algorithm, the UCBShift prediction program, and all training and testing data can be down-
loaded from a publicly available github repository https://github.com/THGLab/CSpred.

Although the performance of these algorithms are much better when applied to carefully
curated test data, the filtering out of test data risks the inability to distinguish between a
poor prediction from a poor experimental chemical shift value. Large outliers would certainly
result from the wrong random coil reference for Cβ shifts due to ambiguous cysteine oxidation
states, or single whole proteins which exhibit many chemical shift outliers for particular atom
types, and should not be considered a failure in algorithmic performance, but a problem of
the experimental data. However, further test filtering can start to become arbitrary as we
move from deviant to suspicious to acceptable experimental agreement with the prediction;
one can’t have it both ways. Thus in this paper we have provided a realistic range of test
performance since scientists use these chemical shift predictors on real-world data that may
differ from the original training datasets such that the algorithms do not generalize well-i.e.
some measure of disagreement with experiment may just simply be prediction error. As such
Table 2.2 provides a more realistic range of test reliability for all three methods.

Although we have realized noticeable improvement over other protein chemical shifts
predictors, we believe we are reaching the limit of accuracy by using extracted feature from
structures or transfer predictions through alignments. Deep learning may be helpful in
the next step since it can operate directly on 3D data representations without the poten-
tial bias introduced by features extracted by human experts[59, 60] as we and others have
shown recently for chemical prediction in the solid state,[14, 15] in which we greatly im-
proved prediction for all atom types and approached chemical accuracy on par with ab initio
calculations for hydrogen in particular. The ability to move to 3D representations will be im-
portant for QM chemical shift predictions for intrinsically disordered proteins, since feature
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extracted data will be less available and likely less representative for this class of protein, and
the results can be ensemble averaged to provide a prediction that can be compared against
solution NMR experimental data for structural ensemble refinement as we have shown for
IDPs.[32, 33]
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Appendix

2.A Exclusion of erroneous chemical shifts

assignments in the test dataset

Table 2.A.1: Removed chemical shifts that are significantly offset from random coil average

PDBID RESID RESNAME Recorded CS (ppm) [atom]
1MI4A 153 LEU 0.09[H]
1DSBA 30 CYS 331.45[CB]
2GYKE 62 ASP 89.55[CB]
1GOA 119 TRP 26.57[N]
1OVHA 1 MET 38.5[N]
1D03A 1 ALA 40.47[N]
2IGD 1 MET 39.34[N]
1VB0A 1 LEU 39.84[N]
1QOGA 1 ALA 39.52[N]
1DSBA 51 PRO 152.99[N]

Table 2.A.2: Excluded cysteine Cβ chemical shifts

PDBID RESID
Oxidation state in
crystal structure

Recorded Cβ CS (ppm)

2GOOB 40 reduced 48.59
2PF5A 47 reduced 43.71
1DSBA 33 oxidized 33.6
1VKBA 35 oxidized 31.16
1VKBA 62 oxidized 26.76
2AFGB 117 reduced 39.46
1LJUA 82 oxidized 30.66
1LJUA 89 oxidized 27.12
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Figure 2.A.1: Scatter plot for the C’ of the three proteins whose C’ shifts are removed.
Plotted are the observed C’ chemical shifts versus predicted C’ chemical shifts with
UCBShift.

2.B Compilation of test dataset

Table 2.B.1: A complete list of the 200 testing proteins. Provided are the PDB identifier,
BMRB identifier, the X-ray resolution (RES.), highest sequence similarity to any example
in the training dataset (SIM.), total number of residues and the number of residues and
atom types with experimental chemical shifts. Rows with green background are data with
low sequence homology (<30%).

Number of residues
PDB BMRB RES. (Å) SIM. Total H Hα C’ Cα Cβ N
1MI4A 4854 1.7 0.998 427 209 198 236 229 199 217
2GP0A 15680 2.05 0.997 288 240 0 149 188 156 151
2H9HA 4836 1.39 0.995 212 201 170 202 212 186 201
1T85A 17415 1.8 0.995 406 305 0 0 299 196 233
2UYZA 4132 1.4 0.994 156 137 142 0 141 107 116
1GOA 4012 1.9 0.994 155 134 110 0 119 0 118
1SNO 1878 1.7 0.993 136 0 0 0 0 0 109
5NUC 5536 2.1 0.993 134 97 93 100 101 93 96
2EYOA 16585 1.7 0.993 135 118 117 125 126 117 118
1NBPA 6621 2.2 0.992 121 114 116 0 116 111 114
1LJUA 4944 1.4 0.992 130 118 105 109 125 116 118
1IP2A 5125 1.8 0.992 130 122 0 0 0 0 118
1AR0A 5888 2.3 0.992 125 114 0 0 112 100 108
7TIMB 16566 1.9 0.992 247 0 0 16 63 69 2
1OMSC 15813 2.3 0.992 114 107 104 112 114 105 107
1BRJA 975 2 0.991 107 101 94 0 0 0 0
2H76A 62 2.25 0.991 108 88 79 0 0 0 0
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Number of residues
PDB BMRB RES. (Å) SIM. Total H Hα C’ Cα Cβ N
2HSHA 256, 257 1.35 0.990 105 59 60 0 0 0 0
1RN1B 1658 1.84 0.990 103 0 0 0 0 0 96
2OCTA 15548 1.4 0.990 97 84 0 89 88 83 84
1QOGA 447 1.8 0.990 98 76 79 45 84 80 79
2GYKE 4115, 4116 1.6 0.988 83 77 75 0 80 74 77
1POH 29 2 0.988 85 82 79 0 0 0 0
1SPQB 15066 2.16 0.988 239 185 0 0 183 146 147
1TPH2 15064 1.8 0.988 245 224 0 223 231 174 204
1J3FA 4568 1.45 0.987 152 144 121 143 146 124 144
109M 5158 1.83 0.987 154 129 0 131 142 0 129
1F2MA 1875, 495 2 0.987 136 0 108 0 76 1 0
2IN8A 16634 1.7 0.986 139 129 0 0 0 0 122
2FI4I 4877 1.58 0.983 58 46 46 0 0 0 0
1P2OD 45 2 0.983 58 47 44 0 0 0 0
2OW9B 4679 1.74 0.982 166 137 140 145 154 139 137
1BNEA 16169, 16170 2.1 0.982 107 84 55 0 0 0 0
1TXXA 1812, 1813 2.2 0.981 108 0 0 0 0 0 95
2SGDI 1375 1.8 0.980 51 0 0 0 43 15 0
1MOLB 4633 1.7 0.979 94 77 73 0 0 0 0
1IV9A 4222 1.9 0.979 96 84 80 0 0 0 78
1YJFA 5514 1.35 0.979 225 174 96 174 198 136 174
2HWNB 4473 1.6 0.978 45 39 41 0 43 41 39
2HZIB 15488 1.7 0.975 264 244 0 36 41 0 37
1QKRA 15653 1.8 0.973 172 146 0 139 146 126 130
2BC5C 1672 2.25 0.972 106 91 92 0 0 0 91
1XRKB 4785, 4786 1.5 0.968 121 104 104 103 110 104 104
1MYWA 15826 2.2 0.962 228 192 123 184 189 139 175
1DS3I 1374 1.65 0.961 50 39 38 0 0 0 0
1LW6I 4974 1.5 0.953 63 57 55 56 57 54 57
1U06A 7305, 7306 1.49 0.952 55 52 51 0 0 0 0
1SKOB 6181 2 0.946 116 108 104 0 114 106 108
1P7JA 7386 2.1 0.932 53 36 36 30 31 29 30
1AJ6 5218 2.3 0.932 194 177 143 169 161 106 160
2H61H 4105, 5895 1.9 0.924 90 80 79 78 83 78 80
1TCF 1553 1.9 0.899 156 57 53 0 0 0 0
1KTZB 5953, 5954,

4779
2.15 0.893 106 90 100 100 101 100 90

2B59A 5267 2.11 0.872 166 157 142 132 153 121 138
1B68A 6524 2 0.859 138 134 0 0 133 120 132
1BD9B 17382 2.05 0.834 185 170 169 181 184 169 170
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Number of residues
PDB BMRB RES. (Å) SIM. Total H Hα C’ Cα Cβ N
1N3ZA 4980 1.65 0.815 117 108 108 0 0 0 101
1AG6 79 1.6 0.788 99 86 83 0 0 0 0
1IKOP 7220 1.92 0.764 141 127 120 127 133 122 127
2BIUX 6141, 7310 1.71 0.745 164 139 123 0 146 127 139
1OFFA 16024 1.8 0.735 95 91 88 0 0 0 91
1MR3F 15626 1.6 0.718 177 145 0 0 135 100 123
1Z7XX 4370 1.95 0.674 126 119 121 0 0 0 111
1GWYA 16362, 16630 1.71 0.674 175 169 154 166 175 154 169
7RXN 15374 1.5 0.673 52 44 43 0 0 0 44
1YCQA 6248 2.3 0.645 88 75 72 0 78 66 72
1JHFB 6373 1.8 0.644 111 96 0 89 101 83 90
1RDG 5163 1.4 0.635 52 45 42 0 0 0 0
1PCS 5475 2.15 0.580 98 84 80 0 0 0 0
2AFGB 15783, 16493,

16494, 16502,
6875

2 0.543 129 123 117 123 129 104 122

1WZVA 16321 2.1 0.535 150 129 50 125 141 136 129
2GCNA 16668 1.85 0.517 177 127 91 138 138 127 127
1L0SB 5573 2.3 0.500 87 76 67 81 79 72 76
1OKHB 4587 1.75 0.478 46 41 42 0 0 0 0
1OBOA 5011 1.2 0.477 169 145 130 0 0 0 136
1RCF 16593 1.4 0.472 169 98 91 0 2 0 43
1FDQA 5320, 16042,

16046, 16047,
16048, 16049

2.1 0.466 131 128 121 0 130 121 128

1FU0A 4774 1.9 0.448 86 84 77 0 0 0 0
1EK8A 5190 2.3 0.438 185 175 0 181 181 0 167
2GGMB 5503, 6687 2.35 0.436 137 130 121 0 0 0 62
1HFZC 4811, 4332 2.3 0.435 121 111 99 0 0 0 110
1D03A 1673 1.85 0.424 169 160 142 0 0 0 159
2HPWA 16600 1.55 0.417 228 206 111 159 203 168 185
1YW5A 16690 1.6 0.412 177 165 0 170 170 158 165
1GPR 1663 1.9 0.407 158 146 133 0 0 0 134
2HPR 932 2 0.402 86 79 74 0 0 0 0
5HPGA 16466 1.66 0.393 84 75 73 0 0 0 75
1WYWB 6304 2.1 0.381 79 77 0 0 0 0 71
1DSBA 16327 2 0.381 188 0 0 146 167 124 151
1KDJ 7370 1.7 0.373 102 96 0 0 0 0 90
1VB0A 16060 0.92 0.348 61 0 0 53 55 50 51
1ZDNA 17437 1.93 0.348 151 132 0 0 122 104 121
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Number of residues
PDB BMRB RES. (Å) SIM. Total H Hα C’ Cα Cβ N
2AAOB 5324 2 0.343 131 118 115 0 114 104 111
1M8AB 15596 1.7 0.343 61 59 58 0 0 0 0
1IOZA 10051 2 0.339 162 156 0 0 0 0 153
2BJDA 6398 1.27 0.337 90 87 81 0 0 0 0
1V6PB 1381 0.87 0.333 62 55 51 0 0 0 0
1RB4B 371 1.9 0.333 32 31 30 0 0 0 0
2PF5A 6392, 6393 1.9 0.327 88 84 78 84 88 78 84
2SEMA 5729 2.2 0.317 58 49 48 50 52 48 48
2IDSA 16740 1 0.295 105 93 0 0 0 0 93
1EQTB 16803 1.6 0.294 67 58 60 57 62 60 58
3DFR 7200, 7196,

7197, 7198,
7199

1.7 0.286 162 147 0 0 0 0 137

1H0JB 4966 1.9 0.283 60 54 58 0 59 0 0
1BAZC 394, 395 1.9 0.283 46 41 40 0 0 0 0
1DCDB 5249 2 0.278 36 35 26 0 32 0 35
1OKSA 6568, 6569 1.8 0.268 50 48 0 0 0 0 47
1R1TA 4128, 4306 1.7 0.262 98 96 0 0 97 0 93
2GITE 5784, 5169,

3078
1.7 0.260 100 92 97 0 0 0 0

1W7ZC 397 1.67 0.258 31 26 23 0 0 0 0
2IDUA 16741 0.95 0.257 104 95 0 94 99 89 95
1UWXA 1639 2.2 0.254 57 54 50 0 0 0 0
1HC9A 8, 4195, 5006,

5024
1.8 0.243 74 63 68 0 0 0 0

1CM9B 4914, 4852 2.1 0.243 66 60 63 0 0 0 58
1HC9B 15130 1.8 0.243 74 0 70 0 74 0 0
1YU7X 4428 1.5 0.239 64 57 58 0 0 0 56
1ZNIC 1632, 1585,

554, 1344
1.5 0.238 21 20 20 0 0 0 0

2F91B 5274 1.2 0.229 32 29 29 0 0 0 0
2ALGA 16294 2.3 0.228 92 77 69 0 0 0 0
1PZ4A 16662 1.35 0.224 113 106 104 0 109 100 102
2IE2C 17162, 17163 1.7 0.223 212 194 0 0 191 161 174
1CLVI 4490, 4404 2 0.219 32 27 29 0 0 0 0
2GJ2A 7099 2.35 0.212 79 77 74 0 78 68 74
1PHT 16448 2 0.212 83 0 0 46 69 46 61
2CA5B 15214 2.1 0.212 61 50 0 0 16 10 39
1WKXA 6123 1.7 0.209 43 31 30 0 0 0 0
1LP1B 1120, 4324 2.3 0.207 54 12 13 0 0 0 12
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Number of residues
PDB BMRB RES. (Å) SIM. Total H Hα C’ Cα Cβ N
2FFGA 15529 2.31 0.207 77 68 0 0 61 57 61
1LU0B 4246 1.03 0.207 29 27 26 0 0 0 0
1PPEI 199, 314,

2227, 2527
2 0.207 29 3 5 0 0 0 0

1HSLB 16204, 16205 1.89 0.206 238 215 169 221 216 184 204
1PGX 2575 1.66 0.205 70 58 54 0 0 0 0
1OVHA 915 1.95 0.201 162 152 139 0 0 0 152
1DFNA 16254 1.9 0.200 30 0 0 27 28 24 28
1CQMB 16344 1.65 0.198 98 88 88 0 0 0 88
2IGD 15283 1.1 0.197 61 0 0 54 54 50 53
1FD3D 4642 1.35 0.195 41 35 35 0 0 0 0
451C 1333, 10133 1.6 0.195 82 75 73 0 0 0 69
1O5UA 16006 1.83 0.188 88 82 83 82 87 84 82
1RPJA 16984, 16982 1.8 0.188 288 273 0 261 288 263 273
1QG7A 16142 2 0.179 62 58 62 58 62 62 57
1EZGB 5323 1.4 0.179 82 78 74 0 0 0 76
2NWGB 16143 2.07 0.176 64 57 61 57 61 61 55
2GSVB 15350 1.9 0.175 66 63 61 0 65 65 63
1R69 2539 2 0.174 63 60 58 0 0 0 0
2PSPB 2384 1.95 0.170 105 88 94 0 0 0 0
3WRP 17010 1.8 0.167 101 85 0 0 57 53 65
1OS3D 1633 1.95 0.167 28 26 25 0 0 0 0
1QE6C 280 2.35 0.167 67 61 62 0 0 0 0
1WTQA 5905, 5908 1.7 0.167 64 60 0 0 0 0 59
1TUKA 4977 1.12 0.164 67 62 60 0 0 0 61
3ERAB 7211 1.7 0.161 62 53 52 0 0 0 51
2DGCA 1396, 1397,

1398, 1399
2.2 0.159 49 48 48 0 0 0 0

1O82D 4112 1.46 0.157 70 69 60 0 0 0 0
1C8CA 4570 1.45 0.156 64 56 51 0 0 0 0
2CG7A 15756 1.2 0.156 90 83 0 0 88 72 83
1BWOB 2065, 4932,

4383
2.1 0.156 90 84 81 0 0 0 0

2H9EC 4396 2.2 0.155 52 50 48 0 2 4 50
1OMYA 7330 2 0.154 64 59 60 0 0 0 0
1MIDA 15143 1.71 0.154 91 83 73 0 0 0 0
1KBAB 1675 2.3 0.152 66 60 58 0 0 0 0
1L1DB 6051 1.85 0.151 145 113 100 119 125 95 99
1YU8X 15245 1.45 0.149 64 39 40 0 0 0 0
1NAQF 15094 1.7 0.143 105 99 41 104 105 98 104
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Number of residues
PDB BMRB RES. (Å) SIM. Total H Hα C’ Cα Cβ N
1GZZB 2498, 4204,

15654
2.3 0.143 60 54 54 57 59 44 50

2A3GA 1442 2.25 0.143 21 19 20 0 0 0 0
1KX9B 5094 1.65 0.143 102 98 95 0 0 0 92
1BNZA 6050 2 0.141 64 51 47 0 0 0 0
1ICFJ 5583 2 0.138 65 58 59 0 0 0 0
1YNRB 10135 2 0.138 79 75 0 0 0 0 72
1GN0A 17136 1.8 0.130 108 103 99 0 108 100 103
1AE3 2039 2 0.128 86 75 72 0 0 0 0
1HB8B 2049 2 0.116 86 82 80 0 0 0 0
1KTZA 4411 2.15 0.116 82 67 74 0 0 0 67
2GM5D 4269 2.1 0.115 114 79 72 78 81 74 79
1CY5A 4661 1.3 0.113 92 86 86 0 84 12 86
1VKBA 16380 1.9 0.112 147 130 132 0 141 116 118
1QVEA 4918 1.54 0.111 126 114 105 0 0 0 108
2GOOB 15956 2.2 0.107 85 76 79 53 66 57 53
1J1VA 5200 2.1 0.106 91 82 72 85 91 87 86
1THQA 6234 1.9 0.100 147 102 0 0 99 75 91
2BEMC 17160 1.55 0.100 170 152 159 168 169 159 152
1ENFA 16146 1.69 0.099 212 204 0 0 200 165 198
1BGF 5997 1.45 0.097 124 111 0 96 104 85 111
1Q2UA 17507 1.6 0.095 189 171 0 178 179 148 157
2UV0H 6271 1.8 0.091 163 150 0 161 161 147 150
1AM7A 16664 2.3 0.089 150 143 126 141 146 0 143
1VYKA 17357 1.49 0.087 129 82 71 91 99 96 93
1JPST 16838 1.85 0.087 200 179 0 177 178 66 160
1XIOA 17064 2 0.084 217 0 0 129 132 97 134
2IM8A 16113, 7227 2 0.084 120 95 104 0 94 90 75
2BDYA 16940 1.61 0.083 276 248 0 0 0 0 0
1ASS 5930 2.3 0.082 152 145 140 133 147 0 140
2Q2TA 16059 2.3 0.072 293 249 0 236 265 235 249
1K82A 5219 2.1 0.071 260 172 0 106 148 95 118
1CKUB 2999 1.2 0.071 85 75 73 0 0 0 0
1PHP 16464, 16451,

16447
1.65 0.063 394 372 0 359 363 325 366

2ASDA 16869 1.95 0.053 341 189 0 187 191 141 189
2GT8A 17251 2 0.042 298 187 185 168 195 161 169
2ILNI 5617 2 0.000 53 47 53 0 0 0 0
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2.C Evaluation of SPARTA+, SHIFTX2 and

UCBShift performance on uncurated Test dataset

Table 2.C.1: Root mean square error (RMSE), mean squared error (MAE) and Pearson’s
correlation coefficients (R2 ) for UCBShift in the curated and uncurated test dataset and
its low homology subset.

