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Abstract

Several recent contributions to the research on group problem
solving suggest that reducing the connectivity between agents
in a social network may be epistemically beneficial. This notion
stems from the idea that collective problem-solving behavior
may benefit from the transient diversity in agents’ beliefs due
to increased individual exploration and decreased social influ-
ence. At the same time, however, lower connectivity hinders
the diffusion of good solutions between network members. Our
simulation findings shed light on this trade-off. We identify
conditions under which the less-is-more effect is likely to man-
ifest. Our findings suggest that a community consisting of
semi-isolated groups could provide an answer to the tension
between diversity and diffusion.
Keywords: group problem solving; cognitive diversity; struc-
tural isolation; agent-based simulation

Introduction
Several recent contributions to research on group problem
solving suggest that less may be more when it comes to com-
munication between problem-solving agents (Lazer & Fried-
man, 2007; Zollman, 2010; Fang, Lee, & Schilling, 2010). In
other words, less information sharing between the members
of a group or a collective may lead to better problem-solving
outcomes.

The less-is-more effect is relevant to the practical question
of how to best structure the interaction between the compo-
nents of a distributed cognitive system, i.e., the members of a
team or a broader research community. Skunkworks divisions
at technology companies are an example of cutting network
ties in order to promote the quality of problem-solving activ-
ities: structurally isolating a R&D department from the rest
of the organization has been used as a means to preserve its
divergent but valuable ideas (Fang et al., 2010).

Zollman (2010) explored a similar idea in the context of
scientific research, and suggested that reducing the connec-
tivity between agents in the social network of the scientific
community may be epistemically beneficial.1 Zollman applied
his model to historical episodes of theory choice. The model
suggests that introducing transient diversity of beliefs, either
by reducing connectivity or by equipping agents with strong

1See also Kummerfeld and Zollman (2016).

initial beliefs, increases the probability that true consensus can
ultimately be reached.2

But how little connectivity is too little – can it really be
the case that the less problem-solving agents communicate,
the better the aggregate outcome? The literature suggests that
two opposing forces are at play: On the one hand, the more
strongly connected an epistemic network, the more likely it is
that beneficial diversity washes out from the population. On
the other hand, in a very fragmented network, heterodox but
valuable beliefs will not spread and hence will not influence
the consensus view (Fang et al., 2010). In both cases, transient
diversity fails to promote good epistemic outcomes.

In this paper we address this trade-off by building a series
of computational experiments. Compared to earlier work on
the topic, our findings suggest a more complicated picture
of the less-is-more effect. First, we fail to detect the effect
in large groups. Secondly, in semi-isolated groups, we find
a non-monotonic effect: Although under certain conditions
the collective performance worsens as density increases (as
suggested by the less-is-more effect), under different condi-
tions more seems to be more, i.e., increases in density improve
collective performance. From these findings, we conclude that
the preconditions and dynamics of the less-is-more effect are
not yet fully understood.

Our findings suggest, however, that splitting a community
of problem solvers into semi-isolated clusters helps to strike a
balance fostering epistemically beneficial transient diversity.

Existing literature and theoretical background
March’s seminal Exploration and exploitation in organiza-
tional learning provided reasons to think that the less-is-more
effect may be explained by the exploration-exploitation trade-
off (March, 1991; Mehlhorn et al., 2015). Also more recent
contributions to the literature suggest that reducing connec-
tivity between agents improves problem-solving outcomes by
promoting exploration in the community and thus preventing
premature convergence to sub-optimal outcomes.

2For an overview of social and cognitive diversity in science, see
Rolin, Koskinen, Kuorikoski, and Reijula (2023).
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Lazer and Friedman (2007) combined March’s general ap-
proach with an NK landscape. They found that when dealing
with a complex problem, more efficient networks perform well
in the short run but worse in the long run. Lazer & Friedman’s
findings suggest that an inefficient network maintains diverse
beliefs in the system and thus supports exploration.

Zollman (2010) reached similar conclusions in a setup
where a community of agents who are able to learn from
their network neighbors faced a bandit problem. According
to Zollman’s model, the probability of correct convergence to
the better bandit arm on dense graphs is lower than on sparse
ones.

Using a variation of March’s (1991) model, Fang et al.
(2010) examined whether a beneficial exploration-exploitation
balance could be struck by relying on social network structures
consisting of semi-isolated cliques. Findings by Barkoczi and
Galesic (2016) suggest a more complicated picture where
the effect of network connectivity is moderated by the social
learning rule used by agents.

