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A Model of Fast Concept Inference with Object-Factorized Cognitive Programs
Anonymous CogSci submission

Abstract

The ability of humans to quickly identify general concepts
from a handful of images has proven difficult to emulate with
robots. Recently, a computer architecture was developed that
allows robots to mimic some aspects of this human ability by
modeling concepts as cognitive programs using an instruction
set of primitive cognitive functions. This allowed a robot to
emulate human imagination by simulating candidate programs
in a world model before generalizing to the physical world.
However, this model used a naive search algorithm that re-
quired 30 minutes to discover a single concept, and became
intractable for programs with more than 20 instructions. To
circumvents this bottleneck, we present an algorithm that emu-
lates the human cognitive heuristics of object factorization and
sub-goaling, allowing human-level inference speed, improving
accuracy, and making the output more explainable.
Keywords: zero-shot; cognitive programs; program induc-
tion; concept inference; imitation learning

Introduction
Humans can readily infer the high-level concept represented
in a pair of images and then apply it in a diverse array of
circumstances (Fig.1A-B). This capability allows everything
from LEGO instructions to traffic signs to provide language-
independent guides to human behavior. Robots, in contrast,
are typically programmed by tediously specifying a sequence
of movements or poses for a single, highly controlled set-
ting. More recently, imitation learning has been employed
in attempts to provide more versatility to robots by allowing
them to learn from demonstrations (Akgun, Cakmak, Jiang,
& Thomaz, 2012; Duan et al., 2017). However, by using
fragile mapping from image frame pixels to actions, imita-
tion learning policies often fail to generalize in response to
changes in object appearance or lighting conditions (Tung,
Harley, Huang, & Fragkiadaki, 2018).

Providing robots the ability to infer concepts with the speed
and data efficiency of humans would not only allow broader
task automation, it would make human-robot communication
more intuitive, successful task completion more explainable,
and failures more readily diagnosed.

Recently, an architecture called visual cognitive computer
(VCC) was developed that allowed robots to learn concepts
from fewer than 10 input/output image pairs and then ap-
ply them in diverse physical settings (Lázaro-Gredilla et al.,
2019). VCC is based on key ideas from cognitive science,
including image schemas (Mandler & Cánovas, 2014), de-
ictic mechanisms (Ballard, Hayhoe, Pook, & Rao, 1997),

Figure 1: People can easily understand the concept conveyed
in pairs of images, a capability that is exploited by LEGO and
IKEA assembly diagrams. (A) People interpret the concept
conveyed by these images as stacking red objects vertically
on the right and green objects horizontally at the bottom. (B)
Given a novel image, people can predict what the result of
executing the concept would be. Adapted with permission
from Lázaro-Gredilla et al. (2019).

perceptual symbol systems (Barsalou, 1999), visual routines
(Ullman, 1996), and mental imagery (Roelfsema & de Lange,
2016). The central idea was to represent concepts as cogni-
tive programs: sequences of primitive instructions analogous
to the operations in the instruction set of a microprocessor.
Rather than basic arithmetic and control-flow functions, the
VCC instructions implement fundamental cognitive functions
such as parsing a visual scene, directing gaze and attention,
imagining new objects, manipulating the contents of a visual
working memory, and controlling arm movement (Fig.2A-B).

Because concepts are abstract in nature, the VCC must
parse pixel-based input scenes into symbolic lists of objects
and their visuospatial properties, such as position, shape, and
color. However, to simulate non-symbolic interactions such
as object collisions, the VCC must also be capable of map-
ping a symbolic scene representations back to the pixel level.
VCC accomplishes both of these functions through a vision
hierarchy (VH) based on a generative model that achieves
near human-level performance on image segmentation tasks
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(George et al., 2017) and reproduces visual cortex phenom-
ena (Lavin, Guntupalli, Lázaro-Gredilla, Lehrach, & George,
2018) with computational requirements compatible with the
anatomical constraints of cortical microcircuits (George et al.,
2018). This architecture allows a robot to learn concepts be-
fore any interaction with the physical world by simulating
the results of candidate programs on an imagination black-
board, which serves a function similar to the visual cortex
(Roelfsema & de Lange, 2016).

Prior to program induction, a given image is processed as
follows. The VH takes as input an RGB image and outputs
a list of objects, where each object is represented as a 1× 5
vector of features encoding size, horizontal position, verti-
cal position, shape, and color. Size and position take con-
tinuous values while shape and color take categorical values
(coded as integers). The feature spaces for shape and color
are {‘square’, ‘circle’, ‘line’, ‘diamond’, ‘triangle’, ‘star’}
and {‘red’, ‘green’, ‘blue’, ‘yellow’}, respectively.