Dataset Test LH-Test
Atom Type RMSE MAE R2 RMSE MAE R2

H 0.31 ± 0.003 0.18 ± 0.001 0.90 0.45 ± 0.004 0.32 ± 0.001 0.77
Hα 0.19 ± 0.002 0.11 ± 0.001 0.94 0.26 ± 0.003 0.18 ± 0.002 0.87
C 0.84 ± 0.01 0.48 ± 0.004 0.93 1.14 ± 0.01 0.81 ± 0.007 0.86
Cα 0.81 ± 0.01 0.43 ± 0.004 0.99 1.09 ± 0.01 0.73 ± 0.005 0.97
Cβ 1.00 ± 0.03 0.47 ± 0.005 1.00 1.34 ± 0.05 0.83 ± 0.009 0.99
N 1.81 ± 0.02 1.06 ± 0.006 0.95 2.61 ± 0.02 1.89 ± 0.01 0.88
Dataset Test (Curated) LH-Test (Curated)
Atom Type RMSE MAE R2 RMSE MAE R2

H 0.30 ± 0.002 0.17 ± 0.001 0.90 0.43 ± 0.003 0.32 ± 0.002 0.78
Hα 0.18 ± 0.002 0.10 ± 0.001 0.94 0.24 ± 0.003 0.17 ± 0.002 0.88
C 0.77 ± 0.008 0.44 ± 0.004 0.94 1.13 ± 0.01 0.81 ± 0.006 0.86
Cα 0.76 ± 0.009 0.41 ± 0.003 0.99 1.04 ± 0.01 0.71 ± 0.006 0.98
Cβ 0.82 ± 0.01 0.45 ± 0.004 1.00 1.12 ± 0.02 0.78 ± 0.007 1.00
N 1.71 ± 0.01 1.03 ± 0.008 0.95 2.55 ± 0.02 1.86 ± 0.01 0.88
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SPARTA+

SHIFTX2
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UCBShift

Figure 2.C.1: Error analysis for SPARTA+, SHIFTX2 and UCBShift. In each graph, the
dotted line indicates the average RMSE over all the predicted residues. PDBs are sorted
according to the prediction RMSE over that specific structure, and the grey region
represents the minimum and maximum RMSE of a single residue in a protein for atom
types (a) H, (b) Hα, (c) C’, (d) Cα, (e) Cβ, and (f) N atom types.

SPARTA+
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SHIFTX2

UCBShift

Figure 2.C.2: Scatter plot for SPARTA+, SHIFTX2 and UCBShift predictions. The
predicted chemical shifts for six atom types plotted with the experimental shifts types (a)
H, (b) Hα, (c) C’, (d) Cα, (e) Cβ, and (f) N atom types.



CHAPTER 2 63

Table 2.C.2: Examples of SHIFTX2 that have information leakage from training to test set.

Identifier in training Identifier in testing Sequence sim-
ilarity

Structure
RMSD (Å)

R014 3LZTA A055 1YKYX 100% 0.77
R114 1VDQA A055 1YKYX 100% 0.41
R020 1RUVA A001 1KF3A 100% 0.20
R006 2CPLA A054 1CWCA 98%a 0.21
R129 1ZJLA A022 1ZJLA 100% 0
R072 3RN3A A001 1KF3A 100% 0.11

aTraining (R006) is a sub-sequence of testing (A054) with 1 aa missing on N-terminus and 2 aa missing
on C-terminus

UCBShift

Figure 2.C.3: Comparison of absolute error distribution for paramagnetic proteins and
diamagnetic proteins based on SPARTA+ predictions. Atom types (a) H, (b) Hα, (c) C’,
(d) Cα, (e) Cβ, and (f) N.
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2.D Performance analysis of UCBShift-Y in

comparison with SHIFTY+

Figure 2.D.1: Difference between UCBShift-Y and SHIFTY+ for protein specific RMSEs
for different atom types as a function of sequence identity. Atom types (a) H, (b) Hα, (c)
C’, (d) Cα, (e) Cβ, and (f) N.
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Figure 2.D.2: Error distributions for UCBShift-Y and SHIFTY+ across all atom types.
This compares only the transfer prediction module of UCBShift (UCBShift-Y) which uses
sequence and structural alignment.

2.E Training curves for random forest models

Figure 2.E.1: Training curves for R1 and R2 in UCBShift-X module for hydrogen.
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CHAPTER 3

Highly Accurate Prediction of NMR
Chemical Shifts from Low-Level
Quantum Mechanics Calculations
Using Machine Learning†

3.1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy is a highly accurate experimental technique
to probe chemical bonding and subtle environmental differences of atoms in various molecular
systems, ranging from small molecules[1, 2, 3], natural products[1, 4, 5], biopolymers[6, 7],
to materials.[8, 9, 10] The NMR chemical shift (CS), which describes the shielding effect
offset of a nucleus of interest relative to a defined standard molecule, is one of the most
informative data obtained from an NMR measurement, especially for molecular structure[11],
identifying the crystal morphology from a selection of candidates[10], distinguishing among
synthetic outcomes for natural products,[5] and building and refining atomic level models
for proteins.[12]. Therefore, accurate CS back-calculators which connect structure to shift
perturbations are an indispensable tool in trying to help scientists understand and make
good use of NMR chemical shifts measurements.

Chemical shifts arise from the electron shielding of a nucleus under an external magnetic
field. The shift values can be calculated from first principles[13, 14, 15] using the second
order magnetic shielding tensor σ̂, that describes the response of the induced magnetic field
in all directions, but usually only the isotropic component σiso = 1

3
Tr(σ̂) is mapped to an

experimental observable.[16] Calculation of chemical shifts can be done with exceptional

†Reproduced with permission from: Li J*, Liang J*, Wang Z, Ptaszek AL, Liu X, Ganoe B, Head-
Gordon M, Head-Gordon T. Highly Accurate Prediction of NMR Chemical Shifts from Low-Level Quantum
Mechanics Calculations Using Machine Learning. arXiv preprint arXiv:2306.08269. 2023 Jun 14. (* denotes
equal first authors)
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accuracy using coupled-cluster theory with single and double excitation and perturbative-
approximated triple excitations [CCSD(T)] together with a complete basis set (CBS) or one
that is sufficiently large for convergence.[17, 18, 19] However, with present-day algorithms and
computing resources, such calculations are essentially impractical for any complex systems
that contain more than ten heavy atoms (non-hydrogen atoms), due to their computational
scaling. Efforts continue to reduce the cost by approaches such as composite methods[20, 21],
and nucleus-optimized electronic structure models.[22]

Alternatively, data-driven approaches have also been quite successful in predicting exper-
imental or calculated chemical shifts at greatly reduced cost. For aqueous proteins, chemical
shifts can be predicted from carefully curated features extracted from 3-dimensional geome-
tries of the peptides using machine learning (ML) methods including neural networks and
random forests, such as implemented in SPARTA+[23], SHIFTX2[24] and UCBShift[25].
For organic small molecules in crystalline form, kernel ridge regression (KRR) [10]and 3D
convolutional networks (CNN)[26] have been employed to predict chemical shieldings calcu-
lated using gauge-including projector-augmented waves (GIPAW) density functional theory
(DFT) methods from merely the molecular structure inputs. Recent work by Guan et al.
has trained a 3D graph neural network to predict H and C chemical shifts for neutral organic
molecules found in NMRShiftDB[27] using quantum mechanics (QM) optimized geometries
and DFT calculated chemical shifts, and then transfer learning to predict experimental chem-
ical shifts from force-field optimized geometries.[28] These ML models that directly predict
chemical shifts from input geometries are orders of magnitude faster than QM calculations,
and can usually achieve comparable accuracy to the quantum mechanical method they have
been trained on. However, this has typically relied upon DFT that can calculate chemi-
cal shieldings at a much more acceptable cost, but also can often suffer from insufficient
accuracy[29, 30, 31]. In addition, machine learning methods are not expected to generalize
to a different molecular system, unlike QM methods that are still much more generalizable
and rigorous in terms of predicting chemical shieldings for a specific input geometry.

The question arises whether a machine learning method can be used to “amend” a low-
level QM prediction to high accuracy, hence achieving generalizability and speed at the
same time. An intuitive way is to use machine learning to predict the difference between a
high-level and low-level calculation, using molecular geometries as input. Such ∆-machine
learning idea are exemplified in the work of Unzueta, et al. that predicts a correction to a
cheap DFT calculation using small basis set and arrives at the target accuracy of the same
DFT method with a large basis set.[32] Very recently, Büning and Grimme have shown that
a similar approach can correct DFT predictions of chemical shieldings to CCSD(T) quality,
signifying an important step in predicting CS at the highest level of theory achievable from
theoretical calculations.[33]

But what is true about many such ML approaches is that they can be poor in predicting
out-of-distribution cases, i.e. outside the specifics of the training data.[34] Ideally, good
feature engineering can provide an augmented chemical representation beyond just molecular
configuration[34, 25], information that is preferably derived from a cheap calculation but
which is nonetheless invaluable information for not only obtaining high-level accuracy, but
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transferability. This very idea has been proven for predicting correlation energies at MP2 and
CCSD level using molecular orbital features at the mean-field Hartree-Fock (HF) level[35].

In this work we present a novel feature representation obtained from a low-level DFT
chemical shielding calculation of the diamagnetic (DIA) and paramagnetic (PARA) shielding
tensor elements, and combine it with geometric-dependent features that are used as input
into a neural network model to predict chemical shieldings equivalent to CCSD(T)/CBS
accuracy.[21] In addition we introduce a novel active learning (AL) training procedure that
selects out-of-distribution training data with increasing number of heavy atoms from a full
set of off-equilibrium geometries obtained from the ANI-1 dataset.[36] Finally, to analyze
the transferability of iShiftML to other systems, we find that error estimations in terms of
the standard deviation among a committee of ML models is well correlated with the actual
error without knowing the target values, signaling when the model is or is not trustworthy
for applications outside the original training set.

The resulting iShiftML model trained with data up to 7 heavy atoms has exceptional
predictive performance when evaluated on the 8 heavy atom test data, achieving prediction
errors of 0.11 ppm for H, 1.54 ppm for C, 3.90 ppm for N and 6.33 for O between predicted
chemical shieldings and the target CCSD(T) composite method values. The iShiftML model
when compared against experimental gas phase CS measurements for molecules that are not
included in the training set reduces the error of the low-level DFT calculation by at least 50%.
Furthermore, we have used our method to predict experimental CSs for natural products
that are vastly larger and more chemically complex than any molecule from our training
dataset, illustrated with strychine and vannusal, in which we show that diastereomers of the
vannusal B molecule can be easily differentiated by inspecting the errors between predicted
CS and experimental measurements. We expect the iShiftML method to be used extensively
to achieve highly accurate predictions of chemical shifts of various molecular systems, and
also facilitate theoretical research of NMR chemical shieldings at the CCSD(T)/CBS level.

3.2 Methods and Models

Feature Selection for Machine Learning of Chemical Shifts

The magnetic shielding tensor σ̂ is defined as the total second derivative of the energy E
with respect to nuclear spin MA at nucleus A and the external magnetic field Bext, with
components defined as

σab =
d2E(MA,B)

dMA
a dBb

∣∣∣∣
B=0,MA=0

(3.1)

Here “d” means total derivative, and a, b correspond to Cartesian indices. For a variation-
ally optimized wavefunction with parameters, θ (even the exact wavefunction), the total
derivative has two partial derivative contributions:

σab =

{
∂2E(MA,B)

∂MA
a ∂Bb

+
∂2E(MA,B)

∂MA
a ∂θ

∂θ

∂Bb

}∣∣∣∣
B=0,MA=0,θ=θopt

(3.2)
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Given that the chemical shielding tensor and each of its components, σab, can also be de-
composed into diamagnetic and paramagnetic components within the DFT gauge-including
atomic orbitals (GIAO) approach[37, 38],σxx σxy σxz

σyx σyy σyz
σzx σzy σzz

 =

DIAxx DIAxy DIAxz

DIAyx DIAyy DIAyz

DIAzx DIAzy DIAzz

 +

PARAxx PARAxy PARAxz

PARAyx PARAyy PARAyz

PARAzx PARAzy PARAzz

 (3.3)

it comes naturally that the isotropic chemical shieldings at the same level of theory can be
calculated as

σiso =
1

3
(σxx+σyy+σzz) =

1

3
(DIAxx+DIAyy+DIAzz+PARAxx+PARAyy+PARAzz) (3.4)

in which the off-diagonal elements have a contribution of zero to the final isotropic chemical
shielding formula. However, the full tensor of Eq. 3.3 still encodes useful information
about the local atomic environments for each nucleus and might be helpful with predicting
chemical shieldings at a higher level of accuracy. Hence we formulate the chemical shift tensor
components DIA and PARA as a feature set for the machine learning approach described
further below.

In addition, we use Atomic Environment Vectors (AEVs) as geometric descriptors that are
used to describe the atomic environments at each nucleus, following previous studies[36, 32].
AEVs are reformulations of the atomic symmetry functions used by Behler and Parinello
in their neural networks for predicting molecular energies[39], which contain orientation-
independent angular and radius terms that are determined by local geometries of nearby
atoms categorized by atom type within a cutoff. The 384-dimensional AEV for an atom
constitutes a radial part (the first 64 elements) and an angular part (the remaining 320
elements). The radial elements for atom i are calculated as

G
(rad)
A,n =

∑
j∈N [i]

e−η(Rij−Rn)2fC(Rij) (3.5)

where A denotes a specific atom type of H, C, N, O for the second atom, and n is a distance
index that defines the different reference distances Rn from the center atom. The summation
is done over all neighbor atoms j with type A near the central atom i within a cutoff,
and Rij is the distance between atoms i and j. The reference distances are defined as
Rn = 0.9 + a0/2 ∗ n where a0 = 0.529177Å is the Bohr radius and n ranges from 0 to
15. η = 16 was used to adjust the width of each Gaussian so that it matches with the
separation between two consecutive reference distances. Finally, fC(Rij) is a cutoff function
that smoothly modulates the Gaussian term around the cutoff radius, with the following
formula and cutoff radius RC = 5.2Å:

fC(Rij) =

{
(1 + cos(π

Rij

RC
))/2 Rij ≤ RC

0 otherwise
(3.6)
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We have used 16 distance indices for each atom type and hence 64 radial AEV values.
Similarly, the angular components of an AEV vector are defined as

G
(ang)
A,B,m,n = 21−ξ

∑
j,k∈N [i],j ̸=k

(1 + cos(θijk − θm))ξf(R,n)(Rij, Rik) (3.7)

fR,n(Rij, Rik) = e−η(Rij+Rik)/2−Rn)2fC(Rij)fC(Rik) (3.8)

with A, B defining the two different atom types for nearby atoms, and thus 4 + 3 + 2 + 1 =
10 different atom type combinations are possible. m and n are the angle and distance
indices that define the reference angles and positions by θm = 2m+1

16
π with m from 0∼7,

Rn = (0.90, 1.55, 2.20, 2.85)Å, and θijk denotes the angle centered at atom i. The same
mathematical format of the distance cutoff function was used, but with a radial cutoff value
of RC = 3.5Å. The normalization constant ξ = 32. The 10 atom type combinations, 8
reference angles and 4 reference distances altogether defines 320 different angular components
of the AEV vector. The calculation of AEVs were performed with the precompiled C++
code from Ref. 32.

NMR shielding calculations and stability analysis

Recently Liang et al. presented a systematic investigation on using locally dense basis sets
(LDBS) and composite QM methods for chemical shieldings calculations, which have been
categorized into low-level, middle-level and high-level effectiveness based on a balance of
accuracy and computational cost.[21] We selected the ωB97X-V functional [40] in conjunction
with the pcSseg-1 basis set [41] as our low-level method. The ωB97X-V functional offers
robust and transferable performance for various properties prediction,[42, 43, 44, 45, 46, 47,
48, 49] particularly the dipole moment,[44] a simple but effective measure of electron density
in polar molecules. We opted for this functional over the low-level methods recommended
in Ref. 21, which provide more accurate shielding predictions, because those methods could
potentially benefit from error cancellation. Thus, we believe it is more advantageous to use
ωB97X-V as input for predicting high-level results. The advantage of using ωB97X-V for
the low-level input was also validated by its better in-distribution and out-of-distribution
predition error when comparing models trained with different low-level methods as input,
which are described in Appendix Table 3.C.1. The ORCA 5.0.3 software [50] was utilized for
these calculations, and local exchange-correlation integrals were computed over DefGrid3,
a default ORCA grid, for all atoms. GIAOs[38] were used in all shielding calculations,
including subsequent high-level computations.

We directly adopted the high-level method suggested in Ref. 21, namely CCSD(T)/pcSseg-
1 with a basis set correction between pcSseg-1 and pcsSeg-3 calculated from the resolu-
tion of identity Møller-Plesset second-order perturbation theory (RIMP2), abbreviated with
CCSD(T)(1)∪RIMP2(3). This high-level method can achieve impressively low root mean
square errors (RMSEs) (0.048 ppm for H, 0.47 ppm for C, 3.58 ppm for N, and 4.68 ppm
for O) in comparison to the theoretical best estimates, CCSD(T) with a complete basis set
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(CBS). The CFOUR program package, version 2.1, was utilized for CCSD(T) computations
[51, 52, 53], while ORCA was used for RIMP2 calculations. In RIMP2 calculations, the
def2-JK [54] auxiliary basis set was employed for the Coulomb and exchange part, whereas
the cw5C [55] auxiliary basis set was used for auxiliary correlation fitting to expedite the
computation.

As our training set encompasses many conformations far from equilibrium and quantum
mechanical (QM) calculations are likely to fail, we employed the stability analysis[56] at
HF/pcSseg-1 level to validate our calculations. We exclude all conformations that might
exhibit instabilities, including Restricted HF (RHF) → RHF, RHF→ Unrestricted HF, and
RHF → Complex RHF.

Dataset preparation

The ANI-1 dataset [36], which contains over 20 million off-equilibrium geometries of small
organic molecules up to 8 heavy atoms obtained through normal mode sampling, together
with the equilibrium structures of these 57,462 molecules, were used to define the most
inclusive dataset (DS-ANI-1) used in this work. However, it is very challenging to perform
chemical shielding calculations for all the data in DS-ANI-1, even at a low-level DFT level
of theory, and is not accessible for the CCSD(T) calculations that are orders of magnitude
more time-consuming than DFT calculations.

To reduce the size of the dataset while keeping the diversity of the conformations of the
molecules, a “farthest sampling” algorithm was developed that down-samples off-equilibrium
geometries for each molecule in the ANI-1 dataset. The root-mean-square-deviations (RMSDs)
for molecules after the optimal alignment using the Quarternions method [57] was used to
evaluate conformation dis-similarities between geometries of the same molecule. A confor-
mation collection pool was defined with the first conformation of a molecule being the first
element. In each iteration, the aligned RMSDs for all geometries in ANI-1 dataset but not
in the collected pool were calculated towards all conformations in the collected pool, and the
geometry with the highest RMSD was added to the collected pool.

The total number of collected conformations depends on the number of heavy atoms
in the molecule. For molecules up to 4 heavy atoms, 200 most dissimilar conformations
were collected into the pool. For molecules with 5, 6 and 7 heavy atoms, the number of
non-equilibrium conformations collected for each molecule were 100, 50 and 5 respectively.
The equilibrium geometries for molecules with 5-7 heavy atoms were always included in the
dataset. A stability analysis was performed to further exclude systems for which the NMR
shielding calculations are likely to fail or be erroneous. This collection of a sub-sampled
dataset (DS-SS) is our primary data for model training and development of the active learning
workflow of the iShiftML model, which contains 12,677 geometries for molecules up to 4 heavy
atoms, 13,313 geometries for molecules with 5 heavy atoms, 31,462 geometries for molecules
with 6 heavy atoms and 37,105 geometries with 7 heavy atoms.

