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Circadian clocks optimally adapt to
sunlight for reliable synchronization

Yoshihiko Hasegawa1 and Masanori Arita1,2,†

1Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo,
Tokyo 113-0033, Japan
2RIKEN Center for Sustainable Resource Science, Kanagawa 230-0045, Japan

Circadian oscillation provides selection advantages through synchronization

to the daylight cycle. However, a reliable clock must be designed through

two conflicting properties: entrainability to synchronize internal time with

periodic stimuli such as sunlight, and regularity to oscillate with a precise

period. These two aspects do not easily coexist, because better entrainability

favours higher sensitivity which may sacrifice regularity. To investigate condi-

tions for satisfying the two properties, we analytically calculated the optimal

phase–response curve with a variational method. Our results indicate an

existence of a dead zone, i.e. a time period during which input stimuli neither

advance nor delay the clock. A dead zone appears only when input stimuli

obey the time course of actual solar radiation, but a simple sine curve

cannot yield a dead zone. Our calculation demonstrates that every circadian

clock with a dead zone is optimally adapted to the daylight cycle.
1. Introduction
Circadian oscillators are prevalent in organisms from bacteria to humans and

serve to synchronize bodies with the environmental 24 h cycle [1,2]. Although

the molecular implementation of oscillation is species-specific [3–6], every circa-

dian clocks satisfies two requirements to achieve reliable synchronization to the

environment: entrainability to synchronize internal time with periodic stimuli

and regularity to oscillate with a precise period. Circadian clocks are acquired

through evolution independently in bacteria, fungi, plants and animals [7]. None-

theless, entrainability and regularity constitute major characteristics conserved in

all circadian clocks [6], which strongly suggest that these two properties are essen-

tial for survival. A main source of interference with regularity is discreteness of

molecular species, i.e. molecular noise [8–13]. Many studies have analysed the

resistance mechanisms of circadian oscillators against noise [14–17]. Regarding

entrainability, circadian clocks synchronize their internal time with the environ-

mental cycle via sunlight, and its effect depends on the wavelength or fluence,

as well as on the phase of the stimulation. However, entrainability and regularity

are conflicting factors, because circadian clocks with better entrainability are sen-

sitive not only to the periodic light stimuli, but also to the molecular noise which

interferes with regularity.

Because both regularity and entrainability are important adaptive values, we

expect actual circadian oscillators to optimally satisfy these two factors (figure 1).

Here, we investigate the optimal phase–response curve (PRC), which is both

entrainable and regular, in the phase oscillator model [18] by using the Euler–

Lagrange variational method. Our main finding is the inherent existence of a

dead zone in the PRC: optimality is achieved only when the PRCs have a time

period during which light stimuli neither advance nor delay the clock (figure 2a).

In other words, a PRC with a dead zone (figure 2a) is better adapted than those

without a dead zone (figure 2b). This result is intriguing, because a dead zone,

with which oscillators tend to be unaffected by stimuli (i.e. lower entrainability),

achieves better entrainability. We also tested this with two types of input stimuli:

a solar radiation-type input that simulated the time course of solar radiation
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Figure 1. Illustrative relation between two trade-off properties: entrainability
and regularity. There is an infeasible region with respect to entrainability and
regularity (coloured area), inside which no clocks can be implemented. Actual
circadian clocks are considered to optimally satisfy them and such optimal
clocks lie on the edge between feasible and infeasible regions (thick-
dashed line).
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intensity (cf. equation (2.24) and figure 4a) and a simple

sinusoidal input (sine curve). Surprisingly, the dead zone in

the optimal PRC emerges only for the solar radiation-type

input, not for the sinusoidal input. Many experimental studies

reported the existence of a dead zone in various species (figure

2c,d show experimentally observed PRCs of fruitfly [19] and

mouse [20], respectively). Our results indicate that circadian

oscillators in various species have adapted to solar radiation

for reliable synchronization.
2. Models and methods
2.1. Phase oscillator model
Circadian oscillators basically comprise interaction between

mRNAs and proteins, whose dynamics can be modelled by

differential equations. A circadian oscillator of N molecular

species can be represented by

dxi

dt
¼ FiðxÞ ði ¼ 1; 2; . . . ;NÞ; ð2:1Þ

where the N-dimensional vector x ¼ (x1, x2, . . . ,xN) denotes

the concentration of molecular species (mRNAs or proteins).