Each instruction can be thought of as an operation that
changes the state of the agent (hand position, fixation posi-
tion, contents of attention buffer, etc.) or its environment
(color and position properties of objects). For a given con-
cept, the general program induction problem is to find a se-
quence of instructions belonging to an instruction set of size
N that successfully changes the properties of the objects in
every input example to match the objects in every output ex-
ample (Fig.2C-D).

More formally, each processed scene S containing k objects
may be represented as a set of object vectors S = {o1, . . . ,ok},
and each program as a function p that transforms an input
scene SI into a new scene p(SI) with the same number of
elements each in the same feature space. An object oi in a
transformed input scene p(SI) is said to be “matched” with
respect to a target output scene ST if there exists an object o j
in ST such that oi = o j. A program p is said to have solved
an input/output example (SI ,ST ) if every object in p(SI) is
matched. There are some caveats to this formal description,
an exhaustive discussion of which is beyond of the scope
of this paper. Please refer to the supplementary material of
Lázaro-Gredilla et al. (2019) for details.

While the VCC represents an impressive synthesis of cog-
nitive science principles in an architecture with the novel
capability of discovering conceptual understanding without
demonstration data, its ability to scale to more complex tasks
is limited by the nature of its program induction algorithm.
Apart from the input and output example images, the only
information available to the VCC is whether a given pro-
gram solves every example of a concept, which makes pro-
gram induction a tree search problem, where each program
is a node on an N-ary tree. If we assume that a given con-
cept can be solved by a unique ground-truth program of
length L, the brute-force run time is O(NL), which quickly
becomes intractable for longer programs. The search algo-
rithm described in Lázaro-Gredilla et al. (2019) employs sev-
eral heuristics to make the task more tractable by allowing the

Figure 2: VCC architecture and program execution examples.
(A) Functional components of VCC and their interactions.
The vision hierarchy can parse the input scene and identify,
attend to, and imagine objects. The hand controller moves
the hand to different locations in the scene, and the fixation
controller commands position the center of the eye. Object
indexing commands iterate through the objects currently at-
tended to. The attention controller can set the current atten-
tion based on object shape or color. (B) The full instruction
set of VCC. Parentheses denote instructions with arguments.
(C-D) examples of discovered programs and visualizations of
their execution steps. Digits next to the visualizations corre-
spond to program line numbers. Blue highlight indicates the
shape attended to. Red “X” indicates the point of fixation.
Adapted with permission from Lázaro-Gredilla et al. (2019).

VCC to learn from previous attempts:

• Pruning of invalid nodes (programs) from further search

• Argument prediction using fixation guidance and convolu-
tional neural networks (CNNs)

• A Markov model that prioritizes search by learning instruc-
tion transition probabilities that are stored in a Markov
transition matrix1.

• Identification of subroutines

Pruning of invalid programs was the most effective heuris-
tic, since, typically, over 50% of instruction transitions

1Entry (i, j) of the Markov transition matrix represents the prob-
ability that instruction i follows instruction j in a program.
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were never valid (e.g. calling release_object before
grab_object).

Argument prediction effectively reduced N by 33% in the
best case since the instruction set contains 36 primitives if
counting different argument options as separate instructions,
but only 24 otherwise. This benefit is mostly orthogonal to
that of pruning since the validity of a transition is mostly in-
dependent of an instruction’s arguments.

The Markov model also acted by effectively reducing N,
though its benefits overlap with those of pruning and argu-
ment prediction.

These heuristics dramatically improve the speed of the
search, but they do not fundamentally change the exponen-
tial scaling of the run time because they do not change the
minimum depth L of the search tree. The use of subroutines
identified from common sequences of instructions is the only
heuristic that, in theory, effectively reduces L. However, this
approach did not empirically result in significant improve-
ment.

These heuristics allowed the VCC to solve most of the 546
concepts on which it was tested with reasonable efficiency,
solving a typical concept in 30 minutes after executing 3 mil-
lion programs. However, it was unable to solve many of the
more complex concepts, including most concepts similar to
that illustrated in Fig.1 that involve stacking variable numbers
of two different types of objects. This is especially concern-
ing for future applications that will require larger instruction
sets and longer programs. Moreover, because success of a
program is a binary metric, failure cases include no partial
solutions to aid in explaining the reason for the failure.