Using the geometries of all these data, we calculated the DIA and PARA matrix elements
under the low-level composite DFT method ωB97X-V/pcSseg-1 DFT.[21] For the dataset



CHAPTER 3 72

with 5-7 heavy atoms, 1500 geometries were selected from active learning to perform the high-
level composite method[21]. The active learning dataset covering all data using the high-level
target values are subsequently labeled DS-AL-N, where N ranges from 4-7, which represents
the maximum number of heavy atoms included in the dataset. Finally, 41 randomly selected
molecules with 8 heavy atoms were collected from DS-ANI-1. The equilibrium geometries
and a random non-equilibrium geometry for each of the 41 molecules were used to define our
test dataset. Any data point for carbon chemical shielding with significant deviation between
calculated low-level and high-level chemical shieldings was excluded. Our full training and
testing dataset are provided in Appendix.

iShiftML Ensemble Model and Training Details

We have employed an ensemble machine learning approach by randomly splitting the training
and validation data into 5 even portions, and 5 separate ML models were trained, each model
using a different portion as validation data and the rest as training data. In addition, the
network parameters for these five models were also initialized with different random numbers.
After all models have been trained, they are combined into an ensemble model. When making
predictions, each model in the ensemble predicts a value, and the prediction is given by the
average from each of the 5 individual models in the ensemble.

Because outliers resulting from failed predictions may contaminate the average, any out-
liers should be identified and excluded from the calculation. To estimate outliers, we used
the local outlier factor (LOF) algorithm implemented in the scikit-learn package to detect
outliers.[58] The algorithm relies on a local neighbor density estimation to identify outliers
as data points that have a significantly lower density of neigbors than the rest of the data
points. Finally, the average and standard deviation among the non-outlier predictions were
calculated.

All five ML models are trained by minimizing the mean squared error between the pre-
dicted isotropic chemical shieldings and the calculated high-level targets, under the following
loss function:

L =
1

N

∑
n

(fθ(Xn) − Yn)2 (3.9)

where fθ represents the networks parameterized by θ, Xn are the input features, and Yn
are the target values. Weight decay of 3 × 10−5 and dropout with probability 0.1 [59]
were used after each linear layer to reduce overfitting to the training data. Starting from a
learning rate of 1 × 10−3, a stepwise learning rate decay schedule was used that monitors
evaluation performance on the validation dataset, and reduces learning rate by 30% if the
validation error did not decrease after 20 epoch since last error reduction on the validation
dataset, unless the learning rate is already smaller than 1 × 10−6. The neural network was
implemented in pytorch[60] and optimized using the Adam optimizer[61] with a batch size
of 128 and was trained for 750 epochs.
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3.3 Results

We begin with the results concerning the iShiftML model itself, the benefits of ensemble
training, and a new active learning protocol in order to emphasize the ability to generalize,
predict error confidence, and to construct affordable datasets for chemical shift prediction.
A schematic of the iShiftML model architecture is depicted in Figure 3.1. For a given input
geometry, the atomic environment vectors together with the paramagnetic and diamagnetic
elements of the shielding tensor are calculated with the lower-level ωB97X-V/pcSseg-1 com-
posite method, and are used as neural network inputs that are trained to predict chemical
shieldings of the high-level composite method CCSD(T)(1)∪RIMP2(3) for the four atom
types for which we predict chemical shieldings: hydrogen, carbon, nitrogen and oxygen.

Figure 3.1: The iShiftML ensemble learning model that uses low-level QM calculations of
the shielding tensor and AEVs to predict high-level chemical shieldings. (a) Given a
molecular geometry, the AEV around each nucleus is prepared, and are sent into a
multi-layer perception (MLP) network with two layers, each of which contains 128 neurons,
in which the ReLU activation function[62] is used for the first layer to encode the AEVs
into an 128-dimension internal representation. On a second branch, we perform low-level
composite QM calculations to obtain the 18 DIA and PARA chemical shielding values that
are concatenated with the AEVs from the first branch to provide input for the second MLP
weight network. The weight MLP is composed of a first layer containing 64 neurons and
uses ReLU activation, followed by a second layer of 19 neurons and a bias term without an
activation function.
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Figure 3.2 shows the distribution of the learnable weights of the 18 DIA and PARA values
from the network for the test dataset of the hydrogen atom after the training converges.
Even without explicit enforcement, the diagonal elements from the DIA and PARA matrices
have weights that are close to 1

3
and off-diagonal elements distributed around 0, which is

consistent with Eq. 3.4; the bias term of -0.17 indicates the low-level chemical shieldings
have a systematic offset from the more accurate high-level targets. This result proves that
the model captures the physical connection between the isotropic chemical shieldings and
the intermediate QM matrix elements, and should be generalizable to new predictions even
outside of the training dataset, as long as the low-level QM matrix elements are reasonably
accurate.

Figure 3.2: Distributions of weight network outputs for hydrogen model evaluated on test
data. Distributions of the weights for diagonal elements in the DIA and PARA matrices
are centered close to 1/3, off-diagonal elements are centered around 0, and the bias term is
distributed around -0.17.

We have also employed an ensemble prediction technique to improve on the accuracy
compared to any individual training of the iShiftML model (Figure 3.3a). Table 3.1 shows
the performance comparisons for individual models and the ensemble average for a model
trained with DS-AL-4 for oxygen. We see that while an individual model may make large
errors, such as in models 3 and 5, the ensemble average model can mitigate these erroneous
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predictions, and still reach a consensus prediction that has a lower RMSE and standard
deviation than any individual model.

Table 3.1: Root mean square errors (RMSE) and standard deviations from individual
models and from the ensemble model for oxygen prediction when trained using DS-AL-4.
Data with high standard deviations (std>30) has been excluded to make the trend more
concise. All units in ppm. See Methods for further detail.

RMSE standard deviation
Model 1 8.30 5.23
Model 2 8.65 6.18
Model 3 16.76 15.01
Model 4 8.86 5.73
Model 5 23.34 21.72
Ensemble model 7.60 4.82

But just as importantly the ensemble model can provide standard deviations that can be
used to estimate actual prediction errors even without knowing the actual ground truth for
the chemical shift value. Figure 3.3b shows an undertrained model using DS-AL-4 evaluated
on 8 heavy atom test data, and compares the predicted and target chemical shielding values
with data points colored by the standard deviations from the ensemble. We find that when
the standard deviations are small, the predictions are accurate, and correspondingly all
data points with large standard deviations correlate with high predicted errors. Figure 3.3c
further illustrates the correlation between the prediction standard deviation and the absolute
error from the ensemble prediction. Because we find that standard deviations are good
approximators for prediction error, the iShiftML model can be applied to and make good
prediction for any organic chemical system by only selecting predictions with low standard
deviations.
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Figure 3.3: Ensemble prediction and correlation with actual prediction error.(a) An
ensemble learning approach using 5-fold cross validation to train individual models in the
ensemble. The final prediction is the average prediction from the models after excluding
outliers recognized by the Local Outlier Factor algorithm [58].(b) An undertrained model
for oxygen tested on the 8-heavy-atom test dataset, showing correlation between predicted
and actual values. Data points are colored according to their standard deviation (STD),
with warm colors representing high STDs and cool colors representing low STDs. (c)
Prediction errors compared to reference values are found to be well correlated with
standard deviations of the predictions in the ensemble on a log-log plot. See Methods for
further detail.

Finally, the ability to identify out-of-distribution data not effectively covered by existing
training data through ensemble learning has inspired a novel active learning technique to
select only the most important training data to calculate time-consuming high-level chemical
shieldings while still improving model performance. In particular given that the high-level
QM calculation scales as O(N7) with system size, it is best to generate as many training data
with smaller number of heavy atoms in order to reduce the number of calculations needed
for molecules with more heavy atoms (Figure 3.4a).

In this case we start by training a model with all subsampled data with up to 4 heavy
atoms (DS-AL-4) to allow sufficient initial coverage of the chemical space, and which provides
a good starting point for the AL workflow. After training converges with DS-AL-4, the model
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was used to predict chemical shieldings on the 5 heavy atom data using the low-level QM
features. Large standard deviations from the ensemble prediction were utilized to select
1500 structures to generate the next batch of high-level target chemical shieldings which
are then added to the training dataset to define the next DS-AL-5 dataset. This process
continues until we have included high-level calculations for molecules up to 7 heavy atoms
in the training dataset.

After each AL iteration, the model performance was evaluated on the test dataset com-
posed of randomly selected molecules with 8 heavy atoms to show the effectiveness of the
AL approach. Test errors in terms of RMSE for the four atom types are visualized in Figure
3.4b-e, which show the trend of error decrease as larger molecules are added to the training
dataset. As a reference, a linear regression (LR) model that uses QM features in DS-AL-7
was also trained, which acts as a baseline equivalent to a model that has fixed coefficients
on the DIA and PARA terms instead of atomic environment dependent weights.

Figure 3.4b-e shows that even the model trained with DS-AL-4 surpasses the LR reference
performance in all atom types other than nitrogen. With more training data included, which
we emphasize is that every new training dataset only has ∼10% more data (1500 more
molecules) than the dataset with one less heavy atoms, the model continues to systematically
improve on the 8 heavy atom test dataset. After the model has been trained with DS-AL-
7, the RMSE between predicted and actual high-level QM chemical shieldings are only 0.11
ppm for hydrogen, 1.54 ppm for carbon, 3.90 ppm for nitrogen and 6.33 ppm for oxygen, very
close to the error between the target high-level method and the theoretical best estimates.
An increase in the proportion of data that can be successfully predicted for this 8 heavy atom
test dataset was also observed as more heavy atom data was included in the training dataset
(Appendix Table 3.C.3). In the final model trained with DS-AL-7, all test data was predicted
with small standard deviations and no data point was excluded from the calculation.
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Figure 3.4: Procedure and results of the active learning workflow. a) The active learning
(AL) workflow. Starting from a model trained with data up to 4 heavy atoms (HA), data
with 5HA are evaluated using the trained model and 1500 structures with largest predicted
standard deviations from 5HA dataset was included to define the training dataset for the
next iteration, until the dataset contains molecules up to 7HA. The 8HA dataset was
always used for test. b-e) RMSE on the 8HA test dataset for models trained with AL under
training dataset containing molecules with different sizes (blue curve), and also a baseline
model that is trained using linear regression (green dotted line). Figures are for hydrogens
(b), carbons (c), nitrogens (d) and oxygens (e). (b-e) are also provided in tabular form in
Appendix Table 3.C.2. Note that the RMSEs are calculated with uncertain predictions
excluded, which removes any prediction with ensemble standard deviation larger than 30.
The proportion of data that has been excluded is also listed in Appendix Table 3.C.3.

Application to predicting gas phase chemical shifts

The iShiftML model can predict NMR chemical shieldings at a high-level CCSD(T) com-
posite method accuracy using only a tiny fraction of calculation time of a low-level DFT
calculation, which enables us to explore new possibilities of experimental CS prediction as
well. We first show that experimental gas phase CS for molecules not included in the train-
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ing dataset can be accurately predicted and error is significantly reduced compared to the
low-level DFT that provides the QM matrix elements. Gas phase chemical shifts were used
to minimize the effect of environmental complexities, including any influence of solvent and
perturbations to chemical shifts due to other molecules nearby. We also consider a more
challenging application of the iShiftML method to highlight the transferability of the model
for predicting CS for natural products that are much larger and more complex than any
molecule in our training dataset. Specifically, calculated CS for 8 diaesteromers of the van-
nusal B molecules were compared to the experimental measurements to demonstrate that
the matching structure can be confidently selected relying on our iShiftML method, which
would greatly assist synthetic chemists.

Figure 3.5: Predicting experimental gas phase chemical shifts for small organic molecules.
(a) the small molecules under investigation. 3D geometries of these molecules are taken
from NS372[63] and NIST database.[64] (b-d) Distributions of errors between predicted and
experimental gas phase NMR chemical shifts for low level DFT calculations
(ωB97X-V/pcSseg-1, blue distributions) and iShiftML predictions for the high level
CCSD(T) composite method, orange distributions values for hydrogens (b), carbons (c)
and nitrogens (d). Also see Appendix Figure 3.B.1 and Appendix Table 3.C.4.

Figure 3.5a shows a set of 16 molecules that were collected from the literature for their
experimental gas phase CS values[65, 66, 67], and the geometries of the molecules were taken
from NS372[63] and NIST database.[64] Because some of these molecules were already in the
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DS-AL-7 data set, the iShiftML models were retrained after excluding all molecules in Figure
3.5a that are to be tested.

Chemical shifts were calculated with two techniques. For H and C, the reference chemical
shieldings for the respective nuclei in the standard substance tetramethylsilicane (TMS) were
calculated at the low-level ωB97X-V/pcSseg-1 and high-level CCSD(T)(1)∪RIMP2(3), and
chemical shifts were calculated using δ = σref − σnuc, where σref is the isotropic chemical
shielding for TMS, and σnuc is the isotropic chemical shielding for the target nucleus. Ref-
erence chemical shieldings are 31.766 ppm and 189.588 ppm using the low-level theory for
hydrogen and carbon, respectively, while the references were 31.522 ppm and 193.972 ppm
using the high-level theory for hydrogen and carbon, respectively. Due to lack of standard
substance for nitrogen, a linear model was fit between the predicted chemical shieldings and
experimental chemical shifts using a fixed slope of -1 such that only the intercept was fitted.
The resulting intercept is -137.9 ppm and -128.3 ppm for the low level and high level theory,
respectively. Oxygen nuclei were not assessed due to lack of experimental gas phase chemical
shifts for this test set.

When compared directly to experimental measurements, we find that iShiftML can pre-
dict CS for hydrogen nuclei with RMSE of 0.11 ppm, 3.3 ppm for carbon and 1.80 ppm for
nitrogen. By comparison, the low-level DFT calculations gives an RMSE of 0.30 ppm for
hydrogen, 6.3 ppm for carbon and 12.1 ppm for nitrogen indicating that with an inexpen-
sive method we have significantly reduced error by 2-6 fold. Figures 3.5b-d show the error
distributions for the low-level calculated chemical shifts and high-level predicted chemical
shifts, both compared with experimental CS for different nuclei. We see that the low-level
CS has a systematic offset for the nuclei under investigation, resulting in error distributions
shifted towards positive values for hydrogen and carbon, and negative values for nitrogen.
This systematic trend was corrected in the predicted high-level CS, whose errors are centered
around zero with a much sharper distribution, in line with its overall superior performance
compared to the low-level DFT calculations. One carbon CS (acetylene) that had a high
prediction error was also found to have high standard deviation around 13 ppm, which again
shows that standard deviations give good estimates of prediction error.

Application to natural product chemical shifts prediction

Finally we consider a more challenging application of iShiftML to highlight the transferabil-
ity of the model. Synthetic chemists often rely on NMR CS as an essential tool to validate
the structural correctness of synthesized molecules, especially for natural products.[15] In
turn, automated methods such as DP4[68] and DP4+[69] and corresponding ML advances
such as DP4-AI[70] for computing NMR spectra reliably enough to confirm the chemical
composition and stereochemistry of natural products are a critically important counterpart
to the experimental data.[71, 72, 69, 73] Here we demonstrate that iShiftML can also im-
prove the accuracy of predicted CS for a given molecular structure when compared with
experimental measurements. We have used strychnine[74, 75, 76, 77, 72] as a starting ex-
ample since it is a relatively rigid molecule (Figure 3.6a) so that conformational averaging
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will not play a major role in predicting its chemical shifts accurately. Figure 3.6b and c and
shows the absolute errors between experimental and calculated CSs using both the low level
DFT and high level predictions from the iShiftML model for hydrogens and carbons, and
the correlation plots are provided in Appendix Figure 3.B.2. All iShiftML predictions were
made with small standard deviations and hence no outliers were found.

Figure 3.6: Results on predicting and comparing CS for the strychnine natural product. a)
Molecular structure of strychine. b) Absolute prediction error for the low-level DFT
method and iShiftML across the experimental CS range for hydrogens. c) Absolute
prediction error for the low-level DFT method and iShiftML across the experimental CS
range for carbons. To avoid any inaccuracy in the reference values, all calculated CS were
re-referenced to have identical mean values to match the same reference used in the
experimental CS.

The RMSEs between experiment and calculated CS for low level DFT, high level iShiftML
predictions, along with four other DFT methods reported in Ref. 76 after re-referencing are
also provided in Table 3.2. We find that iShiftML has significantly improved over the low
level ωB97X-V/pcsSeg-1 DFT calculation that provides input for our model, and is as good
or better than other DFT methods that use a much larger basis set. Hence even though
strychnine is significantly larger and its fused ring system is not covered by our training
dataset, we still realize significant improvements over much more expensive methods, with
errors that remain commensurate with the errors of the 8HA test dataset for high level
CCSD(T) calculations. This demonstrates the reliability and generalizability of our model.
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Table 3.2: RMSEs between predicted and measured CS in strychnine using different
methods. The 3-dimensional geometry of the strychnine molecule and the experimental
measurements of CS are taken from Ref. 76. Predicted CS are re-referenced to have same
mean values as experimental measurements to avoid any referencing errors. However, the
slopes are fixed at unity.

Method Ha Cb

B3LYP/cc-pVTZc 0.162 2.095
PBE1PBE/cc-pVTZc 0.202 2.032
BP/TZPc 0.177 3.145
BP/TZ2Pc 0.177 2.895
ωB97X-V/pcsSeg-1 (low-level) 0.296 3.068
iShiftML 0.160 1.701

aExperimental CS data from Ref. 74
bExperimental CS data from Ref. 75
cRefitted with unity slope using original data from Ref. 76

Finally we consider a more challenging natural product synthesis application to identify
the correct molecular structure of vannusal B (5-2), whose structural assignment had been
uncertain due to the errors in back-calculations and comparison to experiment of a set of
highly similar diastereomers of the natural product itself (Figure 3.7a).[78, 79] Here we
have use iShiftML to investigate the match between experimental and calculated CS for
carbon atoms, and compare our results with the M06/pcS-2 DFT method reported in Ref.
80. However, we did not rescale predicted CS values as was done in Ref. 80, so that our
reported errors reflect true prediction errors on various atoms in the molecule. Additionally,
sp2 hybridized carbons (C1, C2, C11, C12, C21, C31) were retained in our analysis, unlike
the original study, as the iShiftML model should provide accurate predictions (or indicate if
it is an outlier) without any prior system knowledge.

Figure 3.7b provides the RMSEs between predicted and experimental CSs for vannusal B
(5-2) and same for the structures of the other diastereomers (2-1, 2-2, 3-1, 3-2, 4-1, 4-2, and
5-1). We find that iShiftML consistently predicts lower RMSE across all molecules compared
with the low-level DFT method or M06/pcS-2 from Ref. 80 (i.e. the bottom of the blue bars
for iShiftML are well below the bottom of the orange and green bars). Furthermore, in Figure
3.7b the bottom of each bar provides the RMSE between the experimental chemical shifts
that match the true structure of each diastereomer, while the top position of the RMSE bar
shows the error made if the experimental CS for natural product structure 5-2 involved an
(erroneous) assignment to the diastereomer structure of interest. On average, iShiftML has
a larger RMSE margin (longer bars) between the correct structure assignment of the given
diastereomer and the erroneous matching (to 5-2) based on the two sets of experimental
CS. Therefore iShiftML can identify the correct structure from other candidates with higher
confidence, as well as recognize the true vannusal B molecule with ease.
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Figure 3.7: Results on predicting and comparing CS for 8 diastereomers of vannusal B. a)
Molecular structures of the 8 diastereomers of vannusal B. b) Prediction RMSE margins
when comparing various vannusal B isomers with their corresponding true experimental CS
(bottom position in each bar) and comparing to the vannusal B CS in its native form, 5-2
(top position of each bar) using iShiftML, low-level DFT and M06/pcS-2 (the latter from
Ref. 80). Large bars with a low bottom therefore indicate good discrimination between
predicted CS for the true structure versus false identification with CS of the native
structure. To avoid any inaccuracy in the reference values, all calculated CS were
re-referenced to have identical mean values to match the same reference used in the
experimental CS.



CHAPTER 3 84

3.4 Conclusion

Methods for ab initio calculation of chemical shieldings lie on a spectrum, with one end being
DFT calculations that are cheap but less accurate, and the other end being CCSD(T)/CBS
methods that are highly accurate but prohibitively expensive for large systems. We have
now created a tool to bridge the two ends using machine learning, so that with input features
coming from a relatively fast DFT calculation, the predictions can approach the highest level
of accuracy achieveable through quantum mechanics calculations, without incurring extra
cost. By utilizing a feature set that relies on chemical shielding DIA and PARA tensor
components, together with features that describe molecular geometry, we demonstrated that
iShiftML can achieve not only excellent accuracy compared to the high level target chemical
shieldings, but greater transferability to test molecules larger than any molecule contained
in our training dataset, approaching the intrinsic errors for the high level targets when
compared to CCSD(T)/CBS calculations.