The effect of noise on genetic oscillators has been a subject of

considerable interest, and noise-resistant mechanisms have

been extensively studied [14–17,21–23]. In general, the

dynamics of the ith molecular concentration in a circadian

oscillator subjected to molecular noise is described by the

following Langevin equation (Stratonovich interpretation):

dxi

dt
¼ Fiðx; rÞ þQiðxÞjiðtÞ; ð2:2Þ

where Qi(x) is an arbitrary function representing the multi-

plicative terms of the noise, ji(t) is white Gaussian noise

with the correlation kjiðtÞjjðt0Þl ¼ 2dijdðt� t0Þ (a bracket k � l
denotes expectation), and r is a model parameter.

Circadian oscillators synchronize to environmental cycles

by responding to a periodic input signal (light stimuli). We let

r in equation (2.2) be stimulated by the input signal: for

example, r can be the degradation rate (for the sake of simpli-

city, we consider that the input signal affects only one

parameter). We use equation (2.2) for calculating regularity

and entrainability of circadian oscillators.
2.2. Definition of regularity
Because the circadian oscillator of equation (2.2) is subjected

to noise, its period varies cycle to cycle. We use the term

regularity for the period variance of the oscillation (higher

regularity corresponds to smaller period variance). Let us

first consider the case without input signals (i.e. r is cons-

tant). As equation (2.1) exhibits periodic oscillation, we can

naturally define the phase f [ [0,2p) on equation (2.1) by

df

dt
¼ V; ð2:3Þ

where V ¼ 2p/T is the angular frequency of the oscillation

(T is a period of the oscillation). The phase f in equation (2.3)

is defined only on a closed orbit of the unperturbed limit-

cycle oscillation. However, we can expand the definition into

the entire x ¼ (x1, x2, . . . ,xN) space, where the equiphase surface

is referred to as the isochron I(f) (figure 3a). By using standard

stochastic phase reduction [18], equation (2.2) can be trans-

formed into the following Langevin equation with respect to

the phase variable f (Stratonovich interpretation):

df

dt
¼ Vþ

XN

i¼1

UiðfÞQiðfÞjiðtÞ; ð2:4Þ

where U(f) ¼ (U1(f), . . . ,UN(f)) is an infinitesimal PRC

(iPRC) UðfÞ ¼ rxfjx¼xLCðfÞ, and we abbreviated Qi(xLC(f)) as

Qi(f). iPRC Ui(f) quantifies the extent of phase advance or

delay when perturbed along an xi coordinate direction at

phase f. The N-dimensional vector xLC(f) denotes a point on

the limit-cycle trajectory at phase f, where LC stands for limit

cycle. The value of iPRC Ui(f) is calculated as a solution of

an adjoint equation [24] or as the set of eigenvectors of a mono-

dromy matrix in the Floquet theory [18] for arbitrary oscillators.

Let P(f; t) be the probability density function of f at time t.
From equation (2.4), the Fokker–Planck equation (FPE) [25] of

P(f; t) is given by

@Pðf; tÞ
@t

¼ � @

@f
(Vþ FðfÞ)þ @2

@f2
GðfÞ

� �
Pðf; tÞ; ð2:5Þ

where

FðfÞ ¼
XN

i¼1

UiðfÞQiðfÞ
d

df
UiðfÞQiðfÞ ð2:6Þ

and

GðfÞ ¼
XN

i¼1

UiðfÞ2QiðfÞ2: ð2:7Þ

Introducing a slow variable w¼ f – Vt, the FPE of the

probability density function P(w; t)¼ P(f ¼ wþ Vt; t) is

given by

@

@t
Pðw; tÞ ¼ � @

@w
FðwþVtÞ þ @2

@w2
GðwþVtÞ

� �
Pðw; tÞ:

ð2:8Þ

With sufficiently weak noise, P(w; t) is a slowly fluctuat-

ing function of t. In such cases, F(w þ Vt) and G(w þ Vt)

fluctuate much faster than P(w; t), thus these two terms can

be averaged for one period while keeping P(w; t) constant

(phase averaging). In other words, we separate time scales

between F(w þ Vt), G(w þ Vt) and P(w; t). By phase aver-

aging, F(w þ Vt) vanishes because of the periodicity (use
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Figure 2. Illustrations of typical PRCs (a) with and (b) without a dead zone. Experimentally observed PRCs as a function of time in (c) fruitfly (Drosophila) [19] and
(d ) mouse (Mus) [20] with light pulses (circles) and their trigonometric fitting curves (solid line). Shaded and non-shaded regions indicate subjective night and day,
respectively.
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integration by parts), yielding

