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ABSTRACT OF THE DISSERTATION

Willmore flow of complete surfaces in Euclidean space

By

Long-Sin Li

Doctor of Philosophy in Mathematics

University of California, Irvine, 2024

Professor Jeffrey D. Streets, Chair

In this dissertation, we discuss the behavior of Willmore flow, a fourth-order geometric flow,

for complete, properly immersed surfaces in Euclidean space.

We develop a-priori estimates for weighted Willmore flows. The estimates are later used to
generalize Kuwert and Schétzle’s short-time existence theorem in [10] for complete surfaces
with bounded geometry, to find a condition for uniqueness of Willmore flows on complete
surfaces, and show gap phenomena of Willmore energy. We also discuss blow-ups of Willmore

flow, as constructed by Kuwert and Schétzle in [13].

We also discuss the Fredholm property of Laplacian operator on the space of normal vector
fields, in view of weighted Sobolev spaces as defined by Lockhart in [17]. We give a few
conjectures regarding the Fredholm property of linearization of Willmore tensor, Lojasiewicz—

Simon inequality, and stability of minimal surfaces with finite energy as Willmore surfaces.

vi



Chapter 1

Introduction

1.1 Background of the study

One of the most basic and important problems in differential geometry is to find a “canonical
representative” for each “shape”. For example, the uniformization theorem for closed surfaces,
which shows that any closed surface admits a Riemannian metric such that the Gaussian
curvature is constant. In view of Gauss’ Theorema Egregium and Gauss-Bonnet theorem,

this essentially concluded the study of intrinsic geometry of closed surfaces.

To generalize the idea, instead of treating the “canonical representatives” as solutions to a
PDE (partial differential equation), we think of them as the equilibria of a function that we
refer to as an energy function, or simply as an energy. We can hence study the gradient flows
of the energy, which are called geometric flows, and study if a geometric flow converges to an
equilibrium. Famous examples of geometric flows include Ricci flow (which in 2-dimensional
case rediscovers the uniformization theorem, and in 3-dimensional case is used to solve the

famous Poincaré conjecture), mean-curvature flow, curve-shortening flow, etc.



The Willmore energy of an immersed surface f : 32 &+ R" is defined as

1
W)= [ AR,

where A denotes the second fundamental form. By Gauss—Bonnet theorem, if f is a closed

surface,

W) = [ 1R et 2mu(®) = 5 [ 1HE e 2m(S),

where A° denotes the trace-free part of A. Therefore, all the aforementioned expressions are
used as the definition in different literature for different needs, while essentially they are all

the same. (cf. [11], [37], etc.)

An equilibrium of the Willmore energy is called a Willmore surface, while the gradient flow
for the Willmore energy is called a Willmore flow. It is worth noting that there are compact
Willmore surfaces, such as spheres and Clifford torus, as well as non-compact Willmore

surfaces, such as planes and catenoids. In fact, all minimal surfaces are Willmore surfaces.

The first variation of W is given by the Willmore tensor (cf. [11], etc.):
W(f) = AH + Q(A)H,

where () is defined by
Qo = g™ ¢ nij (mre, )

for tensors n € I'(Ny ® Sym*(T*Y)) and ¢ € I'(Nx). Note that the first variation formula

holds whether ¥ is compact or non-compact. Therefore, given initial data fy : ¥ 3~ R"”, we



can consider the Willmore flow equation

o f = _W(f)u
f‘t:O = fo.

Some fundamental studies regarding Willmore surfaces and convergence of Willmore flows
to Willmore surfaces can be found in [7], [12], [13], [14], [20], [32] etc. There are also Will-
more flows that develop singularities (cf. 2], [22]), and there are open questions regarding
such singularities for compact surfaces, including existence of finite-time singularities and
classification of singularity types, etc. Related results include: in [10, Theorem 1.2], where
the authors showed that finite-time singularities require energy concentration, [4, Theorem
1.1], where the authors showed that blow-ups are not compact, and |24, Theorem 1.4], where
the authors showed an upper bound for the existence time of locally constrained Willmore
flows, while the upper bound increases to infinity as the PDE converges to the classical Will-
more flow equation, etc. It could hence be interesting to approximate Willmore blow-ups by

complete surfaces.

Willmore surfaces and Willmore flows are also studied in other works, including [9], [28],
[29], etc. Similar frameworks are also used to study 4-th order parabolic PDEs that are
related to the Willmore tensor and in fact sharing the leading order terms, in [23], [25], [30],
[31], [34], [35], [36], etc. In addition, regarding developments of studies on Willmore flow,
see, e.g., [11] and [21]; regarding general strategies for parabolic geometric PDEs, e.g., [19];
regarding Lojasiewicz inequalities, which are discussed in chapter 3 and section 4.2, see, e.g.,

[3] and [5].



1.2 Results

This dissertation is devoted to extend the study of Willmore flow of closed surfaces to

complete, properly immersed surfaces in R™.

In the first half of chapter 2, we generalize Kuwert and Schétzle’s short-time existence theo-
rem [10, Theorem 1.2] for complete surfaces, and find a similar lower bound for the existence
time with a similar upper bound for concentration concentration of curvature, which only

depend on concentration of curvature on the initial surface:

THEOREM 2.4.6. Let fy : X — R™ be a smooth, complete, properly immersed surface in
R™. Then there exist 1 > 0 and ¢, > 0, both depending only on n, such that whenever the

wnitial energy concentration condition

/ |Ao|*dpo < eg <1, Yz eR"
EoﬂBQ(m)

holds for some o > 0 and ey > 0, there exists a solution f: ¥ x [0,T) — R™ to the Willmore
flow equation (1.1) such that T > c¢;'o*. Moreover, f satisfies the following estimate for the

growth of energy concentration:

/ |A 2 dpy < aneo(1+cro*t), Vo € R and 0 <t < c;'oh.
EtﬂBQ($)

To prove our theorem, we consider solutions to a weighted PDE

atf = _GTW<f)7 (1 2)

Flio = for

where 0 < € < 1 is a smooth function defined on the ambient space, i.e., = 0o f for

some 6 : R" — R, and r is a sufficiently large integer that we will specify later. First, we

4



recover that the a-priori estimates in [10] hold for the weighted PDE. From the estimates,
we can show that if there were a Willmore flow with T' < ¢;'o*, f would converge as t — T
and hence can be extended to [0,7]. However, well-posedness of (1.2), which allows f to

extended over 7', generally only holds when X is compact and 6 > 0.

To solve (1.1), we approximate solutions to (1.1) with solutions to (1.2) with compactly
supported 6. There are two main obstacles when having #. One of them is extra efforts to
balance powers of # in the a-priori estimates, for the correct exponents for 6 don’t always
coincide those for 7, where v is the same cutoff function as in [10]. The other obstacle is
that traditional short-time existence results fail when 6 is not globally positive. We can
view X N [# > 0] as a subset of a closed surface, and hence we can modify 6 to be positive

everywhere on the closed surface, and then finally approximate solutions for (1.2).

For compact surfaces, the vector field W(f) is the gradient of the energy W(f) and hence

we have energy identity for any family of surfaces:

d

aW(ft) = /Zt (W (), 0uf) dps .

In particular, energy decreases along a negative gradient flow. For complete surfaces, energy

may escape into infinity and hence decreases even faster:

COROLLARY 2.4.7. If W(fy) < oo and f is the Willmore flow constructed in Theorem

2.4.6, then we have

t
AP dp + / / W) P e d < [ Aol dso.
S 0o Jx,

3o

In section 2.5, in view of the Sobolev inequalities, initial non-concentration conditions for
A, ..., V°Aimplies uniform bounds for A, ..., V3A, which give us sufficient flatness to obtain

the following uniqueness result for the fourth-order PDE.



THEOREM 2.5.9. Assume that fy : X — R" is a smooth, complete, properly immersed

surface in R™ such that
liminf R™*410(Bgr(0)) =0, and
R—o0
for some 0 >0 and M > 0,
/ ‘A0|2 dNO < €1, Vo € Rna
3oNBe(x)
/ |VEA|?dpo < M, Yo €R" andk=1,...,5,
ZQQBQ(:E)

where g1 is as gwen in Theorem 2.4.6. Let f = f; : ¥ x [0,T) — R", where i = 1,2, be two
solutions to the Willmore flow equation (1.1), then there exists ts > 0, only depending on n,

0, and M, such that fi = f5 for all0 <t < T = min(ts, T).

In section 2.6, given a Willmore flow f : ¥ x [0,7) — R™ with maximal existence time
T € (0,00), we consider the first time when there exists an ambient ball of radius r where

the curvature exceeds a given number e > 0. More precisely,

t(r,e) = inf {t €[0,7) : sup / | Ay |* dpy > e} :
2€R" J 5B, ()

A general strategy to study the singularity at t = T is to blow-up the Willmore flow, that

is, choose r; > 0, t; € [0,T'), and z; € R" so that the rescaled Willmore flows

filp,m) =r7 (flp.ty +riT) — x5)

have a chance to converge smoothly as j— co. Ideally, we take r;— 0 and let ¢t; = ¢(rj, )
for some fixed e > 0. Existence of blow-ups has been discussed by Kuwert and Schétzle in

[13, Section 4|. We can then characterize the singularity by the behavior of the maximal



existence time rj_4(T —t;). In particular, type-I singularities are defined as following:

DEFINITION 2.6.2. Given 0 < e < g1, we say f has a type-1 singularity with respect to

enerqy threshold e if

t(r,e) <T for allr >0, and

lim sup [r’l(T — t(r, e))1/4] < 00,

r—0t+

which in particular itmplies T' < oo.
However, when blowing up the singularity, we see that:

THEOREM 2.6.5. For all e < €1, a Willmore flow f of closed surfaces cannot have a type-1

singularity with respect to energy threshold e.

In chapter 3, we adopt Lockhart’s definition for weighted Sobolev spaces in [17] for complete
manifolds with finitely many ends, where the metric on each end is diffeomorphic to a cylinder
and is conformal to an asymptotically translation-invariant metric. For those surfaces that

are also Willmore surfaces, we conjecture that

CONJECTURE 3.2.8. (4) Let fy : X — R"™ be a Willmore immersion that is complete and

proper. Assume that for some > 0,

po = irzlfp > —00, and

Sl;p(e(t“)(l_ﬁ)p|Vfg)A|g) < 00, for some >0 and ¥Vt =0, 1.

Then for a.e. § € RY, the Willmore energy W satisfies the Lojasiewicz—Simon inequality,

namely, there exists 0 € (0,3] such that for all sufficiently small n € W§f4+3ﬁ(NE,g),

W(fw +n) = W)™ < CIW (fw + n)llyyoz-



We list a few examples in section 3.3.

In chapter 4, we derive gap phenomena, namely convergence of Willmore flow to planes or
minimal surfaces given lower Willmore energy. The following result is also explained by more

general theorems such as [13, Theorem 2.7] and [36, Theorem 1, (2)].

THEOREM 4.1.2. If f : ¥ — R" is a complete, smooth, properly immersed Willmore surface

with W(f) < %60, then X is a plane, where €9 > 0 only depends on n.
As a result, we can prove that Willmore flows with small initial energy converge to planes:

COROLLARY 4.1.4. Let f : ¥ x [0,00) — R"™ be a solution to (1.1). Assume that W(fy) <

%60 and that

sup pu(Br(0)) < oo for all R > 0.

t>0

Then as t— oo, any subsequence has a further subsequence such that ¥; converges locally

smoothly, up to diffeomorphisms, to a plane L : R? — R™ in the sense as in Definition

2.6.5.

In the statement, we assume space-time bounds to guarantee convergence and to avoid having
a sum of planes as the limit. Alternatively, we have the same conclusion if we assume an

Euclidean area growth rate for the initial surface:

COROLLARY 4.1.5. Let f: X x [0,00) = R™ be a solution to (1.1). Assume that W(fy) <

%50 and that

lim inf R~ (Bg(0)) < oo.

R—o0

Then as t— oo, any subsequence has a further subsequence such that ¥; converges to a plane

L :R? — R" in the sense as in Definition 2.6.3.



In addition, using the Lojasiewicz inequality, we conjecture a stability result:

CONJECTURE 4.2.1. Let fiy : ¥ — R"™ be a Willmore immersion that is complete and
proper. Assume that the induced metric g = e*h is admissible, as in Definition 3.1.2.

Assume condition (3.1) for some 5> 0 and s = 1.

If f: 2 x[0,T) is a a Willmore flow, where:

e T is the maximal existence time,

e W(f) > W(fw) whenever |K(fyo® — fw)|lorsn < 0 up to some diffeomorphism

¢ € Aut(X), and

i ||f0 - fWHW;fmcl < g, where €= 8(”’7 k777);

then T = oo, and as t— oo, f; converges locally smoothly up to diffeomorphisms to a Will-

more surface fo that satisfies W(fs) = W(fw)-

In the appendix, we list and prove various interpolation inequalities and Sobolev inequalities

that are used in the main article.

1.3 Conventions

First, we list some notations that are used throughout the article.

e ) is a smooth surface.
e f either denotes:

— A smooth immersion f : ¥ 9 R™, where we identify ¥ and f(X), or



— A family of smooth immersions f : ¥ x [0,7) — R", where we denote f;(x) :=

f(z,t) and X, = fi(2).

We should always assume the immersed surface (X, f*ggrn) or (X4, figrn) is complete.
We denote the induced Levi-Civita connection as V (where we don’t specify ¢ for 3;),

and the 2-dimensional Hausdorff measure as p or p;, correspondingly.

A, A; denote the second fundamental form of > and ¥, correspondingly. Similarly, H
and H; denote the mean curvature, while A® and AY denote the trace-free part of the

second fundamental form.

¢: A tensor of class I'((T*X)®"¢ @ Ny), where r4 is a non-negative integer and Ny is

the normal bundle on ..
A = —V*V, where V* is the formal adjoint of V.
s, > 2: sufficiently large positive integers.

P = Z V4 Ax- - -+ V™ A with unspecified coefficients that are bounded by some
i1++ir=m
c(n,s,r). The “star product” notation denotes an unspecified universal multilinear

form. See, for example, [10, Section 2| for more explanation. Here we don’t specify ¢

for ;.

»#(r,t) = sup / | A;|* dj; measures the concentration of curvature. (adopted
Tz€R™ ZtﬂB’,«(l‘)

from [13, Theorem 4.2].)

¢ = ¢(...) denotes scalars that only depend on the arguments. All the ¢’s can denote

different numbers, even in the same line.

10



Next, we pick a smooth function x defined on R such that

(

X is decreasing,

 x(z) =1 for all x <0, and

x(x) =0 for all x > 1.

\

We will fix this choice so that sup |D*x| only depends on k. Next, we construct functions

~, 0 on R" such that for some given K > 0,

2

~ and f are smooth,
0<7, 0 < 1 while also both are not identically 0,

?0? has compact support, and

Vk > 1, |D¥3] < K*sup |D*x| and | D*0] < K* sup | D¥y|.
LEMMA 1.3.1. Given any x1,x2 € R", R1, Ry > 0, and 0 < Ky, Ky < K, we can let
(@) = x(Ki(]x — 21| = Ry)  and  0(x) = x(Ka(|w — 22| — Ry))

so that they satisfy (1.3).

Let v = ﬂz and 0 = 5}2 We derive estimates for the covariant derivatives of v*0":

LEMMA 1.3.2. For all k > 1,

|Vk(7507’)| <c <7max(s—k,0)6max(7‘—k,0)Kk

l
.0 —io,0 . .
+ E ,ymax(s 0 )9max(5 10 )Km | | |V”A|),
1<ip<k 7j=1
i1 ,50 >0
i0+-+ig+4=k

11



where ¢ = c(s,r, k). The cases when k = 1,2 are especially frequently used:
IV(0")| < cy* 10K,

and
IV2(4%0")| < ¢ (,75—297“—2[(2 i 75—19r—1K|A|)‘

Proof. The proof is clear by induction, while we only show the cases k = 1,2. Let (u,v) be

a normal coordinate at p € ¥ and e; = 0,, es = 0,. We have
V(0" (e;) = D(?SGT)(Q),
and

V2(y07)(esr e5) = D*(3°07) (es,5) + D(F°67) (Ales, 7).