While iShiftML is readily helpful for those who study the chemical shieldings of small or-
ganic molecules using coupled cluster methods, its broader applicability is exemplified with
predicting experimental chemical shifts with higher accuracy for arbitrary systems. Our
trained model without any fine-tuning can predict gas phase experimental chemical shifts
for small organic molecules with excellent accuracy and reduce error by more than 50% com-
pared to the direct calculation using the same level of QM theory as our input features. When
applying this method to synthesized natural products, we illustrated it could achieve bet-
ter agreement between predicted and measured chemical shifts when the structures match,
and provide better differentiation capability between matched and mismatched diastereomer
structures given the CS experimental data. We believe there are many more application
possibilities of our method, including predicting chemical shifts for proteins, correcting as-
signment errors in databases, and aiding drug discovery in determining structure-activity
relationships.

There are also some limitations of the current method. It is trained with equilibrium
and non-equilibrium geometries of closed-shell small organic molecules that contain only H,
C, N and O atoms. Also, only single molecule data were included in our training dataset.
Therefore it is not expected to work for open-shell molecules, molecules containing other
elements, or for molecular systems in which intermolecular interactions play a major role
in the chemical shifts. However, we are planning to improve the method in the future to
make it even more transferable and widely applicable. For example, adding support for more
atom types will be our first step to allow this method to work for a broader range of organic
compounds. Nevertheless, we believe in its current form iShiftML can already benefit those
in need of a fast and reliable chemical shift predictor.
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Häfelinger. Experimental gas phase 1h nmr spectra and basis set dependence of ab
initio giaomo calculations of 1h and 13c nmr absolute shieldings and chemical shifts of
small hydrocarbons. Z. Naturforsch. B, 59(10):1153–1176, 2004.

[66] James R Cheeseman, Gary W Trucks, Todd A Keith, and Michael J Frisch. A compar-
ison of models for calculating nuclear magnetic resonance shielding tensors. J. Chem.
Phys., 104(14):5497–5509, 1996.
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Appendix

3.A Dataset and code links

GitHub repository link:
https://github.com/THGLab/iShiftML

DS-SS (subsampled dataset from ANI-1 with unstable molecules excluded):
https://github.com/THGLab/iShiftML/blob/master/dataset/DS-SS.txt

DS-AL (active learning dataset):
https://github.com/THGLab/iShiftML/blob/master/dataset/DS-AL.txt

Removed chemical shielding:
8 atom/mol 34274/99.xyz/atom 6 (calculated low level chemical shielding: -2.066, cal-

culated high level chemical shielding: 197.792)
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3.B Supporting Figures

Figure 3.B.1: Scatter plots on low-level and iShiftML predicted high-level chemical shifts
compared to experimentally measured gas phase chemical shifts for different atom types. a),
c) and e) show the calculated chemical shifts using low level ωB97X-V/pcSseg-1 DFT
methods, while b), d) and f) show the predicted chemical shifts using iShiftML targeting
CCSD(T)(1)∪RIMP2(3) composite method accuracy, with data points colored by the
standard deviation from the ensemble using color codes on the right. Red lines in the
figures represent y=x.
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Figure 3.B.2: Scatter plots on calculated chemical shifts compared to experimental chemical
shifts using low-level DFT and iShiftML for strychnine. a) Scatter plots for hydrogens. b)
Scatter plots for carbons. Black lines represent y=x. Data for low-level DFT are shifted on
the y axis for 2 ppm (a) and 30 ppm (b) to make comparisons more clear.
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Figure 3 (continued)
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Figure 3 (continued)

Figure 3.B.3: Scatter plots on calculated carbon chemical shifts compared to experimental
chemical shifts using low-level DFT, iShiftML and M06/pcS-2 for pairs of comparison
between diastereomers of vannusal B.
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3.C Supporting Tables

Table 3.C.1: Prediction root mean square errors (RMSE) on in-distribution dataset (ID,
randomly selected non-equilibrium geometries from training dataset containing up to 5
heavy atoms which are excluded from training), and out-of-distribution dataset (OOD, 5
heavy atom dataset with equilibrium geometries) from models trained using QM features
from different low-level methods using pcSseg-1 basis sets. All units in ppm.

Low level QM method
H C N O

ID OOD ID OOD ID OOD ID OOD
B97-D[81] 0.05 0.14 0.78 2.97 2.4 6.0 6.8 12.7
B97M-V[82] 0.05 0.14 1.08 2.88 2.3 6.3 6.0 13.0
KT3[83] 0.05 0.14 0.88 2.96 2.5 7.2 7.6 13.0
SCAN[84] 0.04 0.14 0.66 2.81 1.4 5.1 4.3 56.6
ωB97X-V[40] 0.04 0.12 0.34 2.66 1.0 4.0 4.2 10.1

Table 3.C.2: RMSE on the 8 heavy atom test dataset for models trained with active
learning under training dataset containing molecules with different sizes, and also a
baseline model that is trained using linear regression (LR). Models trained with DS-AL-N
are called 1-N HA models in the table. Outliers (data with predicted standard
deviations>30) are excluded from the RMSE calculation, and the proportion of outliers is
provided in Table 3.C.3

Model type Training dataset size H C N O
LR(baseline) 17178 0.255 3.11 7.26 8.46
1-4HA 12677 0.144 2.17 8.30 7.57
1-5HA 14177 0.125 1.81 5.49 8.15
1-6HA 15676 0.117 1.76 5.03 6.92
1-7HA 17178 0.112 1.54 3.90 6.33
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Table 3.C.3: Proportion of outliers (data with predicted standard deviations>30) for
chemical shielding predictions on the 8 heavy atom test dataset using different models
during AL training.

Model type H C N O
1-4HA 0 0 2.1% 10.1%
1-5HA 0 0 1.4% 3.9%
1-6HA 0 0 0.7% 0.7%
1-7HA 0 0 0 0
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Table 3.C.4: Calculated and predicted NMR chemical shifts for small organic molecules
and comparison to experimental gas phase chemical shift measurements. All units in ppm.

Molecule Atom
Exp.
CS

Calc.
low level

CS

Pred.
high level

CS
Pred.
std

CH4 H 0.14 0.32 0.15 0.05
C2H6 H 0.88 0.87 0.77 0.02
C2H4 H 5.31 5.86 5.43 0.03
C2H2 H 1.46 1.51 1.25 0.04
C3H8 H (CH3) 0.93 1.00 0.93 0.01
C3H8 H (CH2) 1.38 1.23 1.22 0.01
Butadiene H (CH2, trans) 4.98 5.40 5.00 0.009
Butadiene H (CH2, cis) 5.11 5.53 5.13 0.01
Butadiene H (CH) 6.34 6.54 6.31 0.03
Benzene H 7.24 7.65 7.39 0.03
CH4 C -7.0 -3.7 -4.4 0.4
C2H6 C 7.2 8.7 7.9 0.2
C2H4 C 123.6 133.0 124.6 0.9
C2H2 C 70.9 77.8 80.2 13.2
C3H8 C (CH3) 17.3 18.3 18.2 0.1
C3H8 C(CH2) 19.0 18.9 19.6 0.1
Butadiene C (CH2) 117.5 127.3 119.2 0.3
Butadiene C (CH) 137.7 148.0 141.2 0.4
Benzene C 130.9 135.3 129.3 0.5
CH3OH C 51.5 52.7 51.6 0.5
CH3NH2 C 29.8 31.2 30.4 0.2
CH3CHO C (CH3) 30.9 33.7 32.8 0.4
CH3CHO C (CHO) 194.8 203.5 195.2 0.2
CH3COCH3 C (CH3) 30.1 31.6 31.2 0.3
CH3COCH3 C (CO) 201.2 208.9 203.0 0.3
CH2CCH2 C (CH2) 72.9 79.6 74.1 0.8
CH2CCH2 C 217.4 228.1 208.8 1.9
CH3CN C (CH3) 0.4 2.4 1.8 0.2
CH3CN C (CN) 114.3 122.6 117.0 1.2
CH3NH2 N -385.4 -390.9 -383.9 1.7
CH3CN N -126.7 -105.8 -124.9 2.3
N(CH3)3 N -372.8 -380.4 -373.4 1.6
NH3 N -400.1 -408.0 -402.8 0.8
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CHAPTER 4

Learning Correlations between
Internal Coordinates to Improve 3D
Cartesian Coordinates for Proteins†

4.1 Introduction

Biomolecular structures are described using two widely used mathematical representations:
internal coordinates and Cartesian coordinates. The internal coordinate representation is
defined by a set of bond lengths, bond angles, and dihedral or torsion angles, and provides
a compact description in terms of the Z-matrix. In contrast, a Cartesian representation
defines all of the atomic positions in Euclidean x,y,z coordinates and additionally captures
the orientation of a molecule in space. Both representations are useful in certain contexts and
applications. Internal coordinates can be beneficial for geometry optimizations[1] and are the
preferred description for NMR structure determination and refinement as an intermediate
step towards an atomistic structure. The bond lengths and bond angles are typically taken
as fixed[2] in these scenarios. Cartesian coordinates are the preferred format of molecular
dynamics simulations[3] and X-ray crystallography, NMR, and cryo-EM structures deposited
in the Protein Data Bank (PDB) repository[4].

Figure 4.1 considers the internal coordinates of a protein backbone that contains the
three torsion angles ϕ (C −N −Cα −C), ψ (N −Cα −C −N), and ω (Cα −C −N −Cα),
bond lengths N −Cα (d1), Cα −C (d2), and C −N (d3), and bond angles N −Cα −C (θ1),
Cα−C−N (θ2), and C−N −Cα (θ3); side chain information that may affect the backbone
could also include Cα−Cβ (r1) and N−Cα−Cβ (α1) for example. When all of these quantities
are specified exactly, the back-transformation from internal coordinates will also result in
a perfect 3D Cartesian reconstruction of the protein backbone structure, using algorithms

†Reproduced with permission from: Li J, Zhang O, Lee S, Namini A, Liu ZH, Teixeira JM, Forman-
Kay JD, Head-Gordon T. Learning Correlations between Internal Coordinates to Improve 3D Cartesian
Coordinates for Proteins. Journal of Chemical Theory and Computation. 2023 Feb 7.
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such as the natural extension reference frame (NeRF)[5]. However, in certain areas of protein
modelling, such as fragment-based protein folding and loop modelling [6, 7], the Cartesian
reconstruction is almost universally defined by only the backbone torsions while holding the
bond lengths and angles fixed at mean values to decrease the complexity of the problem.
Sometimes the variations on the ω torsion angles are also ignored and taken as fixed values
of 0◦ or 180◦, due to the planar nature of the peptide bond.[8] One might assume that a
protein structure can be reconstructed in Cartesian coordinates quite well utilizing fixed
bond lengths and angles since they typically have quite small variations around their means.
However, even small deviations from the mean of the stiff degrees of freedom can strongly
influence the Cartesian reconstruction. The origin of this error arises especially clearly from

Figure 4.1: Schematic of the polypeptide backbone and internal degrees of freedom.
Definition of the prediction targets: backbone bond angles θ1 − θ3, backbone bond lengths
d1 − d3, Cα − Cβ sidechain bond lengths r1 and N − Cα − Cβ sidechain bond angles α1.

the nature of chain molecules: as the protein chain gets longer, small errors in bond lengths
and bond angles can quickly accumulate and result in significant differences in the final
back-transformed structure. According to a study by Holmes et al.[9] on globular proteins,
the RMSD errors incurred in the internal coordinate back-transformations to Cα Cartesian
positions under fixed bond lengths and angles is ∼6 Å for an average 150-amino-acid protein,
and can be as high as 40 Å for larger proteins.

Alternatively, one could replace the assumption of fixed bonds and bond angles with a
statistical approach that uses variable bond lengths and bond angles according to sequence
or structural correlations in the PDB. Given the many types of correlations that exist be-
tween the internal coordinates of globular proteins, such as the ϕ and ψ torsion angles of
the Ramanchandran plot[10], restraints on ω torsion angles as a function of ϕ and ψ[11],
and the correlation between backbone and sidechain torsion angles used in the Dunbrack
rotamer library[12], the correlations among the stiff bond lengths and angles with the flex-
ible torsions should not be surprising. Earlier studies on the relationship between bond
angles and ϕ, ψ torsion angles or amino acid types were mostly focused on the N −Cα −C
bond angle, using both statistical methods and quantum mechanics calculation on model
dipeptides.[13, 14, 15, 16]. The work by Berkholz[17] found that by using a static library
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for backbone bond angles dependent on backbone ϕ, ψ angles and residue types, the median
RMSDs of protein reconstruction normalized to 100 amino acids is 2.85 Å. Following this
pioneering study, more recent work by Roberto and co-workers have extended the correlation
to all bond lengths and bond angles centered on backbone N, Cα and C atoms.[18, 19] Sim-
ilarly, Lundgren et al. studied the correlation between protein backbone angles, secondary
structure, and sidechain orientations.[20], and Ashraya et al. evaluated the steric-clash Ra-
manchandran maps conditioned on bond geometries. [21] However, none of these studies
have considered the correlations in internal coordinates beyond local amino acid context and
backbone geometries.

This work provides a more comprehensive machine learning approach that both quantifies
and learns internal coordinate correlations within a deeper amino acid sequence context,
that in turn provides a more accurate prediction of the 3D Cartesian coordinates relative to
the errors incurred under the standard assumptions of fixed bond lengths and angles. By
capturing the subtle correlations observed among internal coordinates, the Int2Cart (Internal
to Cartesian) algorithm reduces the reconstruction RMSD error to ∼2.07 Å for test proteins
normalized to 100-amino-acids, and an average RMSD of ∼3.74 Å over the entire test set
for globular proteins as large as 599 amino acids. While many current protein modelling
algorithms have adopted pairwise distance-based constraints[22, 23, 24] or directly output 3D
coordinates, thereby bypassing the internal-to-Cartesian conversions[25, 26], the applicability
of the Int2Cart algorithm is multi-fold.

First, our bond geometry prediction module is capable of providing more accurate ref-
erences for internal coordinates, making our method a helpful tool for structural validation
and refinement. We demonstrate this Int2Cart application by showing that the agreement
between bond lengths and bond angles from AlphaFold2 (AF2) predicted structures [27] and
Int2cart predictions is a strong indicator of AF2 model quality. Second, torsion-angle based
approaches are still widely used in loop modelling [28] and in generating conformational
ensembles of intrinsically disordered proteins (IDPs).[29] We find that Int2Cart is able to
reproduce a structural ensemble of the disordered Sic-1 IDP with lower RMSD error when
back-calculated to experimental observables, and generates fewer undesirable steric clashes.
We also envision that Int2Cart should be applicable in the development of protein force fields
that could benefit from more accurate valence models of backbone bond lengths and bond
angles conditioned on other geometrical or sequence features [30].

4.2 Methods

Dataset preparation. We have adopted SidechainNet[31] as a preprocessed dataset that
uses clustering techniques to extract protein sequences and structures with defined simi-
larity cutoffs, to reduce bias in the original PDB structures, and to prevent information
leakage from the training set to the test set relevant to assessing the machine learning
generalization.[32, 31] The SidechainNet dataset represents each protein by its amino acid
sequence, backbone and sidechain torsion angles (ϕ, ψ, ω, χ1, χ2, etc), backbone bond angles
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θ1-θ3, as well as the all-atom 3D coordinates. For this study we ignore the sidechain torsions
as we are only reconstructing backbones, and supplement the protein dataset with backbone
bond lengths d1-d3 calculated from the 3D coordinates for training, validation and test sets.
We also identified some θ2 and θ3 bond angles that were incorrect due to missing atoms in
the next residue, and they were masked out along with the residue at the end of the protein
chain. We used the latest available version of the SidechainNet dataset (CASP12) under 70%
thinning and combined validation sets from 10% to 50% similarity cutoffs with the test set.
This then defines the final test data for our algorithm while keeping track of the similarity
for each individual test data point. When needed, we separated test set proteins at any
broken chain positions and only retained chains longer than 50 consecutive amino acids.[32]

Our final training dataset contains 41,380 proteins with a minimum sequence length of 20
and maximum length of 4914 amino acids. Most structures in the training set have reported
structural resolution < 4Å. The test set was comprised of 182 protein or protein fragments
with sequence lengths between 23 and 599 amino acids. We have additionally compiled an
IDP structural ensemble comprised of 1000 conformations for the N-terminal 92 residues of
the Sic1 protein[33, 34] to validate the transferability of our model in a more challenging ap-
plication scenario. We extracted the backbone torsions and rebuilt the Cartesian structures
for each conformer under different assumptions about the bond lengths and bond angles as
reported in Results. In addition, 20 randomly selected proteins from the human proteome
were downloaded from the AlphaFold2 database [27] to illustrate the application of Int2Cart
in validating protein structure models. The identification codes for these 20 proteins are
provided in Appendix.
Neural network design. The structure of the deep neural network, Int2Cart, is depicted
in Figure 4.2. The recurrent neural network architecture is chosed due to its capability
to capture long-range correlations in internal coordinates, such as torsion angles that are
exemplified in applications including protein folding[35] and IDP modelling[36]. We utilized
3 layers of stacked bidirectional gated recurrent units (GRU) as the central component, each
of which contains a hidden state ht with its information updated by the reset and update
mechanisms for each element in the input sequence through the following set of equations[37]:

rt = σ(W rxt + U rht−1 + br) (4.1)

zt = σ(W zxt + U zht−1 + bz) (4.2)

h̃t = tanh (W nxt + bnx + rt ⊙ (Unht−1 + bnh)) (4.3)

ht = (1 − zt) ⊙ h̃t + zt ⊙ ht−1 (4.4)

where [W r,W z,W n, U r, U z, Un, br, bz, bnx, bnh] are the trainable parameters of the model, xt
is the input to the cell at the current timestep, and rt and zt represent the reset and update
gates, which are numbers between (0, 1) that control how much information to retain in the
new update vector h̃t and how the new hidden state vector ht is composed from the update
vector h̃t and the old hidden state ht−1. σ denotes the sigmoid function, and ⊙ represents
element-wise multiplication. Dropout was applied to the hidden states between layers, so
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Figure 4.2: Schematic of the Int2Cart neural network architecture. The neural network is a
gated recurrent unit (GRU) recurrent neural network. The inputs at each timestep are the
concatenated latent vectors from Gaussian-smeared ϕ, ψ and ω torsion angles and
embedded residue types; variations on the Int2Cart network can include the use of χ
sidechain angles as well. The latent vector output from GRU are connected with multiple
output networks to predict different targets.
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that x
(l)
t = h

(l−1)
t ⊙ δ

(l−1)
t , where each δ

(l−1)
t is a Bernoulli random variable that zeros out

elements in the hidden state vector with a probability defined by the dropout rate.
The inputs into the first layer of GRU cells are the ϕ, ψ and ω torsion angles and the

amino acid type. Since we are using a bidirectional recurrent neural network architecture,
information about previous/following residues should already be included in the hidden state
at any “timestep” in an implicit way in the GRU, which is sufficient information to allow
the network to make predictions accurately enough without formulating it explicitly as the
input. Each torsion angle, a, was represented by a Gaussian smearing function discretized
to a vector of length 180 to account for uncertainty in the data, denoted xia

xia = exp

(
−diff(αi, x̂a)

2σ2

)
(4.5)

where αi is the actual ϕ, ψ or ω angle and x̂a = (−180 + 2 ∗ a) (both in degrees), and in this
work we used σ =0.5◦. The custom diff function

diff(αi, x̂a) = min(|αi − x̂a|,min(|αi − x̂a − 360|, |αi − x̂a + 360|)) (4.6)

ensures that the periodicity of the angles is taken into account. Each smeared torsion angle
vector is further transformed through two fully-connected layers with 90 and 64 units each
and Rectified Linear Units (ReLU) activation[38] to generate latent representations of the
torsion angles. The residue types are encoded by a trainable embedding dictionary and
formulated into latent vectors of length 64; the hidden dimension size of 64 was chosen after
a careful hyperparameter search and found to be the optimal value. The torsion angle latent
vectors and the embedded residue types are then concatenated and transformed together
through 2 fully-connected layers with 128 and 64 units and ReLU activation and constitute
the inputs into the GRU cells.