In addition to model-based findings, there is some empirical
work on the topic. The empirical evidence for the less-is-more
effect is mixed: While Mason, Jones, and Goldstone (2008)
find some support, the effect seems to be sensitive to various
task properties. Similarly, the findings by Shore, Bernstein,
and Lazer (2015) confirm an ambiguous effect of connectivity:
While it can encourage network members to generate more
non-redundant information, it may also hinder exploration
(see also Yahosseini, Reijula, Molleman, & Moussaid, 2018).
Mason and Watts (2012)’s findings are similarly inconclusive.

The research question
In this article, we address the less-is-more puzzle by com-
bining insights from Zollman (2010) and Fang et al. (2010).
Like Zollman, we study social learning by (myopic) Bayesian
agents facing a two-armed bandit task. However, in our repli-
cations, we depart from Zollman in studying also larger net-
works, and by varying network size and density independently,
so as to tease apart the influence of the two properties.

After this first step, conducted in the spirit of replication, we
consider a new setting in which we vary network density and
architecture independently, to explore the value of problem-
solving groups.

Imagine a large community consisting of several intercon-
nected “cliques.” The underlying structure could represent a
technological or scientific community, within which a clique
is a group of inventors working together on a topic, jointly
patenting their findings or coauthoring scientific papers. Al-
ternatively, the underlying structure could represent an organi-
zation, within which cliques are departments or teams jointly
trying to make sense of their environment and improve their
performance. In either case, the structure consists of sparsely
interconnected groups whose members, inside a group, are
densely connected.3

3Although formally, in graph theory, a clique is a subset of nodes
such that every two distinct nodes in the clique are connected, we use

Inspired by Fang and colleagues’ findings, we hypothesize
that dividing the population of agents into such cliques and
manipulating the proportion of links held by an agent within
her clique relative to the those held outside her clique could be
a way to find the sweet spot between exploration and exploita-
tion, transient diversity and efficient diffusion. While dense
cliques will accumulate knowledge and converge rapidly on
one alternative (which may not be the superior one), inter-
clique connectivity brings together the perspectives of the
different groups and can correct sub-optimal decisions that
have been made in some of them.

To study semi-isolated groups of inquirers, we examine
agents organized as a connected caveman graph (Watts, 1999).
The caveman graph provides a tunable algorithm that allows
for interpolation between two extremes: isolated groups of
maximally connected agents on one end, and random graphs
on the other, by simply controlling the proportion pr of edges
in the initial structure that are randomly rewired.

The model
In order to promote transparency and readability, the descrip-
tion of our model follows the Overview, Design concepts and
Details (ODD) protocol for describing individual- and agent-
based models (Grimm et al., 2020).

Purpose This model is designed to better delineate the con-
ditions under which the less-is-more effect is at work in groups
of different sizes and levels of connectivity, and to provide an
extension to a richer social structure of interconnected groups.

Entities and state variables Two-armed bandit. The
problem-solving population is faced with the task of choosing
the better arm of a two-armed bandit. Each arm corresponds
to a Bernoulli bandit j ∈ {1,2}, which pays 1 with probability
p j and 0 with complementary probability 1− p j.

Agents. The problem-solving agents explore the choice
alternatives by sampling the two arms. Social learning takes
the following form: at the time of choosing an arm, an agent
pools the information collected through her own sampling and
the information obtained by her network neighbors’ sampling.
Based on her own and her neighbors’ outcomes, the agent
updates her beliefs following Bayes’ rule. Each agent utilises
a greedy decision rule, and pulls the arm which yields the
highest expected payoff given the current beliefs (see Zollman,
2010).

Network. The informational connections between the agents
are represented as edges in an undirected network. Community
size and network density are varied independently. In our first
simulation study, community size n ∈ {3,6,8,12,24,48,96}.4
The network density is varied from its minimum possible
value to the maximal value of 1.5 In our second simulation

the term more loosely, and will consider cliques of various densities.
4Zollman (2010) goes up to n = 11, and his explorations on

density are for small networks of size n = 6.
5There is a minimum possible value to density in a network of size

n when the network must be connected: connectivity requires at least
n−1 links, and there are n(n−1)/2 possible links, so density is at
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study, semi-isolated groups are modeled as connected caveman
graphs (Watts, 1999). We use n = 96 and a cave size nc in
{3,4,6,8,12,16,24,32,48,96}. If cave size is nc, then n/nc
caves can be formed.