12



Chapter 2

Short-time existence and uniqueness

We consider the Willmore flow equation for complete, properly immersed surfaces in R".
Given bounded geometry on the initial surface, we extend the result in [10] with respect to

a similar energy concentration condition.

2.1 Geometry with low energy concentration

In this section, we derive general inequalities regarding low energy concentration. These

inequalities are later applied in the context of Willmore flows.

First, for convenience, we rewrite [10, Lemma 4.2], replacing v* with 6"

LEMMA 2.1.1. If s,r > 4, then

[0 (VAPIAR +141) an
>

2
<c[ AP [ 20 (VAP AP du e K ( / |A|2du> ,
[v6>0] ) [v6>0]

13



where ¢ = c¢(n, s,r). Moreover, there ezists g > 0, only depending on n, s, and r, such that

whenever

/ AP du < =0, (2.1)
[v6>0]

we have

2
[ (VAPIAR + 4F) an < [ 501927 + ek ( / |A|2du> .
s b [v6>0]
LEMMA 2.1.2. If s > 6 and r > 8, then we can choose gy so that assuming (2.1), we have
/759”‘2[(2|A|8du§ /738”|VA|4|A|2+K8/ APdu.
) ) [v6>0]
Proof. By Theorem A.2.1,
/ ’YSQT_QK2|A‘8 d,u
b
< C(/ ,_)/5/2‘97‘/271K|VA| |A‘3 d,u+ / 73/27197"/272[(2‘14’4 d/JJ
b )
2
+ / ’}/S/QQT/2_1K|A|5 dﬂ)
b
2
< c(/zﬁys/Zer/ﬂVA’Q‘A’Q dﬂ‘i‘ /;78/2_19r/2_2K2’A|4 du+/2,ys/29r/2—lK‘A|5 d,U)

2
< C(/78/20r/2|VA|2|A|2d/L+/’75/2_39T/2_4K4’A|2d,u+/78/29T/2_1K|A|5du)
P ¥ ¥

§cso(/756T|VA|4|A|2d,u—|—/VSHT_2K2|A|8du+K8/ |A|2du).
by b [v6>0]

We require cegy < % to obtain the claimed statement. O

14



PROPOSITION 2.1.3. Ifs > 2 and r > 4, then

JRGZRY
>

< I A gy ([0 AP G K2 [ AR )

where ¢ = ¢(n, s,71).

Proof. Using integration by parts,

/VSHTIVAI“du
)
< c/ (V20" |V2A| VAP + 0 K|VAPP) |A| dp
v
1/2
< c\|9T/4A|]oo,h>o} </ VSGT\VA|4d,u>
by
1/2 1/2
. [(/ ,yser/2|v2A‘2 d,u> + </ 78_28T/2_2K2|VA|2 d,u> ]
) )
1 4
<= [ o VA du
2 s

+ |07 AlI%, 150 (/ VSQT/ZIVZAIQduﬂLKQ/VS‘QHT/Q‘ZIVAIZdu),
b} >

and hence we can obtain the stated inequality. ]

PROPOSITION 2.1.4. If s > 6 and r > 20, then we can choose €y so that assuming (2.1),

we have

JRGZGERY

3

<o [ VA s 10 ALy [ 19 A
h [6>0]

e (K30 AP, gy + K) / AP du,

[v6>0]

where ¢ = ¢(n, s, 7).

15



Proof. First,

[ A0 ITAF AR < 107 AL, oy [ 470V AL i

Next, using integration by parts,

/’YSQT/2|VA|4 d,u
by

< c/ (VOPIVP A VAP + 0P K VAP Al dp
>

1/2 1/2
< el Alpon ( [029a10 ) ([ ivapan)
by [0>0]

3/4 1/4
+eK </ ’)/SGT/Q‘VA|4 d,u> </ ’)/8_49T/2_4|A|4 d,u)
by by

1 sOr T S
<5 [TOPITA 0 A oy [ AR
% 0

0>

+ CK4/ 75—407‘/2—4|A|4 d/i,
N
so that we have

JRGZGERY
%
<0 Al gy [ IR e KN AR, sy [ A
[6>0] b
Next, by Theorem A.2.1,
/7549T/24’A|4 d,u
2
S C(/ ,_)/5/2729r/472|VA| |A‘d/L+K/ 73/27307"/473‘14’2 d/fL
P ¥
2
+/’)/S/2_20T/4_2|A|3 d,LL)
2

< cegp (/ ’75_49T/2_4|VA|2 dp + / ’78_48r/2_4|A|4 dﬂ) +C€0K2/ |A|2 du,
5 ) [v6>0]

16



and hence we can require cegy < < = so that we have

JRGZGIRY

>

< 0 Al o /[ FIVAR gt e KO A [ v ap
6>0 ¥

LKA / AP du.
[v6>0]

Next, by Proposition A.1.4 with a = K1/2||9”/4A||1/2[7>0], we have

K2H9r/4A||2 >0 /’)/8_49r/2_4|VA|2 d,u
Y
< K0 A gy [ 47002V AR A (r = 20)
by

g/78—29’“—2|V3A|2du+c(K3||9T/4A|Iio,h>o]+K6)/ |AP dps.
by [v6>0]
In summary,

JRGZGERY

by

< [ VA s 10 ALy [ 19AR A
= [6>0]

e (KP0MAR, oy +K8)/ ARdy.

[v6>0]

LEMMA 2.1.5 ([10, Lemma 4.3]). (i) We have

1ll56 fr=1) < €llBlI2 0] (VO3 50y + 1013 50y + 1A O 1 501)

where ¢ = ¢(n, 1y, K).

17



(11) Moreover, assuming (2.1), we have

1ANSe =y < 1AL oo (VAN 50y + AN 50 -

The following corollary refines both the previous lemma and [13, Lemma 2.8].

COROLLARY 2.1.6. Ifr > 6, assuming (2.1), we have
1677 All% =gy < € IAN o5y (16722 AN sy + IAIZ 650))
where ¢ = ¢(n,r, K).

Proof. First, by Lemma A.2.4 with m = 2, p = 4, etc.,

r r r/8— r 2/3
12074 Allse < AN gog (W26 Ally + [1726%75 7 Alla + 0% 75| A2 1),

Next, by Lemma A.2.3 with ¢ = A, p = 2, etc.,
6 SV AR < ¢ (740722 Aol 2074 Al + 22072 T Al ]2 L)
Moreover, we have

1267271V Ally < e (I1v'672V2All2 + [|Alls,pos0)), (Lemma A.1.2)
72655 LA < (19207 Al AL oo
V6% /S| AP |4 < 2074 Al% 07| AP]J1, and

V071 < e (Ily'07 V2 AllZ + AlS osa)- (Lemma 2.1.1)

18



Combining all the inequalities above,

r 1/3 r r 1/3 1/3
17207 Alloo < | Ally g0 A (11072 V2 ALY + | Al g
and hence

207/ AN, < A sy (167292 AI + AL 0s).

which leads to the result we need to prove. ]

2.2 Evolution equations

In this section, we derive the evolution of tensors along Willmore flows. In particular, those

of V™ A. First, as stated in section 2 of [10], we have the following lemmas.

LEMMA 2.2.1. Let ¢ € T((T*%)*¢1 @ Ny), then
(VV* = V*V)p = Ax Ax ¢ — (V*T),
where

T(Xo,..., X)) = (Vx,0) (X1, X0, ..., X)) — (Vx,0) (X0, Xa, ..., X)
= (R Xy, X1)0)(Xy, ..., Xy)

=Ax Ax¢. (Gauss—Codazzi equation)
COROLLARY 2.2.2.
(AV —VA)) = (V" = V'V)(Ve) = A+ A+ Vo + AxVA+g,
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and hence

(AV™ —V"N)p = Py"(A) x ¢+ Py HA) Vo + - -+ PY(A) V"¢

= V"(¢x PY).
LEMMA 2.2.3 (Simons’ identity).
AAy = ViH + g% g (A, Ajp) Age — (Agiy Ajp) Aie).
In particular,

(a) NA=V?*H + Ax Ax A, and

(b) AA® = SO(V2H)+1|HPA%+ A%+ A"« A°, where S°(V2H);; = Vi H—1Hg;;— (R H);

denotes the symmetric, trace-free part of V2H .

LEMMA 2.2.4. Letting V = 0,f be a normal vector field on %, we have

(CL) atJ_Vqu - VXatJ_Qb = A(Xa 6i)<v€iv7 Qb) + V61V<A(X7 ei)’ ¢> =AxVV Qb,

(b) 0(VxY) == ((V,A)(X,Y),V)+ (AX,Y), V., V) — (A(X, &), VyV)
—(A(Y,e;), VxV)]e;, and

(c) OFA(X,Y) = V§7YV—A(€i, X){A(e;, Y), V), i.e., OF A = V2V —(ALe)@((AL ), V).

In this article, we will let V' = —0"W(f), where 6 is the cutoff function described in section

1.3. The following statements are some consequences:

LEMMA 2.2.5.
(O + 0" AA=0"(P; + P+ V(V(0) = (P} + Py)).
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Proof. By (c) of Lemma 2.2.4,

OFA=V2V +AxAxV
= —V(0"AH + 0"P)) + 0" Py « (P} + Py)

=0"(—V?AH + P} + P))+ V(0") = (P} + Py) + V*(6") = (P} + PJ).

Also, by Lemma 2.2.2 and (a) of Lemma 2.2.3,

N’A=NAV?H + P)) = AV?’H + P? =V*AH + Pj.

Therefore,

(OF +0"AA =0"(P} + P2) +V(0") % (P} + P}) + V2(0") % (P2 + PY)

= 0"(P; + P))+ V(V(0") * (P{ + F)).

LEMMA 2.2.6 (Cf. [10, Lemma 2.3]). If (9 + 0"A%)¢p =Y and ¢ = V¢, then

(OF + 0" A2)1h = VY + V(07) % (P2 + PP) % ¢ + A%¢) + 0"V3(PY x ¢).

Proof. Let Xi,..., X, be time-independent. WLOG, assume Vi, Xj, vanishes at a given

position and time so that we have

(O ) (X, ..., Xo)

y4
=0F | (Vx,0)(Xa, ..., X Z¢ (Xay .. V. Xe, .o, X0)
=2
l
= (0} Vx,0)(Xay ..., X qu Xo, o 00V, Xp), -, Xo).

=2
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By (a) of Lemma 2.2.4,

(0FVx,0)(Xa, ..., Xo) = (Vx,050)(Xa, ..., X)) + AxVV % ¢.

Also, by (b) of Lemma 2.2.4,

OV x, Xy = V(A V) x (X1 ® Xp).

As a result,

O =V ¢+ V(AxV)x*¢.

Next, by Lemma 2.2.2,

A = N2V
= AVAG + AV(PY x ¢)
= VA2 + V(P % Ag) + AV(P? % ¢)

= VA% + V(P * ¢).

Therefore,

(O + 0" A%y
=V o+ V(AxV)x ¢+ 0 VA2 + 0V (P x ¢)
= Voo + V(0 A*¢) +V(0") % A2¢+V(Ax V) x ¢+ 0"V (PY % ¢)

=VY + V(@) x N*¢0+ V(A% V)% ¢+ 0"V (P x ).
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Since V = —0"W(f) = 0"(P? + FY),

V() * A%+ V(Ax V) % ¢+ 0"V (P * ¢)
=V(0)x Ao+ V(0" (P + PY)) x ¢+ 0"V (P % ¢)

=V(0) % (P + P) ¢+ A%)) + 0"V (P) x ¢).

PROPOSITION 2.2.7.
(O + 0" A2 (V™ A) = V(07 (P} + PD)) + V"™ H(V(07) % (P2 + FY)).

Proof. We have proved the case m = 0 in Lemma 2.2.5. Inductively, assume that we have

the conclusion for m — 1. Let ¢ = V™ A in Lemma 2.2.6 so that

(OF + 0" A (V™A)
= V(0 + 0" L) (V™ TA)) + V(") (P5 + PY) = "' + P"1?)

+ 0"V3(PY) « P,
For the first term:

V((0F + 0" A%) (V™ LA))
= V[V 0" (P + PY)) + V™ (V(0") = (P} + PY))]

= V"(0"(P5 + Fy)) + VTV (0) * (P + B));
for the second term:

V(O07) % ((Py + PY) « P71+ P = VEH(V(07) = (P + FY)):
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and for the third term:
0V (PY « PP = V(7 (PR + ).
We can derive
(O + 0" A (V™A) = V™07 (P; 4 P)) + V™ (V(07) * (P2 + FY)),

so the claim holds by mathematical induction. O

2.3 Energy estimates

In this section, we estimate the evolution of L? norms of tensors.

LEMMA 2.3.1. Let Y = (0} + 0"A\?)¢. We have

d 1
3 [ 3716l du+ / (D, A(°0"0)) — (Y, 7°¢) dpne
S St
1
=5 | (@06 =7 (HL V)6l dpu
p
_ 78<V7 At(eik7 ej)><¢(€i17 ) 61‘7.4)), ¢(6i17 <oy Cig_q5 €5 eik-‘rl’ T 7€ir¢)> dﬂt ’
DY

where {e;} denotes an orthonormal frame of ¥;, and we use Finstein’s conventions on the

indices iy, ..., ir,,J €{1,2} and k € {1,...,74}.

Proof. (i) Abusing the notations, let {e;} denote the coordinate tangent vectors of a co-

ordinate system on X in a neighborhood of = € ¥ that is orthonormal with respect to
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f*grn at x for some particular t. Then we have

aj [gb(eil,...,e”)}
L

= (Y — QTAQQf))(eiﬂ .. .,Gi%) + Z¢(6i1, . ,eikfl,ajeik,eikﬂ, R ,61‘%),
k=1

where

9(0/ ei,e;) = (Drei, €5) = (Dyej,e5) = (De,V, e5) = =(V, D)

= —(V, As(es, €5))-

Therefore,

1
o (37 10teus i, P)
= (Bens o en, ) (Y = D2 (esys v €4,,))
- ’78<‘/7 At(eika ej)><¢(ei17 cee ,62‘%5), ¢<ei17 <y €y €y, eik+17 LI eir¢)>

1
+ §at(’78)|¢(6i17 s 7€ir¢)|2’
That is,
1
O (578|¢|2)

= (V,7°0) — 07(0%6,7°0) + 207" lof

- 78<M At(eika ej)><¢(€i17 s 76ir¢)7¢(€i17 cee 7eik_1a ejaeik+17 oo 761'%))-

In summary,

d 1

s 2
— | = d
gy 2t27 |p|” dp
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1 1
[ (e = 708%,9%0) + 500 Nol = et Vil

- 78<M At(eika ej)><¢(ei17 v 76ir¢)7 ¢(ei1a cee 7€ik,17 6]', eik+1a . 762'%))) d:ut

[ (001 = (86,8050 0) + 500Nl = (a1 V)l

- F}/S(Vva At(eika ej)><¢(eilv o 7€ir¢)7 (b(ein I 76ik,17 eja eik+17 . 7eir¢)>> d,ut .

]

LEMMA 2.3.2 (Cf. [10, Lemma 3.2|). Again let Y = (0} + 0"A%)¢p. If s > 4, r > 4, we
have

7
S| 412 _ sg" 2 2d
o Et7|¢| dut+8/2t7 Vool dpuy
< c/ Vo x (Y + Ay ¢ 5V 4+ 0"V A6+ 07| Ayf*0) dpsy
pI

+cK4/ Vo dp
p

where ¢ = c(s,r,14).