@

@t
Pðw; tÞ ¼ D

@2

@w2
Pðw; tÞ; ð2:9Þ
with

D ¼ 1

2p

ð2p

0

du
XN

i¼1

UiðuÞ2QiðuÞ2: ð2:10Þ
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See Kuramoto [18] for further details of stochastic phase

reduction and the phase-averaging procedure. From equation

(2.9), because P(w ¼ f–Vt; t)[ ¼ P(f; t)] obeys a simple one-

dimensional diffusion equation, its solution is represented by

Pðf; tÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
4pDt
p exp �ðf�VtÞ2

4Dt

 !
: ð2:11Þ

Equation (2.11) shows that the variance of the phase after one

period T is

Vf ¼ 2DT:

In equation (2.4), the average period corresponds to the

mean first passage time with f starting from 0 to 2p, and

the period variance is the variance of the first passage time.

Because direct calculation of the period variance is difficult,

we approximate the period variance VT with the phase var-

iance Vf, after Kori et al. [26]. As the phase f crosses a

threshold f ¼ 2p with gradient 2p/T without noise, there

is a scaling relation
ffiffiffiffiffiffi
VT
p

≃
ffiffiffiffiffiffi
Vf

p
T=ð2pÞ for sufficiently weak

noise [26] (figure 3b). Consequently, the variance of the

period is approximated by

VT ≃ Vf

T
2p

� �2

¼ T3

4p3

ð2p

0

du
XN

i¼1

UiðuÞ2QiðuÞ2: ð2:12Þ

2.3. Definition of entrainability
The entrainment property is an important characteristic

of limit-cycle oscillators and attracts attention in systems

biology [27–32]. For instance, a period mismatch in coupled

oscillators is known to enhance entrainability in genetic oscil-

lators [31]. Light stimuli affect the rate constants, i.e. the
parameter r in equation (2.2) is perturbed as r þ dr by

the input signal. Phase dynamics of equation (2.2) can be

viewed as representing that of a tilted periodic potential (i.e.

ratchet) subjected to noise. Because a synchronizable condition

corresponds to the existence of stable points in the ratchet-like

potential, the entrainability can be discussed without consider-

ing the noise. Consequently, in contrast to the calculation of

regularity, in the evaluation of the entrainability, we consider

a case without molecular noise (i.e. Qi(x) ¼ 0 in equation (2.2)).

Let p(vt) be an input signal with angular frequency v. Con-

sidering a weak periodic input signal dr ¼ xp(vt), where x is

the signal strength (x � 0), and applying the phase reduction

approach to equation (2.2), the time evolution of the phase

variable f is given by

df

dt
¼ Vþ

XN

i¼1

@f

@xi

@Fiðf; rÞ
@r

dr

¼ Vþ xZðfÞpðvtÞ;

ð2:13Þ

with Fi(f; r) ¼ Fi(xLC(f ); r) and

ZðfÞ ¼
XN

i¼1

UiðfÞ
@Fiðf; rÞ

@r
; ð2:14Þ

where Z(f ) is the PRC with respect to the parameter r and

corresponds to experimentally observed PRCs. In order to

distinguish Z(f) from iPRC Ui(f ), we will refer to Z(f ) as

the parametric PRC (pPRC) [33]. Note that the definition of

measured PRCs is different from pPRCs Z(f ) in a rigorous

definition; the experimentally measured PRCs quantify the

phase shift Df caused by light stimuli, whereas pPRCs

Z(f) are normalized by the strength of perturbation, i.e.

ZðfÞ ¼ @f=@r ≃Df=Dr. Therefore, the ranges of the measured



rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20131018

5
pPRCs have limitation 2p � Df , p, whereas pPRCs Z(f )

do not. The phase reduction can yield reliable results only

when the perturbed trajectory is close to the unperturbed

limit-cycle trajectory (i.e. x is sufficiently small).

We next evaluate the extent of synchronization to the

periodic input signal. By introducing another slow varia-

ble c ¼ f–vt in equation (2.13), we can again apply the

phase-averaging procedure, which yields

dc

dt
¼ DVþ xQðcÞ; ð2:15Þ

with DV ¼ V – v and

QðcÞ ¼ 1

2p

ð2p

0

duZðcþ uÞpðuÞ: ð2:16Þ

The oscillator of interest can synchronize to input signals

when there is a stable solution of c in _c ¼ 0 (equation

(2.15)). The stable solution is an intersection point of Q(c)

and –DV with dQ/dc , 0 (an empty circle in figure 3c).

