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Combined Assessments of Patellar Tendon and
Hamstring Tendon Parameters on Preoperative
Magnetic Resonance Imaging Can Improve
Predictability of Hamstring Tendon Autograft

Diameter in the Setting of Anterior Cruciate Ligament
Reconstruction
Thomas J. Kremen Jr., M.D., Michael T. Arnold, B.S., Myra Trivellas, M.D.,
Brendan Y. Shi, M.D., Kristofer J. Jones, M.D., and Ignacio Garcia-Mansilla, M.D.
Purpose: To evaluate whether preoperative magnetic resonance imaging (MRI) measurements of multiple tendon
autograft sources could be used to improve estimates of intraoperative hamstring tendon autograft (HTA) diameter.
Methods: Patients who underwent anterior cruciate ligament reconstruction with HTA at our institution were identified
through electronic health records. Preoperative MRI tendon measurements of the patellar tendon (PT) length, PT width,
PT thickness, quadriceps tendon thickness, semitendinosus tendon (ST) cross-sectional area (CSA), and gracilis tendon
(GT) CSA were conducted by 2 independent evaluators using digital imaging measurement tools. Results: A total of 53
patients met the inclusion criteria, with a mean HTA diameter of 7.98 � 0.7 mm. Height greater than 1.63 m, weight
greater than 63.4 kg, PT length greater than 4.2 cm, PT thickness greater than 0.33 cm, ST CSA greater than 10.8 mm2,
and GT CSA greater than 6.3 mm2 were associated with an HTA of 8 mm or greater (P < .005). Female sex was associated
with an HTA of less than 8 mm (P< .05). PT length, PT thickness, and GT CSA were the strongest predictors of an HTA of 8
mm or greater and were combined into an additive logistic regression model: Score ¼ e23.24 þ (1.68 � PT length) þ
(20.104 � PT thickness) þ (1.48 � GT CSA). If the score was greater than 0.237, the HTA graft diameter was predicted to
be 8 mm or greater with 83% specificity, 91% sensitivity, and 87% accuracy. Conclusions: By combining PT length and
PT thickness measurements with GT CSA measurements in a logit function model, we were able to show improved overall
specificity, sensitivity, and accuracy of estimated HTA diameters in our data set when compared with assessments of
anthropometric, ST CSA, GT CSA, or combined ST-GT CSA measurements in isolation. Clinical Relevance: Preoperative
MRI measurements may be used to screen whether a patient is likely to have an 8-mm graft in the setting of anterior
cruciate ligament reconstruction with HTA and thus may help guide graft choice.
utograft choice is a significant component of
Apreoperative planning prior to anterior cruciate
ligament reconstruction (ACLR) procedures; however,
there is still considerable debate regarding the ideal
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graft choice. Quadrupled hamstring tendon autograft
(HTA) ACLR grafts are the most commonly used graft
type worldwide1-3 and can allow for circumferential
healing of the graft within the bone tunnels. HTAs are
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also associated with less risk of postoperative chronic
anterior knee pain than boneepatellar tendonebone
grafts while providing similar patient-reported
outcomes.4-9

Despite the potential benefits of HTA, surgeons must
be aware of the variability in tendon size that exists
among patients as grafts measuring less than 8 mm in
diameter have been associated with higher retear rates
and poorer outcome scores, particularly in young pa-
tients.10,11 In the event that a patient has a graft of less
than 8 mm after hamstring tendon harvest, surgeons
may elect to use specialized implants and techniques
that allow for triple folding or even quadruple folding
of the graft. Alternatively, surgeons may elect to
augment the autograft with allograft tissue. Although
augmentation can achieve an overall graft diameter
greater than 8 mm, allograft augmentation has been
associated with increased failure rates compared with
equivalently sized HTA in some studies.12-14 Thus,
knowledge of patient factors that contribute to the
estimation of intraoperative HTA diameter can help
guide preoperative patient counseling as well as pre-
operative planning regarding allograft availability,
appropriate instrumentation, and the corresponding
implants.
Discordant results have been reported regarding the