Proof. (i) By Lemma 2.3.1, we have

d
ai s, V@1 dpe + 2/& (D, A(v°070)) — (Y, ¢) dpe

_ /E | (7 (9 = (Hy, V)) ]2

k=1

V4
— 29" ) (V, Alei )i, - €3,)s b€ s €ipys €41 Eipyy
<e [ onloldute [ AxoxoxV
Et Zt

~»%)>) dp
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so that

d
dt

. / (A, AT 6)) dp + ¢ / 101012 dy
Et Et

7 |¢|2dﬂt

c/ Yox (Y + Ak V)du,.
pI
(ii) Using integration by parts and the Cauchy-Schwarz inequality,

- [ (0o 6600 du

— /E (VAG, V(07 ¢)) dpu

_/ (AVO+ A x Ay x Vo + Ay« VA % 9),V(7°07¢)) dpy
v? v? ser d :

< (% 0)) dy

se [ (APITOl+ ALV I6]) (0°0 Kol + 40| V]) dp

p

< [ (or0v6)

p

+o [ (YTOTKIV| + 0T KR ¢l + 0 K Al [9]) [V g

\

Et

(1P IVl + A [V A [0]) (v 0 K¢l + 70" [ Vo) dpae

\

3¢
1
<- / POV a1 [ 0 I90R
¢

(VO [AL VO + 7707 [V A ¢]*) de

\

3¢

+ec s 29r72K2yv¢|2 +73740r74K4‘¢’2 +75726r72K2’At‘2’¢‘2) d,ut

\

Et

< ——/ 07V i
pa

w

4

+o | (VOIAPIVO? + 70" [ VAL|o]?) dp

\

Xy

s 2QT—2K2|V¢|2 4 75_49T_4K4|¢|2 —|—’}/SQT|At|4’¢|2) d,ut,

\

Zt
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so that the conclusion in (i) becomes

d 2 3 212
— s d — 5o d
ai ., 9] Nt+2/2t7 (VZo|” dpu
< C/ Voo A
P
—|—c/ Yo« (Y + Ay x V—|—9”|VAt|2¢+9T|At|4¢) dpeg
pI

+ C/ (’}/SQT’At‘2’v¢’2 4 73726T72K2’v¢‘2 i 75746r74K4‘¢’2) dﬂt .
3t
(iii) Using integration by parts,

/ 0 A VP
3t
- / (6, V" (0| AV 6)) dy
P
<o [ (FOIAPIO V0] + 0 K Aol [V
P

+ 70 A VA 9] [V9]) dpse

<e / POV dpiy + e / 22 I VP dp
Et 2t
woet [0 ARIOR dut = [ 20 |ALITOP d
Et Et

e 2
pI

for any € > 0, and hence by taking € to be sufficiently small,

d
G [ rletan s [ vorviorap,
Et 2t
SC/ ’78_16t7|¢|2dﬂt
p3M
+/ Vo (Y4 Ax b=V 4 OIVALS + 07| AJ*6) dpi
P

+ C/ (78_26r_2K2|v¢|2 + 75—407‘—4K4|¢|2) dut ]
¢
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(iv) Next, since V.= —0"(AH; + Ay x Ay x Ay),

/75‘13t7|¢|2dut=/ VDA AH, + 07 P3| dps
¢

3t

On one hand, by Young’s inequality,

/ 7" DAP)|¢)? dp

¢

<c [y ORIALIE du
P

_ C/ (735/403T/4|At|3|¢|3/2) (78/4_19T/4K|¢|1/2) d,ut
¢

<o [ OIAPIOR v 0 o) dp
P
On the other hand, with integration by parts,

- / 1076 DA(AH,) d
P
_ / V62 DA (Do Vo Hy — (A(ers ;). Ve, Hy) Do, ) dpi
Xt
_ s—1pr 2 M2 s—1r 2 ~
—/ (V710710 D*F(De, f, Ve, Hy) + (De, (v*'0"|91?), (DY(Ve, Hy))
P

+7°7107|0)*(Au(es, €5), Ve, H) DY (De, f)] dpse

< / V2 VORIV A |62 + (101V 6] + K6 K|V A [0
+YOK | Al [V AL 9] dpas

< / Y2 K2V A 6] + 10KV Al 6]V 6)
+ 0K A [V AL 9] dpss

<o [ DPOIVAFIOR + 7 O + K Vo
20K A 0[] d

< c/ (VO |V AP 6 + 707 | A |2 + 10 K ¢)2 + 207 K2 Vol?] dpy .
3t

29



As a result,

d

dt 73|¢|2dut+/ VO VAL dpsy
Et Et

< C/ Vox (Y + Ak o+ V0" [VAL S+ 07| Al 6) dpse
P

+ C/ (75—26r—2K2|v¢|2 + 75_40T_4K4|¢|2) th ]
¢
(v) Finally, for arbitrary ¢ > 0,

/ ’75_29T_2K2|V¢|2 d,ut

pI

<c [ (KN + 0 K V) o] du
¢

<: / (O[30 + 420721 Vo) dpy + e / K 2 d
Et Zt

so that by taking € to be sufficiently small,

d 2 7 2 112

— [ lolPdp+ < [ O d

dt zt,y 9 i + 8 /Zt7 Vol du

= [ 0 (V AoV OIVALG +07AL) dn
¢

+ C/ ’78_49T_4K4|¢’2 th7
p

which is what we need to prove.
L]
ProrosSITION 2.3.3 (Cf. [10, Proposition 3.3]). Let 0 < k < m. If s,r > 2k + 4, we have

d 3
— ’Ys’VmAtP dﬂt + _/ 789’”|Vm+2At]2 dﬂt
dt PN 4 P
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<o / YV A V(07 (PE A+ PD)) + V07TV« (PR + PY))] dpy
3t

X CK4+21€/E S22 gk A 12
where ¢ = ¢(s,r,m).
Proof. By Proposition 2.2.7, we have
Y = (07 +00%)¢=V"(0"(P;+ P))) + V™ (077'Vo « (P} + ).
In addition, V = 6" (P} + Py) implies
A« V™A 5 V + 0|V APV A + 07| AV A = 07(Py 2 + P,
Therefore, by taking ¢ = V™A, in Lemma 2.3.2,

d 7
a s mA2 * servm+2A 2d
= thv t"|‘8/2t7 | ol " dpae
<c / YV Ak (Y + Ak VA V4 0 [VAPY™ A + 07| A V™ Ay dpe

P

—|—CK4/ 75740r74‘vm14t‘2 d,ut
¢

<c / VIV A [0 (P + FS)) + V0TIV O (P F)) ] dp

P

+ CK4/ G A A VALY I TP
3y
If £ > 0, by Proposition A.1.2,

K4/ 75740T74‘VmAt‘2 d,ut
3t

S 6/ ,yser|vm+2At|2 th + C(S, r,m, 6) K4+2k/ ’78_4_%9T_4_2k|vm_k14t|2 dﬂm
Et Et
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and hence by taking ¢ to be sufficiently small,

d 3

G [ 19maP dus T [ oAl du

dt Js, 4 Js,

<c / VNV A x [V (P + P9)) + V™ (07 V0 « (P + Py))] dp
P

+ CK4+2k/ 75—4—2k9r—4—2k|vm—k14t|2 d,LLt )
[v6>0]

O

LEMMA 2.3.4. Let f : ¥ x [0,T) — R"™ be a solution to the modified equation (1.2). If
s, >4, then we can choose &g so that assuming (2.1) for all0 <t < to for some 0 <ty < T,

namely

Sup/ |Ay|? dpy < e, (2.2)
[v0>0]

0<t<tg

we have

1 t
/ | A dpy + = / / 0" (IV?Ap > + |Ap|®) dpy dt’ < / | Ao|? dpo + ¢ K'et
7=1] 2Jo Ji=

[ [y>0]

for allt € [0,ty), where ¢ = c(n,s,r) and

€= sup/ | A ? dpy .
0<t<to J [0>0]

Proof. By Proposition 2.3.3 (with m = 0 and k = 0),

4
dt Js,

<o [ Ak IR+ P+ V(O 1V0 s (P4 PD)] du
3t

3
Vo)Al dp + z_l/

¢

3
”}/SQT’V2A1§‘2 dILLt —+ Z / 789T|At‘6 dILLt

¢

3

+ CK4/ ’}/37467”74‘1442 dILLt + Z / Pyser‘At|6 dILLt
Et Et
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<c / VO Ay % (PE+ PY) + V(v Ay) % (0771V0) % (PE + Py dpy
P
3
+ CK4/ 75_407‘_4‘141‘,'2 dILLt + _/ ,.)/SHT‘At|6 dILLt
St 4 poM
< c/ VO (|VZAe| |A]? + VA A + | A) dpse
P
+ c/ (VO K|IVA |+ 50T KA (VA + |AP) dpe + e Ke
¢

VOV A2 dpsy + c/ V0" (VAR AL + | A°) dpss

< —
=12 s,

+ CKQ/ VRO AV A dpy 4 ¢ Ke.
¢
Therefore by Proposition A.1.2 and Lemma 2.1.1,

d

3 sOr
dt ’Y ’At| dps + 4/2 70 (’VZAt‘Q"‘ ’At|6)d/it

¢

1
< 6/ 759’“|V2At|2dut+c/ |Atl2dut/ VO (V2 AN+ [A°) dpse
o [v6>0]
+cK'e+cK*ge
1
< 4/ ser(|v2At|2+|At| )dut+cK4e,

and hence

/ ’Y |At| d,U“t + / / 807" |v2At/|2 + |At/| ) d/,l/tl dt/
p

§/ V0" Ao)? dpg + ¢ K'et.
Yo

]

PROPOSITION 2.3.5. Let m > 1. If s > 6 and r > 20, then we can choose g so that
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assuming (2.1), we have that for some ¢ = c(n,s,r,m, K),

d 1
= [ VAP A+ - / PO dpy
dt Js, 2 Js,

<0 AL / IV AP dpte + o
[6>0]

where

fry=c HAtHg,[’y€>0]7

BZW =cC (1 + |’9T/4At||io7[fy>0]) ||At||§,[79>0}7

and when m > 3, B, only depends onn, s, r, m, K, and
||VjAth,h9>0], where either N or
p=2,....2m+4, p = 00.

Proof. With ¢ = ¢(n, s,r,m,€), we have
(i) For m =1,

/ (V*VA) = [V(0"(P; + P))) + V(0 'V0 « (P} + Py))] dp

pN

< / (VVA) =« V(0" (P; + P))) + V2(v*VA) % (07'V0 * (P} + Py)) du
¢

< / VIV - [07(FOA (A + VA [V A A+ VAL + VA [A]*)
>t

+ 0 K (VA AP + [VAP AL + ’At’5)]
+ [VIVP A + K| VZ A,

+ (VTP + T KA VA - 0T K (VA + A dp
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< 8/2 750T|V3At|2dut—l—c/Z (V202 K2 4 7507 | A D) V2 A d g
+ c/Z (YK 4 A0 A )|V A dpg
+c/Z 756T‘2K2|At|ﬁdut+c/z V071V A dpy

< E/E V0TV A dpae +C/Z (V2072 K2 4 07| A ) V2 A2 dpae
—l—c/Z (VT K 4 4507 AN [V AP d/Lt—i-C/ V0|V A Ay

p

+ ¢ K| Adll3 pyoso (Lemma 2.1.1)
< [ 0 IvAP du
3t
o [ IR 0 AN ) VAP
¢
S— rT— S r 4
+ c/[g ) (vt K+ 7|60 /4At|\ooyh>0])|vz4t|2dm + e KO\ Adll3 100
>
(Proposition 2.1.3)
< 28/ VO |V A|? dpy + c/ V20T KA VR A dpy
Et Et
+ c/[a ] (75_49T_4K4 +’75||0r/4At||io,h>o])|VAt|2 d,ut +CK6||At||§,[79>0}
>0
(Proposition A.1.3)

< 36/ 759’"!V3At\2dut+C\!9”4AtH§o,h>o1/ VAL du
e [6>0]

+c KA, ||§,h9>o]- (Proposition A.1.2)

Finally, apply this estimate with sufficiently small € and k£ = 1 in Proposition 2.3.3 so

d 1
- ’}/SIVAtP d,ut —+ —/ 780T|V3At’2 d/,l/t
dt po 2 pon

sc ||9T/4At||;7[v>0] /[0 ] 78|VAt|2 dpe + CK6||At||g,he>o]-
>0
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(ii) For m = 2,

/ VA, [V (07 (P24 PD)) + V(00 « (P2 4+ P2))] du
¢
< / (v%sv?At) x [07P; + V(0" 'V0 « (PE+ PY))]
3t
VA TR0 ) ) dpy
< c/ (P IV A + 3 K (T A + V2 A A + 5 2K VA ]
P

[0V AL AP + VAL A
+ K (VP A+ [V2A AL + VA AP + ALY
+ 02K (VP Ay + |A)]
+ 0 IV2A [0 (IV2AL A + VAP AL
LR (VA A+ A8 + 9“2;(2\1445}) duy
<e /Z VO VA Ay + e /E (V20 2 K2 4 4507 AP VR AL dyy
e /Z (P10 4 20 R A + 0| AL VAL g
+ C/E YO KV AP At dp + c/E VO KA Ay |® Ay
+ C/z VRO K Ay |® Ay + c/E YOIV At A sy
< 8/2 YOV A dpy + C/z (V720 2K+ 40| A VP A d
+e /E (P40 K + 4007 | A V2 A dpse
+ c/z 07 A A e + C/E S A2 g

+ C/ 780T—2K2’At|8 d,ut
¢
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<e / O[T A2 g
p
+ C/ ('}/5_26T_2K2 + 789r/2‘|91ﬂ/4AtHgo,[’y>0]) |V5At‘2 d,ut
3t
+ C/ (PO K 007 AL ) IV A i
[0>0]
+ c/ YOIV A Ay dpy + cKSHAtHg’th] (Lemma 2.1.2)
3t
<e / O[T A2 g
p
+ c/ (75—267“—2[(2 + 759T/2H9r/4AtH§o,h>o])|V3At\2 d,Ut
3t
+ C/ (PO K+ 007 AL ) IV A i
[0>0]
+c(K®+ K‘F’HHTMAtHiO’[wO]) 1 A1 pyoso (Proposition 2.1.4)
<2 [ O IVAP |0 Al [ IV AP O
)3 [6>0]
+c (K% + K4||0r/4At||io7h>0]) ||At||§7he>0]. (Proposition A.1.4)

Finally, apply this estimate with sufficiently small € and k& = 2 in Proposition 2.3.3 so

that

d 1
G [ AR g [ oA
t hoN 2 o

< c )07 Al 1yso /[9 ]75|V2At\2dut + o (K5 + K07 Adl|% 150 1AL o)
>0
(ili) For m > 3,
/ PV A [V(O (P + P))) + V™0 VO« (P + B))] dp
>t

< | VEOPVTAY x [VITHO7(PS 4 ) + V(0O « (P BY)) ] dp

3t
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< c/ [V |V A| + T KV A + (P PK? 4 T K A) [V A
p3M
. [Hr(\VmAt\ | A2+ [V LA [V A, \At])
F TR (VA AL+ VA VA A 4 [V TEA [V A)

+ 9r72K2(‘VmAt‘ + ‘melAt‘ ’At’) + 9r73K3lvm71At’ + |TH d/fbta

where T is a tensor that is supported on [0 > 0] and can be described as a polynomial
defined by operators + and *, with variables being A, ..., V™ 2A,, with coefficients
bounded by some ¢(n, s,r,m,e, K), at most of degree (m + 2), and without constant
terms. In particular, using Holder’s inequality, ||T|% is bounded above by a quantity
in the same form as how f,, . is described. Next, using Cauchy-Schwartz inequality

and Proposition A.1.4, we have

/E PTTA,  [V(67 (P2 + PD)) + VL (0r 00 (P2 4 FY))] dp
<e /Z VOV A dpgy + /E 20T 22 A, dyg,
o f TR A ) 19 AP
+e / TR 4 AN s+ 7O T AN s

+ ’YSGTHVAtHgo,[»ybo}HAtHZo,hbo]) VAL dpe + || T3

S 28/ ’}/SQT’varQAt’Z d/Lt
P>

e (K54 A poso) + IV AL oso) / VA dp + e T

[v6>0]

Finally, apply this estimate with sufficiently small € and k& = 2 in Proposition 2.3.3 so

that

d 1
dt . VIV AL dp + 5/2 VO IVTIRAN Ay < By
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for some appropriate choice for 3, 5.

Having s = 6 and r = 20 fixed, we will from now on omit them when describing dependence.

2.4 Short-time existence

Using Sobolev inequalities in section 3 and Gronwall’s lemma, we derive a-priori estimates
for L? norms and L> norms. As a result, we can derive a short-time existence result for

Willmore flow.