Here, we address this bottleneck with a novel program in-
duction algorithm using a divide-and-conquer approach. We
provide the VCC with more fine-grained feedback during the
search by evaluating program success on the basis of individ-
ual objects rather than the entire scene. In combination with
a program mutation function that addresses multi-object de-
pendencies, this approach greatly improves the scalability of
the VCC and brings it closer to human performance in terms
of inference time and explainability.

Fast Program Induction Algorithm
Although the VCC (Lázaro-Gredilla et al., 2019) used object-
factorized representations for parsing, dynamics, and instruc-
tion set, its search algorithm had two primary deficiencies.
First, it did not exploit the object-factorizations in the search
process. Second, the search was a purely feed-forward open-
loop process, where partial attainments of goals did not alter
the search process. That is, the search was driven purely by
the input image, and the output-image was used purely for
verification. In contrast, humans use object-factorizations and
sub-goaling to drive the search process, and the sub-goals are
obtained by jointly considering the input and output images.

Object Factorization and Sub-goaling
The central idea of our new approach is to factorize the search
by object. That is, split the input/output examples into sub-

goals in which we search for a program that transforms the
properties (usually spatial coordinates and sometimes color)
of a single object in the input to match the output. Assum-
ing each unmatched object requires the same number of in-
structions to solve, this approach will solve a concept with
k unmatched objects in O(kNL/k) time as long as the object
sub-goals are independent.

There are several ways to incorporate this approach as a
heuristic in the program induction process. The most impor-
tant choices are how to formulate and schedule the sub-goals
for search. As an example, suppose we have 3 unmatched
objects and we represent the solved state of each with a one-
hot array [m1 m2 m3], mi ∈ {0,1}. One strategy would be to
choose a random ordering of objects to match and try to solve
them sequentially in that order. For example, one ordering
could be [1 0 0], [1 1 0], [1 1 1]. After a program is found for
a sub-goal, we restart the search with that program as the root
node. If, after trying for some threshold number of programs,
we are not able to solve the concept with a particular order-
ing, we restart from scratch with another ordering. However,
this strategy does not addresses how to identify conceptually
equivalent objects from separate examples. Consider all the
concepts that require moving one object to the left. The defin-
ing property of the object to be moved left could be color,
shape, distance from the center, etc. This is a nontrivial unsu-
pervised clustering problem, and a single error could render
a concept unsolvable because the exact clustering is used as
the basis for evaluating the success of a program on a given
sub-goal.

For this reason, we opted for the following strategy: run
the search as normal until a program matches at least one
previously-unmatched object in every example, then restart
the search with that program as the root node. The fact that
each object from a different example is matched by the same
program is the best evidence that they belong to the same con-
ceptual cluster. Conversely, the fact that a program matches
an object in every example is evidence that it represents a
valid sub-concept.

Program Mutation
There are some concepts that fundamentally cannot be solved
using an object factorization approach on its own. For
instance, the concepts that have different numbers of un-
matched objects in each example require one or more loops to
solve. However, the object factorization strategy is unlikely
to find programs with loops. This is because the loop_start
instruction must occur prior to the sequence of instructions
that matches each individual object (Fig.2D), but the object
factorization fixes a successful instruction sequence in the
new root node, which precludes insertion of the necessary
loop_start. Another case is when an object must be moved
to the previous location of a different object (Fig.2C). Here,
the VCC must fixate the first object before it moves it. Other-
wise, it will have no memory of the location.

To address these limitations while maintaining the bene-
fits of object factorization, we introduce a program muta-
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tion function inspired by the technique of iterative mutation,
screening, and selection in protein engineering known as di-
rected evolution (Arnold, 1998). The mutation function finds
all unseen, valid, single-instruction transpositions, deletions,
changes, and insertions (except those that would change the
first or last instruction) for an input program of length l and
returns the corresponding “mutant” programs that find at least
as many objects as the input program. Any programs deemed
valid (defined as having a finite description length calculated
from the log Markov transition matrix) are executed on the
VCC and are counted toward the total program budget. Be-
cause a program must have loop closure to solve any objects,
if an inserted instruction is loop_start, then we also try to
insert a loop_end instruction at each position after that.

The mutation function is used as follows. A mutation
threshold is initialized as nprogs/10 where nprogs is the pro-
gram budget. If at least one sub-goal has been solved and the
number of visited programs is greater than the threshold, the
mutation function is executed on the current root node. If any
mutants solve all the objects, the shortest mutant is the found
program. If any mutants find new (but not all) objects in all
examples, they become the new root nodes for the next sub-
goal search. If any mutants find the same objects, they are
pushed onto the search queue. Otherwise, the search contin-
ues with no change.