The hidden state output from the last GRU layer is connected with multiple outputs to
predict the backbone bond lengths and bond angles, or optionally sidechain bond lengths
and bond angles as well. Each output is a fully-connected neural network with a hidden layer
of size 100 and activation ReLU, and the output has size of 1 without any activation. The
raw outputs are scaled by the standard deviation and translated by the mean value of that
data type in the training dataset. The means and standard deviations we used are provided
in Appendix Table 4.B.1.
Training details of the Int2Cart machine learning method. The neural network was trained
by minimizing the weighted mean square error loss function

L =
∑
i

wi(yi − ŷi)
2 (4.7)

where wi controls the weighting for different data types in the loss function, yi are the
predictions from the model and ŷi are the actual values from the data set. In practice we
used the same weighting for all the data types. Missing data targets were masked out during
the training. We used the Adam optimizer[39] with an initial learning rate of 0.001 and an
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exponentially decayed learning rate schedule, so lri = exp(−i ∗ α) where i is epoch number
and α = 0.05 in our case. The model was trained for a total of 100 epochs using a batch size
of 128.
Building all-atom Cartesian structures from internal angle model predictions. With the
full profile of backbone torsion angles and predictions of bond lengths and bond angles
from the model, the 3D Cartesian structure of the protein containing all backbone atoms is
reconstructed using the SidechainNet package.[31] It utilizes the natural extension reference
frame (NeRF) algorithm[5] to sequentially calculate the position of the next atom with the
positions of three previous atoms and the new bond length, bond angle and torsion angle.
The all-atom backbone Cartesian structures for all the protein fragments in our test data
set are built from either the Int2Cart algorithm vs. a standard baseline of using fixed bond
lengths and bond angles (Fixed), or using bond lengths and bond angles from the Protein
Geometry Database (PGD)[17] which uses bond geometries that depend on local torsions or
amino acid type.

4.3 Results

Statistical analysis of the protein training set. Given the large collection of deposited protein
structures in the PDB, we first consider a statistical analysis of protein bond lengths and
bond angles when analyzed over the training set. Overall the distributions of these internal
coordinate values are mostly Gaussian with relatively small standard deviations of ∼ 0.01
Å for bond lengths and ∼ 2.6◦ for bond angles. Figure 4.3 (a-f) depicts the deviations from
the mean bond length and angle values for a given (ϕ, ψ) combination, and confirms the
existence of strong correlations among the internal coordinates averaged over the training
data set. Specifically, the θ1 angle is larger for the right-hand and left-hand helix regions
in the Ramanchandran plot, while the beta-sheet regions have more narrow θ1 angles, with
deviations from the mean as large as 7.5◦.

The θ2 values are strongly correlated with the ψ torsion angle, with larger angles when ψ
is between −100 and 0 degrees, and smaller angles than the mean otherwise. The θ3 values
for nearly all of the (ϕ, ψ) combinations are larger than average, but have smaller angles for
helix regions. Similarly, the d1 and d2 bond lengths show greater correlations with the ϕ
torsion angle, with a preference for larger values when ϕ is between -50 and +50 degrees,
in which the bond lengths change by as much as 0.02 Å. Finally the correlation for the
peptide d3 bond with the backbone torsions is weak, consistent with its partial double bond
character, except for a few hot spots where it can vary up to 0.04 Å. These correlations are
statistically meaningful, because the standard deviations in each bin are smaller than the
mean value differences (Appendix Figure 4.C.1), which means the statistical bias is more
significant than the variance.

We have also considered the relationships between backbone ω torsion angles with bond
angles (Figure 4.3 g-i) and bond lengths (Appendix Figure 4.C.2), and found interesting
correlations between internal coordinates and ω torsion angles. The majority of peptide
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Figure 4.3: Variations of bond angles and bond lengths as a function of (ϕ, ψ), or ω torsion
angles. a-f) Bond angle and bond length deviations from the mean values averaged over ϕ
and ψ angles of the training set. The regions of red correspond to wider angles and longer
bonds while the region in blue show reduced angle and bond values relative to the mean.
The bond lengths and bond angles were categorized according to ϕ and ψ angles rounded
to the closest tens, and the data are aggregated by calculating the means and standard
deviations in each bin. The standard deviations are provided in Figure 4.C.1. g-i) Mean
values and standard deviations of bond angles as a function of ω. The blue solid line
represents mean values of bond angles at specific ω torsion angles, and the gray regions
correspond to one standard deviation.
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bonds in proteins are in the trans- conformation, with ω torsion angles close to 180◦. However,
cis- peptide bonds tend to be associated with smaller θ1 angles and larger θ2 and θ3 angles.
This result also makes structural sense since cis- peptide bonds incur more steric repulsion
between sidechains of two consecutive residues, and larger θ2, θ3 and smaller θ1 values allow
the sidechains to be more separated. On the other hand, the correlation between bond lengths
and ω torsion angles are not obvious (Appendix Figure 4.C.2). These correlations dependent
on ω are also important for accurately predicting internal coordinates from backbone torsion
angles as we will show later.

When we consider the observed distributions of all six internal coordinates as a function
of the residue type (Appendix Figure 4.C.3), we find that the distributions are quite similar
between amino acids with only subtle differences in the shape of the peaks, with the exception
of glycine, which tends to have d1 and d2 values that are smaller, and θ1 angles that are
larger than other residues. Proline also defines an exception, with larger d1 values due to
the formation of the five-membered ring that requires longer bond lengths. However the
bond length and angle distributions as a function of backbone torsions and residue type
exhibit notable variations across all twenty amino acids as seen in Figure 4.4 for the θ1
bond angle, as well as for the other backbone bonds and angles shown in Appendix Figures
4.C.4-4.C.8. To test whether structural resolution quality has an effect on the conclusion
drawn from the statistical analysis, we further separated the training dataset by structure
resolution categories of higher quality (resolution ≤ 2Å) and lower quality (2Å< resolution
≤ 4Å) and compared the dependence of bond angles on ω torsion angles. The results are
provided in Appendix Figure 4.C.9. No significant discrepancies exist on the correlations
between two groups of structures with different qualities, which supports utilizing the whole
training dataset without filtering based on resolution.
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Figure 4.4: N − Cα − C bond angle deviations from the mean values averaged over ϕ and ψ
angles as a function of residue type. The regions of red correspond to large bond angles
while the region in blue show reduced bond angles relative to the mean. The N − Cα − C
bond angles were categorized according to ϕ and ψ angles rounded to the closest tens.

Machine learning of sequence and structural correlations. While the correlation graphs
just described could serve as a source for bond lengths and angles when backbone torsion
angles and residue types are provided, we are still missing the sequence-dependent corre-
lations that are buried beneath the statistics of the single residue results. Therefore, we
trained a deep neural network on the same data in order to capture the more subtle corre-
lations among the internal coordinates conditioned on amino acid sequence. After training,
the Int2Cart neural network was used to predict the test set which has low sequence and
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structural similarity with the training proteins. The root-mean-square error (RMSE) and
Pearson correlation coefficients (R) on the test set are summarized in Appendix Table 4.B.2.
We find that the RMSE in bond length predictions are within the variance determined from
the data set, while predictions on the bond angles are more successful in terms of the RMSEs
that are smaller than the dataset variance.

Table 4.1: Quality of Cartesian reconstructed structures using Int2Cart, Fixed, and PGD
methods normalized by sequence length, and Int2Cart results on different test data
categories. Accuracy is assessed in terms of the median and mean Cα(RMSD100), the
root-mean-square error of the predicted Cα positions to the reference PDB structure
normalized to 100 amino acids based on the test dataset. The second half of the table
shows the breakdown of Int2Cart results in different similarity categories of data in the test
dataset including CASP12 (which were after the time cutoff for proteins in the training
dataset). All units in Å.

Method Median Mean±std

Fixed 3.22 3.47±1.83

PGD 2.92 3.32±1.87
Int2Cart 2.07 2.38±1.36

Test data category Median Mean±std

10% similarity 2.32 2.87±2.07
20% similarity 2.22 2.44±1.15
30% similarity 1.79 1.96±0.84
40% similarity 1.89 2.11±1.35
50% similarity 2.47 2.36±0.94
CASP12 2.06 2.39±1.22

Cartesian coordinate reconstructions. Given the three torsion angles [ϕ, ψ, ω] for each
residue over the entire protein sequence as input, we next consider how well the Cartesian
coordinates are reconstructed based on whether bond and angle geometries are held fixed,
using PGD, or learned from Int2Cart. Table 4.1 provides a general overview of the perfor-
mance of the three approaches using a Cα(RMSD100) metric, which is the Cα RMSD values
divided by the length of the protein and then multiplied by 100, as well as the Cα RMSD
over all test set proteins regardless of length.

The reconstructed RMSDs for the Int2Cart structures are centered around lower median
values of Cα(RMSD100) of 2.07 Å, and Cα RMSD of 3.74 Å over all test proteins. By contrast
the Fixed model yields a median RMSD of 3.22 Å when all proteins are normalized to 100
amino acids, and the average over the entire test set is 5.39 Å. Table 4.1 also shows that the
Int2Cart results are notably better than the PGD method which provides bond lengths and
bond angles as a function of local ϕ, ψ and amino acid type, in which the median (2.92 Å) and
mean (3.32 Å) Cα(RMSD100) are much higher than that found with Int2Cart. Furthermore,
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to investigate the tranferability of the Int2Cart model, the test dataset was broken down
into subsets that have 10%-50% sequence similarity to any protein in the training dataset,
and proteins from CASP12. The results reported in Table 4.1 indicate that the sequence
similarity to the training dataset has little effect on the reconstruction quality of the proteins.
Therefore, our model is expected to be generalizable to proteins it has not seen.

To provide a more statistical view of the predictions, Figure 4.5a reports the distribution
of RMSDs for all backbone atoms with respect to the actual PDB structure for all proteins
in the test set using Int2Cart and the Fixed method, as well as the pairwise RMSDs for
the test proteins (Figure 4.5b), and the RMSD difference between the two methods as a
function of sequence length (Figure 4.5c). It is evident that the vast majority of the test set
proteins benefit from the machine learned bond lengths and bond angles, with an average
improvement of 2 − 4 Å RMSD over using Fixed bond lengths and bond angles. There is
no obvious correlation between the RMSD improvements made by Int2Cart over Fixed with
respect to sequence length, although the largest improvements occur in those proteins with
longer amino acid sequences.

Figure 4.5d illustrates that proteins reconstructed by assuming fixed bond lengths and
bond angles have lost significant secondary structure integrity compared to the reference
structures, whereas the Int2Cart structures retain a much higher proportion of intact sec-
ondary structural elements. Beyond this anecdotal case, we performed a more extended
analysis of Int2Cart and Fixed performance regarding the radius of gyration (Rg) and sec-
ondary structure recovery rate (SS-match) over the whole test dataset. Although we find
that the Int2Cart Cartesian predictions have closer Rg values to the ground truth structures,
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Figure 4.5: Comparison of 3D Cartesian reconstructions of test set proteins using Int2Cart
and compared to Fixed bonds and angles. (a) Distribution of the RMSD in reconstructed
Cartesian coordinates using Int2Cart and Fixed. (b) Comparison of Cartesian
reconstruction error between Int2Cart and Fixed relative to the reference structure. (c)
Improvement of Int2Cart over Fixed as a function of amino acid length. (d) An example of
the backbone representation using Int2Cart and Fixed for the CASP12 TBM0872
protein[40], (e) The SS-match distribution and (f) comparison of SS-match for Int2Cart vs.
Fixed across the test set.
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the Fixed Cartesian structures still yields a comparably good result as seen in Appendix
Figure 4.C.10. Figure 4.5e shows that Int2Cart systematically improves upon Fixed in
regards the SS-match values, defined as the proportion of helix, strand, and coil DSSP
assignments[41] for each residue that matches the reference structure. It is seen that Int2Cart
has a higher proportion of test set proteins that have SS-match values larger than 0.8 (Figure
4.5f), which translates to more than 80% of the residues having correct secondary structure
assignments.

Figure 4.6: Comparison of reconstructed structure Cα RMSD values in the test set as a
function of sequence length using different sources of bond lengths and bond angles. The Cα

RMSDs were calculated against ground truth structures after using only their torsion
angles for reconstruction. Shaded regions represent 1 standard deviation. The blue line
represents Int2Cart, the orange line represents fixed bond lengths and angles, and the
green line is the PGD method[17].

Comparison of sequence-length-dependent reconstruction quality among methods. Due
to the sequential nature of the process of modelling protein 3D structures with internal
coordinates, the reconstruction error is expected to increase as the protein sequence increases
in length. In Figure 4.6 the reconstruction error evaluated as the RMSD on the Cα atoms
compared to the initial structures from the PDB are plotted as a function of sequence length,
in which proteins were reconstructed using either Int2Cart-predicted bond geometries, using
fixed bond lengths and bond angles, or using the local-conformation dependent Protein
Geometry Database (PGD) as described in Ref [17]. Test proteins are grouped by sequence



CHAPTER 4 116

lengths with increments of 100 amino acids, and the standard deviations in each group are
described by the shaded regions in Figure 4.6. Compared to using fixed bond lengths and
bond angles, the PGD method has slight improvements in almost all sequence length ranges
except around 400 amino acids. Even so, the Int2Cart has a more significant improvement
in Cα RMSD compared to PGD, suggesting its superiority is likely due to the fact that
Int2Cart is able to learn deeper sequence correlations.

Ablation studies. To understand the importance of various inputs for prediction accuracy
of Int2Cart and how accuracy affects reconstructing the Cartesian structures, we performed
an ablation study by training separate deep learning models using subsets of the inputs, and
reconstructing structures using only predicted bond lengths, only predicted bond angles,
or using both. We have also trained models with additional inputs of χ1 torsion angles,
along with r1 and α1 sidechain bond lengths and bond angles as additional outputs, to
evaluate how including sidechain information could improve prediction and reconstruction
of backbone structures. All ablation trials are reported in Table 4.2.

We see that the differences in predictions of the backbone bond lengths from different
deep learning models are not significant, but prediction accuracy for backbone bond angles
RMSE and reconstructed Cartesian structure RMSD are highly dependent on what infor-
mation is available to the model. Specifically, a machine learning model that only knows
about the residue types performs the worst with >5 Å in the reconstruction RMSD. Unsur-
prisingly based on statistical analysis of the PDB, backbone ϕ and ψ torsion angles provide
more information than residue types alone, and allows the reconstruction RMSD to decrease
to 4.56 Å on average. Including both ϕ, ψ and residue types further decreases the average
reconstruction error to 4.29 Å. As expected from the correlation of bond lengths and bond
angles with ω torsion angles as well, including exact values for ω torsion angles also signifi-
cantly improves the model and allows the reconstructed structure RMSD to decrease further
to 3.77 Å across the whole test set, and to 2.38 Å for proteins normalized to 100 amino
acids. When we tested the inclusion of sidechain χ1 torsion angles, we find that the 3D
reconstruction model is even better, achieving an average reconstruction structure RMSD of
3.30 Å regardless of protein length. This is probably due to the fact that χ1 torsion angles
are indicative of avoidable steric clashes between protein backbones and side chains to create
more accurate descriptions of subsequent backbone bond geometries, even though side chain
atoms are not explicitly treated during structure reconstruction in this work.
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Table 4.2: Ablation studies of internal coordinate inputs and Cartesian coordinate
reconstructions. Upper table: predicted bond lengths and bond angles RMSEs of Int2Cart
taking different internal coordinate inputs, and corresponding RMSD of the reconstructed
Cartesian structure. Each ablation of the input is repeated 3 times with different
initializations of the machine learning model to obtain statistically meaningful results.
Standard deviations reflect fluctuations of mean values among 3 parallel experiments.
Lower table: cartesian structure reconstruction RMSD using different Int2Cart predicted
and Fixed combinations of bond lengths and angles and binary ω torsion angles. Standard
deviations reflect range of reconstructed structure RMSDs among different proteins.

Training Model inputs <d> RMSE(Å) <θ> RMSE (◦) Reconstructed

RMSD(Å)
Residue type 0.010±1E-5 1.84±0.0008 5.21± 0.04

ϕ+ ψ 0.010±1E-4 1.69±0.02 4.56±0.07

ϕ+ ψ + Residue type 0.010±5E-5 1.63±0.001 4.29±0.02

ϕ+ ψ + ω + Residue type 0.010±1E-4 1.50±0.006 3.77±0.03

ϕ+ ψ + ω + χ1 + Residue type 0.009±1E-4 1.37±0.004 3.30±0.03

Source of bond geometries Reconstructed

RMSD (Å)

Predicted bond lengths and bond angles 3.74±2.94
Fixed bond lengths and predicted bond angles 3.74±2.94

Predicted bond lengths and fixed bond angles 5.38±3.70

Fixed bond lengths and angles 5.39±3.71

Fixed bond lengths, bond angles and using 0◦/180◦ ω angles 9.52±6.49

To bolster these conclusions, Table 4.2 shows that the reconstruction quality does not
depend on the direct prediction of bond lengths, as it essentially has no effect on the re-
constructed structures, which may have been anticipated from the fact that bond length
errors are on par with the variance. But this final ablation study provides direct evidence
that accurate predictions of bond angles are of primary importance for the quality of the
reconstructed Cartesian structures. In addition, using accurate ω torsion angles in the recon-
struction is of great importance, since treating ω as binary greatly deteriorates the quality
of reconstructed structures.

Using Int2Cart internal coordinate agreements to validate AlphaFold2 structures. Al-
phaFold2 (AF2) has been a huge success in predicting atomic structures of proteins with
astonishing accuracy.[26] Nevertheless its predictions have variety of quality, which is also
reflected in its internal confidence estimations for each residue called the predicted local
distance difference test (pLDDT) score, with values greater than 90 indicating high confi-
dence, and values below 50 indicating low confidence. To investigate the relationship between
AF2 model quality and how much the bond lengths and bond angles in these AF2 models
agree with the same Int2Cart quantities, we randomly collected 20 AF2 predicted protein
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structures from the human proteome, and calculated the bond lengths and bond angles us-
ing Int2Cart and the AF2 torsion angles. The results are summarized in Figure 4.7 and
Appendix Figures 4.C.11-4.C.13.

On a per-residue basis, we observe strong correlation between the agreement of AF2 and
Int2Cart bond geometries, and AF2 prediction confidence, as we illustrate in Figure 4.7(a).
We see that the most confident residue predictions in AF2 models have better correlation in
θ1 values between AF2 models and Int2Cart predictions, compared to the residues with lower
confidence. Figure 4.7(b) further discretizes the absolute differences into bins of 1◦ increments
and shows that the residues that have a larger discrepancy between bond geometries in AF2
structures and Int2Cart predictions have on average lower quality in terms of pLDDT scores.
Similar plots are generated for the θ2, θ3 d1, d2 and d3 data where the Int2Cart and AF2
agreement is less good, but still exhibit strong correlations between geometry differences and
pLDDT values (Appendix Figures 4.C.11 and 4.C.12).

Finally, we aggregrate all three bond angle results into correlations and mean absolute
differences over the entirety of all 20 AF2 protein models we have tested, and compared
with their average structure confidence score. Figure 4.7(c-d) indicate that the agreement
between Int2Cart predicted bond angle geometries and the AF2 model strongly correlates
with overall model quality, thus supporting using Int2Cart for structure validations. Similar
conclusions are reached for the bond lengths as given in Appendix Figure 4.C.13.
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Figure 4.7: Correlation between AlphaFold2 (AF2) structure quality and the agreement
between bond geometries from the AF2 predicted structures and Int2Cart predicted values
using torsion angles from AF2 structures (a) Correlation between θ1s (N − Cα − C bond
angles) from AF2 structures and Int2Cart predictions colored by AF2 pLDDT scores of the
relevant residues. (b) Box plot showing distribution of AF2 pLDDT scores of individual
residues based on absolute difference in θ1 between AF2 structures and Int2Cart
predictions. The boxes represent the quartiles of the distribution and the whiskers
represent the rest of the distribution. Individual data points are outliers identified from the
inter-quartile range. (c) Relationship between the average AF2 structure prediction
confidence (pLDDT score) and all bond angle correlations between AF2 and Int2Cart in an
AF2 predicted protein structure (d) Relationship between the average AF2 structure
prediction confidence (pLDDT score) and all bond angle absolute difference between AF2
and Int2Cart in an AF2 predicted protein structure.
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Figure 4.8: Comparison of distribution of reconstruction RMSD for individual
conformaions in the Sic1 IDP ensemble. Structures reconstructed with Int2Cart method
on average has lower RMSD to their original structures compared with using fixed bond
lengths and bond angles.