CONVENTION 2.4.1. For j =1,2,3, lety; =007 and y; = 007y = 7, where each o;

I

1s a function on R such that

(

oj s increasing and smooth,
o;(x) =0 for allx < 2,
O<0j(m)<1forall%<x<%,

o;(x) =1 for allz > £, and

|Do;(z)| < ¢ and |D?*c;(x)| < ¢ for some universal constant c.

In particular, by section 1.3, |D7;| < ¢ K and |D*3;| < ¢ K* with some universal constant

C.

LEMMA 2.4.2. Let m > 3 and B3, ~, be as described in Proposition 2.5.5 but with v replaced

by v3. Assuming (2.1), we have

B < €,
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where ¢ = c(n,m, K,a) and

—_

IVEA 2 0
k=0

Proof. Throughout this proof, we let ¢ = ¢(n, m, K). First, by Lemma 2.1.5, we have

1/2 1/2 1/2
Ao frs>0) < IAtlloo o) < €Al 2 oo (IV2 A2 og + 1ALl sg) < con

2,[y>0] 2,[y>0] 2,[y>0]

Next, also by Lemma 2.1.5,

||VAtHOO,['yg>O]
1/2 1/2 1/2 1/4
< VA oo IV A oo + IV A s + AL VAL, )

2,[y>0] 1,[y2>0]

1/2 1/2 1/2 1/2
< VAo IV A oo + IV A o + 1Al froso [V A o)

2,[y>0] 2,[y2>0]

<c(a+a?).

Next, consider || V7 A||p, >0, where 0 < j < (m —2) and 3 < p < (2m +4) are integers. By

Lemma A.2.5, we have

17 Al s >0

< ¢ (IV? Adll2poso) + IV Al s + 1V A2 >0 4+ 1At oo, ies01 |V A2,y >07)

< c(a+a?).

By the definition of 3,, ,,, we have the desired result. n

PROPOSITION 2.4.3. For all k > 0, define

k
= [V Agll2r50.
=0
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Assuming (2.2) for some 0 < to < T, we have
sup ||V A2,y=1) < c(n,K,m,to,ao(m)).

0<t<to

Proof. The case m = 0 is proved by hypothesis. We set m > 0 and assume that we have for

each k =0,...,(m—1),
HVkAtHZ['y:l] S c(n, m, K, to, Oéo(k)) .
First, we have

t
/0 1077 Apl|L o A

t
< c(n, K)/O 14w 113 a0 (1077292 Au |13 sy + 14615 10501) A (Corollary 2.1.6)
t
S C(TL, K) €0 / / 6’T|V2At/|2 d,ut/ dt, + €0 C(TL, K, to)
0 Jm=0]

< ¢(n, K, to). (Lemma 2.3.4)
In particular,

Bas < c(n, K, t).
By the hypothesis and Lemma 2.4.2, we also have

Bras < c(n, K),
and for all m > 3,

Bm,wg, S c(n,m,K, tha(](m - 1))
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In particular, for all m > 1,

t
/ Bm,’y;; dt/ S C(nvma Ka t(),OZ()(m - 1))
0

Next, by replacing v with 3 in Proposition 2.3.5, we have

/ IV AP d

/ VA dprg = / / 0TIV A 2 Ay A
Zt Et
S/Z 7§|VmA0\2d,u0+c(n,m,K)/0 <||0T/4At/||4 73>O]/Z 7§|VmAt/|2d,ut/> dt’
0 t/
t t
+ c(n,m, K) i?pTHVm PAI3, 7>o/0 (1+||Q’”/4At,||io7hs>0]) dt,+/0 Bim.ys At
< el ) [ (10740l o [ A9 ) 0+ (o K, ).
p

0

Therefore, by Gronwall’s lemma, we have

IV Aell2, py=y

< / VIV Al dpg
p

t
< C(n7 m, K7 to, o (m)) exp (C(n7 m, K) / ||9TAtHio,[’y>0] dt/)
0

S C(”a m, K7 tO; O50(7/”))'

COROLLARY 2.4.4. Under the settings in Proposition 2.4.3, for all m > 0,

sup ||V A¢l|oo,jr=1] < ¢(n,m, K, to, ag(m + 2)).

0<t<tg

42



Proof. By Lemma 2.1.5,

V™ At so,(y=1]

< c(n,m, K) [V A2 o IV 2 ANLE o+ (U Ao s V™ A2 o)

2,[v3>0] 2,[v3>0 2,[v3>0]

< c(n,m,K, to, ag(m + 2))

[]

PROPOSITION 2.4.5 (Cf. [10, Proof of Theorem 1.2]). Let X be closed, and let 0 < 8 < 1

be a smooth function on R™ such that
Ky :=sup |D§| < 00 and sup |Dk§| <c(k)K§, Vk>1.

Then there exist a, > 0 and co > 0, both depending only on n, such that whenever fy: ¥ —

R"™ satisfies
2 o
#(0,0) = sup / |Ao|* dpug < eg < —
2€R™ J$0NB,(x) 2ay,
for some o > 0, we can find a solution f: ¥ x [0,T) — R"™ to equation (1.2) such that

T>c' K4,

where K = max{2/p, K3} and T is the maximum existence time. Moreover, f satisfies the

following estimate for the growth of energy concentration:
s(0,t) < aneo(l + oK), VYO<t<cg'K™

Proof. Let a, be the number of balls of radius 1 in R" required to cover a ball of radius

2. Note that without loss of generality, we can assign these balls of radius 1 to have their
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centers in the bigger ball.

Netx, by hypothesis, s(0,0) < eg < gy and s(p,t) is continuous in t. Whenever f exists

with 7' > 0, we define

to=max{0 <t <T :V0<7<t x(o,71) < 2ane},

which is always a positive number. Moreover, we either have to = T" or s(p,ty) = 2a,¢€o.

For each x € R™, we can find 7 such that

as in Lemma 1.3.1 with K; = 2/p, so that K = max{K;, Ky}. By Corollary 2.4.4,

sup ||V Al = sup sup [|[V"Ayl|coxnB
0<t<to T€R™ 0<t<tg
0<t<T 0<t<T

) fg 6(7177717leat07 jb)'

9/2(x

In addition, as shown in the proof of [10, Theorem 1.2], we can show that for all 0 <t < ¢,
|0 f (2, t)], |00 f (z, 1) < c(n,m, K, t, fo). (2.3)
Consider the following cases:

(i) Assume 0>0andty="T.
Since § > 0, f exists with T > 0. By the estimate above, f(x,t) converges to a smooth
function f(z,T) = fr(z) as t — T. Therefore, by short time existence theorems (e.g.

[19]), we can extend the solution to (1.2) for a longer time, a contradiction.

(ii) Assume 0> 0 and »#(0,t0) = 2a,ep.
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(iii)

Since 0 > 0, f exists with T" > 0. For all 0 <t < ty, by Lemma 2.3.4, we have
/ | A2 dpe < eg + ¢ K*(2ane0)t = eo(1 + coK*t),
EtﬂBQ/Q(l‘)
where ¢ = ¢(n) and we define
co = 2a,c,
which also depends only on n. Observe that we have
2ane0 = 2(0,t0) < ans(0/2,t0) < aneo(1+ coK'to),
which implies that

to > cg K2

General case.
Let 0 < 1 < 1 and replace 8 with (n+(1- n)@ Since (i) cannot hold, by applying

case (ii), we can find
frix [0, K™Y - R

such that

Moreover, we have (2.3) for all n and ¢ without dependence on 7 on the right hand side.

Therefore, as n— 0, there exists a subsequential limit ﬁ] — f such that f is defined
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for all
0<t<c'K™

and solves (1.2). Moreover, as shown in case (ii), the concentration growth estimate

holds for all ﬁ], and hence holds for their limit, f.

]

THEOREM 2.4.6 (Short time existence and minimal existence time). Let fy : ¥ — R" be
a smooth, complete, properly immersed surface in R™. Then there exist 1 > 0 and ¢y > 0,

both depending only on n, such that whenever the initial energy concentration condition
2#(0,0) <ep < ey

holds for some o > 0 and ey > 0, there exists a solution f: ¥ x [0,T) — R™ to the Willmore
flow equation (1.1) such that T > c{*o*. Moreover, f satisfies the following estimate for the

growth of energy concentration:
(0,1) < anco(1+cro™'t),  VO<t<c'oh

Proof. Define

—4

c 2

g = 2_0 and cl = 1600, SO that Cal (_> = 61_104'
Ay, e

Fix K = Ky =2/p and let

XBp_p2(0) < 0 < XBg(0)

as in Lemma 1.3.1, where R > /2.
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We claim that for all R, there exists a solution
fr:X x[0,c;%"] — R"
that solves (1.2). First, in general, we either let
fr:2Xx[0,T) - R"
be a solution to (1.2) with maximum existence time Tg > 0, in which case we denote

tp = maX{O <t<Tg: sup x(o,7) < 2%60} )

o<r<t

or in case such fr doesn’t exist for any Tr > 0, we denote tg = Tr = 0 for convenience. Note
that since the energy concentration doesn’t change outside of Br(0), we obtain by continuity

that either tg = Tg or »(o,tr) = 2aneo.

Next, whether t5 is 0 or positive, we extend fr to X x [0,tg], which is already done except
when tgp = Tg > 0. Recall that for all 0 < ¢t < tg, #(o,t) < 2a,e9 < 9. As in case (i)
of the proof of Proposition 2.4.5, we can derive an estimate, similarly with (2.3), and see
that fr(-,t) converges smoothly to some fr(-,tg) as t — tg, and that fr can be extended

as claimed.

Next, assume that »(g,tr) < 2a,ey, which implies tz = Tr. We can extend the subset

{fr(z,Tg) : v €3, fo(v) € Br(0)}

to a closed surface S. By Proposition 2.4.5, we can find a solution ftg to (1.2) with initial
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surface S. Since 6 > 0 only when fr(z,Tg) agrees with S, we can extend fr to

;

fr(z,1) if 0 <t<Tg,

fr(z,t) = ]%(fR(x,tR), t—Tg) if fo(z) € Br(0) and T <t < Tr + 4, and

Jo(z) if fo(z) ¢ Br(0) and 0 <t < T+ 0.

Despite that ¢ depends on S and that S depends on both R and fg, it turns out that fAR is
another solution to (1.2) with a longer existence time than fx, a contradiction. That is, we

must have (o, tg) = 2aneo.

Next, by Lemma 2.3.4, we have that at t = tp,

Qaneo = %(Qa tR) < an%(Q/Qa tR) < an60(1 + Clg_4tR)a

and hence

TR Z tR Z 01_1Q4.

Recall that we have constructed fr on the time interval ¢ € [0,tg]. We will restrict it to

t€10,c;t 0%

Finally, (2.3) holds for all R, z € X, and ¢ € [0, ¢; *0?], with ¢, replaced by c;'o?. Note that
the right hand side doesn’t depend on R. Therefore, as R— oo, there exists a subsequential
limit fr — f such that each derivative converges locally uniformly, so that f solves (1.1)
and is defined on t € [0,c;'0?]. Note that Lemma 2.3.4 applies for f on t € [0,¢; *0?], and

hence the concentration growth estimate follows. O]

COROLLARY 2.4.7 (Energy inequality). If W(fy) < oo and f is the Willmore flow con-
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structed in the theorem, then we have

|At| d[tt—f—/ / | d,ut/dt < |A0|2d,u0.
¢

o

Proof. Along fr, by the definition of variational derivative, we have

t
/ AP dus + / / 0 W (f(-, )2 dpay dt’ = / Aol dyig
fR(Ezt) 0 fR(Ert/) EO

since # has compact support. As R— oo, both integrands on the left hand side converge

pointwise to the corresponding integrands for f. Thus by Fatou’s lemma,

/ ‘At’ dﬂt‘i‘/ / | d/,tt/dt </ ‘A0‘2d,u0.
3t Yo

]

COROLLARY 2.4.8. If fy satisfies W(fo) < 0o, then there exists f with T > 0. Moreover,

ifW(fo) < aper = %50, then there exists f with T = oo.

Proof. (i) For the former case, take R sufficiently large so that

/ |A0|2d,u0 < é€1.
3o\Br(0)

Since fy is proper, we can find a finite open cover {B,, (zx)}3_, of Bri1(0) so that for

all k,

/ |A0|2d,u0 < €1.
EoﬂBQ.pk (xk)

Let 0 = min{1,71,...,7x}. As a result, for all x € R", either 2 € Br,1(0) so that for
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some k = k(z) we have

[ P [ Al do < 1,
EoﬂBQ({E) EOmBg-H"]C (=1)

or ¥ ¢ Bpy1(0) so that

/ |A0|2d,u0 < / |A0|2d,u0 < €1.
$0NB,(z) Zo\Br(0)

We hence have T > ¢; ' ¢* > 0 by Theorem 2.4.6.

(ii) For the latter case, we observe that along fg,

/ |At|2 d g
fr(Z,t)NBR(0)

t
— [P [ [ WA )P At <2
$oNBR(0) 0 Jfr(E,t)

for all 0 <t < Tx. Corollary 2.4.4 hence applies and we have (2.3) for all 0 <t <ty =
Tg, provided Tk < oco. However, fr(z,t) converges as t — Tg, a contradiction against
Tr < co. As a result of T = 0o, we can take a subsequential limit fr — f with the

functions being defined on X x [0, 00).

2.5 Uniqueness

In this section, we consider a Willmore flow f : ¥ x [0,7) — R” (note that we assume

continuity as t— 07), where T' > 0 is not necessarily the maximal existence time and
f(®(x:1),t) = fo(x) +n(z, ), (2.4)

50



where 7 is perpendicular to 7,>, i.e., n is a 1-parameter family of sections of N, the
normal bundle of ¥y, and for each ¢, ® is an automorphism of 3. We also let fy(z) = f(x,0)
denote the initial surface and assume 7|,_, = 0 and ®(z;0) = z as the initial condition. In

particular, we should solve

Note that the right hand side is uniquely determined by the other side as long as Tg(,)> ®
N,¥g =R"™.

LEMMA 2.5.1. Let f: ¥ x [0,T) = R" be a family of surfaces. If

M = sup max |0,D, f| < oo,
P
vlg=

then there exists t; > 0, only depending on M, such that every term in expression (2.4) can

be determined for all 0 <t < min(t;,7T).
Proof. Consider any unit tangent vector ug € T,%. Let
u= fi(ug) =v+w, wherev € T, %y and w € N,X.

In particular, |v| = 1 and |w| = 0 when ¢ = 0. By hypothesis, we have

\/|8tv|2 + |(7tw|2 = |8tU,| S M|U|
In particular,
]| >2—eM >0 Whent<ilog2
—_— M .

Therefore, T, & N,Yo = R", so that we can define 7, the projection map from R"™ onto 7,3
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along N,Y¥,. As a result, we can determine

0@ = —7(0:f),

O = (I —m)(Of).

Moreover, for all ug,

| Do @] = fuo| = 1,

0:D,®| < ||7]|+|0: Do f| < MM || DO,
so that in particular,

2 — e < |D,®| < e

In summary, n and ® in (2.4) are well-determined within the interval 0 < ¢ < min(¢;,7),

where

1 1
t1 = Mlog(l -+ 10g2) < Mlog 2.

If we assume further that f(®(z),t) solves the Willmore flow equation (1.1), then 7 solves

the equation

3t77 = _WN(U)7 (2 5)

n}t:O =0;
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where

WN(U)| ) eT,>.

T

- W(f)‘:c - Df(atq)‘qu(z)

We will also need the following volume estimate.

LEMMA 2.5.2. There exists €5 > 0 such that f = fo + n defines an immersed surface

whenever

[ 17lg0 1 Aolgo + V1[5 ||, < €2, (2.6)

where go and Ay denote the metric and the second fundamental form of ¥q, respectively. In

fact, we have

’g - gO’go S b7

where 0 < b < % only depends on €o, and furthermore,

det(g)
det(go)

>1—-2b>0.