use of anthropometric assessments (height, weight,
thigh length, and so on) and patient demographic
characteristics to estimate intraoperative HTA diam-
eter.15-19 Among these parameters, height has been
indicated as the strongest predictor of HTA diam-
eter.11,17,19-21 Many studies have been conducted using
imaging modalities such as ultrasound and computed
tomography in an effort to more accurately estimate
HTA diameter; however, the results have been incon-
clusive.22-25 Thus, preoperative magnetic resonance
imaging (MRI) has received an increased amount of
attention, and there is a growing body of evidence that
suggests preoperative MRI features may be used to es-
timate intraoperative graft size.22,26-32 A recent sys-
tematic review of 14 studies concluded that
preoperative MRI assessment of both quadriceps
tendon (QT) and boneepatellar tendonebone auto-
grafts is highly correlated with intraoperative mea-
surements of the graft diameter of these autograft
tendon tissues.33 Preoperative MRI studies are often
performed in patients undergoing ACLR; thus, using
these as a screening tool for estimating graft size would
be both convenient and cost-effective. However,
considerable variability and heterogeneity have been
reported for measurements of HTAs either individually
or together, with most studies indicating a moderate
correlation between MRI and intraoperative
assessments.16,19,22,23,26-30,32-35 Thus, there remains an
overall lack of strong preoperative HTA diameter
predictors.33
The purpose of this study was to evaluate whether
preoperative MRI measurements of multiple tendon
autograft sources could be used to improve estimates of
intraoperative HTA diameter. We hypothesized that
including preoperative MRI measurements of addi-
tional knee tendons imaged on routine knee MRI in a
predictive model would result in improved accuracy in
estimating which patients will have HTAs of 8 mm or
greater in diameter at the time of surgery.

Methods
The study was approved by the Institutional Review

Board at the University of California, Los Angeles. We
retrospectively reviewed the records of patients who
underwent ACLR with HTA between January 2013 and
May 2020. A list of all ACLRs performed at our insti-
tution in the study period was generated from our in-
stitution’s electronic medical record system, and a
review of individual medical records was then con-
ducted to identify patients who satisfied our inclusion
and exclusion criteria.
The inclusion criteria were defined as follows: (1)

MRI-proven anterior cruciate ligament tear, (2) pre-
operative 3-T MRI performed at our institution, (3)
ACLR performed at our institution, (4) age older than
12 years at the time of surgery, and (5) intraoperative
HTA diameter measurement documented in the oper-
ative report using cylindrical sizing tubes with sizes
rounded to the nearest 0.5 mm. Patients were excluded
if there was any evidence or documentation of prior
hamstring tendon harvest and if there was no intra-
operative HTA diameter measurement recorded in the
operative report.
All surgical procedures were performed by 1 of 7

orthopaedic surgeons with fellowship training in or-
thopaedic sports medicine. HTAs in this study consisted
of both the gracilis tendon (GT) and semitendinosus
tendon (ST) and were folded once over a cortical button
suspension loop (i.e., doubled). For any HTAs
augmented with an allograft, only the recorded
unaugmented HTA diameter was used as the native-
tissue HTA diameter for this study. In addition, pa-
tient demographic data collected at the time of surgery,
including height, weight, body mass index (BMI), sex,
and age, were included in the analysis.

Image Acquisition Parameters
All preoperative imaging was performed without

intra-articular contrast on a highefield strength 3-T
MRI system (Magnetom Vida or Skyra; Siemens,
Erlangen, Germany) using manufacturer-supplied
standard knee coils. Coronal fat-saturated proton den-
sity, sagittal proton density, sagittal T2-weighted fat-
saturated, coronal T1-weighted, and axial fat-
saturated T2-weighted images were obtained in all
cases. The imaging parameters were as follows: field of