Using Int2Cart to rebuild an IDP ensemble. Finally we consider a test case that is
quite different from the originally defined test set from SidechainNet, in which we show
that our Int2Cart method can improve upon the Cartesian reconstruction of an ensemble
of structures of a disordered protein compared to Fixed bond lengths and angles. Figure
4.8 compares the Cartesian reconstruction RMSD distributions for Int2Cart and Fixed for
the Sic1 IDP ensemble, in which we find that the Int2Cart method is overall closer to the
original ensemble, with a 3.1 Å average RMSD compared to the Fixed method that has a
mean RMSD of 3.4 Å. We have also checked the number of steric clashes in the structures
generated from these two methods. A steric clash is defined as two atoms in the structure
that are closer to 0.6 times the sum of the van der Waals radii of the two atoms.[42] Out
of the 1000 conformations, 73 structures generated from Int2Cart contained steric clashes,
which means 92.7% of the structures are clash-free. By comparison, 102 structures generated
using fixed bond lengths and bond angles contained steric clashes, which translates to 89.8%
of clash-free structures. A higher proportion of clash-free structures is meaningful because
typically structures containing clashes are discarded, and a method with higher proportion
of clash-free structures wastes less computational resources, and supports the application of
the Int2Cart algorithm to the modelling of disordered protein ensembles.
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4.4 Discussion and conclusion

In this work we have developed a new machine learning approach to the generic represen-
tation problem of internal coordinates (bond lengths, valence angles, and dihedral angles)
and how to increase the fidelity of the back-transformation to 3D Cartesian coordinates.
The Int2Cart algorithm utilizes a gated recurrent unit neural network to predict real-valued
backbone bond lengths and bond angles for each residue of a complete protein sequence
given its torsion angle profile. In summary, Int2Cart can reconstruct the Cartesian structure
of proteins with RMSDs that are significant improvements over the fixed backbone bond
lengths and bond angles that are the standard practice in a large variety of protein mod-
elling approaches, or some recent approaches such as the Protein Geometry Database. The
success of our algorithm across IDP ensembles further validates that the Int2Cart algorithm
is transferable among different types of proteins, and can consistently improve the quality
of Cartesian structure reconstruction. We have also exposed the potential of Int2Cart in
validating structure quality by showing the agreement on bond geometries between Int2Cart
predictions and values in an AlphaFold2 model has strong correlation with the AlphaFold2
pLDDT confidence metric. Possibilities in refining AF2 structures using Int2Cart will be
investigated in the future.

In its current form the Int2Cart algorithm only generates backbone structures for the
target proteins, although we can improve Cartesian reconstruction performance with the
inclusion of the χ1 torsion and predicting r1 and α1. Theoretical approaches such as the
Monte Carlo Side Chain Ensemble (MC-SCE) method can utilize the backbone from Int2Cart
to calculate side chain ensembles in order to complete the full structure.[42] It is also clear
that there is still room for improvement in the Cartesian reconstruction of larger proteins,
and the inherent scaling of error with respect to sequence length is inevitable for a deep
learning model that predicts internal coordinates in a sequential manner (i.e., a GRU model).
Therefore, it may be possible to improve the quality of Cartesian structure reconstruction
with a distance-based neural network model, i.e., by representing the 3D coordinates of the
structure directly.

Nevertheless, the model in its current form already provides a useful computational tool
to greatly improve the quality of protein structures reconstructed from backbone torsion
angles alone, whether globular folded proteins or disordered protein ensembles. We envision
Int2Cart should see broad use in structure refinement and validation[43, 44] and development
of protein force fields that could benefit from more accurate valence models of backbone bond
lengths and bond angles conditioned on other geometrical or sequence features.[45] Finally,
the Int2Cart GRU neural network model could also be useful for other chain molecules, only
requiring retraining with new data if available for systems such as nucleic acids and lipids.
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Appendix

4.A Identifiers in the AlphaFold Protein Structure

Database for all AlphaFold2 proteins used in the

analysis

Q3LI64, Q5VTL8, Q15287, Q86TL2, O43316, Q8NBN3, Q8IVB5, L0R819, Q9Y216, Q8NH92,
Q9Y259, A6NM03, Q8WXK1, P62070, P12104, P21145, Q9NW38, O60547, Q9NR45, P13716

4.B Supplementary Tables

Table 4.B.1: Mean and standard deviations used to rescale model predictions for bond
lengths (Å) and bond angles (rad)

Data type Mean Standard deviation
N-Cα bond length 1.460 0.0118
Cα-C bond length 1.525 0.0123
C-N bond length 1.331 0.0095
N-Cα-C bond angle 1.941 0.0472
Cα-C-N bond angle 2.034 0.0413
C-N-Cα bond angle 2.122 0.0480
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Table 4.B.2: Int2Cart prediction accuracy on backbone bond lengths and bond angles.
Accuracy is assessed in terms of root-mean-square error (RMSE) and Pearson correlation
coefficients (R).

Data type RMSE R
N-Cα-C (θ1) 1.87◦ 0.71
Cα-C-N (θ2) 1.06◦ 0.49
C-N-Cα (θ3) 1.46◦ 0.50

N-Cα (d1) 0.010 Å 0.38
Cα-C (d2) 0.011 Å 0.40
C-N (d3) 0.008 Å 0.45

4.C Supplementary Figures

Figure 4.C.1: Variations in the standard deviation (STD) of bond angle and bond lengths as
a function of ϕ,ψ. The regions of red correspond to larger STD while the region in blue
have much smaller STD.
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Figure 4.C.2: Mean values and standard deviations of bond lengths as a function of ω. The
blue solid lines represent mean values of bond lengths at specific ω torsion angles, and the
gray regions correspond to one standard deviation.
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Figure 4.C.3: Distributions of bond lengths and bond angles as a function of residue type.
Shown for all twenty amino acids.
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Figure 4.C.4: Cα − C −N bond angle deviations from the mean values averaged over ϕ and
ψ angles as a function of residue type. The regions of red correspond to larger bond angles
while the region in blue show reduced bond angles relative to the mean. The Cα − C −N
bond angles were categorized according to ϕ and ψ angles rounded to the closest tens.



CHAPTER 4 132

Figure 4.C.5: C −N − Cα bond angle deviations from the mean values averaged over ϕ and
ψ angles as a function of residue type. The regions of red correspond to larger bond angles
while the region in blue show reduced bond angles relative to the mean. The C −N − Cα

bond angles were categorized according to ϕ and ψ angles rounded to the closest tens.
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Figure 4.C.6: N − Cα bond length deviations from the mean values averaged over ϕ and ψ
angles as a function of residue type. The regions of red correspond to longer bonds while
the region in blue show reduced bond values relative to the mean. The N − Cα bond
lengths were categorized according to ϕ and ψ angles rounded to the closest tens.
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Figure 4.C.7: Cα − C bond length deviations from the mean values averaged over ϕ and ψ
angles as a function of residue type. The regions of red correspond to longer bonds while
the region in blue show reduced bond values relative to the mean. The Cα − C bond
lengths were categorized according to ϕ and ψ angles rounded to the closest tens.
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Figure 4.C.8: C −N bond length deviations from the mean values averaged over ϕ and ψ
angles as a function of residue type. The regions of red correspond to longer bonds while
the region in blue show reduced bond values relative to the mean. The C −N bond lengths
were categorized according to ϕ and ψ angles rounded to the closest tens.
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Figure 4.C.9: Comparison of bond angle - ω dependence among structures with different
qualities. (a, c, e) Mean values and standard deviations of bond angles (a: θ1, c: θ2, e: θ3)
as a function of ω for structures with resolution < 2Å(b, d, f) Mean values and standard
deviations of bond angles (b: θ1, d: θ2, f: θ3) as a function of ω for structures with
resolution between 2 and 4Å
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Figure 4.C.10: The accuracy of radius of gyration when internal coordinates are
back-transformed to Cartesian coordinates using Int2Cart or Fixed. The Rg-match
calculates the correlation of radius-of-gyration of individual proteins with the reference
proteins. Correlations of Rg-match values for (a) Int2Cart and (b) Fixed over the test set.
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Figure 4.C.11: Correlation between AlphaFold2 (AF2) structure quality and the agreement
between bond angles from the AF2 predicted structures and Int2Cart predicted values using
torsion angles from AF2 structures. (a, c, e) Correlations between θ1s (N − Cα − C bond
angles, a), θ2s (Cα −C −N bond angles, c) and θ3s (C −N −Cα bond angles, e) from AF2
structures and Int2Cart predictions colored by AF2 pLDDT scores of the relevant residues.
(b, d, f) Box plot showing distribution of AF2 pLDDT scores of individual residues based
on absolute differences in θ1 (b), θ2 (d) and θ3 (f) between AF2 structures and Int2Cart
predictions. The boxes represent the quartiles of the distribution and the whiskers
represent the rest of the distribution. Individual data points are outliers identified from the
inter-quartile range.
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Figure 4.C.12: Correlation between AlphaFold2 (AF2) structure quality and the agreement
between bond lengths from the AF2 predicted structures and Int2Cart predicted values using
torsion angles from AF2 structures. (a, c, e) Correlations between d1s (N − Cα bond
lengths, a), d2s (Cα − C bond lengths, c) and d3s (C −N bond lengths, e) from AF2
structures and Int2Cart predictions colored by AF2 pLDDT scores of the relevant residues.
(b, d, f) Box plot showing distribution of AF2 pLDDT scores of individual residues based
on absolute differences in d1 (b), d2 (d) and d3 (f) between AF2 structures and Int2Cart
predictions. The boxes represent the quartiles of the distribution and the whiskers
represent the rest of the distribution. Individual data points are outliers identified from the
inter-quartile range.
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Figure 4.C.13: Correlation between AlphaFold2 (AF2) structure quality and the agreement
between bond angles from the AF2 predicted structures and Int2Cart predicted values using
torsion angles from AF2 structures. (a, b) Relationship between the average AF2 structure
prediction confidence (pLDDT score) and all bond length correlations (a) and absolute
differences (b) between AF2 and Int2Cart in an AF2 predicted protein structure (c, d)
Relationship between the average AF2 structure prediction confidence (pLDDT score) and
all bond angle correlations (c) and absolute differences (d) between AF2 and Int2Cart in
an AF2 predicted protein structure
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CHAPTER 5

Mining for Potent Inhibitors of
Protein Targets with Reinforcement
Learning and Real-time Docking of
3D Structures†

5.1 Introduction

Existing high-throughput virtual screening approaches to identify protein inhibitors often
rely on evaluating existing drug databases such as CHEMBL[1], PubChem[2], and ZINC[3]
among others to identify promising small molecule therapeutics. At the same time, the num-
ber of potential drug candidates in so-called chemical space is practically infinite, and even
the very recent Enamine REAL library of 1.4 billion molecules are still dwarfed by estimates
for the total number of possible synthesizable small molecules that range from 1024-1060.[4]
Unfortunately, due to the size of such established or expanded databases, screening all com-
pounds according to sufficiently sophisticated structure-based methodologies such as flexible
ligand docking can be intractable. Instead simpler methods such as pharmacophore model-
ing or rigid body docking are often used for navigating through the chemically feasible space,
with a tendency towards false-positives being ruled in while false-negatives, i.e. potential
optimum lead molecules, can be ruled out.[5, 6]

With the advent of modern machine learning, deep learning models have been proposed
that can generate new molecules for multiple viral diseases[7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17], and the distribution can be skewed towards molecules with specific properties such as
drug likeness using techniques such as variational autoencoders (VAE)[8, 9], transfer learning

†Reproduced with permission from: Li J, Zhang O, Kearns FL, Haghighatlari M, Parks C, Guan X, Leven
I, Amaro RE, Head-Gordon T. Reinforcement Learning with Real-time Docking of 3D Structures to Cover
Chemical Space: Mining for Potent SARS-CoV-2 Main Protease Inhibitors. arXiv preprint arXiv:2110.01806.
2021 Oct 5.
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[10] and reinforcement learning (RL)[11, 12, 13, 14, 15, 16, 17]. However, most deep learning
methods rely on 1-dimensional sequence or 2-dimensional chemical representations of the
drug and protein, and do not take full advantage of 3-dimensional structural information of
the putative drug, thereby constraining the ability to generate drugs with shape and molec-
ular compatibility with the target active site. Recent work has also explored chemical space
in the vicinity of some starting molecular scaffold and running docking simulations on these
derived molecules[18], however there has been no method that develops new drug molecules
with real-time 3d structural docking to guide the efficient exploration of an immense chemical
space with the aid of machine learning.

In this work, we propose a novel workflow dubbed “iMiner” that mines chemical space
for new tight binding inhibitors by combining deep RL with real-time flexible ligand dock-
ing against a protein binding site (Figure 5.1). We represent putative inhibitors as Self-
Referencing Embedded Strings (SELFIES)[19] that are generated from an Average Stochas-
tic Gradient Descent Weigh-Dropped Long Short Term Memory (AWD-LSTM)[20] recurrent
neural network (RNN), allowing wide coverage of chemical space. We illustrate the RL train-
ing procedure of iMiner that uses on-the-fly AutoDock Vina[21] with the 3d structures of the
protein with the predefined binding pocket and the generated inhibitors. The Vina docking
scores are used to adjust the RNN so that the distribution of generated inhibitor molecules
are shifted towards those that more strongly interact with the protein. We perform dock-
ing with a second docking software, Schrödinger’s Glide SP[22], to build consensus for a
drug’s strong binding affinity to the target protein, and a final filtering based on synthetic
accessibility (SA), druglikeness, and elimination of PAINS [23] molecules.

As the COVID-19 pandemic continue to be a global crisis, finding effective antiviral drugs
to treat patients infected with the SARS-COV-2 virus is still of pressing importance. Among
all the proteins related to the SARS-COV-2 virus, the main protease (Mpro) has arguably
received the most attention with respect to drug development[24], in part because it is one
of the earliest SARS-COV-2 proteins in which the 3d structure has been fully determined
experimentally.[25] We use this Covid-19 relevant example to illustrate the iMiner workflow,
in which we ultimately propose 51 molecules as potential Mpro inhibitors that are worthy of
experimental validation (work in progress). Furthermore, we compare our top hits generated
with the iMiner workflow with the molecules submitted to the COVID moonshot project[26],
a crowdsourcing effort aimed at developing a novel inhibitor for Mpro, and show that we
achieve a broader coverage of the inhibitor drug chemical space. We also find excellent
shape and molecular attributes of the inhibitors generated by our model in regard their
compatibility with the actual target cavity in Mpro, which is a direct consequence of the
real-time docking with actual 3d structures during the training procedure. Further analysis
of non-bonded interactions between the found inhibitors with specific binding pocket residues
in Mpro also create testable hypotheses in regards their potential role as antivirals to treat
COVID-19.

Although we have illustrated the workflow’s first use on a pressing and timely test case
– i.e., inhibition of SARS-CoV-2 Mpro due to the desperate need for antiviral treatments of
COVID-19 – the iMiner method is highly generalizable. As our workflow only requires a 3D
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structure of the target protein with a pre-defined binding site, iMiner can be readily adapted
to generate small molecules for other protein targets. Thus, we believe our ML algorithm
will be of great interest to the drug design community to rapidly screen novel regions of
chemical space in real-time for other anti-virals or small molecule therapeutics in the future.
All scripts required to run our workflow on an arbitrary protein target can be found on a
public GitHub repository∗.

5.2 The iMiner Machine Learning Workflow

Here we describe the entire iMiner life cycle for generating new inhibitor molecules in more
detail.

SELFIES representation of inhibitor molecules. An arbitrary molecule can be
represented as a topological graph using two main approaches: adjacency matrix based
methods and string based methods. The former uses an N by N matrix to encode a molecule,
where N is the number of atoms in the molecule, and the values of the matrix are typically
bond orders between atoms. An adjacency matrix is not ideal for generative tasks, because
the size of the molecule that can be generated should not be fixed, and the learning of
chemical knowledge by a ML model through adjacency matrix can be difficult. Instead,
string based methods are more suited for molecular generation tasks, and SMILES strings
have been the standard for molecular representation due to its conciseness and readability.
However, SMILES strings have relatively complex syntax, require matching of open and close
brackets for branching, and ring modeling/modification is not trivial. Therefore, generating
novel, chemically correct compounds through use of SMILES strings can be challenging.

The SELFIES molecular representation[19] is specifically designed to ensure that all
generated strings correspond to valid molecules. By utilizing [Branch] and [Ring] tokens
with predefined branch lengths and ring sizes, as well as generating symbols using derivation
rules, the SELFIES representation guarantees that valence bond constraints are met, and
any combinations of tokens from its vocabulary corresponds to a valid molecule. Therefore,
we have used SELFIES in our generative model to encode molecules since it does not need to
learn chemical syntax rules, and can allocate more of its learning capacity towards generating
valid molecules with properties of interest as shown in Figure 5.1.

Pre-training the inhibitor molecule generation. Conceptually, generating molecules
using string representation is similar to how text is generated in a natural language process-
ing task. Our method starts with a specific [Break] token, and for each molecule, we
utilized an RNN that takes in the last token in the string, together with the hidden state
from last step to predict a distribution of tokens following the current string. In this work
a specific variant of the RNN, known as the AWD-LSTM, was used due to its exceptional
performance in similar generative tasks (Figure 5.1).[20] The network was pre-trained using
supervised-learning (SL) of all molecules from the ChEMBL database to learn the conditional
probability distributions of tokens that correspond to drug-like molecules. When our trained

∗https://github.com/THGLab/iMiner
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generative model is used for generating new molecules, a new token is sampled according to
the predicted probabilities, and this new token is concatenated to the input string to sample
the next token, until the [Break] token is sampled, in which case a complete molecule has
been generated.

The performance of our pre-trained generative model was evaluated using the GuacaMol
benchmarks[27], which probe 5 different aspects of the distribution of generated molecules
with respect to the training dataset (Table 5.1). Model “validity” reports the proportion
of molecules that are syntactically correct. Because we generated molecules via SELFIES
representations, we achieved close to 100% validity for all generated molecules. Invalid
molecules were either empty strings, or molecules for which the SELFIES package failed to
convert into a SMILES string, and therefore were discarded before the next workflow steps.

Table 5.1: GuacaMol benchmarks for the pretrained generative model and after RL training

Benchmark Pretrained model After RL
Validity 0.998 0.998
Uniqueness 0.999 0.983
Novelty 0.867 0.999
KL divergence 0.985 0.791
Frechet ChemNet Distance 0.870 0.007

Model “uniqueness” reports how many generated molecules are duplicates vs. those
which are genuinely distinct. Our pretrained models illustrated high uniqueness, indicating
the model is able to generate a wide variety of non-redundant molecules. Model “novelty”
is defined as the proportion of generated molecules that do not exist in the training dataset.
Our model’s high novelty indicates that it is not memorizing molecules from the training
dataset, but is indeed generating molecules that it has not seen before. Kullback–Leibler
(KL) divergence measures differences in probability distributions of various physicochemical
descriptors for the training set and the model generated molecules. As defined by Gua-
caMol, a high KL divergence benchmark such as predicted for our model suggests that our
generated molecules have similar physicochemical properties to that of training dataset. Fi-
nally, Frechet ChemNet Distance (FCD) utilizes a hidden representation of molecules in a
previously trained NN to predict biological activities, and thus captures both chemical and
biological similarities simultaneously for two sets of molecules.[28] Molecules generated by
our pre-trained model also have high FCD values, indicating that our molecules are expected
to have similar biological activities as molecules from the ChEMBL training dataset.