Proof. We can obtain

Oif = 0ifo — (90)“(7% (Ao)ir)Ocfo + Vin

and

gi5 = (90)i7 — 2(n, (Ao)iz) + (90)* (0, (Ao)ak) (n, (Ao)je) + (Vin, Vm),
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so that in particular,
|9 — g0l < 2[n[ | Ao| + [n*| Ao|* + [Vn*.
As a result, we can choose any

V2 -1

0<eg < 5

so that

lg— g0l <b=2(e2+¢3) <

DO | —

whenever inequality (2.6) holds. Moreover, we have

det(g)
det(go)

>(1=0b)—b"=1-2b>0,

so that f(3) is an immersed surface. O

CONVENTION 2.5.3. As tensors on Yg:

e VI =T— (T|t:O) as a tensor on Yo, where all vectors are considered as R™-valued so
that we can pull-back from ¥ to 3g via the map fo(x) + n(z,t). When expressing 6T

in terms of other tensors on Y, the subscript O that denotes t = 0 may be dropped.

o Given tensors 11, ..., T, on Xy and non-negative integers s, ..., ay, the notation
By(VTy, ..., VD)

denotes a polynomial defined by operators + and x, with coefficients bounded by some

c(n), and with variables being V’T}, running through 1 < j <k and 0 <1 < a;.
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e When T}, is not Ay,
By(VOITy, .., VORT)

denotes a polynomial that is of the form 180 (V‘“Tl, e ,V"‘ka) while also every term

has at least degree d.

o When T}, is Ay,
By(VOITy, .. V1T, VO Ap)

denotes a polynomial that is of the form ﬁo (ValTl, ceey VakAO) while also every term

has at least degree d in V'T; (1 < j <k —1) together.

We will compute in normal coordinates for ¥y. As mentioned in the proof of Lemma 2.5.2,

we already know

5(9R") = 07
3(0f) =n* Ay + Vi = P1(Vn, Ag), and

3(g) =n* Ay +nxn* Ag* Ag+ Vi Vi = Pr(Vn, Ap).
We should also compute

Vid(gi7) = V(= 2(n, (A0)i;) + 9" (0, (Ao)ix) (0, (Ao)je) + (Vin, V;n))

= Py(V*n, V A).
As a result,

3(dg) = 95(g) = Vi(g) = P,(V*n, VAy),
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so that

6(I') = 8(dg) + d(g™") * 8(dg) = Po(8(9™"), V*n, VAo),
and also,

Vid(g7) = 0k6(g") = 8(0kg”) = 6(=9"9" 0kgp) = PL(6(g™), V1. V Ao).
PROPOSITION 2.5.4. Let h = (h¥) be given by

S = ((90)7 4+ h7)(0; f,0cfo) = ((90)” + 1) ((g0)jk — (n, Aje)) Vi, k.
Then for n that satisfies condition (2.6),

Wy = W(fo) + A+ V3 % Ag + V2 % Py(VAg) + Vg # Py(V2Ag) + 1 % Py(VPAp)

+ Vi PU(8(g7Y), h, Vi, Ao) + Pa(8(g7Y), by V30, V3 Ay).
Proof. First assume normal coordinate on ¥ so that (Ay);; = 0,0, fo, and hence

0:0; f = 0:(0;fo + Vm — (90)*(n, (Ao)jx)0efo)
= 0;0;fo + V?ﬂ? — (90)*(V;n, (A0)ik) e fo — (90)" (Vim, (Ao) jx) Oefo
- (90)“@77 Vi(AO)jk>a€f0 - (90)“(7% (Ao)jk><f40)if

where the first bracket is normal to ¥y, and the second bracket is tangent to . Next, we
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have

6(Aij) = 6(0,0;f — g"(0;0; f, 0p f )0y f )
= 0(0:0;f) = (gh" + 0(g")) ({(Ao)ij + Vim — 0 * Ag + Ag, V1)

+ (V% Ag+ 1% VAo, Dy fo + 1% Ao)) (9 fo + 1 * Ao + V)

:v?jU+U*A0*Ao+V77*A0+77*VAo

+ V2« Py (6(g7"), Vn, Ao) + ]32<5(9_1>7 Vn, VA).
Taking contractions and derivatives, we have

S(AH) = N+ VP Ag + VP * (VAg + Ag x Ag) + Vi x (V2Ag + VA x Ay)
+nx (V3Ag + V2Ay * Ag + VAg * VAp)

+ Vi P(5(g7"), Vi, Ag) + Pa(3(g71), VP, V3 4,),
and also

5(Q(AO)H) = V2 x Agx Ag + Vi x Ag * Ag x Ag +nx (VA % Ag x Ay

+ Ag x Ag x Ag x Ag) + 182 (5(g_1), \arr VAO).
Therefore,

§(W) = A+ Vi« Ag 4+ VP« (VAg + Ag x Ag) + Vi (V2 Ag + VAg x Ag
+A0*A0*A0)+77*(v3A0+V2AO*A0+VA0*VA0+VA0*A0*AO
+A0*A0*A0*A0)

+ Vi PU(3(g7Y), Vin, Ao) + Pa(8(g7h), V3, V3 Ay).
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Finally,

S(Wy) = 6(W) — (W, 0, fo) ((90)” + 1) 0; f
= A"+ VP x Ag + V2 * (VA + Ay x Ag) + Vi x (V2Ag + VA * Ag
+ Agx Ag*x Ag) +nx (V3Ag + VA x Ay + VA x VAy + VA x Ay x A
4 Ag* Ag % Ay * Ag)

+ v477 * ﬁl (6(9_1)7 ha V777 AO) + ﬁ2 (5<g_1)7 ha VST]v VgAO) .

]

DEFINITION 2.5.5. Ifny, n2 are normal vector fields that satisfy condition (2.6), we denote

G (m1,1m2) = gij}n=n2 N gij|n=m - 5(971)‘77:”2 N 6<g71)|n=m'

Next, by distributive law, we can derive the following.

COROLLARY 2.5.6. If ny,m9 satisfy (2.6) and are two solutions for equation (2.5), then we

can consider n = ny — n1, which is a normal vector field on ¥y that satisfies

Oy + A% = 3" VR % Qp + G, m2) xS,

ﬁ}t:o =0,

where Q4 is of the form
Pu(0(g7 =i 609 s Vi1, V),
Qs is of the form

ﬁo (5(971) ’77:7]17 6<g71)‘7727127 v"?h VT]27 VAO)a
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Q2 is of the form
ﬁl (5(9_1) |77:7717 5(g_l)|77:772’ v2771a V27727 V3A0)a
and @1, Qo, and S are of the form

Vﬁl (5(9_1)|77:7717 5(9_1)|?7:7727 V37717 V3772> VAO)

+ Bo(8(9 Vnmm 59 e Vo, Vi, V2 4o).
LEMMA 2.5.7. For all ny,ny satisfying (2.6),

(G (m,m2)| < e (7] [ Aol + [V71]),
where 1 =mne —m and ¢ = c(g3). Also,

VG, me)| < e (] + [Vl + [V777]),
where

c = c(ez, [ Aoller, Imllez, Inalle2).-

Proof. Letting n = tny + (1 — t)n;, we have

0

agij:ﬁ*A0+ﬁ*n*AO*AO+Vﬁ*V777
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and hence

(—1)i+ ) )

- (911922 — 912) 5,95 — 9ii9225, 911 — 9139 2 2+ 250102
)2 1922 = 912) 5,9 — 9ig922 5, 911 — Gijgn 5, G2z 19125,912 |

(911922 - 9%2

where 1 = 3 — 1, etc. In particular,

(1=2b)""+ (1 —2b)72) (1 + %)

- (171 | Ao| + 17| In] |Ao|* + V7] [Vn])
c(1+&)(1+0?)

< SR (31401 + 970)
As a result, we have
8 c(l+e)(1+0%) - _
G )] < sup | 2gi| < SLEDUE) g0 o),
0<t<1 515 1—2b

Next, as mentioned earlier, we have
Vé(g™h) = ]31(5(9_1)7 v, VAO)-
Therefore,

VG(771, 772) = G(nb 772) * ﬁﬂ (5(9_1)‘77=771a 5(9_1)‘77=772? v27717 V2772, VAO)
+ 775 Py (3097 ) g 597 g V211, V2112, V Ao)
+ V775 By (60 ) nmnss (9 gmnas V211, V2112, V Ag)

+ VQﬁ* ﬁo (6(971”7):771 ) 5(971”7]:7727 V2771, v27727 V140)7
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and hence

VG, )| < e (] + VAl + [ V7]),

where

c=c(e, [Aollcr, lImlicz, Imallc2)-

[]

PROPOSITION 2.5.8. Let fy : ¥ & R™ be a complete, proper, immersed surface with

| Agllcs < 0o and
.. 4 o
h}gring 1o (Br(0)) = 0.
If ;- X x [0, T) = R" solves the Willmore flow equation (2.5) while satisfying (2.6) and
sup ”772”03 < 00, Vi = 1727
0<t<T
then ny = ns.
Proof. For any R > 0, we can find

XBr©0) <7 < X(40)2r(0)

as in Lemma 1.3.1 with K = R™! and ~ to be the restriction of ¥ on ¥. As in Lemma 2.3.2
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but with § =1 and V = 0, we have

d ~12 7 2712
— | PP du+ = | 4 IV212d
& E7|77| u+8/27| " du

< c/ Vi (Y + VAT + [Ao'T) dp + CR_4/ YR dp, (2.7)
. >

where ¢ is universal and

4
Y = Vi« Qr+ Gln,m) * S

k=0

by Corollary 2.5.6. Next, we have
/ VY dp < / V2 (4777 Q) % V2 dpu + / V(17 % Q) V2T dp
> > >
b [TV Qudt [ (7 V) < Qudn
) )

Thus, using integration by parts, Cauchy-Schwarz inequality, Lemma 2.5.7, and Proposition

A13,
-~ 1 S ~ S S— — ~
[rmevans (@) [2vaeace [or et miea,
2 2 P
where

¢ = c(ex, [ Aollcs, Imllcs, Imallcs).-

Moreover, we can choose €5 to be sufficiently small so that [[Q4]| < 15, and hence in

inequality (2.7), we have

d S|~ 3 S ~ S|~ — S— ~
G [t ] [ vt du<e [P er [ 2l
4 P 4 P P )

62



In particular,

d _ . )
G [ < e [ I du e R o (Ban0).
2 P

Since 7 = 0 at t = 0, by Gronwall’s lemma,
/ Y0P dp < e(e” — 1) R™*po(B2r(0)).
)
Fixing ¢, we take R— oo to conclude

[l an= g [ 2R =0,
by - Js

and hence 17 = 0 for all time, i.e., n; = ns. [

THEOREM 2.5.9. Assume that fy : X — R" is a smooth, complete, properly immersed

surface in R™ such that
liminf R~*119(Bgr(0)) =0, and
R—oo

for some 0 >0 and M > 0,

%(Qa O) <&

/ IV*Ao2duo < M, Yz €R" andk=1,...,5,
3oNBe(x)

where e1 is as gwen in Theorem 2.4.6. Let f = f; : ¥ x [0,T) — R", where i = 1,2, be two
solutions to the Willmore flow equation (1.1), then there exists tz > 0, only depending on n,

0, and M, such that f1 = fy for all0 <t < T = min(t3, T).
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Proof. Either let f denote f; or fy. As shown in the proof of Theorem 2.4.6, we have
#(0/2,t) <ego, VO <t <min(ty,T),
where ty only depends on n and p. Therefore, we can apply Corollary 2.4.4 and obtain that

sup  [[VFAl < e(to, 0, M),  Vhk=0,...,3.

0<t<min(to,T)

In particular, for all 0 < ¢ < min(¢y,T),

sup max [0, Dy f| = [VW(f) oo < [V?Allc + ¢ [ VA[l [l < e(n, 0, M).

ey Velx
lv|=1

Thus by Lemma 2.5.1, there exists t; such that f = fy + n can be determined for all

0 <t < min(ty,T), where 0 < t; <ty only depends on n, g, and M.

Next, we claim that

SUPg</<t, 10:VFn]|o < 00 Vk=0,1, and

SUDo<t<t, IVFD]|oo < 00,  VEk=2,3.

If the claim holds, since n = 0 at ¢t = 0, there exists ¢ such that (2.6) holds for all 0 < ¢ <

min(te, T'), where 0 < t5 < t;. Moreover, we can apply Proposition 2.5.8 and conclude that

Ji=fa

To prove the first part of the claim, we have
[nlloc < I =7l W ()llc  and  [[Vnllee < ([ = 7|[[[VW(f)]|s,

so that the required upper bound can be found, where 7 is as defined in Lemma 2.5.1. To
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prove the second part of the claim, recall that

3(Aij) = Vi + V2% Py (3(g), Vi) + P1(8(g), Vi, VAy)

J

= V2, [088% + P1(6(9), V)] + P1(6(9), Vi, VA).
Therefore, if 0 < t3 < t5 is chosen to be sufficiently small, then for all 0 < ¢ < min(t3,T),
085 + Pi(8(g), V),

as an 4 X 4 matrix with rows indexed by (i, 7) and columns indexed by (k, /), is invertible

with determinant at least ¢!, where ¢ = c¢(n, o, M) > 0. As a result,
IVl < c.

A similar discussion regarding 6(V A) shows
IV2nllee < c.

As mentioned, these conditions together prove the theorem. O

2.6 Type-I singularity

In this section, we give an analogous definition of type-I singularity for Willmore flows, and

show that it does not exist for all sufficiently small thresholds.

Let f: X x [0,7) — R™ be a Willmore flow with maximal existence time T € (0, co].

CONVENTION 2.6.1 (cf. [13, Section 4]). Given e > 0, we denote the time when energy in
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a r-ball exceeds e by the formula:

t(r,e) =1inf{t € [0,T) : s(r,t) > e}.

Note that by short time existence, for all 0 < e < ey, T —t(r,e) > ¢;'r?. In particular,

liminfr~" (T — t(r, e))l/ >c _1/4 > 0.

r—0t

DEFINITION 2.6.2. Given 0 < e < ey, we say f has a type-1 singularity with respect to

enerqgy threshold e if

t(r,e) <T for allr >0, and

limsup [r~ (T — t(r, e))1/4] < 00,

r—0+t

which in particular implies T < oco.

We will also consider the following definition for convergence of surfaces, as described in
the compactness theorem [13, Theorem 4.2|, which is a generalization for [15, Compactness

theorem|.

DEFINITION 2.6.3. Let f; : ¥; — R” and f: S = R be properly immersed surfaces
without boundary. We say that ¥; converges to 5 (locally smoothly up to diffeomorphisms)

if we can find numbers R; and functions p;, u; that satisfy the following.

e R, is an increasing sequence of positive numbers such that lim R; = oo;
1—>00

-~

o Foralli, p;: f(X)NBg,(0) = U; C Y, is a diffeomorphism, and u; is a smooth normal

vector field over f(f)) N Bg,(0) such that f; o p; = f + u;;

e For all R > 0, there exists ig = ig(R) such that for all i > ig, fi(X;) N Bgr(0) C f;(Uy);
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and

e For each k >0, lim Hvku’Hoo 1) =0
i—o0 ’

QBRZ‘ (0)

LEMMA 2.6.4. Let ¥ be a closed surface. For all 0 < e; < ey < g1, f cannot have a type-1

singularity with respect to both energy thresholds ey and es.
Proof. Pick r; ™, 0 such that

A\ = jlggo T;1<T _ tgz))1/4

converges for both i = 1,2, where
(@)
t

= t(r;, ).

By definition, we have tg.l) < t§~2) < T for all j. In particular, \; < Ag. Since each ¥; is

compact, we can find z; € R" such that

/ |At(2)‘2 dut@) = %(Tj,t§-2)) = es.
SenBr;(z) 7 i
We consider a sequence rescaled Willmore flows
—4,2) - 2
fi 2 x [P (T - £9))

by assigning

_ 2
fj(pa t) = rj l(f(p7 tg ) + T;lt) - 'rj)‘
While t = t? on the original flow corresponds to t = 0 on the rescaled flow, t = tjl- corresponds
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to

which converges to —(\3 — \1).