MULTIPLE TENDONS ESTIMATE ACLR GRAFT SIZE e1915
view, 140 mm; slice thickness, 3 mm with 0.6-mm gap
(sagittal) or 0.3-mm gap (coronal) or 4 mm with 0.8-
mm gap (axial); and matrix size, 384 (sagittal and cor-
onal) or 320 (axial). Single acquisitions were used on all
knees, which were positioned in knee extension. The
acquired knee images were reviewed and analyzed on a
picture archiving and communication system (PACS)
(Centricity; GE Medical Systems, Milwaukee, WI).
The most recent preoperative MRI scan was used for

all tendon measurements. Measurements included
patellar tendon (PT) length, PT width, PT thickness, QT
thickness, ST cross-sectional area (CSA), and GT CSA.
The MRI measurements were performed by 2 ortho-
paedic surgeon evaluators to determine inter-rater
reliability: One evaluator (IGM) had fellowship
training in orthopaedic sports medicine, and the other
evaluator (MT) was an orthopaedic surgery resident
(postgraduate year 4). Both image evaluators were
blinded to all collected patient data including intra-
operative HTA measurements. The image evaluators
conducted independent measurements and were blin-
ded to each other’s results. They received the same
training and standardized instructions for conducting
the measurements.
Calculation of the CSA of both the ST and GT was

performed on axial MRI sequences using the axial slice
that included the widest portion of the distal femur (Fig
1A) according to the technique described by Grawe
et al.27 This image was magnified 4 times, and CSAs
were measured using the elliptical region-of-interest
tool in the PACS software (Centricity Enterprise Web,
version 3.0; GE Medical Systems) (Fig 1B). This tool
reports the CSA (in square centimeters) of the geo-
metric object resulting from manual tracing of the area
of interest on a selected image and is a feature included
in most PACS software platforms. The tool itself is
approved by the US Food and Drug Administration to
compute areas in any plane or volume.26

The MRI measurement techniques for PT width, PT
length, and PT thickness were adapted from the tech-
niques previously described by Chang et al.36 PT width
was measured by identifying the point midway be-
tween the inferior pole of the patella and the tibial
insertion of the PT on the sagittal view (Fig 1C). This
midpoint (Fig 1C, intersection of white dashed line and
anterior portion of PT) was cross-referenced to an axial
view (the dashed line in Fig 1C designates the axial slice
shown in Fig 1D, which was then used to quantify PT
width). A point near the center of the tendon was
defined, and the width was measured from this point to
the medial and lateral borders separately. The sum of
the widths was regarded as the true tendon width (Fig
1D). PT length was measured on the sagittal slice
showing the most distal pole of the patella and tibial
tubercle (Fig 2A). PT thickness was also measured on
this sagittal slice at the tendon’s midpoint between the
superior and inferior extents (Fig 2B). QT thickness was
calculated on a sagittal view 25 mm proximal to the
superior pole of the patella measured from anterior to
posterior in a trajectory orthogonal to the orientation of
the tendon fibers (Fig 2C). All measurements were
performed using the same PACS software.

Statistical Analysis
Bivariate analysis was performed using height,

weight, BMI, age, ST CSA, GT CSA, PT length, PT
width, PT thickness, and QT thickness as predictors of
an intraoperative HTA graft diameter of 8 mm or
greater. The 3 best predictors were combined into a
weighted, additive logistic regression model to deter-
mine a threshold score. Reliability statistics between the
2 image readers for all MRI measurements were eval-
uated using the coefficient of variation difference
(CVD). Pearson correlation coefficients (r values) were
calculated using the mean MRI tendon measurements
obtained by each independent image evaluator as well
as for each structure relative to intraoperative HTA
diameter at the time of ACLR. The level of statistical
significance was defined as P < .05.
Results
Application of the study inclusion and exclusion

criteria identified 53 ACLRs at our institution, consist-
ing of 26 male patients (49%) and 27 female patients
(51%). The mean age (� standard deviation) at the
time of surgery was 23 � 8.9 years. Of the patients, 23
(43.4%) were younger than 18 years at the time of
surgery. The mean height, weight, and BMI were 1.7 �
0.1 m, 74.4 � 18.1 kg, and 25.5 � 4.8, respectively.
The mean intraoperatively measured HTA diameter