On the population level, the most important state variables
tracked are the proportion of corrects learners in each trial,
and the time to convergence.

Process overview and scheduling Each time period, each
agent pulls one of the two arms, and then by using Bayes’ rule,
agents pool information from their neighbors (augmented with
their own information) and update their belief distribution.
This process simply iterates. Through the process, the
community of inquirers eventually tends to form a consensus.
Each run of the simulation lasts for 10,000 time periods, and
we present results after 2,000 and 10,000 periods.

Design concepts The first core design principle of the
model derives from the bandit paradigm (Berry & Fristedt,
1985; Sutton & Barto, 2018), combined with social learning in
networks (Bala & Goyal, 1998; Zollman, 2010). The second
core idea is semi-isolation in networks (Fang et al., 2010)
implemented as connected caveman graphs (Watts, 1999).
Adaptation in agent behavior is modeled as Bayesian learning.
The objective of each individual agent is to discover the best
arm of the two-armed bandit. The agents can sense their
environment in two ways, by pulling an arm of the machine,
and by receiving information about outcomes of other agents’
pulls from their network neighbors (= interaction). On the
collective level, the most important properties to track are the
proportion agents converged to the better arm, and the time to
convergence.

Initialization Agents’ prior beliefs are beta-distributed, with
random initial beliefs characterized by agent-specific parame-
ters ai, j and bi, j uniformly and independently distributed over
[0,4], as in Zollman (2010). The true success probabilities
for the arms of the bandit are π1 = .5 for the first arm, and
π2 = .49 for the second arm.

In each of the 1,000 independent replications (simulation
runs) that we consider, a random network is generated with
the appropriate size and density in the first study, and with
the appropriate number of caves, cave density and amount of
rewiring in the second study. Each node of the network then
represents an agent.

least equal to (n−1)/[(n(n−1)/2] = 2/n. To illustrate, in a network
of size n = 4, there can be at most 4×3/2 = 6 edges (the complete
network obtains when the first agent forms a pair with each of the
3 others, the second agent forms a pair with the 2 remaining others,
and the third agent forms a pair with the last remaining agent she is
not yet connected to). The network requires also at least 3 edges to
be connected. Therefore, the density of any connected network with
4 nodes belong to the set {1/2,2/3,5/6,1}.

Input data, and submodels The simulations do not employ
empirical data as input. The relevant (sub)model structure has
been described above.

Simulations and results
Simulation study 1
In our first simulation study, we replicate findings from
Zollman (2010), and extend them to larger groups. The main
finding is that in our setup, we do no observe the less-is-more
effect in large communities when we consider a 2,000-period
learning horizon.
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Figure 1: The accuracy of learning in communities of various
sizes and densities ; each curve is for one community size n =
3,6,8,12,24,48,96 over a learning horizon of 2,000 periods.

In Figure 1, the less-is-more effect is present for communi-
ties of size less than or equal to 8, but for communities of size
12 and larger, there is a clear non-monotonic relationship be-
tween cognitive performance and density, which peaks when
density is approximately 35%.

In general, diversity persists longer in less dense commu-
nities, fostering short run exploration but hindering long run
exploitation, thus degrading aggregate performance. While
this is not an issue in small communities, in large communi-
ties diversity persists in excess amounts when density is too
low, which prevents overall diffusion of the best alternative
— because of this tension, an ‘optimal’ amount of diversity
obtains for intermediate values of density.6

To explore further this tension between diversity and diffu-
sion, we present in Figure 2 the relationship between cognitive

6For all of the combinations of parameter values examined, simu-
lations were repeated 1,000 times (yielding 1,000 independent repli-
cations), and we present average values.
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performance and density over a 10,000-period learning hori-
zon.
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Figure 2: The accuracy of learning in communities of various
sizes and densities; each curve is for one community size
n = 3,6,8,12,24,48,96 over a learning horizon of 10,000
periods.