As shown in [13, pp. 432-433], by passing to a subsequence, f; converges to some f: S Re

for all —(\j — A1) <t < c;'o" in the sense as in Definition 2.6.3.

Observe that on f],

/\ |A§|2 d,u* = hrn |Aj’0|2 d/,tj’o = hm ’At(g) |2 d'ut<,2> = €9.
$NB;(0) I J%,nB1(0) I JenBy (25) g

Fix arbitrary 7 < —(\3 — A{) so that

(2) 4 )
0 <t +r7<t;

for all sufficiently large j. By definition, at time 7,

2 _ 2
/ |Ajr " dpjr = / Ao P dpe 4 < e
¥;jNB1(0) ENBy (z;) J J J J

whenever t§-2) +riT < tg»l). Therefore,

/ [Ag|* dp. = lim A * dpjr < eq < e,
$NB1(0) J=%0 J53,nB1(0)

a contradiction. O

THEOREM 2.6.5. For all e < €1, a Willmore flow [ of closed surfaces cannot have a type-1

singularity with respect to energy threshold e.
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Proof. 1If f has a type-I singularity with respect to some energy threshold e < ¢, then as

t(r,e1) > t(r,e),

we have
limsupr— (T — t(r,sl))1/4 <limsupr (T — t(r, e))1/4 < 00,
r—0+ r—0+

i.e., f also has a type-I singularity with respect to energy threshold ;. By the previous

lemma, f cannot have a type-I singularity with respect to e, a contradiction. O]

REMARK 2.6.6. The condition e < €1 1s not sharp, as the choice of €1 in Proposition 2.4.5,

Theorem 2.4.6 is not sharp.
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Chapter 3

Loojasiewicz inequality

In this chapter, we adopt from [17| the concept of weighted Sobolev spaces on complete
manifolds with certain asymptotic translation invariance. We then conjecture fojasiewicz

inequality for Willmore flows near such Willmore surfaces while showing some partial results.

3.1 Weighted Sobolev spaces

DEFINITION 3.1.1 ([17, Section 1|). An m-dimensional differentiable manifold ¥ is said to
have finitely many ends if for some compact subset ¥ with smooth boundary, there exists a

diffeomorphism
Y\Xo ~ 0% x Ry.
For convenience, we also denote the number of ends as L, and denote

Yr=3%0U (0% x (0,R)).
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Throughout this chapter, we will always assume that Y is a manifold with finitely many

ends.

DEFINITION 3.1.2 ([17, Section 2|). 1. A tensor on 0¥y x R (or the restriction of one
onto 0¥9 xR, ) is said to be translation-invariant if it is invariant under the R, -action

(w,2) = (w, 2z + 20), V2o > 0.
2. A Riemannian metric g is said to be admissible if g = e*h, where:
e h is an asymptotically translation-invariant metric on 0¥y x R, i.e., for some

translation-invariant metric ho, and all t € Zs,

lim sup |D' h— D! holn, =0,

zZ—00 wEIX

where Dy, denotes the covariant derivative induced by hoo; and

e pc C™®(X), and for some translation-invariant 1-form 0 and all t € Z>,

lim sup \D%lp — th)H\h =0,

zZ—00 wedXg
where Dy denotes the covariant derwative induced by h.
We denote the covariant deriwative induced by g as D).
It is worth mentioning that for fixed g, the background data h, p, etc. are not unique. In
fact, we have

THEOREM 3.1.3 (Lockhart, [17, Theorem 2.9|). If g = €*h is an admissible metric, then
g = e¥h for some asymptotically translation-invariant metric h and p € C®(X) such that

on each connected component of 0% X Ry, p only depends on z.

CONVENTION 3.1.4. e Given ¥ and q,r € Z > 0, denote the bundle of (r,q)-tensors
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as
TIY == (T*2)® @ (TS)®,

and, as usual, denote the bundle of differential q-forms as A93.

e Given a vector bundle E on X3, let I'(E) denote the space of measurable global sections
on E, and let C{°(E) denote the space of smooth global sections on E with compact

support, correspondingly.

DEFINITION 3.1.5 (|17, Section 1]). For s € Z>o, 1 < p < 00, and a tensor bundle E, we

define

s 1/]7
Li(E) = qo e T(E) : Yo € C5°(¥), (Z/Z | Dy (0a)[f dug) <0
t=0

Note that Ly*(E) does not depend on the choice of g.

loc

CONVENTION 3.1.6 ([17, Section 3|). Let RL be identified with the set of locally constant
functions on 0%y x Ry. R is equipped with the natural partial order: § > &' if §; > &; for
allj =1,..., L, while § > ¢" if §; > &} for all j. In addition, given ¢ € RE, §z extends to an

unspecified smooth function on X, and is hence identified with the extension.

DEFINITION 3.1.7 (|17, Definition 4.1|). Given an admissible metric g, 1 < p < oo, § € RE,
and a € R, we define the weighted Sobolev space for s € Z>q that
WiH(B,g) = {o € LI(E) : [lollwss < o).

loc

where

s 1/p
||0'||W;ap = <Z /E |662+(t+a)pD€g)0-|]; d#g) ,
t=0
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omitting E when referring to this norm; and for s € Zq that W;f(E,g) is the dual space
of W:(;S,’f);(E,g), where 1/p+1/p' = 1.

Moreover, we identify u € C3°(E, g) with £, € WP (E, g), defined by

0, W:;’f’;(E, g) — R
v — /(u,v)g dpg -
>

For convenience, we also define seminorms

s 1/p
Iolhwzzis) = (Z [t dug>
t=0

for all measurable set S C X.

Weighted Sobolev spaces are defined this way to make sure the following differential operators

are continuous maps. See Proposition 4.6 and Corollary 4.7 of [17].

LEMMA 3.1.8. Gwen s € Z>o, ¢ > 1, and V', a global smooth vector field on ¥, if
SLle e(a_“+t)p|ng)V|g <oo,Vt=0,...,s

for some @ € R, then contraction with V' defines a continuous map
w WEHTIS,g) — Wi (T3S, ).

Proof. Observe that for all t =0, ..., s,
|eéz+(6+t)PD'(59) (tvo)(g)

t
<e Y DIV ) Dol )
b=0

73



IN
@)
]~

a—a-+t—b —b dz+(a+b b
(6( - )p|ng) V|(g))(€ +(+)p|D(g)U|(g))

b=0
t
6z+(a
<c |92+ +b)pDé’g)a|(g).
b=0
The rest of the proof is trivial. O

CONVENTION 3.1.9. For the rest of this chapter, we will consider the scenario when X is

a m-dimensional immersed submanifold in R™, say f: ¥ ¢ R™.

Let g be the induced metric on X, which we will assume to be admissible. Let € = f*(TR"),
which 1s the trivial vector bundle of rank n, and let N denote the normal vector bundle,

which is a sub-bundle of € of rank (n—m). Let P denote the orthogonal projection £ — NX.

Let W;f(TTqZ ® E,g) be as given by Definition 3.1.7, i.e., the weighted Sobolev space of R -
valued q-forms on ¥. Let W7 (TIX ® N, g) denote the closure of C5°(T¥ ® NX) as a
subspace of W7 (TIX ® &, g).

REMARK 3.1.10. Note that the conventions and many of the following results also apply

for AT ®@ N by setting r = 0. However, we will focus on (0, q)-tensors.

PROPOSITION 3.1.11. For all q, the projection map
PWSHTIS @ E,g9) = Wi (TIS ® €, g)
1s continuous. In addition, if for some B € R and sq € Z~o,

s%p(e(t“)(l’ﬂ)p]V’EQ)A|9) <00, Vt=0,...,580,
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then for all s € 7 such that |s| < s,
P:WP(TIX®E,9) = W;f_ﬁ|8|(T§E ®E,9)
18 continuous, where when s < 0,
P:WNTIN®E, g) = Wl 4 (TS ®E, g)
s given by
(Po)(p) = o(Pp), Y € WP, , (TIS R E, g).
REMARK 3.1.12. We will often assume a slightly stronger condition:

.

B=>0

po = i%fp > —00, and

\Ct”g = sgp(e(t“)(l’mp]VEQ)A\Q) < o0, Vt=0,...,so.
Proof. (i) First, we claim that when s > 0, for all 0 € C§°(T2X ® NY),

|Pollwzs . < cliollws.

The case for s = 0 is trivial because derivative is not involved. In fact, ¢ = 1.

For s > 0, we see that for all 0 <t < s (cf. Lemma 1.3.2),

k
|ng)(PU)‘g < cft) Z (’DE;)‘ﬂgH |VZ,)A’9> :

§0,00,i5 >0 j=1
G0+ +ig k=t

1)

(3.1)



In particular,

65z+(a—ﬁs+t)p|Dv(fg) (PO‘) |g

k
< C<t>65z+ap Z <€B(t—s—z’0)p zgp|Dzo O’| H (1;+1)( p|v | ))

10ye-0y0 >0 7j=1
0+ +ip+k=t

t
< c(t)e MOy (I D al),

10=0

so that

1Pollwsr , < e(s)e™™lo e

(ii) For all o € WX (TIX ® E,g), where s > 0, by Corollary 4.5 of [17], we can find a
sequence {o;} in C§°(TX ® £) such that

lim |lo; — UHWsp = 0.
j—o0

Thus

Jm |[Poj = Poyllwgz,, < ¢ lim loj = oxllwgz =0,

so that { Po;} converges to some 7 € W57 , (TIX® &, g).

It’s not hard to see that for all ¥ € Cg°(X), v Po = 7. That is, Po = 7.

(iii) For s < 0, we have

1Py
< |loflwzr sup

||PU||WSP || ||
©#0 [P W:;Lp/a,g

§,a+fs

and hence P is continuous.
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COROLLARY 3.1.13. Under the same condition,

Vi =PoDy : W P(TIE @ NS, g) = Wl g (TS @ NI, g)

18 continuous.

In view of Theorem 3.1.3, § and a are interchangeable. Nevertheless, we can rewrite the
Sobolev embedding and compactness theorems [17] for a instead of ¢ without using Theorem

3.1.3.

PROPOSITION 3.1.14 (Weighted Sobolev embedding). Given s,5 € Z, 1 < p,p < o0,
5,0 € RE, and a,@ € R, if

(i) i%fp > —00,

(i) s =5 >m/p—m/p,

(iii) s >3 >0,

(iv) p <P with 6 > 6 or p > p with § > §, and

(v) a+m/p>a+m/p,

then the identity map

1S continuous.

REMARK 3.1.15. By Theorem 4.8 of [17],

o 5
Wé,a (E’ g) - Wg,a-l-m(l/p—l/ﬁ) <E’ g)
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15 continuous. Thus it suffices to show continuity of
5,p
Wg,a-i-m(l/p—l/ﬁ)(E? g) - d,a

or equivalently, the special case of the proposition above when s =3, p =P, and 6 = 6.

Proof of Proposition 3.1.14. As in the remark, we assume a > @ and will show that the

identity map
Wi (E,g) = W32 (E, g)

is continuous. Indeed, the aforementioned map is bounded because by definition,
lollwzr < e @D |a|lyer,

where pg = inf p. m

COROLLARY 3.1.16. Under the same condition,

(i) Wsa(E, g) is embedded into W;g(E, g) as a dense subspace, and

(1) Wi (TP ® NY, g) is embedded into ngf(TﬁE ® N3, g) continuously as a dense sub-

space.
In particular, the embedding maps are Fredholm operators with Fredholm indez 0.
Proof. (i) By the proposition, we have

C5*(E) C Wy (B, g9) C W2(E, g).
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By Corollary 4.5 of [17], C§°(F) is dense in W;g(E,g), and hence W7 (E, g) is also

dense in W;?(E,g).
(ii) For all o € WP(TI¥X @ N3, g), let {o;} C Cg°(TX ® NX) such that

Jlim floj — oflwgr = 0.

By the proposition, there exists ¢ > 0 such that

Illwzr < clirliwge, V7 e Wi (TI2 @ NX, g).

This implies

lim [loj — oflyzz < ¢ lim floj — oflwzr =0,

and hence o € W;g(Tqu ® N3, g). In addition,

lollyzz < clloflwsz,

so the embedding is continuous. Finally, observe that

Co(TIE @ NX) C WyP(TI$ @ NX, g) € WS (TIS ® N, g),

P(TI% ® NX, g). Therefore, W; (T @ NX, g)

while C5°(T72 ® NX) is dense in W=

is dense in W22(T9%X @ NX, g).
O

THEOREM 3.1.17 (Weighted compact embedding). Given s,5 € Z, 1 < p,p < 00, 6,0 € RF
and a,a € R, if
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(Z) ZL\IEO wé%Eo p(w7 Z) b

(ii) 55> mfp—m/p,
(iii) s > 5 >0,

(i) p <P,

(v) § > 6, and

(vi) a+m/p>a+m/p,
then the embedding

Wi (TIX @ NX, g) = W2X(TI¥ ® N3, g)

18 compact.

Proof. Denote 7 = a — @ + m/p — m/p, which is a positive number by hypothesis. First,
condition (i) implies igf p > —oco. Thus by Proposition 3.1.14,
Wi (TIS @ NX, g) = W2X(TI¥ ® N, g)

s,

1s continuous.

Next, consider the Banach space defined in Definition 3.4 of [17]:
WiP(TPE @ NX) i= {0 € L (T/X @ NX) : |[oflws» < oo},
where the norm is given by

s 1/p
ol = (Z/E|65ZD<g)a|gdug) .
t=0
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By Proposition/Definition 4.4 of [17],

Kop: Wil(TIS®NS,g) — Wi(TI8@ NY)

o —  elatr—g+m/p)p,

is an isomorphism. Therefore, we have the following commuting diagram:

WP(Ti¥ @ NY, g) —— WX(TI¥ @ NY, g)

Ka,pll KE,E i

WP (Ti8 @ N) —2— W2P(TIL @ NY)

where o = e7"P0. Since the vertical maps are isomorphisms, it suffices to prove that ¥ is

compact.

Let {o,} be a bounded sequence in W;*(T9X @ NX). WLOG, let
sup [|o[lwz» < 1.
J

Since V¥ is continuous, {Vo;} is bounded in Wg’ﬁ(TﬁZ ® NX). For all R > 0, by Rellich
theorem, there exists a subsequence, which we still denote by {W¥o;} by abusing notation,

that converges on X in the sense that

Jim (|9 (05 = 1)z s, = 0.

In fact, using diagonal argument, we can find a subsequence such that

j}ciinoo H\II(O'J — Uk)HW;’?(ER) =0,VR > 0.
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By Lemma 3.11 of [17], we have

190l sam) < € 1¥0slwzeem0)-

Moreover, the right hand side can be estimated by

1/p
T2 (Z / 652Dl (e o) duh>
on(ROO

1/p
< cgr / 9 DL oilP
(tz; 850 % (R,00) (h) 93l (n) “Fn

= CR||0-J'||W§”’(E\ZR) < Cg,

where

cr =c(s) sup Z |D e ) < c(s)exp(—7 _inf Z |D(h Pleny-

80 (R,00) BEoX R,00)

Since |Dj;,)p|(n) is bounded by Definition 3.1.2 and

lim inf p=

R—00 £\Xp oo

which equivalent to condition (i), we have
lim cg = 0.

R—o0

In particular, for all € > 0, we can choose sufficiently large R such that cg < €/3. Also, we

can choose sufficiently large jo such that

€ . .
[¥(o; — Uk‘)”wjﬁ(zm) < 3’ Vi k = Jo.
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Therefore, by Minkowski’s inequality,

W (oj = ou)llwsr < [19(05 = o)llwirs, T 1905llwsrens,n T 1Y0klwirs s, <€

whenever 7, k > jo. That is, the subsequence converges. O

REMARK 3.1.18. Disregarding conditions (iv) and (vi), if § > § and a = @, the theorem

reduces to Theorem 4.9 of [17] for arbitrary p,D.

REMARK 3.1.19. If p=7 =2 and § = §, then condition (ii) is implied by condition (iii),

conditions (iv) and (v) are satisfied, and condition (vi) reduces to “a > a”.