of the folded (doubled over) GT and ST was 7.98 � 0.7
mm prior to any augmentation. There were 18 grafts
(34%) that measured less than 8 mm. The CVDs for
tendon measurements between image readers were
rated as very good (CVD < 10%) to good (CVD of 10%
to <20%) (Table 1). Bivariate logistic regression anal-
ysis using demographic data and mean measurements
between the 2 image readers showed that height
greater than 1.63 m, weight greater than 63.4 kg, PT
length greater than 4.2 cm, PT thickness greater than
0.33 cm, ST CSA greater than 10.8 mm2, and GT CSA
greater than 6.3 mm2 were significantly associated with
an HTA of 8 mm or greater (P < .005). Female sex was
also significantly associated with an HTA graft of less
than 8 mm (P < .05) on bivariate analysis. BMI, age,
patellar tendon medial-lateral width, and QT thickness
were not significant predictors of an HTA of less than 8
mm (Table 2). MRI measurements including the mean
PT length, ST CSA, GT CSA, and combined ST-GT CSA
were all significantly correlated with intraoperatively
measured HTA diameter (Table 3).



Fig 1. (A) Axial magnetic reso-
nance imaging slice including
widest portion of distal femur
(white arrow). (B) Cross-sectional
area measurements of semite-
ndinosus tendon and gracilis
tendon at 4� magnification (yel-
low ovals). (C) Sagittal magnetic
resonance imaging view used to
measure patellar tendon thick-
ness, cross-referenced to axial
view (dashed white line corre-
sponds to the axial view plane in
figure 1D). (D) Sum of measure-
ments from center of patellar
tendon to medial and lateral bor-
ders, giving true patellar tendon
width (white arrows).
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PT length (in centimeters), PT thickness (in centime-
ters), and GT CSA (in square millimeters) were the
strongest predictors and could be used in an additive
logistic regression model to calculate a score for each
individual’s MRI measurements: Score ¼ e23.24 þ
(1.68 � PT length) þ (20.104 � PT thickness) þ (1.48 �
GT CSA). If the score resulting from the application of
this model is greater than 0.237, then the HTA graft
diameter is predicted to be 8 mm or greater with 83.3%
specificity, 91.4% sensitivity, and 87.4% accuracy in
our data set. If the score is less than 0.237, then the HTA
graft diameter is predicted to be less than 8 mm with
83.3% specificity, 91.4% sensitivity, and 87.4%
accuracy.

Discussion
This study shows that preoperative MRI measure-

ments of potential autograft sources can be used to
estimate intraoperative HTA diameter in the setting of
ACLR. Furthermore, including multiple autograft
tendon measurements in the predictive model
improved the accuracy of intraoperative HTA diameter
estimations in our data set. Specifically, we observed
that PT length, PT thickness, and GT CSA were the
strongest predictors of an intraoperative native graft
diameter of 8 mm or greater.
There is a growing body of literature attempting to

use preoperative MRI to predict intraoperative HTA
diameter.16,19,22,23,26-30,32-35 Most of these studies have
used ST and GT CSA measurements and correlated
these relative to HTA diameter, with results ranging
from weak (r ¼ 0.16) to strong (r ¼ 0.81), and often,
the sum of ST and GT has been reported as showing the
strongest correlation (r values ranging from 0.42 to
0.93).16,19,22,23,26-30,32-35 Our study found a moderate
correlation with ST CSA (r ¼ 0.48) and combined ST-



Fig 2. (A) Patellar tendon length measured on sagittal slice showing most distal pole of patella and tibial tubercle. (B) Patellar
tendon thickness measured on sagittal slice at tendon’s midpoint between superior and inferior extents. (C) Quadriceps tendon
thickness calculated on sagittal view 25 mm proximal to superior pole of patella measured from anterior to posterior in trajectory
orthogonal to orientation of tendon fibers.
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GT CSA (r ¼ 0.67) and a stronger correlation with GT
CSA (r ¼ 0.71) in isolation. We found that PT length
and PT thickness showed a significant correlation with
HTA diameter in our data set. Although the correlation
between tendon size and final HTA diameter is an
important measure, it is of little practical value unless
specific cutoff values are used to determine which pa-
tients are at risk of having a graft of insufficient size. In
our study, we observed that the combination of PT
length, PT thickness, and GT CSA offered the strongest
predictive value for having an HTA of sufficient size
when these 3 parameters were combined into an ad-
ditive regression function to estimate the probability. In
other studies, most investigators have reported the
strongest correlation with the sum of ST and GT, but
these studies did not include measurements of the PT
and QT.26-29,35 Our results do not necessarily disagree
that the sum of ST and GT is a strong predictor but
instead suggest that the combination of PT length, PT
thickness, and GT CSA may be superior.
Both adult and pediatric populations were included in

this study, with a mean age (� standard deviation) at
Table 1. Mean Tendon Measurements and Variation Between Im