We then validated our pre-trained distributions using 13 drug-likeliness properties be-
tween our generated molecules and randomly sampled molecules from ChEMBL database
that we used for training. The molecular properties considered are well-recognized chemical
features related to the drug-likeliness of a molecule which can be obtained through 2D topo-
logical connectivity of the molecule: fraction of sp3 hybridized carbons, number of heavy
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Figure 5.1: Illustration of the overall structure of the iMiner workflow which highlights the
two major machine learning components, the generative and evaluative models and their
interplay. The generative model uses SELFIES representations for molecules and a
recurrent neural network to “mine” for new molecules that are presented to the evaluative
model for 3D docking using AutoDock vina. Vina scores are used in the loss function to
drive gradient updates of the neural network.
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atoms, fraction of non-carbon atoms in all heavy atoms, number of hydrogen bond donors
and acceptors, number of rotatable bonds, number of aliphatic and aromatic rings, molecular
weight, quantitative estimate of drug-likelihood (QED) value[29], approximate log partition
coefficient between octanol and water (alogP)[30], polarizable surface area (PSA), and the
number of structural alerts.[31] Despite the fact that during pre-training only token distribu-
tions were used as training targets, all distributions collected from our generated molecules
closely follow the distributions from the ChEMBL database (Appendix Figure 5.C.1). This
result suggests our pre-trained model has learned key concepts of “drug-likeness” and pro-
vides a good starting point for the RL procedure.

The evaluation module. After our generative model was pre-trained, we employed
an RL workflow to bias the distribution of generated molecules towards specific properties
of interest. RL training allows the model to interact with an environment by performing
actions according to a policy model, and uses the feedback from the environment to provide
training signals to improve the model. In this work, the pre-trained generative model is
taken as the policy, and in each iteration 2000 molecules were generated and sent to the
evaluation module (Figure 5.1).

The central component of our evaluation model is docking with AutoDock Vina executed
through cloud computing in parallel with the RL. Within our evaluation model, the Vina
score calculator is set up to take a SMILES string representing the ligand, and the 3D
structure of the protein target, together with a predefined docking region as input. AutoDock
Vina then explores dihedral degrees of freedom and identifies the optimal conformation of the
input inhibitor for placement in the designated protein binding site. Finally, AutoDock Vina
returns the Vina score as an approximation of the binding energy between the ligand and
the protein. Multiple instances of the Vina score calculator tasks were established through
Microsoft Azure Batch to allow high-throughput evaluation of the generated molecules. Vina
scores were then cycled back to the generative model to improve molecule generation through
proximal policy optimization (PPO)[32], as will be discussed in next section. We emphasize
that by using a physics-based docking model which utilizes full 3D structure of our target
protein and generated molecules as the critic, the training of the policy model is less likely
to be contaminated due to exploiting failure modes of a neural-network based critic, an issue
called wireheading [33]. Instead, we benefit from a more reliable training signal and reduce
the false positive and false negative rates of the generated molecules.

Vina scores alone are not sufficient to reliably train a molecule generator, as shown
in the Supporting Information (Appendix Figure 5.C.2) because it will not always satisfy
requirements for drug-likeness. To ensure that our generated molecules still bear drug-like
properties, we incorporated an additional metric into the reward, SDL, which is a weighted
average of the log likelihood for the 13 different drug-like properties used in pre-training
assessment. Formally, our drug-likeliness score SDL is defined as:

SDL(X) =
∑
i

σi log pi(propi(X)) (5.1)

where propi(X) calculates the ith property of a molecule X and pi is defined by the proba-
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bility distribution of property i by all molecules in the ChEMBL database. The parameter
σi is defined as:

σi = S−1
i /

∑
j

S−1
j (5.2)

where Si is the entropy of the distribution of property i,

Si = −
∑
x

pi(x) log pi(x) (5.3)

such that a narrower distribution from the ChEMBL database contribute more to the drug
likeliness score, and defines the weights for each property as proportional to the inverse of the
entropy. Introducing this additional reward ensures our model also accounts for similarity
of generated molecules to the drug-likeliness present in the ChEMBL database, and ensures
that our generated molecules are more likely to be optimal leads for further drug design
endeavors.

Reinforcement learning with multiple rewards. Our pretrained policy model de-
fines a probability distribution for an arbitrary sequence of tokens from the SELFIES vo-
cabulary, since the generation of the sequence is a Markovian decision process (MDP), and
can be written as:

pΘ(sT ) = pΘ(s1|s0)pΘ(s2|s1)...pΘ(sT |sT−1) (5.4)

where s0 corresponds to a starting state with [Break] as the only token in the string,
st corresponds to an intermediate state with a finite length string of SELFIES tokens not
ended with the [Break] token, and sT corresponds to the terminal state, with the last token
being [Break], or the length of the string exceeding a predefined threshold. p(st|st−1) is
the transition probability at timestep t, which is the probability distribution of the next
token from the generative RNN with network parameters Θ. For each terminal state not
exceeding the length limit, a corresponding molecule can be decoded, and the Vina score
Svina and drug-likeliness score SDL can be calculated. The total reward for a terminal state
with a decoded molecule X is then defined as:

r(sT ) = λmax(SDL(X), 0) − min(Svina(X), 0) (5.5)

since the drug-likeliness score needs to be maximized and Vina score needs to be minimized.
The λ parameter controls the balance between the physical Vina score and the drug-likeliness
score in the reward function, but in this work we simply used λ = 1. Negative SDL is upward
clipped to 0 and positive Svina is downward clipped to 0 to ensure the reward is non-negative.
The expected reward under the MDP is then

J(Θ) = EsT∼pΘ(sT )[r(sT )] (5.6)

Further details of the RL training procedure are given in the Methods section.



CHAPTER 5 148

Figure 5.2: Comparison of AutoDock Vina score distributions for the pre-trained model
(blue) and the model trained by reinforcement learning (orange). The mean vina score
decreased from -6.95 kcal/mol to -8.01 kcal/mol after RL training.

Figure 5.2 compares the distribution of Vina docking scores for molecules generated from
the model prior (the pre-trained model) and after RL training which shows a clear shift
towards more favorable vina scores. The average Vina score of molecules decreased from -
6.95 ± 0.94 kcal/mol to -8.01 ± 0.94 kcal/mol, showing that on average more molecules have
stronger interactions with the predefined Mpro docking region. In addition, the GuacaMol
benchmarks were also evaluated for the model after RL training, which are also shown in
Table 5.1. Except the Frechet ChemNet Distance (FCD), all other benchmarks are relatively
close to the pretrained model, indicating that the RL training does not hurt the quality of
the generated molecules, and they are still similar to the structures from ChEMBL database.
However, FCD has changed significantly, which means the newly generated molecules have
different biological activities than the molecules from ChEMBL database. The changes
seen in FCD are expected, since, after training, the generated molecules should target a
specific cavity of SARS-CoV-2 Mpro, a target for which there are currently no FDA approved
treatments. Thus, the FCD differences validate that RL is properly steering the distributions
of generated molecules away from its initial distribution.

Validation and filtering of new inhibitor molecules. Validating results from, or
checking for consensus between, one docking program with another is often considered stan-
dard practice as scoring functions from different programs may have limited accuracy or be
parameterized for differing test cases.[34] Furthermore it is desirable to filter out molecules
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that are non-specific binders (Pan-assay interference compounds or PAINS) in which we use
swissADME[35] to check for any PAINS alerts[23], as well as Lipinski rule violations[36], and
to evaluate the synthetic accessibility (SA) scores of these molecules. Figure 5.3 illustrates
the procedures for post-filtering using these additional metrics, which we describe in more
detail here.

We start by collecting all molecules from intermediate RL training iterations with a Vina
score <-9.0, arriving at our “vina-selected set” containing 33,105 molecules (the number
of molecules from each training iteration is provided in Figure 5.C.3). As expected, more
molecules from later iterations were selected, since molecules from later iterations were driven
towards having lower Vina scores. Glide Standard Precision (SP)[22] docking was performed
on all molecules in our vina-selected set with the flexibility to optimize the conformation
again with respect to the Glide scoring function. This way we could fully exploit Glide
docking as a cross-validation for the generated molecules. Even though the molecules were
all good candidates according to Vina score, their glide docking score still showed a wide
distribution. We then applied a filter with Glide Gscore (Glide Score) <-8.0 and a drug-
likeliness score filter of >2.7 to exclude any structure that is not sufficiently drug-like. After
applying these filters we obtained the glide-selected set with 240 molecules in total. The
final step was to run these 240 molecules through a final set of filters requiring no PAINS
alerts, no Lipinski rule violations and SA scores <3.5.

5.3 Results

The outcome of the iMiner workflow formulated a final set of 51 molecules for the Mpro
catalytic site shown in Figure 5.4. These molecules are predicted to be consensus Mpro
inhibitors by both AutoDock Vina and Glide SP, they satisfy drug-likeliness criterion, and
are relatively easy to synthesize due to their predicted low SA scores. The full SMILES
representations and Vina scores, Glide Gscores, and SA scores are provided in Appendix
Table 5.B.1.

Comparison of chemical diversity of inhibitors discovered by iMiner. Figure
5.5 compares the total chemical space coverage of molecules generated using iMiner and the
COVID-moonshot project for MPro[26], as well as molecules from ChEMBL for reference,
by performing dimension reduction on the hidden representation of these molecules encoded
through ChemNet. ChemNet is a deep network trained on canonized SMILES strings of
molecules as input and encodes each molecule into a 512-dimensional latent vector to predict
their chemical and biological properties[28], and the dimensions were further reduced to 2
through the t-distributed Stochastic Neighbor Embedding (t-SNE) algorithm[37] for better
visualization. Plot points on the resultant figure indicate individual molecules, and points
are drawn close to or far from one another based on their degree of chemical similarity: points
closer to one another indicate chemically similar molecules and therefore correspondingly low
coverage of chemical space, while widely dispersed points indicate dissimilar molecules and
therefore broad coverage of chemical space. The nearly 1500 COVID-moonshot molecules
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Figure 5.3: Illustration of the filtering process for chemical and biological feasibility of
iMiner generated molecules. The filtering procedure from molecules collected from
intermediate training iterations is based on both favorable Vina and Glide SP docking
scores, high drug-likeliness scores, no PAINS and no Lipinski’s Rule violations.

are also color-coded with their experimentally determined pIC50 values, and our generated
molecules in the vina-selected set are color-coded with their Vina scores.

The visualization clearly shows that the molecules generated by iMiner covers a broader
chemical space and are spread evenly within plotting range than those molecules published on
the COVID-moonshot website which form several tight clusters. We recognize that one of the
reasons for the COVID moonshot molecules to be clustered in chemical space is that many
of these molecules are generated through an inspirational approach, i.e., later molecules
are borrowing designing ideas and sub-structures from molecules submitted earlier. By
comparison, our final-51 set of molecules are dispersed throughout chemical space, which is
an important characteristic of our workflow, since it provides a wide variety of structures as
candidates for lead optimization. Interestingly, even compared to samples from the training
dataset (ChEMBL), the molecules in the vina-selected set are still more diverse, which
suggests the model was encouraged to explore more of chemical space during RL training
while still reporting low Vina scores. Finally, we also see that the 51 molecules from iMiner
are coming from different regions of the chemical space spanned by molecules generated
from the model. As drug leads built on single or closely related scaffolds might be ruled out
entirely during drug development, a wider coverage of the chemical space gives us a better
chance of developing an effective lead for an Mpro inhibitor for treating SARS-CoV-2.

The molecular interactions between generated inhibitors of Mpro’s catalytic
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Figure 5.4: Prediction of 51 molecules that are tight binding inhibitors of Mpro in the final
set generated from the iMiner workflow. We propose further experimental validations on
these molecules as potential SARS-CoV-2 Mpro inhibitors (work in progress). The first 6
molecules in the dashed frame have better synthetic accessibility scores than the rest. The
diversity over chemical space of these proposed inhibitors is evident from metrics described
in Table 5.1 and Figure 5.5.
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Figure 5.5: Dimensionality-reduced latent space scatter plot for molecules from the
COVID-moonshot project (crosses), generated molecules from the RL model (dots),
molecules randomly sampled from the ChEMBL database (diamonds) and molecules in the
final-51 set (circles). Molecules on the figure are encoded by ChemNet[28] and the latent
space vectors undergo dimensionality reduction by principal component analysis (PCA)[38]
and t-distributed stochastic neighbor embedding (t-SNE)[37]. Molecules from the
COVID-moonshot project are color coded by their experimental pIC50 values according to
the color bar on the right, and molecules generated by our model are color coded by Vina
docking scores according to the color bar on the left.
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site. In Figure 5.6A, we show an overlay of several iMiner generated molecules in their
optimal binding conformations determined through AutoDock Vina with respect to the sur-
face of the binding pocket in which the predicted binding orientations fit nicely into the
Mpro’s catalytic pocket. Additionally, ligand functional groups mirror the hydrophobicity
requirements imposed by the Mpro binding site topography, meaning the generated molecules
indeed have optimized interactions with the pocket. These results are no doubt due to our
inclusion of real-time, explicit, flexible ligand docking in our evaluation model as well as a
result of requiring minimization of Vina score distributions. Through this visualization we
also see an interesting and encouraging result: although our final set of 51 molecules repre-
sent vastly different regions of chemical space, these molecules are relatively similar in size
(i.e., similar number of heavy atoms), and the optimal docking conformations adopt similar
shapes. These results illustrate the true power of our model, that we can quickly enumerate
and expand upon the searched chemical space while still ensuring all generated molecules
appropriately fit in the target protein pocket.

Figure 5.6B-E provide two representative examples of the molecular interactions between
an iMiner predicted inhibitor and the Mpro binding site residues. Many and various types of
favorable ligand-target interactions are observed, including hydrogen bonds, halogen bonds,
and different types of π interactions. For example, CYS145 contributes to the π-Sulfur
interaction in the first molecule illustrated in Figure5.6B and C, but it participates in a con-
ventional hydrogen bond to the SO2 group in the second molecule illustrated in Figure5.6D
and E. Furthermore, when comparing the two proposed inhibitors each molecule exhibits
unique interaction types to a different or complementary set of MPro protein residues. This
variety in intermolecular interaction types stemming from the same protein binding site is
a direct result of our enumeration of chemical space and our construction of novel ligand
scaffolds.

5.4 Conclusions

In this work we have shown that by combining real-time docking of 3D structures with state-
of-the-art reinforcement learning algorithms, we can efficiently navigate through uncharted
regions of chemical space while maintaining good metrics for synthetic feasibility and drug-
likeness. As illustrated using the exemplar target, the Mpro catalytic site, the ultimate
final set of 51 inhibitor molecules proposed by our model are optimized with respect to
shape and intermolecular interactions to the target protein, but are also diverse enough
when compared to other predicted Mpro inhibitor datasets, i.e. molecules submitted to the
COVID-moonshot project[26]. We understand the true effectiveness of these molecules as
Mpro inhibitors can only be determined through experimental screening. Nevertheless, as we
have seen agreement between AutoDock Vina and Glide SP results, and since we have visually
inspected the predicted binding modes revealing consistency in intermolecular interactions
to the Mpro pocket, we strongly believe there is good evidence that these molecules may be
potent Mpro inhibitors.
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Figure 5.6: Conformational and chemical compatibility of inhibitors predicted from iMiner
for the MPro catalytic pocket.(A) Randomly selected molecules from the final set of 51
inhibitors with their docking conformation determined by AutoDock Vina overlayed onto
the surface of the binding pocket, with the surface color coded by hydrophobicity. Blue
parts are hydrophilic and red parts are hydrophobic. (B) 3D interactions between molecule
1 and residues near the binding pocket (C) 2D illustrations for the interactions between
molecule 1 and residues near the binding pocket (D) 3D interactions between molecule 2
and residues near the binding pocket (E) 2D illustrations for the interactions between
molecule 2 and residues near the binding pocket. All figures generated by BIOVIA
Discovery Studio Visualizer[39].
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Furthermore, every aspect of this work is generalizable. There are many well defined
proteins vital to the replication of SARS-CoV-2 with 3D structures available including the
RNA-dependent, RNA polymerase protein (RdRp)[40], the Papain-like protease (PLpro)[41],
and the exonuclease (ExoN)[42]. Although we have focused our current work on targeting
SARS-CoV-2’s Mpro, extension of this work to these other targets would be relatively trivial.
Although identifying antiviral treatments for SARS-CoV-2 is of pressing concern at the
time of this publication, our model could be quickly applied to design novel inhibitors for
proteins relevant to other global diseases. For example, bacterial resistance to antibiotics
is of preeminent concern in the medical community[43], and our iMiner workflow approach
could be used to target novel bacterial biomolecules, such as bacterial Ribosomes, or target
resistance conferring bacterial proteins such as β-lactamase.[43]

Overall, we believe our tool will be of great benefit to the computational and medicinal
chemistry fields at large, and potentially aid traditional drug-design workflows as well. For
example, molecules that are experimentally validated through a traditional HTVS approach
as good binders could utilize the iMiner algorithm as an optimization or refinement step for
elaborating on these existing leads or scaffolds. The potential of the method in this direction
will be explored in future work.

5.5 Methods

Neural network architecture. The generative model employed in this study was an
ASGD Weight-Dropped LSTM (AWD-LSTM)[20], which is a specific variant of the Long
Short Term Memory (LSTM) recurrent neural network with shared DropConnect for weight
regularization, and was trained through a non-monotonically triggered average stochastic
gradient descent (NT-ASGD) algorithm.[20, 44] The basic LSTM cell contains two internal
states, the hidden state ht and the cell state ct, and can be described through the following
set of equations:

it = σ(W ixt + U iht−1) (5.7)

ft = σ(W fxt + U fht−1) (5.8)

ot = σ(W oxt + U oht−1) (5.9)

c̃t = tanh (W cxt + U cht−1) (5.10)

ct = it ⊙ c̃t + ft ⊙ ct−1 (5.11)

ht = ot ⊙ tanh ct (5.12)

where [W i,W f ,W o,W c, U i, U f , U o, U c] are the trainable parameters of the model, xt is the
input to the cell at the current timestep, c̃t contains the information to be added to the cell
state, and it, ft, ot represent the update gate, forget gate and output gate respectively, which
are numbers between (0, 1) that controls how much information should be updated, discarded
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or retrieved from the cell state. σ denotes the sigmoid function, and ⊙ represents element-
wise multiplication. The DropConnect mechanism[45] was applied to the hidden-to-hidden
weight matrices [U i, U f , U o, U c] by randomly zeroing out a small portion of the parameters in
these weight matrices to prevent overfitting and ensured that the same positions in the hidden
vectors were treated consistently throughout the forward and backward pass in regards to
whether or not to be dropped.

The inputs into the RNN cells were tokens embedded as vectors of length 400, and
3 LSTM cells were stacked sequentially, that had 1152, 1152 and 400 units each. The
hidden state from the last timestep of the last RNN cell was then connected to a linear
decoder with output size of 56 and softmax activation, representing the probabilities of
the 56 possible tokens from the vocabulary. The dropout values used in the model were:
embedding dropout=0.002, LSTM weight dropout=0.02, RNN hidden state dropout=0.015
and output dropout=0.01. The neural network was implemented using pyTorch[46] and the
fastai package[47].

Supervised pretraining of the network The generative model was pretrained using
molecules from ChEMBL 24[1], and a total of 1,440,263 molecules were selected for training.
All molecules were first converted to SELFIES strings using the selfies python package[19],
and the tokens were extracted from the SELFIES strings with fastai language model. We
used categorical cross entropy loss:

LΘ = − 1

N

N∑
i=1

∑
ti

p̂(ti|t1, t2, ..., ti−1) log pΘ(ti|t1, t2, ..., ti−1) (5.13)

where N represents the number of tokens in a molecule, p̂(ti|t1, t2, ..., ti−1) represents the
actual probability of a specific token in the string at position i and with all previous de-
fined tokens t1 through ti−1, and pΘ(ti|t1, t2, ..., ti−1) the probability predicted by the neural
network with parameters Θ. The model was trained using Adam optimizer[48] in batches
of size 512, and we employed the “one cycle” learning rate policy[49] with the maximum
learning rate of 0.0005 to achieve superconvergence[50]. During this pretraining stage we
also used weight decay=0.01 and the dropout multiplier of 0.2. The model was pretrained
for 30 epochs.