3.2 Lojasiewicz inequality for Willmore flows

As pointed out in Theorem 5.2 of [17], given X, g, p, ¢, and a, the Laplace operator for

scalar-valued functions
Ny WiEP(8, g) = WiP(S, g)

is Fredholm for a.e. § € R, but not necessarily for all 6. Therefore, for specific choices of §,

we need to prove otherwise.

We will fix p = 2 and assume condition (3.1) for § = 0 and s; = 1. In particular, by

Corollary 3.1.13 and Proposition 3.1.14,
A Wik y(NZ, g) = Wi (NE, g)

is continuous. In addition, we fix arbitrary 6 € R and a € R.

83



We define a bilinear form on W;’ ;1272(N ¥, 9):

B(u,v) := (Vu, VU>W§,2

,a—1

Also, for all u € W;fo(NZ,g), we define B(u) = v if v € W(gf(NZ,g) and

B(u,v) = —(v, e—zpwwgf for all 1) € C°(NY).

We can immediately see the following:

LEMMA 3.2.1. For allu € W;fiQ(NZ,g), we have u € Dom(B) and
Bu = Au— 2V (5. +(a—1)gradp) U € W(Sf(NE, 9)

In particular,
W2 ,(NS,g) C Dom(B).

Proof. Observe that for all ¢ € C{°(NX),

= (D, e )y00

= (V" Vu, e 1) 0

= /2 X2 (7 Ty, e 2Peh)

= [ (Tu v ), a,

= B(u, ) + / ?* 2P (Tu, (26 dz + 2(a — 1) dp) @ ¥), dpug

by

= B(u, ¥) = (V2st.+2(a-1)aradp)Us € ") 00

and hence the aforementioned formula for B follows.
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LEMMA 3.2.2 (Coercivity). There exist sufficiently large { > 0 and sufficiently small n > 0
such that for all u € W(S{;ZQ_Q(NE,g),

B(“?“) +C”u||$/[/0»2 > TIHUH‘Q,VLQ .
§,a—2 §,a—2
Proof. For all u € W;f_Q(NE,g), we have

B(

<

,u) +CHU\|€V§’§72

Il
N
PR

6252+2(a—1)p|V(9)U|Z d,ug> + CHUHIQ/fo

®

W
— T —r——

25z+2(a71)p(‘D(g)uyz — (PDyu, D(g)u)g) dpg + CHqu}V&i2

2D (| Digyuly — 979" (Dig)u, Digyy Y Digy o f, Digy ) dpag + Cllull oz

| Dgyulg + 679" (Dig) 1 Digy o ) (Dig); Digy o fr ) dpag + Cllullfyoa

626,2-&-2(11—1),0(u)(g)u’f7 — ‘A’g’D(g)u‘g‘U’) d,ug + CHUHIQ/V(?(E,Q

v

z a— 3
0202+2( l)p(Z‘D(g)uE _ |A|§|u’2) dug + CHuH?ygf_z

3
[1625z+2(a—1)p|D(g)u|§ + 625z+2(a—2)p( . 62p|14|§ + <)|u|2} d,ug

3
[16252+2(a—1)p‘D(9)u|3 + 6252+2(a—2)p (C . 00270) |u’2j| d,ug

Vv

\
=1
=

a—2

N
P"gr—l
N

for some sufficiently large ¢ > 0 and sufficiently small n > 0. m

LEMMA 3.2.3 (Regularity). Let s > 0. For all u € Dom(B), if Bu € W;f(N27g), then
u € W;:E’QQ(NZ,g). Moreover, for all u € Dom(B),

HuHW(ssﬁ,Qz <c (HUHW;f_Q + HBUHWQf)'
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Moreover,
Dom(B) C W;fJ(NE, q9).

Proof. Let U = {(U,, ¢a)} be an atlas, i.e., an open cover {U,} for 0¥, and coordinate maps
Yo Uy = By(0) C R™

We denote V,, = ¢! (B1(0)) and

q)a . Ua X R+ :> BQ(O) X R+
H

(w, 2) (a(w); 2).

Since 0% is compact, we can choose U such that {U,} is a finite open cover of 9%, that

{V,} also covers 0%, and that
cMd < (®,')*h < cld

for some 0 < ¢ < co. We will abuse the notation and identify h with ®}h, etc.

For all u € Dom(B), consider e=20*~(20=44mry; a5 g test function, where ¢ € C°(NY) is

supported on U, x R,. We hence obtain

/ G LI S v (6—25z—(2a—4+n)p¢)>g dpg
s, (3.2)

_ _/ e25z+2a,o<Bu7 672527(2a72+n)pw> d/Lg )
UQX]R+

For the left hand side of equation (3.2), we see that

(Vigyu, V(g (e 22 Bamttmeyy)
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= 97(0yu, V (g) (725 Bt mry))
= 2= g (D, (0500 — 0;[262 + (2a — 4+ n) ]t + g* (A, V)0, f))
— 6_253_(2‘1_4”)"9“ ((&u, ;1) — 0[20z + (2a — 4+ n)p](Diu, )

— 9" (A, w) (Aj, ).

Therefore, equation (3.2) can be rewritten on the coordinates as the following:

/ e /det(g)g¥ (Diu, 05) du
BQ(O)XRJr
= [ e g o5z + (2a—4-+ nplow, ) da
Ba(0)xR4.
+ / P70\ /det(g)(g" g* (A, u) Agp, ) da
BQ(O)XR+
_= — / e_np \/ det(g) <€2pBu’ ¢> dI
Ba(0) xRy

By construction, we have

¢ '1d < 7P /det(g)g” < cld,
o(2-1)p det(g)gijé?j [202 4+ (2a — 4+ n)p] < ¢ for all i,

e® P\ /det(g) gV g™ | Aul |Aji| < ce*|AJ2 < ¢, and

e "Py/det(g) < ¢,

where ¢ = ¢(Cyo,U, h). As a result, by Theorem 8.10 in [8|, we have

[l w220 < e (JJullwre@) + e Bullwe2),

where = By(0) x (K, K 4+ 3) and ' = By(0) x (K + 1, K + 2) for arbitrary K > 0. By
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definition of the weighted Sobolev norms, we have

||U||W§’ﬁ*§(va X(K+1,K+2))

s+2 1/2
_ (Z/ | dz+(a—2+t) th u’2 d,ug)
t—0 Y Vax(K+1,K+2))
s+2 1/2
<c Z/ 26z+(2a—4+n) p|atu|2 d!l?)

<ec Sup 202+ (2a—4+n)p ||u”Ws+22(Q/)
2€(K+1,K+2)

<c sup  eXFFEarde ) (lullw29) + H€2’JBU||WS2 @)
2e(K+1,K+2)

=c sup e26z+(2a—4+n)p
2€(K+1,K+2)

1 1/2 s 1/2
: [(Z/ |8tu|2dx) + (Z/ |8t(62péu)|2dx> ]
t=0 /€ t=0 /&
<c sup 62(52+(2a—4+n)p
2e(K+1,K42)
0 1/2
Z/ 6725z (2a—2+n) p|eéz+ a—4+t) th u|2 d/Lg
0 J Ua X (K,K+3)
s 1/2
+ (Z / e—262—(2a—4+n)p|€5z+(a+t)pD7(tg) (Bu) |3 d,ug) ]
t=0 QX(K’K+3)

<c sup e26z+(2a—4+n)p sup e—26z—(2a—4+n)p
z€(K+1,K+42) 2€(K,K+3)

) (H“”W;fﬂ(Uax(K,KJrz)) + ||B“||W;f(Uax(K,K+3)))

Note that p only depends on z. Observe that

log sup  e2r(a—dtn)p sup e 2r—(2a—tn)p
z€(K+1,K+2) 2€(K,K+3)

= sup (20z2+2a—4+n)p)— inf (202+ (2a —4+n)p)
2€(K+1,K+2) z€(K,K+3)
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<2 swp [0.202+ Qa+n)p) <.
2€(K,K+3)

and hence
||u||W;ii‘;(vax(l(—i-l,l(—ﬂ)) <c (||“||Wif72(Uax(K,K+3)) + ||Bu||W§7*f(Ua><(K,K+3)))‘

Similarly,

||u||W§:3,22(21) <c (||U||W51,372(22) + ||Bu||wg7f(22)>'

As a result, we have

a K=0

o0
2 2
<c (HUHW;@ZQ(EQ) + Z Z Hun(;;iQ(Uax(K,K—i-?)))

a K=0

~ 1/2
_ 2 2
HUHW;ﬁ’QQ = (Hunng’Q(zl) + Z Z Hu”wgfﬁ(vax(K+1,K+2))>

. 1/2

I B 12

+ HBuHW;,Ez(ZQ) + Z Z HBUHW&{f(Uax(K,KJr:&)))
a K=0

B 1/2
< (s +1Bulf,.)

< c(llullyre | + 1 Bullyez).

In particular, u € W;:E’QQ(NE, q9).

Finally, we can take s = 0 and obtain Dom(B) C W;f_2(NE, 9). O
By comparing Lemmas 3.2.1 and 3.2.3, we conclude that
Dom(B) = W;2 ,(NX, g).

PROPOSITION 3.2.4. Assume lim i%fE p = 0o and condition (3.1) with B =0 and so = 1.
Z—00 wE 0
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Then given k € Z and € > 0,
A W2 (NS, g) = W2 (NX, g)
1s Fredholm with Fredholm index 0.

Proof. By Lemma 3.2.2 and Lax-Milgram theorem,

Wi2 J(NS,g9) — WyZ(NS,qg)

u — Bu+ (e % u

is an isomorphism, where ¢ > 0 is as given in Lemma 3.2.2. As a result, for all € > 0,

W(SQ,f—Q(NE?g) - WOQ (Nzag)

d,a—e

u —  Bu+ (e 2%u
is Fredholm with Fredholm index 0.

In addition,

Wi? ,(NS,9) — Wi 2(NY, g)

Uu = _2v(68z+(a—1)gradp)u + CeiQ’DU

is continuous. Thus by Theorem 3.1.17,

WiZ J(NS,g) — Wy (NX,g)

Uu = _2V(582+(a—1)gradp)u - Ce_qu
is compact.

Therefore, by Lemma 3.2.1, A : W52’212_2(NZ, g) — ng_e(NZ, g) is Fredholm with Fredholm
index 0. O]
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COROLLARY 3.2.5. For all e > 0,
Ny W2 (NS, g) = W2 (NX, g)
15 also Fredholm with Fredholm indez 0.
Proof. First, observe that by Proposition 3.2.4,

2,2 0,2
A(9) : W5,7a+25<NZ7g) — W,(;,,QJFE

(NZ, 9)
is Fredholm with Fredholm index 0, and hence its dual map,
A(g) : W(g;?fzs(NE’ g) — W(;fiés(NE, g)a

is also Fredholm with Fredholm index 0.

Finally, since both operators are Fredholm with Fredholm index 0, the composition is also

Fredholm with Fredholm index 0. O

CONVENTION 3.2.6. Let fy : X — R" be a complete, properly immersed Willmore surface.

Let F' denote the Willmore energy in any of the following forms:

1
» Pl = [ 14Fdn
1
¢ Pl = [ 1P,
1
o F(n) = 5/21,4012@1”, or

1
o Pl =5 (AP du— [ Awf dy),

where Aw and A denote the second fundamental forms of fw (3) and (fw +n)(X2), respec-

tiely, and pw and p denote the volume forms of fw (X) and (fw + n)(X), respectively. As
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usual, H = trA and A° = A — %Hg.

PROPOSITION 3.2.7. If A, VA, V2A, and V3A are pointwise bounded:

(i) There exists an open neighborhood 0 € U C W(if(NE,gW) where g = (fw + n)*grn s

uniformly equivalent to gy,
(i1) F is well-defined and analytic on U, and

(i1i) The second derivative
D2F(0) : W2 (NS, gw) — W, “2(NX, gw)
1s Fredholm with Fredholm index 0.
Proof. (i) First, let 7 satisfy

XBr(0) <7 < XBpya(o for some R > 0 and

|DA] <2,

and let v = ﬂz Then by Lemma 2.1.5, we have that for all n € W[i’g(NE,gW),

7l = Jin 7] o

.. 1/2 1/4
< e Timinf nlly/2 oo (V115 o0y + 1713 0 + 1AW 01l 50)

< (14 [[Aw o) Inlhyzs-

Similarly,

190l < e (Ut [[Awlloc) Inllgzz-
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Thus by Lemma 2.5.2, we can find an open neighborhood U C W(if(NE,gW) of 0

where mapping n € U to g~ € L>®(T23, gw) is well-defined and continuous.

Using the formula for A in the proof of Proposition 2.5.4, by abusing notation,
Ay = (Aw)iy + V0 + (V2 + Vi + 1)« By (3(g7"), Vi, VAw).
Therefore, the integrand in F'(n) can be rewritten as
A2 dp — |Aw 2 dpw = (V20 + Vi +0)%% % Po(6(g71, Vi, VAw) dpww -

Recall that n € L?, Vi € L2, V?n € L% and everything else involved in L™ are

continuous with respect to n € Wé E(N Y, gw), and hence F' is continuous on U.

Moreover, every term involved are analytic (cf. [4, Lemma 3.2]), and hence F' is also

analytic.

(ii) By Proposition 2.5.4, DF : U — WOTE’EQ(NZ, gw) is given by

DF(n) = Wx(n)
= A%+ V3« Ay + V2 * (VAw + Ay * Aw)
+ Vn * (V2Aw + VAw * Aw + Aw * Ay * Ay)
+nx (V3Aw + VZAy * Ay + VA * VA
+ VA x Aw x Aw + Aw * Aw * Ay * Ay)

+ B (0(g7Y), b, Vi, V3 A).

Taking derivative, we obtain that D*W(0) : Wéf(NE,gW) — W&OQ(NZ,gW) is given
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D*W(0)(v) = A*v + V30 x Ay + V30 * (VA + Ay x A)
+ Vo (V2Aw + VAw * A+ Ay * Aw * Aw)
+ v * (VSAW+V2AW*Aw+VAw*VAW+VAW*AW*AW

In particular, by hypothesis and Theorem 3.1.17, (D*W(0) — A?) is compact. There-
fore, by Corollary 3.2.5, D*W is Fredholm with Fredholm index 0.

In view of [3, Corollary 3.11] and [17, Theorem 5.2] (cf. [18]), the following is conjectured:

CONJECTURE 3.2.8. Let fyy : X — R"™ be a Willmore immersion that is complete and

proper, and satisfies condition (3.1) for some >0 and sy = 1. Then:

(1) There exists Da C RE, which is a union of hyperplanes and is of measure zero, such

that for all § € R¥\Da,
D Wy 5 (N, g) = Wi 5(NE, g)

1s Fredholm with Fredholm index 0.

(2) Let F be as described in Convention 3.2.6. Then for all 6 € RI\Da,
D*F : W32, 4(NS, g) = Wi %(NS, g)

1s Fredholm with Fredholm index 0.
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(3) For all § € RA\D,, the restriction
D*F : Wi, 6s(NS, g) = Wi (NE, g)

1s well-defined, and the image is a direct summand for a finite-dimensional subspace.

(4) Moreover, for all 5 € RE\Dx, F satisfies the Lojasiewicz—Simon inequality: there

exists § € (0, 1] such that for allv € U,

[F(m) = FOI"" < CIIW(fw + n)llwoe-

REMARK 3.2.9. When fy (%) is a plane, the normal bundle is trivial, and hence statements

(1) and (2) are proved in [17].

3.3 Examples

=2

EXAMPLE 3.3.1 (Plane). Let X be the plane {x3 = 0} in R3. 35 = B{(0) x {0} and ¥\3,
is parameterized by the logarithmic polar coordinate ®(w,z) = (e*cosw,e*sinw,0) for all

weR/2m and z € R,. Also, L =1.

The induced metric g = e*(dz* + dw?) is equal to €*’h, where:

o h=ho =dz*+ dw?, which is a translation invariant metric, and
o p= %, making Dp = 6 = %dz a translation invariant I1-form.

ExXAMPLE 3.3.2 (Catenoid). Consider a catenoid

Y = {(z1, T, 23) € R® : y/23 + 22 = cosh(z;)}.
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We let 3o = {x = 0,y* + 2* = 1}, and let X\Xg be parameterized by
®;(w,2) = ((—1)z, cosh z cosw , cosh zsinw)

forallj=1,2, w e R/2mw, and z € Ry. Also, L = 2.