Then, a condition for the existence of a stable solution is

xQðcmÞ þV , v , xQðcMÞ þV; ð2:17Þ

where cM ¼ argmaxcQðcÞ and cm ¼ argmincQðcÞ.
We define entrainability, the extent of synchronization to

the periodic input signal, by the width of the Arnold tongue,

which is a domain with respect to x (signal strength) and v

(signal angular frequency). The shaded region in figure 3d
represents the Arnold tongue; with parameters x and v

inside the Arnold tongue, the oscillator can synchronize to

a periodic input signal. Because equation (2.17) constitutes

a linear approximation of the Arnold tongue for sufficien-

tly small x, the width of the Arnold tongue is given by

x(Q(cM) – Q(cm)) under the linear approximation. Thus, we

define the entrainability E, or the extent of synchronization, as

E ¼ QðcMÞ �QðcmÞ: ð2:18Þ

Intuitively, a circadian oscillator with better entrainability

(i.e. larger E) can synchronize to an input signal that has a

period further from that of the oscillator. The calculation

above is standard in the phase reduction approach, and

further details are available in Kuramoto [18].

2.4. Variational method
We use the variational method to calculate the optimal PRCs

which maximize the entrainability E subject to constant var-

iance VT ¼ s2
T (the optimal solutions correspond to the

edge in figure 1, which is described by the thick-dashed

line). The constrained optimization of Ui(f ) can be intuitively

interpreted as maximization of weighted area (equation

(2.18)), where the input being the weight, with constant

area under the squared magnitude (equation (2.12)). In

simple terms, the optimality is reached when the magnitude

of the PRC is small during intervals when the input magni-

tude is small (and vice versa). In the context of neuronal

oscillators, a study [34] has used the variational method

to calculate the optimal PRCs for stochastic synchrony

(noise-induced synchronization [35,36]).

The variational equation to be optimized is

L½U� ¼ E½U� � lVT ½U�; ð2:19Þ

where l is the Lagrange multiplier. Note that variational

equation (2.19) is similar to Harada et al. [37], which opti-

mizes the input signal for the maximal entrainment under
constant power of the input. The variational condition

dL[U] ¼ 0 yields the optimal iPRC

UiðfÞ ¼
p2

T3l

pðf� cMÞ � pðf� cmÞ
QiðfÞ2

@Fiðf; rÞ
@r

; ð2:20Þ

and the pPRC is calculated with equation (2.14):

ZðfÞ ¼ p2

T3l

XN

i¼1

pðf� cMÞ � pðf� cmÞ
QiðfÞ2

@Fiðf; rÞ
@r

� �2

: ð2:21Þ

Because cM and cm themselves depend on Ui(f ), they have

to satisfy a self-consistent condition, i.e. equation (2.18) is

maximal with cM and cm. Consequently, we maximize the

following function:

EðD; dÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ps2

T

T3
CðD; dÞ

s
; ð2:22Þ

with

CðD; dÞ ¼
ð2p

0

du
XN

i¼1

( pðu� DÞ � pðuÞ)2

Qiðuþ dÞ2
@Fiðuþ d; rÞ

@r

� �2

;

ð2:23Þ

where D ¼ cM– cm and d ¼ cm. The optimal iPRC can be

obtained by first finding the maximum solution of C(D, d)

with respect to D and d, and then substituting the obtained

solutioncm ¼ d andcM ¼ dþ D into equations (2.20) and (2.21).
2.5. Input signal of solar radiation model
Optimal PRCs depend on input signals, as seen in equations

(2.20) and (2.21). The most common synchronizer in circadian

oscillators is sunlight, for which the strength is determined by

24 h-periodic solar irradiance. The solar irradiance is calcu-

lated by I ¼ I0 cos q and I ¼ 0 when the sun is above the

horizon (0 � q , p) and below the horizon (p � q , 2p),

respectively, where q is the zenith angle and I0 is the

maximum irradiance [38]. It can be approximated by

pðvtÞ ¼ rampðsinðvtÞÞ; ð2:24Þ

where ramp(x) is the ramp function defined by ramp(x) ¼ x for

x � 0 and ramp(x) ¼ 0 for x , 0. We call equation (2.24) the solar
radiation input, whose plot is shown in figure 4a (the shaded

region represents night). In order to show the validity of the

solar radiation modelling, we compare equation (2.24) with

observed irradiance data from Vick & Moss [39], which are

shown in a dual axis plot of figure 4b. In figure 4b, equation

(2.24) is plotted by the solid line (left axis) and the observed

data by the dashed line (right axis). The solar radiation input

of equation (2.24) is shifted horizontally, so that equation

(2.24) becomes a good fit to the data. From figure 4b, the solar

radiation input is in good agreement with the observed data,

which verifies the validity of equation (2.24) as a solar radiation

model.