Reinforcement learning procedure. Our RL training target goal is to maximize J(Θ)
from formula(5.6) by taking steps along ∂ΘJ(Θ). The exact value for J(Θ) is intractable to
evaluate, but can be approximated through sampling the distribution of sT , which gives

J(Θ) ≈
∑
ST

pΘ(sT )r(sT ) (5.14)
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and then

∂ΘJ(Θ) =
∑
sT

[∂ΘpΘ(sT )]r(sT ) (5.15)

=
∑
sT

pΘ(sT )[
T∑
t=1

∂Θ log pΘ(st|st−1)]r(sT ) (5.16)

Directly taking gradients according to (5.16) corresponds to the REINFORCE algorithm[51].
In this work we further utilized the PPO algorithm[32], which estimated the gradients
through a clipped reward and with an extra entropy bonus term:

J ′(Θ) =
∑
sT

pΘ(sT )[
T∑
t=1

JCLIP
t (Θ) + αS[pΘ(st|st−1)]] (5.17)

where

JCLIP
t (Θ) = min(Rt(Θ)r(sT ), clip(Rt(Θ), 1 − ϵ, 1 + ϵ)r(sT )) (5.18)

with

Rt(Θ) =
pΘ(st|st−1)

pΘold
(st|st−1)

(5.19)

denoting the ratio between the probability distribution in the current iteration and the prob-
ability distribution from the previous iteration (the iteration before last gradient update). A
PPO algorithm reduces variance in the gradient, stabilizes training runs, and also encourages
the model to explore a wider region of the chemical space through the introduction of an
entropy bonus term. The two hyperparameters in the algorithm, α and ϵ, were taken as
α = 0.02, ϵ = 0.1 in this work.

After the pretraining finished, we copied the weights to a separate model with identical
architecture and trained with reinforcement learning using PPO. In each iteration 2000
molecules were sampled, and model weights were updated by taking gradient steps on the
target function through formula (5.17), using a batch size of 1024 and Adam optimizer with
fixed learning rate of 0.0001. In each iteration, all collected data were used for training
the model for a maximum of 10 epochs. The trainer would continue into next iteration
and collect new molecules for training if the K-L divergence between the latest predicted
probability and the old probability exceeded 0.03.

The model was trained with RL for 400 iterations, until the mean entropy of the predicted
probability of the tokens from the RNN started to decrease drastically. The change of mean
entropy and mean vina score during the RL training can be found in Appendix Figure 5.C.4.
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Appendix

5.A Methodology Details

Tokens in the generative model. Here we provide a complete list of tokens used in the
generative model:

• Standard SELFIES tokens: [’#C’, ’#N’, ’#O’, ’#S’, ’=B’, ’=C’, ’=I’, ’=N’, ’=O’, ’=P’,
’=S’, ’=Se’, ’=Si’, ’B’, ’Br’, ’Br+2’, ’Branch1 1’, ’Branch1 2’, ’Branch1 3’, ’Branch2 1’,
’Branch2 2’, ’Branch2 3’, ’C’, ’Cl’, ’Cl+2’, ’Cl+3’, ’Expl=Ring1’, ’Expl=Ring2’, ’F’,
’I’, ’I+2’, ’I+3’, ’N’, ’O’, ’P’, ’Ring1’, ’Ring2’, ’S’, ’Se’, ’Si’]

• Modifier tokens: [“H+expl”, “H2+expl”,“H3+expl”,“+expl”,“Hexpl”,

“H2expl”,“H-expl”, “H2-expl”,“H3-expl”,“-expl”,“expl”]

• Functional tokens: [“Break”]

When sampling molecules represented as SELFIES strings, the first token was always selected
as the “Break” token. Then each token was sampled with probability distribution predicted
by the generative model. Once the “Break” token was selected again, or the total number
of tokens exceeded 500, a single molecule sampling process was considered complete. For
each modifier token in the sampled string, it was combined into the previous token and
was connected by the “ˆ” symbol. For example, ...[C][Hexpl]... would be converted to
...[CˆHexpl] to satisfy SELFIES syntax. If the token before a modifier token could not be
modified, the sampled string would be considered invalid and was discarded.

Docking Preparation and Procedures. Stzain et al.[52] simulated SARS-CoV-2
Mpro (PDB ID 6LU7[53]) with Gaussian Accelerated Molecular Dynamics to character-
ize active site and dimer interface dynamics, as well as elucidate the presence of cryptic
binding pockets. In total, Sztain et al. produced 6 microseconds of enhanced-sampled
Mpro conformations.[52] These extensive simulations represent an invaluable resource for
SARS-CoV-2 antiviral design, and as such Sztain et al. shared their trajectories publicly
(https://amarolab.ucsd.edu/covid19.php) in accordance with the data sharing philosophy
put forth by Amaro and Mulholland.[54] To ensure we were selecting biologically relevant
Mpro conformations for use in our molecule generation workflow, we selected receptor struc-
tures from Sztain et al.’s simulations. Selection of each receptor structure and subsequent
protein preparation steps are described below.
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Mpro Active Site Receptor Selection and Preparation: To generate molecules
targeting the Mpro active site, we selected the representative structure from the most pop-
ulated cluster identified in Sztain et al.’s enhanced sampling trajectories of Mpro dimer,[52]
simulated with a covalently bound inhibitor called N3. From Sztain et al.’s freely available
files, the filename of the selected protease structure was “5.0 2.0 147.0 147.0 295.0 c0.pdb”.
We deleted the covalently bound N3 from this structure, taking care not to delete the cat-
alytic Cysteine atoms (resids 145 and 451). We then modified the C145 and C451 atom
names so that they reflected canonical Cysteine atom names. The Mpro structure was then
prepared with AutoDockTools[55] and Schrödinger’s Protein Preparation Wizard for docking
in AutoDock Vina and Glide Ligand Docking, respectively (see Protein Preparation section
below for more details). The cartesian coordinates for the active site center were found
by calculating the center of mass of the C145 bound N3I covalent inhibitor before the in-
hibitor was deleted ([atomselect top “resname N3I and resid 145”]). This center of mass
(x=54.58, y=45.92, z=75.06) was used to define the center of the active site during receptor
grid generation steps in AutoDock Vina and Glide docking.

Scoring Generated Molecules with AutoDock Vina. AutoDockTools[55] was used to con-
vert Mpro .pdb files to AutoDock Vina[56] compatible .pdbqt files. Additionally, AutoDock-
Tools[55] was used to convert generated molecule structure files to AutoDock Vina compat-
ible .pdbqt files. Gastieger charges were used for all AutoDock Vina structures. A cubic
receptor grid of 30Å x 30Å x 30Å was centered around binding site’s central coordinate
(listed above), with a grid spacing of 1.0Å.

Re-scoring Generated Molecules with Glide Ligand Docking. As Schrödinger’s Grid-
Based Ligand Docking and Energetics (Glide) protocol[57, 58, 59] is one of the most well-
trusted docking protocols available, we re-scored all our generated molecules in each Mpro
binding site with Glide Standard Precision docking.[57, 58] To do so, we prepared each
Mpro protein/receptor structure and all generated molecule structures for Glide docking.
Schrödinger’s Protein Preparation Wizard[60, 61] was used to prepare the Mpro receptor
structures selected from Sztain et al.’s trajectories for Glide docking according to the fol-
lowing settings: Bond orders were calculated, missing hydrogens were added, and disulfide
bonds were created all according to default options. Protein protonation states were assigned
with PropKa around pH=7.0.[62, 63] A restrained minimization of all hydrogen atoms was
then conducted according to the OPLS4 force field.[64]

Schrödinger’s Receptor Grid Generation tool was used to prepare the Mpro structure for
Glide docking according to the following settings: The center of the binding site was defined
according to the center calculated above. The outer grid box size was set to 30Å x 30Å x
30Å, inner grid box size was set to 10Å x 10Å x 10Å. Grid points were placed every 1.0 Å.
Receptor atom van der Waal radii were not scaled (i.e., scaled by a factor of 1.00) and the
charge cut off for polarity was set to 0.25. Atom types were assigned according to OPLS
2005 atom types.[65]

To ensure we were utilizing identical molecules for comparison between AutoDock Vina
results and Glide SP results, i.e. with respect to stereochemistry, we took output structures
from AutoDock Vina (in .pdbqt format) and converted (with Open Babel[66]) first to .pdb
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files and then (with Open Babel) to .sdf files (SDF files being compatible for Schrödinger’s
LigPrep). Schrödinger’s LigPrep module was then used to prepare all AutoDock Vina output
structures for docking with Glide according to the following settings: Max allowed number of
atoms per molecule was set to the default of 500. To again ensure that we docked structures
identical to those docked with AutoDock, ionization states were not generated, tautomers
were not generated, and chiral centers were not varied. Molecules were minimized according
to the OPLS3 force field[67] and structures were written to .mae format for docking with
Glide. Finally, all resulting structures were converted back to SMILES using openbabel [66]
and then compared to the iMiner-generated SMILES strings to ensure consistency between
structures proposed by the ML model and the actual structures docked by Glide. Any
inconsistent structure was discarded in subsequent analysis.

Schrödinger’s Glide Ligand Docking[57, 58, 22] module was used to re-score all generated
molecules according to the Glide SP scoring function. The following settings were used during
Glide SP ligand docking: Ligands were docked into each respective receptor according to a
flexible ligand/rigid receptor docking protocol in which ligand bonds, angles and dihedral
degrees of freedom were explored during docking. The top binding mode per molecule was
saved and a Standard Precision Glide score was reported in kcal/mol for each molecule. The
OPLS4 force field[64] was used for energetic evaluations and scoring. Glide SP scores were
then compared, for each molecule, to AutoDock Vina scores.

All docking input files and protein structures will be shared in conjunction the data
sharing philosophy put forth by Rommie E. Amaro and Adrian Mulholland.[54]
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5.B Suporting Tables

Table 5.B.1: The 51 molecules from the final set

Index Canonical SMILES Vina score Glide gscore SA score
1 O=C(Nc1cccc(CN2CCN(c3cccc(O)c3)CC2)c1)c1cccc2ccccc12

-9.10 -8.07 2.85
2 O=C(NCc1ccc(S(=O)(=O)c2ccc(OC(F)(F)F)cc2)cc1)c1ccc2cn[nH]c2c1

-9.40 -8.14 2.72
3 O=C(Nc1ccnc2c(=O)[nH]ccc12)c1cc(Oc2ccc3ccccc3c2)ccc1F

-9.40 -8.02 2.88
4 O=C(Nc1cccc(C(=O)c2c[nH]c(-c3cccc4ccccc34)n2)c1)c1ccccc1

-9.10 -8.17 2.97
5 O=S(=O)(c1ccc(Cn2nc3ccccc3c2O)cc1)c1nc2ccccc2[nH]1

-9.10 -8.09 2.85
6 O=S(=O)(c1cccc(C(F)(F)F)c1)c1cc(-c2ccncc2)cc2cccnc12

-9.20 -8.20 2.99
7 C[C@H](Nc1ncnc2c(C(N)=O)cccc12)c1cccc(NC(=O)c2ccc(C#N)cc2)c1

-9.10 -8.47 3.34
8 O=C(c1cc(Cc2nnc(O)c3ccccc23)ccc1F)N1CCN(C(=O)C(F)(F)F)CC1

-9.30 -8.32 3.11
9 O=C(Cn1cc(-c2ccccc2)nn1)Nc1nc(-c2ccc(-n3cncn3)cc2)cs1

-9.10 -8.33 3.44
10 N#Cc1ccc(C(=O)N2CCN(C(=O)COC(=O)c3ccc(O)c(-c4ccccc4)c3)CC2)cc1

-9.40 -8.71 3.29
11 O=S(=O)(Nc1cccc(OCc2ccc3ccccc3n2)c1)c1ccc(C(F)(F)F)cc1

-9.10 -8.01 3.07
12 O=C(NCc1ccc(S(=O)(=O)c2cccc(N3CCOCC3)c2)cc1)c1ccc2ccccc2c1

-9.20 -8.24 3.21
13 O=C(N/N=C\c1ccc(OCc2ccc(-c3ccccc3)cc2)cc1)c1cccs1

-9.10 -8.86 3.34
14 O=C(c1cncc(-c2ccc(F)cc2)c1)N1CC(Oc2ccc3[nH]c4ccncc4c3c2)C1

-9.50 -8.04 3.31
15 Cc1cc(Nc2ncc(F)c(-c3cnc4ccccc4c3)n2)cc(-c2nnc[nH]2)c1F

-10.00 -8.09 3.12
16 O=C(Nc1nonc1NC(=O)N1CCN(c2ccc(F)cc2)CC1)c1ccc(F)cc1

-9.10 -8.10 3.33
17 O=S(=O)(Nc1cccc(-c2ccc(Nc3ccncc3)nn2)c1)c1cccc(C(F)(F)F)c1

-9.30 -8.25 3.31
18 O=S(=O)(Nc1ccc2[nH]nc(-c3ccc(F)cc3)c2c1)c1cccc(-c2ccc[nH]2)c1
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Table S1 (continued)

Index Canonical SMILES Vina score Glide gscore SA score
-9.30 -8.03 3.25

19 O=c1c2ccccc2n2c3c(cccc13)C(NS(=O)(=O)/C=C/c1ccccc1)=[SH]2
-9.20 -8.20 3.44

20 O=S(=O)(Nc1cccc(-c2ccc(Nc3ccccc3)nc2)c1)c1cccc(C(F)(F)F)c1
-9.40 -8.54 3.35

21 O=S(=O)(Nc1ccc(-c2cccc(-c3nnn[nH]3)c2)cc1)c1cccc(-c2cccc(O)c2)c1
-9.60 -8.50 3.38

22 O=C1Cc2ccc(S(=O)(=O)c3cn(-c4ccccc4)nc3-c3ccc(F)cc3F)cc2CN1
-9.50 -8.29 3.45

23 O=C1Cc2ccc(-c3cccc4cc(NS(=O)(=O)c5cccc(C(F)(F)F)c5)ccc34)cc2N1
-9.60 -8.02 3.03

24 C[C@H](Nc1ncnc2c(C(N)=O)cccc12)c1cccc(NC(=O)c2ccc(F)cc2)c1
-9.10 -8.18 3.22

25 O=S(=O)(Nc1ccc(F)c(-c2cnc3cc(F)ccn23)c1)c1cccc(-c2ccccc2)c1
-9.80 -8.23 3.40

26 O=S(=O)(Nc1cc(-c2ccc3nc[nH]c3c2)c2ccccn12)c1cccc2ccccc12
-9.30 -8.05 3.25

27 O=S(=O)(Nc1ncn[nH]1)c1ccc(Oc2cccc(-c3cc4ccccc4[nH]3)c2)cc1
-9.20 -8.46 3.29

28 O=S(=O)(Cc1ccccc1F)Nc1ccc2[nH]nc(-c3nc4ccccc4[nH]3)c2c1
-9.20 -8.43 3.06

29 O=S(=O)(Nc1ccc(S(=O)(=O)c2ccc(F)cc2)cc1)c1cc(-c2ccccc2)ncn1
-9.60 -8.32 3.26

30 O=S(=O)(c1ccc2[nH]c(Nc3ccccc3F)nc2c1)c1cccc2cccnc12
-9.20 -8.02 3.10

31 O=S(=O)(c1cccc(-c2cc3cc(O)ccc3o2)c1)c1nc2c(F)cccc2s1
-9.40 -8.46 3.49

32 O=S(=O)(c1ccccc1)N(Cc1ccc(Oc2ccc(-c3ncc[nH]3)cc2)cc1)Cc1cccnc1
-9.20 -8.36 3.32

33 O=S(=O)(c1cccc(/C=N\c2nc3ccccc3[nH]2)c1)c1cccc(-c2ccncc2)c1
-9.50 -8.07 3.33

34 O=S(=O)(Nc1ccc(S(=O)(=O)c2ccc(F)cc2)cc1)c1cc(-c2ccccc2)ncn1
-9.60 -8.32 3.26

35 O=S(=O)(Nc1cccc(/N=C/c2cccc(O)c2)c1)c1cccc(-c2ccccc2)c1
-9.20 -8.16 3.38

36 O=S(=O)(c1ccc(-c2ccccn2)cc1)N1CCc2cnc(Nc3ccccc3)nc2C1
-9.70 -8.16 3.44

37 O=S(=O)(Nc1cccc(-c2cc3ccccc3cn2)c1)c1cccc(-c2ccccc2)c1
-9.90 -8.06 3.25

38 O=S(=O)(c1cccc(-c2ccccc2)c1)c1ccc2[nH]c(Nc3cccc(O)c3)nc2c1



CHAPTER 5 170

Table S1 (continued)

Index Canonical SMILES Vina score Glide gscore SA score
-9.70 -8.16 3.21

39 O=S(=O)(c1ccc(-c2ccccc2)cc1)c1cccc(-c2cnc3cnccn23)c1
-9.20 -8.13 3.29

40 O=S(=O)(c1cccc(-n2cnc3cc(F)cnc32)c1)c1nc2ccc(-c3ccccn3)cc2s1
-9.30 -8.31 3.47

41 O=S(=O)(Nc1cccc2cc(-n3ccnc3O)ccc12)c1cccc(-c2ccccc2)c1
-9.60 -8.18 3.19

42 O=S(=O)(Oc1cccc(-c2cnc3ccccn23)c1)Oc1cc(-c2ccccc2)[nH]n1
-9.20 -8.16 3.46

43 O=S(=O)(Nc1cccc(-c2coc(-c3ccccc3)n2)c1)c1ccc2ccccc2c1
-9.70 -8.46 3.48

44 O=S(=O)(c1ccc(Nc2cc3ccncc3cn2)cc1)c1cccc(-c2ccccc2)c1
-9.20 -8.21 3.24

45 NS(=O)(=O)c1ccc2ccc(NS(=O)(=O)c3cccc(-c4ccccc4)c3)cc2c1
-9.10 -8.03 3.08

46 O=S(=O)(c1ccc(Cc2cnc3nc(F)ccc3c2O)cc1)c1ccc2ccccc2n1
-9.40 -8.03 3.09

47 O=S(=O)(Nc1cc2cncn(Cc3nnc[nH]3)c-2c1)c1cccc(-c2ccccc2)c1
-9.20 -8.22 3.23

48 O=S(=O)(Oc1cc(-c2cccc(N3CCNCC3)c2)ccc1F)c1ccc2cc[nH]c2c1
-9.30 -8.17 3.45

49 O=S(=O)(c1cccc(C2=CC(O)=NN(O)N2)c1)c1cccc(-c2cncnc2)c1
-9.10 -8.71 3.47

50 O=S(=O)(Nc1cc(-c2nc3ncccc3[nH]2)ccc1F)c1cccc(-c2cccnc2)c1
-9.60 -8.01 3.21

51 O=S(=O)(c1cccc(-c2ccccc2)c1)c1cccc(-c2cc(-c3ccncc3)cnc2O)c1
-10.00 -8.30 3.44
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5.C Supporting Figures

Figure 5.C.1: Distribution comparisons for 13 different properties of the generated
molecules from the pretrained model with molecules from the training dataset (ChEMBL).
The molecular properties considered are well-recognized chemical features related to the
drug-likeliness of a molecule which can be obtained through 2D topological connectivity of
the molecule: fraction of sp3 hybridized carbons(fracsp3), number of heavy atoms(heavy),
fraction of non-carbon atoms in all heavy atoms(hetero), number of hydrogen bond
donors(hbd) and acceptors(hba), number of rotatable bonds(rotb), number of
aliphatic(alip) and aromatic rings(arom), molecular weight(mw), quantitative estimate of
drug-likelihood (QED) value[29], approximate log partition coefficient between octanol and
water (alogP)[30], polarizable surface area (PSA), and the number of structural
alerts(alerts).[31]
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Figure 5.C.2: Example molecules generated using reinforcement learning without utilizing
the drug-likeliness metric as additional reward. Many of these molecules are not drug-like,
i.e. having large rings, or having a high proportion of hetero atoms.
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Figure 5.C.3: Number of molecules selected into the vina-selected set from each RL
training iteration
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Figure 5.C.4: Change of mean entropy of model-predicted token probabilities and mean
Vina scores of generated molecules during the training process. The model after RL is the
model at iteration 400, and any molecules generated after iteration 400 are not considered
for subsequent analysis.