With more learning and interaction opportunities, an al-
ternative is identified as the superior one more reliably and
diffuses more widely in the community. The less-is-more ef-
fect is now present for communities of size up to 12, though a
non-monotonic relationship between cognitive performance
and density remains visible for larger community sizes. In-
terestingly, the ‘optimal’ amount of diversity (in the sense of
supporting both enough exploration to identify the superior
alternative and enough later convergence) is now obtained
for smaller (though not minimal) values of density (closer to
20%, relative to the 35% that seemed ideal when only 2,000
periods where considered). Not only has the peak shifted
to the left (when a peak exists), but it is worth noting that
(unsurprisingly) all communities display better average per-
formance when given more learning time. It is likely that
increasing further the learning horizon would contribute to
strengthening the less-is-more effect and it would improve
the relative performance of sparse structures. However, pro-
longed exploration will have diminishing returns: smaller and
smaller performance gains will obtain at the expense of ever-
increasing learning efforts. Whether the marginal benefits of
prolonging exploration exceed the associated cost is thus an
open question.

While Figures 1 and 2 represent average behaviour, it is
interesting to examine in more detail how the entire distribu-
tion of aggregate performance changes when density changes,

in the specific case n = 48. For each of the values of density
that are considered, we look at the corresponding set of 1,000
replications and tabulate (across the set of replications) the
proportion of successful learners after 2,000 periods. The re-
sulting two-dimensional histogram is represented as a surface
plot over the density-accuracy plane. Picking any level of den-
sity, and then moving parallel to the accuracy axis considering
any value between 0 and 1 gives the count of replications (over
the 1,000 replications that were run) that have produced the
corresponding value of accuracy. In that sense, the surface
represents a family of count histograms parameterized by the
value of density.
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Figure 3: The accuracy of learning in communities of size
n = 48 for different densities: at each density, the distribution
of outcomes in period 2,000 over the 1,000 replications is
depicted.

We observe a transition from a unimodal distribution of
outcomes peaking near 0.8 for low values of density, to a bi-
modal distribution of outcomes, with two marked peaks at 0
and 1 and increasing mass on the lower mode of the distri-
bution (corresponding to all agents picking the wrong arm)
when density approaches its maximal value of 1. This empha-
sizes how two seemingly similar macro-level outcomes can
represent very different micro-level situations. Considering
the curve associated with n = 48 in Figure 1, the average ac-
curacy obtained for the lowest density value of 2/48 = 0.042
and the average accuracy for a density value nearing 80% (the
exact value is 877/[48(48−1)/2] = 0.78) correspond to the
same level of average performance for the system (close to
80%). However, in the former case, in any simulation run
many agents do well (the mass of the distribution is fairly
concentrated around .8, so the proportion of correct learners
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is often high, and very rarely low), whereas in the latter case,
though in roughly 3 out of 4 replications the superior arm is
identified by the entire community it is also the case that in
every 4th replication, the entire community selects the wrong
arm. Though the mean is (roughly) preserved, variance in
replication outcomes starkly differs depending on the density
configuration that is considered.

In terms of governance of the system and policy decisions
more generally, the second situation we described can be seen
as much riskier than the first one: while in the first situation
an important part (more than half) of the whole community
always ‘has it right’, in the second situation all ‘have it wrong’
with probability 25%. This vividly illustrates the tension be-
tween diversity and diffusion.

Simulation study 2
In our second simulation, we examine problem-solving perfor-
mance in a caveman graph consisting of dense semi-isolated
groups whose ties are rewired randomly with a probability we
control.
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Figure 4: Three configurations for a minimally connected
caveman graph of n = 30 agents distributed over 5 caves of
size nc = 6, with increasing rewiring probability (left to right,
pr = 0, pr = 0.1 and pr = 1) showing the transition from a
locally highly clustered structure to a uniform random graph.

Figure 4 illustrates how network structure changes when the
rewiring probability pr is varied. In this experiment, our tuning
parameter is pr, the probability of randomly rewiring an edge.
Starting from an initial caveman graph consisting of com-
plete caves of size nc minimally connected by clique-spanning
ties, we consider each edge sequentially and randomly decide
whether to reconnect one end of the edge to a randomly se-
lected node in the network. The (independent) probability of
this happening to any edge is pr. When all edges have been
considered, the procedure stops and the resulting network is
our starting point. When pr = 0, the structure is the initial
(minimally connected) caveman graph. When pr = 0.1, the
structure can be described as a semi-isolated caveman graph.
When pr = 1, the rewired network that supports social learning
is a uniform random graph in which edges exist with identical
and independent probability. All three networks have the same
density, yet very different architectures.