Other Improvements
To further narrow the search space and to prevent the VCC
from inadvertently undoing its progress after achieving a sub-
goal, we enforced that a program should be pruned from fur-
ther search if it results in a previously-matched object becom-
ing unmatched.

We also enforced that an object must be released from the
hand in order to qualify as matched. Previously, an object
could qualify as matched if in the correct position but still
in the hand, which introduced an added dependency between
sub-goals since the VCC would need to release the grabbed
object before attending to the next one. This makes some
programs slightly more difficult by requiring the additional
release_object instruction at the end, but overall it im-
proved performance in our framework.

Results
Performance Improvements
We used Dijkstra’s algorithm for search, where the “distance”
to a given program is its description length calculated from
the Markov transition matrix. We did not use the more-
popular A* search algorithm because it requires a consistent
estimate of the distance to the goal, which is non-trivial in
our problem setting2. The search used 10.4 GB of memory.

2Unlike in physical shortest-path problems, it is not clear how to
estimate the remaining distance (description length). For example,
multiplying the number of unmatched objects by the average de-
scription length necessary to match an object would not be a consis-
tent estimate since an arbitrary number of objects in some concepts
can be matched using the loop instructions.

Table 1: Performance improvements.

Naive search Object factorization
Concepts found 526 (96.3%) 534 (97.8%)
Program budget 3,000,000 4,000
Median run time 30 min/concept 1 min/concept

The CNN and provided fixation were used for argument pre-
diction, and the first-order Markov model was trained using
the 16 ground truth programs of length 6 or less. Subroutines
were disabled. The search was executed on a laptop using 8
cores.

To speed up testing, the transition matrix was initialized
with an empirical dependency graph that sets to zero the prob-
ability of any transition that is never needed to solve any of
the concepts. This approximates the speed improvement ob-
tained from the Markov model after running the search for
multiple iterations.

Compared to the naive search, our object factorization al-
gorithm reduced the failure rate from 3.7% to 2.2% using a
program search budget three orders of magnitude smaller (Ta-
ble ).

The histograms in Fig.3 show the distribution of the
number of visited programs and per-concept search time for
the object factorization search algorithm. 95% of concepts
are found in under 2 minutes, with a median per-concept
search time of 1 min. This is similar to the time typically
needed by humans to identify simple visual concepts, such
those in the Raven Progressive Matrices Test, where subjects
have 40 minutes to identify 46 concepts (Carpenter, Just, &
Shell, 1990).

Though this relative reduction in run time is significant, it
is more than an order of magnitude smaller than the relative
reduction in program budget. As we made no attempt to op-
timize our code for speed, we suspect this discrepancy is due
to the more thorough optimization of search algorithm code
in Lázaro-Gredilla et al. (2019).

Moreover, these gains likely understate the improvement
offered by object factorization because they do not consider
performance improvements on concepts involving more than
two functionally independent types of objects. For instance,
based on the median run time, a concept requiring 8 objects
to be moved to the 4 edges and 4 corners could be discovered
by object factorization search in under 10 minutes but would
be exponentially more difficult for the naive search, requiring
at least 2 days.

Explainability Improvements
As the internal mechanisms of both the VCC architecture
and our object factorization search algorithm were inspired
by models of human cognition (Mandler & Cánovas, 2014;
Ballard et al., 1997; Barsalou, 1999; Ullman, 1996; Roelf-

1798



Figure 3: Distribution of run times (A) and visited programs
(B) object factorization search with sub-goals.

sema & de Lange, 2016), we should expect its performance to
be more intuitive and explainable for humans than alternative
approaches such as neural networks. We demonstrate this en-
hanced explainability by analyzing failure cases and showing
how the reasons for failure can be readily determined from the
algorithm’s output. Here, the sub-goaling of object factoriza-
tion allows us to examine any partial solutions generated by
the VCC to diagnose the reason for failure. Similarly, the use
of instructions based on cognitive primitives in the VCC ar-
chitecture makes such output readily interpretable. We leave
to future work the question as to whether the implementa-
tion of concept inference as cognitive programs is an accurate
model of human cognition.

The new search algorithm failed to find 12 of the 546
concepts. Among the 12 failure cases, there appear to
be 4 reasons the VCC fails to find the correct program:
solving the objects in the wrong order (2 cases), mis-
taken object identity (6 cases), faulty argument predic-
tion (2 cases), and lack of sufficient search budget (2
cases). We provide an example of each failure mode be-
low (we abbreviate move_hand_to_attended_object as
move_hand_to_object here for space).