For comparison, we also use a sinusoidal input, which is

common in nonlinear sciences:

pðvtÞ ¼ sinðvtÞ: ð2:25Þ

Note that p(vt) ¼ B þ sin(vt), where B is an arbitrary con-

stant, also yields the same optimal PRCs as equation (2.25),

because a constant B in the signal is offset in equations

(2.20)–(2.23). Although a constant B does not play any roles

in formation of the optimal PRCs, different B result in
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3. Results
3.1. Optimal phase – response curve of solar

radiation input
Light stimuli generally affect the oscillatory dynamics multi-

plicatively, i.e. they act on the rate constants or transcriptional

efficiency of the gene regulatory circuits [3,40]. We assume

that the jth molecular species includes a parameter r as

Fjðx; rÞ ¼ ~FjðxÞ þ rxk; ð3:1Þ

where ~FjðxÞ represents the terms that do not include r, and xk

is the concentration of the kth molecular species. Here,

k[f1,2, . . . ,Ng can take any value, regardless of j (both j = k
and j ¼ k are allowed). For example, let figure 4c be a gene regu-

latory circuit of a hypothetical circadian clock, where symbols

! and s represent positive and negative regulations and xi are

molecular species (see Novák & Tyson [41] for typical motifs of

biochemical oscillators). Suppose x1 and x2 are mRNA and cor-

responding protein, respectively, and light stimuli increase the

translational efficiency. In this case, the dynamics of light

entrainment can be described by equation (3.1) with j ¼ 2,

k ¼ 1 and r being the translation rate. In equation (3.1),

although we can also consider an alternative case

Fjðx; rÞ ¼ ~FjðxÞ � rxk (a negative sign), the optimal pPRCs

remain unchanged under the inversion which is seen from

equations (2.21) and (2.23). Consequently, we consider only

the positive case to calculate the optimal PRCs (i.e. equation

(3.1)). However, note that relations between iPRCs and pPRCs

are affected by the inversion of the sign, and the difference mat-

ters when considering biological feasibility.

When using phase reduction, the dynamics of the limit

cycle are considered on the unperturbed limit-cycle trajec-

tories xLC, and hence the points on the limit cycle can be

uniquely determined by the phase f. Consequently, under

the phase reduction, xk is replaced by xLC,k(f ) in equation

(3.1), where xLC,k(f ) is the kth coordinate of xLC

(i.e. @rFjðf; rÞ ¼ xLC;kðfÞ in equation (2.20)). Here, xLC;kðfÞ
corresponds to the time course of the concentration of the

kth molecular species. Because xLC,k(f ) constitutes a core

clock component and is generally a smooth 2p-periodic

function, we approximate it with a sinusoidal function:

xLC;kðfÞ ¼ 1� a sinðfþ uÞ; ð3:2Þ

where u is the initial phase and a denotes the amplitude

of the oscillation (figure 4d). To ensure xLC;kðfÞ � 0, we set

0� a � 1, and a¼ 0 recovers the additive case. Because the

initial phase u does not play any role (u is offset by d in equation

(2.23)) when the white Gaussian noise is additive (i.e. Qi(x)/ 1),

we also set u¼ 0. The parametric approximation of equation (3.2)

enables an almost closed form for the overall calcu-

lations. Although we assumed in equation (3.1) that effects of

r only depend on xk, we can generalize equation (3.1) to

Fjðx; rÞ ¼ ~FjðxÞ þ rKðxÞ, where K(x) is a nonlinear function

and is assumed to be well approximated by 1 – asin(f þ u).

By this generalization, our theory can be applied to other possible

light entrainment mechanisms such as the intercellular coupling

[42]. Our model needs only details about molecular species

which have light input entry points but not about a whole
molecular network. However, this advantage, in turn, means

that we cannot specify iPRCs Ui(f) of molecular species not

having light input entry points. Consequently, for a noise term

Qi(x), we assume that the white Gaussian noise is additive and

is present only in the jth coordinate equation (QjðfÞ ¼
ffiffiffi
q
p

,

where q is the noise intensity and Qi(f)¼ 0 for i = j).
Figure 5a–c shows the landscape of C(D,d) as functions of D