Variable Mean for Rater 1 Mean for Rater 2

PT length 4.52 cm 4.5 cm
PTML width 2.81 cm 2.82 cm
PT thickness 0.36 cm 0.36 cm
QT thickness 0.79 cm 0.8 cm
ST CSA 10.9 mm2 10.7 mm2

GT CSA 7.1 mm2 6.8 mm2

CSA, cross-sectional area; CVD, coefficient of variation difference; GT, gra
QT, quadriceps tendon; ST, semitendinosus tendon.
the time of surgery of 23 � 8.9 years and 43% of pa-
tients younger than 18 years. It is unclear to what de-
gree skeletal immaturity may confound results;
however, we believe the age range of patients in this
study was sufficiently broad, and age was considered as
a variable in our statistical analysis. Furthermore,
including a high proportion of pediatric patients may
make this study more applicable to the pediatric pop-
ulation overall.
Anthropometric data have also shown conflicting

findings when used to predict graft size. However, the
most consistent parameter reported in most studies is
height alone or height in combination with sex.11,17,19,20

Other authors have reported that weight and thigh
circumference have the greatest correlations.21 Using a
multiple regression analysis, Ma et al.19 reported that
height and male sex, but not age or weight, were sig-
nificant predictors of increased graft diameter. In this
study, height was a specific predictor only in male pa-
tients, whereas among female patients, none of the
preoperative anthropometric measures were predictive
of graft diameter.19 Alternatively, Leiter et al.35 analyzed
age Evaluators

Mean Difference CVD, % Correlation

0.0158 cm 2.0 0.99
e0.0058 cm 5.8 0.90
e0.0058 cm 10.9 0.88
e0.0104 cm 7.6 0.84
0.21 mm2 13.2 0.65
0.30 mm2 13.8 0.76

cilis tendon; PT, patellar tendon; PTML, patellar tendon medial-lateral;



Table 2. Bivariate Analysis Using Demographic Data and Mean Tendon Measurements Based on Data Combined From Both
Image Evaluators

Variable n Mean SD P Value Threshold Specificity, % Sensitivity, % Accuracy, %

Height
Graft diameter � 8 mm 35 1.74 m 0.10 m 1.63 m 80 72 76
Graft diameter < 8 mm 18 1.63 m 0.08 m .0001

Weight
Graft diameter � 8 mm 35 79.2 kg 18.4 kg 63.4 kg 89 56 72
Graft diameter < 8 mm 18 65.2 kg 13.7 kg .0033

BMI
Graft diameter � 8 mm 35 26.1 5.0 25.84 57 78 67
Graft diameter < 8 mm 18 24.6 4.4 .1562

Age
Graft diameter � 8 mm 35 24.2 yr 9.4 yr 16.5 yr 74 50 62
Graft diameter < 8 mm 18 20.7 yr 7.5 yr .1552

PT length
Graft diameter � 8 mm 35 4.74 cm 0.56 cm 4.20 cm 86 67 76
Graft diameter < 8 mm 18 4.06 cm 0.48 cm .0001

PTML width
Graft diameter � 8 mm 35 2.89 cm 0.37 cm 2.74 cm 66 61 63
Graft diameter < 8 mm 18 2.68 cm 0.27 cm .0685

PT thickness
Graft diameter � 8 mm 35 0.381 cm 0.077 cm 0.333 cm 74 78 76
Graft diameter < 8 mm 18 0.313 cm 0.053 cm .0008

QT thickness
Graft diameter � 8 mm 35 0.798 cm 0.109 cm 0.813 cm 54 72 63
Graft diameter < 8 mm 18 0.773 cm 0.078 cm .3284