Figure 4: Input/output example images for failure cases of
wrong object order (A) and mistaken object identity (B).

Table 2: Failure case: wrong object order
Concept: make the green object touch the red object and
change the color of the object being touched

Best found program Ground truth program
scene_parse scene_parse
set_color_attn(red) set_color_attn(green)
top_down_attend top_down_attend
fill_color(yellow) move_hand_to_object

grab_object
reset_attn
top_down_attend
move_hand_to_object
release_object
fill_color(yellow)

In the example of wrong object order in Table 2, chang-
ing the color of the red object requires a shorter program than
moving the green object. The algorithm thus does this first,
“solving” the object and resetting the root node (Fig.4A).
However, the color of the object was used to identify it as
the object to be touched, meaning any argument prediction
of the color to attend to will no longer be accurate. In this
case, argument prediction likely assigned a very low proba-
bility to all set_color_attn() instructions with arguments
other than ‘green’. Failures in this category could likely be
solved with a strategy that reserves some of the search budget
for attempts at matching the objects in a different order.
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Table 3: Failure case: mistaken object identity
Concept: move the central objects to the upper left corner and
move the other object to the previous object’s location

Best found program Ground truth program
scene_parse scene_parse
top_down_attend top_down_attend
fixate_object fixate_object
move_hand_to_object move_hand_to_object
grab_object grab_object
move_hand_up move_hand_up

move_hand_left
release_object
next_object
top_down_attend
move_hand_to_object
grab_object
move_hand_to_fixation

In the example of mistaken object identity in Table 3, the
two objects are both red squares with identical size, and so it
appears that the object close to the center does not move since
the other object is moved to its previous location (Fig.4B).
Consequently, when that object is moved up, the VCC consid-
ers it to be a matched object becoming unmatched and prunes
the program from further search. Failures in this category,
which account for half of the failure cases, could be solved
by encoding an “object ID” in the input and output examples,
or by relaxing the node pruning condition.

Table 4: Failure case: faulty argument prediction
Concept: make the star shape touch the circle shape

Best found program Ground truth program
scene_parse scene_parse

set_shape_attn(star)
top_down_attend
move_hand_to_object
grab_object
reset_attn
set_shape_attn(circle)
top_down_attend
move_hand_to_object
release_object

In the example of faulty argument prediction in Table 4, an
extremely low probability was assigned to the (correct) ‘star’
argument, causing all transitions to set_shape_attn(star)
to be assigned an extremely low value in the instruction tran-
sition matrix, so the correct node was never be visited. Be-
cause argument prediction was implemented with neural net-
works, we are unable to explain why it failed in this particular
case. This case serves as an example of the limitations in ex-
plainability imposed by the use of black-box models. Failures

in this category could likely be solved with an improved ar-
gument prediction model.

Table 5: Failure case: insufficient search budget
Concept: swap locations

Best found program Ground truth program
scene_parse scene_parse

top_down_attend
move_hand_to_object
grab_object
fixate_object
move_hand_down
release_object
next_object
top_down_attend
move_hand_to_object
grab_object
fixate_object
fixate_previous
move_hand_to_fixation
release_object
reset_attention
next_object
top_down_attend
move_hand_to_object
grab_object
fixate_next
move_hand_to_fixation
release_object

Table 5 shows the most difficult concept in the data set.
In addition to requiring 23 instructions (the longest pro-
gram requires 24), it makes use of instructions such as
fixate_previous and fixate_next that are rare in other
concepts and thus are assigned low transition probabilities.
Most importantly from the perspective of object factorization,
this concept requires 15 instructions before the first object is
matched. Since the naive search algorithm was able to find
all programs of length 16 with a search budget of 500,000
programs, we might expect object factorization to overcome
this failure and others like it if given a search budget in this
range.

Conclusions
Overall, the object factorization approach and other improve-
ments made to the search algorithm increased the search effi-
ciency of the program induction by three orders of magnitude
while also significantly decreasing the failure rate. Analysis
of the few failure cases, aided by the improved explainabil-
ity afforded by sub-goaling, suggests the new failure rate can
be at least halved with minor changes to the object identifica-
tion or pruning strategy. Run time can likely also be further
improved, as the current implementation is not optimized for
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computational efficiency. This dramatic reduction in the com-
putational cost of concept inference opens the door to sev-
eral future directions of exploration, such as extending the
instruction set to solve concepts in 3D space or solving more
complex compositional concepts requiring hierarchies of sub-
goals. Such developments will bring us closer to robots that
learn tasks from diagrams on the fly with human-like flexibil-
ity.
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