and d, and figure 5d–f expresses the optimal iPRCs Uj(f) and

pPRCs Z(f) for the solar radiation input (an explicit expression

of C(D, d) is given in appendix A). The optimal PRC shape does

not depend on the model parameters such as the period T, its

variance s2
T , or noise intensity q. These three parameters only

act on the magnitude of the PRCs (i.e. the vertical scaling of

the PRCs). Consequently, we normalized T ¼ 1, s2
T ¼ 1, and

q ¼ 1, as shown in figure 5. As the optimal PRCs depend on a,

C(D, d) is plotted for three cases: a ¼ 0, (figure 5a), a ¼ 0.5

(figure 5b) and a ¼ 1.0 (figure 5c), where the maximal points

(D, d) yield the optimal PRCs using equations (2.20) and

(2.21). The maximal parameters D and d are calculated numeri-

cally. Figure 5d–f describes the optimal iPRCs (solid line) and

pPRCs (dashed line) for a ¼ 0, 0.5 and 1.0, respectively. When

a ¼ 0, i.e. the input signal is additive, C(D,d) achieves a maxi-

mum for D ¼ p and arbitrary d, yielding sinusoidal PRCs as

the optimal solution (figure 5d). Although the input signal

p(f) is not sinusoidal, the optimal PRCs obtained using the vari-

ational method become sinusoidal. In other words, considering

optimality, resonator-type oscillators have an advantage over

integrator-type oscillators. For a . 0, the input signal p(f)

depends on the concentration of the kth molecular species.

From figure 5b, the optimal parameters for a ¼ 0.5 are (D, d) ¼

(2.31, 1.99) and (3.98, 4.30), which are different from D ¼ p

(these two sets yield symmetric PRCs with respect to the hori-

zontal axis). Figure 5e shows the optimal iPRCs Uj(f) and

pPRCs Z(f) for a ¼ 0.5. Interestingly, the optimal iPRCs

and pPRCs for a ¼ 0.5 have a dead zone (region of 1 & f & 2

in figure 5e) in which the input signal neither advances nor

delays the clock. From equations (2.20)–(2.21) and the solar radi-

ation input of equation (2.24), the optimal PRCs inevitably

include a dead zone if the optimal D is not p. For a ¼ 1.0,

there are four sets of parameters (D, d) that give optimal PRCs:

(2.30, 2.72), (2.30, 1.26), (3.98, 3.56) and (3.98, 5.02) (PRCs with

these four sets are symmetric with each other with respect to

the horizontal axis or f ¼ 3p/2). Consequently, the optimal

PRCs shown in figure 5f have a dead zone as in the case of

a ¼ 0.5.
3.2. Dead zone length
From the results discussed above, the optimal PRCs have a

dead zone when a . 0. We next studied the length of the

dead zone as a function of a (figure 6a) and improvements

in the entrainability induced by the dead zone (figure 6b)

for the solar radiation input. Because the dead zone, which

is a null interval in PRCs, emerges when the optimal

parameter is D= p, we can naturally define its length as

L ¼ jD� pj; ð3:3Þ

where D is the maximum value of C(D, d). As seen in

figure 6a, a dead zone clearly exists when a . 0, and the

length increases with increasing a for a , 0.8. Even for

a ¼ 0.1, when the oscillation amplitude of xLC,k(f ) (the con-

centration of a molecular species modulated by the light-

sensitive parameter r; cf. figure 4d ) is very small, we observe
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a dead zone with a length of L ¼ 0.475, which corresponds

to about 3 h within 24 h, indicating the universality of

having a dead zone in order to attain optimality. The

improvement in the entrainability that is induced by a dead

zone is calculated by comparing the entrainability of the

optimal PRCs with that of typical sinusoidal PRCs. We con-

sider sinusoidal functions for both the iPRC Uj(f ) and

pPRC Z(f ) by setting

UjðfÞ/ sinðfþ cÞ ð3:4Þ

and

ZðfÞ/ sinðfþ cÞ; ð3:5Þ

where c is the parameter to be optimized so that entrainabil-

ity is maximized for each a (see appendix B for the explicit

expressions). Equations (3.4) and (3.5) are scaled, so that
they satisfy the constraints on the period variance (equation

(2.12)). We calculated the ratios

RU ¼
E
EU

and RZ ¼
E
EZ
; ð3:6Þ

where EU and EZ represent the entrainabilities for the cases of

the sinusoidal iPRC and pPRC, respectively, calculated

for the solar radiation input. For the sinusoidal iPRC of

equation (3.4), the entrainability is calculated with pPRC

via equation (2.14). RU and RZ quantify the improvement

rate of the optimal PRCs over the sinusoidal iPRC (RU) and

pPRC (RZ). In figure 6b, the solid and dashed lines show

RU and RZ, respectively, as a function of a. Both ratios mono-

tonically increase as a increases, which shows that the

optimal PRC with a dead zone exhibits better entrainability

when the oscillation of xLC,k(f ) has a larger amplitude.
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When the concentration of xLC,k(f ) is low, the effects of the

input signal on the circadian oscillators are smaller. This is

because pPRC Z(f ), which quantifies the extent of the

phase shift owing to the stimulation of the parameter,

depends on the concentration xLC,k(f ) (see equation (2.14)).