We saw in the first experiment that a random uniform net-
work of intermediate density allowed maximal learning ac-
curacy over a large set of network sizes (see Figure 1). The
second experiment further refines these results by exploring
the impact of network architecture, particularly focusing on

local clustering and cliquishness. Each clique will rapidly
gather information and converge to one alternative, but as was
noted in the first experiment, dense graphs can fail to identify
the superior alternative. Decreasing intra-clique density can
partly remedy the problem, delaying homogenization until
enough time has permitted local exploration to identify the
superior arm. However, in the type of structures we consider,
decreasing intra-clique density comes at the expense of in-
creased inter-clique connectivity, which can result in speeding
up homogenization. Depending on which effect dominates,
different conclusions might obtain.
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Figure 5: The accuracy of learning after 2,000 periods in
communities of various cave sizes and rewiring probabilities
pr ; each curve is for one cave size nc = 3,6,8,12,16,24,48

Figure 5 depicts learning performance after 2,000 periods
as it responds to the rewiring probability pr for different cave
sizes, replicating Fang et al. (2010) with social Bayesian learn-
ing on two-arm bandits. The x-axis is logarithmic, to increase
legibility.

We first observe that the results of Fang et al. carry over to
the context of Bayesian learning: for any cave size, there is a
strong effect of the first very few rewired links on performance,
but the effect of additional links peters out rapidly past a
rewiring probability of pc = 0.1. More interestingly, for nc =
12,16 and 24, an interior maximum obtains for a rewiring
probability of 0.1. At this value of the rewiring probability,
network structure corresponds to what Fang et al. characterize
as “semi-isolated” caves. Coming back to the finding of the
first experiment that intermediate network density allowed
maximal learning accuracy, we observe now that intermediate
cave sizes (of 12, 16 and 24 agents) outperform caves of both
smaller and larger sizes (with the exception of the largest
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cave size of 48 when rewiring is extreme) and that for such
caves, maximal performance is obtained when the rewiring
probability is small but non zero. We therefore conclude that
although density plays a major role in determining the learning
accuracy of a community, for a given density there are subtle
architectural differences that also impact the quality and speed
of learning.

Figure 6 represents learning performance as a function of
cave size nc for different levels of the rewiring probability pr
(the performance metric is the same as in the previous figure,
but cave size and rewiring probability are swapped). As cave
size perfectly correlates with the density of the entire network,
the pattern echoes the one depicted in Figure 1: increasing
cave size (and thus density in the overall network) increases
for any rewiring intensity, up to the point where the less-is-
more effect kicks in. Past this point, aggregate performance
degrades as cave size increases further.
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Figure 6: The accuracy of learning after 2,000 periods in
communities of various cave sizes and rewiring probabilities
pr; each curve is for one rewiring probability.

Discussion
Our simulations suggest the following refinements to the ex-
isting findings on the less-is-more effect. First, in a setup
similar to that used by Zollman (2010), we did not observe
a clear less-is-more effect in communities of larger size than
those considered by Zollman. The effect is present over part
of the density spectrum, but intermediate levels of density are
necessary to strike a satisfactory balance between short term
exploration and long term diffusion.

When studying semi-isolated groups of agents, we were
able to find a set of conditions under which collective per-

formance worsens as density increases, as suggested by the
less-is-more effect (Figure 6). The effect of cave size (which
is equivalent to density in the family of networks we consider)
is non-monotonic, however, and at lower network densities,
more seems to be more, i.e. increases in density improve
collective performance, up to a limit.

Regarding the work of Fang et al. (2010), we find that to
some extent, their results carry over to a context of Bayesian
learning7: at first, rewired links dramatically improve perfor-
mance, but as additional edges are rewired, collective perfor-
mance plateaus and then declines.

All in all, our study suggests several refinements to the less-
is-more hypothesis. They should be seen as call for modesty:
In our view, our findings, combined with mixed evidence from
empirical studies (Mason et al., 2008; Mason & Watts, 2012;
Shore et al., 2015) suggests that the story behind the less-is-
more effect is more complicated than previously assumed, and
all of the mechanisms driving the effect are not yet fully un-
derstood. How connectivity and transient diversity influence
distributed learning in a population of agents depends on the
size of the community as well as its detailed patterns of con-
nectivity. Our findings indicate, however, that semi-isolated
clusters help to strike a balance fostering epistemically benefi-
cial transient diversity.
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