Semitendinosus CSA
Graft diameter � 8 mm 35 0.112 cm2 0.014 cm2 0.108 cm2 63 83 73
Graft diameter < 8 mm 18 0.099 cm2 0.014 cm2 .0027

Gracilis CSA
Graft diameter � 8 mm 35 0.074 cm2 0.012 cm2 0.063 cm2 91 67 79
Graft diameter < 8 mm 18 0.060 cm2 0.006 cm2 <.0001

NOTE. If the predictor value is above the threshold, then the predicted graft diameter is 8 mm or greater with the associated specificity,
sensitivity, and accuracy listed.
BMI, body mass index; CSA, cross-sectional area; PT, patellar tendon; PTML, patellar tendon medial-lateral; QT, quadriceps tendon; SD,

standard deviation.
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a combination of anthropometric data with preoperative
MRI measurements and found that the strongest in-
dicators of graft diameter in their data set were ST and
GT CSA combined with weight. In our study, height and
Table 3. Pearson r Values for Mean Tendon Measurements
Between Image Readers Compared With Intraoperatively
Measured HTA Diameter

Measurement r Value P Value

PT length 0.56 .00006
PTML width 0.2 .15
PT thickness 0.36 .008
QT thickness 0.24 .08
CSA

ST 0.48 .0003
GT 0.71 .0001
ST and GT 0.67 .0001

CSA, cross-sectional area; GT, gracilis tendon; HTA, hamstring
tendon autograft; PT, patellar tendon; PTML, patellar tendon medial-
lateral; QT, quadriceps tendon; ST, semitendinosus tendon.
weight were strong predictors of an HTA diameter of
8 mm greater, whereas female sex was a predictor of an
inadequate graft diameter (<8 mm). Although we found
height and sex to be significant predictors, anthropo-
metric data underperformed in comparison to MRI
measurements; thus, these parameters were not
included in our additive logistic regression model. One
reason our results may have differed from those of the
previous investigations is that we had a larger proportion
of skeletally immature patients, we used a different
anatomic location on MRI (relative position of the cross-
sectional image on which measurements were ob-
tained), and all of our MRI measurements were con-
ducted on 3-T magnetic resonance images at 4�
magnification. Additionally, our study reported a
multivariate analysis including PT length, PT thickness,
and QT thickness, which have not been previously used
in studies of predictive measurements for HTA diameter.
Our results suggest that a broad range of tendon mea-
surements may offer improved accuracy for predicting
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sufficient HTA diameter when compared with a combi-
nation of anthropometric and ST or GT measurements.
In addition to studies of anthropometric data, a

number of recent investigations have reported a cor-
relation of preoperative MRI hamstring tendon mea-
surements with intraoperative HTA diameter. Grawe
et al.27 stated that a combined ST-GT CSA larger than
22 mm2 can be used as a minimum cutoff for a graft
diameter of 8 mm with a sensitivity and specificity of
100%. Similarly, Hollnagel et al.29 reported that a
combined CSA of at least 18.3 mm2 was sufficient to
produce an 8-mm graft with a sensitivity of 57% and a
specificity of 80% with 3-T MRI measurement at the
medial femoral condyle. Unfortunately, neither study
reported on what percentage of the cohort actually met
the reported threshold values. In our study, ST CSA
greater than 11.2 mm2 and GT CSA greater than 6.3
mm2 were predictors of an intraoperative HTA of 8 mm
or greater with an accuracy of 73.1% and 79%,
respectively. The variation in cutoff values between
different studies could be attributed to the variability in
sensitivity, specificity, and accuracy. Grawe et al., for
example, reported a relatively higher cutoff value, but
this was to achieve a sensitivity and specificity of 100%.
Although a diagnostic test with such high accuracy will
never be incorrect, it may be of little clinical utility if
very few patients’ measurements actually meet the
requisite high cutoff value. In our cohort, we observed
20 patients (37.7%) who met the ST cutoff value and
38 patients (71.7%) who met the GT cutoff value. Our
reported additive logistic regression model, when
applied among our patients, resulted in a specificity of
83.3%, sensitivity of 91.4%, and accuracy of 87.4% in
predicting a final HTA diameter of sufficient size.
Making direct comparisons between studies is chal-