However, even within the range f where xLC,k(f ) has smaller

values, the iPRC Uj(f ) contributes to an increase in the var-

iance of the period, regardless of the concentration. From this,

we see that having an iPRC with a smaller magnitude when

the concentration of xLC,k(f ) is smaller results in a smaller

variance, which results in a larger entrainability for a constant

variance of the period. Although this qualitatively explains

the benefit of a dead zone, for some input values, the optimal

PRCs may not contain a dead zone for any value of a. This

will be shown in the following.

3.3. Optimal phase – response curve of sinusoidal input
Because the optimal PRCs depend on input signals (equations

(2.20) and (2.21)), we next consider a typical periodic input

signal, a sinusoidal function (equation (2.25)). In this case,

C(D, d) is calculated in a closed form (an explicit expression

of C(D, d) is given in appendix A), which is plotted as functions

of D and d in figure 7a–c for three cases: a ¼ 0 (figure 7a), a ¼

0.5 (figure 7b) and a ¼ 1.0 (figure 7c). As can been seen from

figure 7a–c, C(D, d) yields the maximal value for (D, d) ¼ (p,

np) for 0 , a � 1, where n is an integer and when a ¼ 0, d

can take any value. Figure 7d–f expresses the optimal iPRCs

Uj(f) and pPRCs Z(f ) for the sinusoidal input. For a ¼ 0,

the optimal PRC is sinusoidal (figure 7d ) and for a ¼ 0.5, the

optimal PRC is still close to a sinusoidal function (figure 7e).

When increasing a to a ¼ 1.0, the PRC diverges from the sinu-

soidal function and exhibits almost positive values (figure 7f ).

We see that the optimal PRCs owing to equations (2.20) and

(2.21) do not exhibit a dead zone for any a-values (figure

7d–f ) when the input signal is a simple sinusoidal function.
4. Discussion
The existence of a dead zone optimizes both entrainability and

regularity. It is rather obvious that optimization of regularity

alone leads to a dead zone [43], because null response

means no effect by any kind of fluctuations. Our result instead

shows that optimality of both entrainability and regularity,

which are in a trade-off relationship, is uniquely achieved by

a dead zone. Our finding is fairly general, because a dead

zone always exists in an optimal PRC unless a ¼ 0 (additive

stimulation). Along with the fact that T, sT and q affect only

the scaling of the optimal PRCs, when the input signal affects

the dynamics multiplicatively (i.e. a . 0), the existence of a

dead zone always provides a synchronization advantage.

This is supported by many experimental studies of various

species that report the existence of a dead zone in the PRC

[1] (cf. figure 2c,d). Our general result suggests that circadian

oscillators have fully adapted to solar radiation to improve

synchronization. Indeed, many experimental findings imply

that circadian oscillators have adapted to actual solar radiation

[44]: for various animals, light–dark (LD) cycles that include a

twilight period result in better entrainability than do abrupt

LD cycles (on–off protocols) [44]. In this regard, another inter-

esting problem is optimal entrainment [37] of circadian clocks

by light stimuli. As two different input signals, the solar radi-

ation and sinusoidal inputs, yield the same optimal PRCs for

a ¼ 0, optimal inputs and optimal PRCs do not have one-to-

one correspondence. Thus, the optimal inputs are not trivial

and this problem should be pursued in our future studies.

The solar radiation input plays an essential role, because it

yields a dead zone in the optimal PRC, whereas a sinusoidal

signal does not (figure 7). In other words, oscillators that are

entrained by stimuli other than solar radiation may not exhibit

a dead zone in their PRCs. This is indeed found in mammals.

Mammals possess a master clock in their suprachiasmatic

nucleus (SCN), which receives light stimuli via retinal
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photoreceptors, and peripheral clocks in body cells [45]. The

peripheral oscillators are entrained by several stimuli such as

feeding and signals from the SCN through chemical pathways

(e.g. hormones) [45,46]. By injection experiments of a hormone,

Balsalobre et al. [47] reported that the PRCs of the peripheral

oscillators in the liver do not have a dead zone.

Our result also agrees with other experimental observations.

Our theory implies that a dead zone should be located where the

concentration xLC,k(f) is low (0� f � p in figure 4d), and that to

achieve optimality, the concentration of xLC,k(f) should be maxi-

mal in the region where the PRCs exhibit a large phase shift. In

Drosophila, the timeless (tim) gene is regarded as the molecular

implementation of xLC,k(f). It is experimentally known that

light enhances the degradation of the gene product (the TIM

protein) [48,49], and the TIM protein peaks during the late eve-

ning. Figure 2c shows observations of the PRC of Drosophila
against light pulses as a function time from Hall & Rosbash

[19]; circles describe the experimental data, and the solid line

expresses a trigonometric curve fitting (fourth order). Because

the centre of the part of the PRC that can be phase shifted approxi-

mately corresponds to the peak of the concentration, as denoted

above, when estimated from the PRC alone, the concentration

peak of the TIM protein should occur at about 18 h. This time is

also close to the experimental evidence (i.e. late evening). There-

fore, our theory can be used to hypothesize further molecular

behaviour affected by light stimuli.

In summary, we have constructed a model that regards

circadian oscillators as a global optimization of entrainability

and regularity. We have shown that our model is consistent

with much experimental evidence as mentioned above. The

extension and improvement of our method are possible and

they are left as an area of future study.
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Appendix A. Explicit expression of C(D, d)
A.1. Solar radiation input case
For the solar radiation input case (equation (2.24)), C(D, d) is

given by

CðD; dÞ ¼ CaðD; dÞ 0 � D , p;
CbðD; dÞ p � D , 2p;

�
ðA 1Þ

with

CaðD; dÞ ¼
1

48q
[�3a2 sinð3Dþ 2dÞ þ 32a cosð2Dþ dÞ

þ12a2D cosð2dþ DÞ � 6a2 sinð2dþ DÞ

þ 12a2p cos ðDþ dÞ2 � 128a cosðDþ dÞ

þ {�24a2p cos ðdÞ2 þ ð128aþ 18a2 sin dÞ cos d

þð�12pþ 24DÞa2 � 48pþ 48D} cosD

þ 12
1

2
sinDþ p

� �
a2 cos ðdÞ2

þ ð24a2p sinD sin d� 32aÞ cos d

þð�64a sin d� 48� 27a2Þ sinDþ 48pþ 12a2p];
where CbðD; dÞ ¼ Cað�Dþ 2p;�dþ 2pÞ. We show equation

(A 1) as functions of D and d in figure 5d–f.
A.2. Sinusoidal input case
For the sinusoidal input case (equation (2.25)), C(D, d) is

given by

CðD; dÞ ¼ p

2q
(1� cosD)[�a2 cosð2dþ DÞ þ 2a2 þ 4]: ðA 2Þ

We plot equation (A 2) as functions of D and d in

figure 7d–f.
Appendix B. Explicit expression of sinusoidal
phase – response curves
B.1. Sinusoidal infinitesimal phase – response

curve
An explicit expression for the sinusoidal iPRC (equation (3.4)) is

UjðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2s2

T

qT3

s
sinðfþ cÞ; ðB 1Þ

which yields the period variance of VT ¼ s2
T . Then, the

corresponding pPRC is given by

ZðfÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4p2s2

T

qT3

s
sinðfþ cÞð1� a sinfÞ; ðB 2Þ

where we used equation (2.14).
B.2. Sinusoidal parametric phase – response
curve

For the pPRC Z(f ) to be a sinusoidal function, the iPRC

Uj(f ) must be

UjðfÞ/
@Fjðf; rÞ

@r

� ��1

sinðfþ cÞ; ðB 3Þ

where we used equation (2.14). An explicit expression of

equation (B 3) is

UjðfÞ ¼
1

N ðcÞ
sinðfþ cÞ
1� a sinf

; ðB 4Þ

where N(c) is a normalizing term

N ðcÞ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qT3

4p2s2
T

a2� 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1�a2
p

�3
� �

a2�2
ffiffiffiffiffiffiffiffiffiffiffiffi
1�a2
p

þ2
n o

cosð2cÞ

a2ð1�a2Þ3=2

vuut
:

Equation (B 4) is normalized, so that the period variance

becomes VT ¼ s2
T . Using equation (2.14), the corresponding

pPRC is a sinusoidal function:

ZðfÞ ¼ 1

N ðcÞ sinðfþ cÞ; ðB 5Þ

which is an explicit expression of the sinusoidal pPRC

(equation (3.5)).
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