lenging for a number of reasons, such as differing CSA
measurement techniques and the lack of standardization
of imaging protocols. Different studies use different
radiographic landmarks when measuring hamstring
tendon CSA or diameter. These variable landmarks
include an axial slice at the level of or just below the distal
femoral physeal scar or 3 cm proximal to the articular
surface. In our experience, defining the exact portion of
the articular surface on which to base measurements, as
well as identifying the relatively nonlinear appearance of
the physeal scar or, in the setting of skeletally immature
patients, the physis itself, was less reproducible in pilot
studies. Therefore, in this study,weelected touse theaxial
slice that included the widest portion of the distal femur
because itwas highly reproducible between our observers
and, at this level, the ST and GT have a more tubular
appearance, making them more conducive to outlining
with image analysis tools that are included with most
available PACS software platforms. To improve the ac-
curacy of our imaging assessments, MRI images were
magnified 4 times their original size. Measurements
conducted at this level of magnification have been shown
to provide higher correlation with final HTA diameter.33

However, other authors have suggested 2� magnifica-
tion as optimal, suggesting that at 2�magnification, only
the true tendon tissue may be measured, minimizing the
chance of measuring adjacent muscle, vincula, or other
soft tissues.27

Previous studies have shown ST CSA to have a stronger
correlation with HTA diameter than GT CSA, which is in
contrast to the findings of our study.16,19,22,23,26-30,32-35 A
possible explanation is thatMRI CSAmeasurements may
capture accessory band tissue, which will ultimately be
removed from the final HTA.37,38 The ST may have more
abundant accessory band tissue than the GT, and the ST
accessory bands often originate 10 cm proximally from
the insertion site.37 This would confound the correlation
between ST MRI measurements and final HTA diameter
to a greater degree than GT measurements. Another
contributing factor is that the ST makes up a larger pro-
portionof thefinalHTAthan theGT, explainingwhy ithas
beenmore correlativewithHTA inprevious studies. In the
clinical experience of the senior author (TJK), the GT
tends to have amore variable size from one patient to the
next. This was noted in our cohort, showing more varia-
tion in GT CSA measurements than in ST CSA measure-
ments. Although the ST makes up a larger proportion of
the final graft, the contributions of the GT may be more
significant in achieving a graft of sufficient size owing to
increased variability in the size of theGT in the population
as observed among our patients.

Limitations
Our study has some noteworthy limitations. As with

any retrospective study, there is concern for possible
selection bias. Other limitations include the fact that we
only used 3-T MRI studies in this investigation because
this may limit the translation of our results to patients
undergoing MRI on 1.5-T or lowerefield strength ma-
chines, as well as the inherent relative inaccuracy and
subjectivity associated with graft sizing. Most grafts are
not uniform in diameter, and most commercially pro-
duced sizing guides are only available in 0.5-mm in-
crements, which means there is a degree of rounding
up of the graft diameter value, which may negatively
impact correlations with the anatomic structures
measured on MRI. In addition, there are variations in
hamstring tendon harvesting technique, as well as
variations in the methods of shaping, suturing, and
tensioning the final graft construct, among the different
surgeons, which could lead to different measurements
of intraoperative HTA diameter. Our predictive model
has not been validated in a prospective study or in a
larger sample of patients, which are major limitations of
our study and set the stage for future work. Despite
these shortcomings, we find the initial characterization
of this easily applicable approach (adding PT length and
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thickness measurements to GT CSA) exciting. The re-
ported results for estimating HTA diameter in the
literature thus far are highly variable, and the approach
described in this study has great potential to help
improve estimations of HTA diameter in the future.

Conclusions
By combining PT length and PT thickness measure-

ments with GT CSA measurements in a logit function
model, we were able to show improved overall speci-
ficity, sensitivity, and accuracy of estimated HTA di-
ameters in our data set when compared with
assessments of anthropometric, ST CSA, GT CSA, or
combined ST-GT CSA measurements in isolation.
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