The induced metric g = cosh z (dz* + dw?) is equal to € h, where:

o h = hy = dz® 4+ dw?, which is a translation invariant metric, and

e p =log(cosh z/2), where Dp = tanh z dz satisfies that lim,_,, sup, |Dp — dz |, = 0.

In addition, the second fundamental form is given by
Ay = (- d2® + dw®) ® 7,

where the unit normal vector is

A

nl, = ((—1)’ tanh 2, — sech z cos w, — sech z sinw).
D (w,z)

In particular,
|A(g)|?g) = 2sech z = 2¢~ .
In addition, it may be useful to know

VA |?g) = 4tanh? zsech® z < 4e™%,
IV*A |%g) = 18tanh? zsech” z — 12tanh? zsech® z + 4 sech® 2 < 227,

IV3A, |%g) = 144 tanh® z — 288 tanh” z sech? » + 242 tanh® z sech” z < 386.
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EXAMPLE 3.3.3 (Costa surface). Consider the Weierstrass representation for minimal sur-

faces:

[1-G)Fd¢
X()=Re | [iQ1+GHFdC|,
[2FGd¢

where F' = F(¢) and G = G({) are meromorphic functions. Writing ( = u + iv, we have

10.X] = [10,X]| = A+ |GPIFI, (9.X,0,X) =0.

Costa showed in [6] that for all a € R\{0},

F(¢) = p(C) and G(C) =

o)’

where p(C) denotes the Weierstrass p-function with respect to the lattice A = Z +iZ, defines
a complete minimal surface of genus 1 with 3 ends and total curvature —12w. This surface
1s referred to as the Costa surface. One of the ends is “planar” while the other two are

“catenoidal.”

Denote ¥ = (C/A)\{Q1,Q2, Q3}, where Q1,Q2, Qs are represented by %,O,%, respectively.
Let ¥y = E\(Bl/4(Q1) U B1/4(Q2) U Bl/4(Q3)). We let ¥\Xq be parameterized by

1 )
@j(w, z) = Qj + Ze—z-i—zw

forall j =1,2,3, w € R/2w, and z € Ry. Also, L = 3. Consider the translation invariant

metric

1
Boo = d2° + dw? = 1—66*2Z(du2 + dov?).
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As pointed out by Costa, F has a order-2 pole at Q3, G has order-1 poles at Q)1 and Qs,

while both are holomorphic elsewhere. Consider the metric induced by X : ¥ — R3:
g = (14 |G»?F*(du® + dv®) = e*h,

where p = 3z + b with b being a real constant on each component of ¥\Xo. This makes g

satisfy item 2 of Definition 3.1.2.

Since X (X) is minimal, by [27, Lemma 9.1],
4v/2|G’
4], = VIR = V2

EEERR

In particular, in a sufficiently small neighborhood of each (),

|Al, < Ce ™ < Ce 3",

For more examples and properties of complete minimal surfaces in R3, see [27], [33], etc.
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Chapter 4

Stability of Willmore surfaces

4.1 Gap phenomena and low energy convergence

Assuming small total energy, we derive rigidity results for a Willmore surface to be a plane
and a Willmore flow to converge to a plane when given sufficient conditions to converge to

some surface.

PROPOSITION 4.1.1. If f : £ x [0,T) = R" is a Willmore flow and W(fy) < 3¢0, then

3o

1 t
/ \At’2dut—|—§// (|VAt,’2+\At,’6)dpt/dt’§/ ’A0|2d,u0
= 0 Jz,

for all t.
Proof. For any R > 0, we can find

XBr(0) <7 < XByr(0)
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as in Lemma 1.3.1 with K = R™! and v to be the restriction of 5 on ¥. Consider

€(t7R) = / |At|2d,ut,
3tNBR(0)

and
to(R) = max{t € [0,T] : V7 € [0,1), e(7, R) < &¢}.

As in part (ii) of the proof of Proposition 2.4.5, a continuity argument using Lemma 2.3.4

shows that

to(R) > min {T, R (1 — 551/ | Ag|? d,uo) } )
3o

However, by definition, ¢o(R) is decreasing in R, so we can take R— oo on the right hand

side and obtain to(R) = T for all R. Equivalently, for all 0 <t < T, e(t, R) < g¢ and hence

/ ‘At’2 dﬂt = lim €(t,R> S 0.
o R—o0

Next, we use Lemma 2.3.4 on all 0 < ¢ < T and obtain by monotone convergence theorem

that:

1 t
/ ’At’2 d,ut + - / / (‘V2At/ -+ ’At/‘ﬁ) d,ut/ dt,
Zt 2 0 Etl

1 t
= lim / ‘At’2 d/,l/t + —/ / (‘VQAt/ + |At/‘6) d,LLt/ dt/
R—=o0 \ Js,nBR(0) 2 Jo %,/NBr(0)

< lim inf </ |A0|2 d/L() + CR_4€0t)
R=o0 \J£0nB2r(0)

- ‘Ao‘zduo-

Yo
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As mentioned in the introduction, the following theorem is a special case of both |13, Theorem

2.7] and [36, Theorem 1, (2)].

THEOREM 4.1.2 (Gap rigidity). If Xy is a complete, smooth, properly immersed Willmore

surface with W(fy) < %50, then ¢ is a plane.

Proof. By hypotheses, f(z,t) = fo(z) is a Willmore flow. Since W(f) = W(fy), by Propo-

sition 4.1.1,
|A0|6 d/L(] =0.
3o
That is, Ag vanishes globally. Therefore, ¥, is a plane. O

REMARK 4.1.3. Alternatively, one can show that f(x,t) = fo(x) is the Willmore flow in

Theorem 2.4.6.
COROLLARY 4.1.4 (Low energy convergence). Let f : 3 x [0,00) — R"™ be a solution to

(1.1). Assume that W(fo) < 3¢0 and that

sup i (Br(0)) < oo for all R > 0.

t>0
Then as t— oo, any subsequence has a further subsequence such that ¥; converges to a plane
L :R? — R" in the sense as in Definition 2.6.3.

Proof. By Proposition 4.1.1,

|A? dpy < | Ao|* dpo < eo.
Et E0

Note that the proof for [13, Theorem 3.5| doesn’t require ¥ to be closed, and in fact holds

as long as the boundary of ¥ is not involved. Therefore, by taking o to be arbitrarily big in
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the aforementioned theorem, we have
V¥ Ayl o < c(k)eot™ 5, for all k > 0.

Now we have upper bounds for area and derivatives of curvature in Bg(0), and the bounds
depends on R but not on t. As t— oo, we can use [13, Theorem 4.2| to find a properly

immersed surface L to be the limit of >. In particular,
HALHOO,L < thUP HAtHoo,Zt = 07
t—o0
where Aj, denotes the second fundamental form of L. Therefore, L is a plane. m

Alternatively, we also obtain the following convergence result:

COROLLARY 4.1.5. Let f: ¥ x [0,00) — R™ be a solution to (1.1). Assume that W(fy) <

%60 and that
.. _9
IIIEILIOI.}fR 1o (Br(0)) < oo.

Then as t— oo, any subsequence has a further subsequence such that > converges to a plane

L :R%? — R" in the sense as in Definition 2.6.5.
Proof. We denote ¢ = ¢(n). For any R > 0, we can find

XBgr(0) < /'7\ < XB2g(0)

as in Lemma 1.3.1 with K = R~! and ~ to be the restriction of ¥ on ¥. Along the Willmore
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flow, by [13, Theorem 3.5],

d 4
— d
dt Js, oAk

= / (<_AHt - Q(A?)Ht, —’74Ht> + 373<_AHt - Q(A?)Ht, D%) d sy
3t
< [ (= IV + AYPLERP) di
P
v [ (IHI DAL+ (D3P + D3] + 107 AT )

§/ 74(—|VHt|2—|—\Ag|2|Ht|2)d,ut+R_2/ 4 dpy
p

p

+ CR_l(HAtH%,[wO] + ”VHtH%,[’Y>0] + ”HtHoo,[’Y>0]”A?Hg,[7>0]) + CR_QHVHt”;{wO]

< [ (= IHP + AP it B2 [
3t

3t

3
+cR (g0 + col 77+ 6325_%) LR 2t 0.

Using (b) of Lemma 2.2.3, Gauss—Codazzi equations, and [13, Theorem 3.5|, we have (cf.
[13, equation 68]):

[ (= HE 4 LA ) d

¢

<9 / VA dpy + ¢ R / AV Hy| + [VAY)) dpe + / AL dpg
I P o

1
sc\|Ag\|;7[v>0]/E 2 duy + e R (0 + 2ot F).
t

Therefore,

d 4
— d
dt ., VA

3
< (B2 4| AL 1) / v dpe+ e R (eo +e0t ™2 + 23t 1) + R et 7.

t
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In addition, since
/ | A1 dpo < [ [Aof* dpo < e,
[v>0] o
by [13, Proposition 3.4], we have
t
| AR g dr < o1+ R,
0
and hence by Gronwall’s lemma,
3 _ _
/ v, < (/ v dpo + ¢ R (st + col? + Egt%) + cR_250t5> R *treeo(1+R™4)
Et EO
In particular,
E _ -
Mt (BR(O)) < (,uo (B2R(O)) + CRil (Sot + €0t% + 8515%) + CRiQEQt%> €R *tHeeo(1+R 4t).
Next, by monotonicity formula, for any 0 < r < R,

2 (Bo(0)) < ¢ (Rzﬂt (Br(0)) + /2 i dm) |

tﬂBR(O)

Moreover, fixing r,t and letting R— oo,

1 (B (0)) < ¢ (h}gigf [R%10(B2r(0))] e°= + 50> r?,

which is an area bound that is independent of the time variable ¢t. Therefore, the statement

can be proved by Corollary 4.1.4. n
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4.2 Global existence

Finally, in view of [4, Lemma 4.1], Conjecture 3.2.8 (Lojasiewicz inequality) may lead to

another stability result:

CONJECTURE 4.2.1. Let fiy : ¥ — R™ be a Willmore immersion that is complete and
proper. Assume that the induced metric g = e*h is admissible, as in Definition 3.1.2.

Assume condition (3.1) for some 5> 0 and s = 1.

If f: X x1[0,T) is a a Willmore flow, where:

e T is the maximal existence time,

e W(f) > W(fw) whenever |K(fyo® — fw)|lorsn < 1 up to some diffeomorphism
¢ € Aut(X), and

i ||f0 - fWHW;fﬁCl <&, where & = 6(”7 k?ﬁ);

then T = oo, and as t— oo, f; converges locally smoothly up to diffeomorphisms to a Will-

more surface foo that satisfies W(fx) = W(fw).

REMARK 4.2.2. [1] may suggest a different statement that has stronger assumption while

1s more likely to be true.
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Appendix A

Geometric inequalities

In this appendix, we derive several different variants of inequalities regarding L” norms of

tensors with the cutoff functions on manifolds.

A.1 Interpolation inequalities

Interpolation inequalities characterize the convexity property of certain sequences. In the
context of this article, we consider the sequence of LP norms of different derivatives of a

given tensor.

LEMMA A.1.1. Let {a,}_, be a sequence of non-negative real numbers, and ci(g), ...,
cv—1(g) be a sequence of functions taking non-negative values such that for all e > 0 and

1<m< (M -1),

U < Qi1 + Cm(E) Q1.
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Then for all 1 < mgy < (M — 1) we also have
Umy < €an + Cao,
where ¢ = c(e, M, cy,...,cpr—1)-

Proof. We prove inductively and start with an observation that the statement is trivial for
M = 2. Let My > 3 and assume that the statement is true for all 2 < M < (M, — 1). For
the case M = My, if 2 <m < (My — 1), we have

g
Am S §CLM + blCLl

< —a,,+b
a1_2b1a + 20

so that a,, < cap; + biboag; and if m = 1, we have

apr—1 S EA N + blam

Ay < ay—1 + bea
_bl+1M1+20

so that a,, < eay + (b1 + 1)baag, where in both cases, by and by only depend on &, M, ¢y, . . .,
and cp;_1. This proves that the statement holds for M = M,. Hence by induction, it holds
for all M > 2. O

PROPOSITION A.1.2. Let 0 < mog < M be integers, 2 < 7 < 00, and p,q > j. If s > Mp

and r > Mgq, then for all ¢ > 0,

1/j
KM-mo (/ ,ys—(M—mo)peT—(M—mo)q|vm0¢|j d,u)
b

Y Y
<e( [rororapan) ver ([ eioian)
b b

where ¢ = C(S,T,E,%,Maj)-
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Proof. Throughout this proof, we let ¢ = ¢(s,r, 74, M, 7). Define

1/j
T KM—m (/ 75—(M—m)p0r—(M—m)q|vm¢|j d,u) )
by

Then for each mg+1 < m < M — 1, using integration by parts and Hélder’s inequality,

(,ys—(M—m)per—(M—m)q | Vm+1¢|
b

|V (Mg 197} [V [V d
< CK(Mfm)j / ,ysf(Mfm)perf(Mfm)q|Vm+1¢| |vm¢|jf2 |Vm71¢| du
P
+ cK(M—m)j+1 / ,Ys—(M—m)p—leT—(M—m)q—l|Vm¢|j—1 |Vm—1¢| d,LL
%

< (@t + )@, 21

Thus for arbitrary € > 0,

€ 1
U < e (Amat + Q)1 < 5 m1 + 5 m +e(l+e Hay_1,
which implies

am < €yt +c(1+e Dap_1.

By Lemma A.1.1, we can conclude the result. [l

ProprosITION A.1.3. Let M > 2 be an integer, a > 0, 2 < j < oo, and p,q > 0. If
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s > max(2p, M j) and r > max(2q, M j), then for all ¢ > 0,

N
o ( [ ool du)
>
_ 1/j _ o 1/5
([romwopan)ser [y o)
> b

1/j
+ CO{2€_1 (/ 75—2p0r—2q|vM—2¢|j d,u) 7
b

<e

where ¢ = c(s,r,r4, M).
Proof. Using integration by parts,

al [ 4o g
b))
SCCYj/ (,ys—per—q|vM¢|+,ys—p—ler—q—lK|vM—1¢|>|VM—1¢|j—2|vM—2¢|dlu
by
<cad (/ O VM o) du+/78‘39’“‘3K1|VM‘1¢|J du)
b >y
RNV N
. </ rysfperfq|vM71¢|g d:“/) (/ 7372p9572q|vM72¢|j d,u)
by b))
G N
< | YOIV dut o | ORIV g dp
4 » 2 Y

J , o .
5 [ g d catie T [ g g 2y,
) P
and hence

al [ 4ot g
)
<5 [TV aur e [ o 4

+ca¥ed / 7572p98’2q|VM’2¢\j dp .
5
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Next, by Proposition A.1.2,

al [ 4o g

2

<él / VO VMol dp + ca®ie™d / IO VM 2017 A
2 2

+eel KM / Mg gl dp
P

which is equivalent to the inequality to be proved. O

PROPOSITION A.1.4. Let 0 < my < mgy < M be integers, o > 0, 2 < j < oo, and p,q > 0.

If s > max (Mp —my(p —j),Mj) and r > max (Mq —my(q —j),Mj), then for all € > 0,

1/j
Odemo (/ ,ysf(Mfmo)perf(Mfmo)q’vmo¢’j dﬂ)
>
. l/j .
S c (/ 7397“vM¢’] dM) + CaMfml (/ ,ysf(Mfml)perf(Mfml)q‘vnu¢’j du)
by by

1/j
444KM+aM4MKW)(% wvmﬁ ,
Y

1/j

0>0]

where ¢ = ¢(s,r,e,14, M).

Proof. By Proposition A.1.3, for all m = (my +1),...,(M — 1), there exists b,, > 0 such

that

1/j
o </ ,Ys—(M—m)pQr—(M—m)q|vm¢|] dﬂ)
DN
1/
<e |: (/ ,ys—(M—m—l)per—(M—m—l)q|vm+1¢|j d/}])
P
1/3
+ byt Kmtl (/ stfMer(erl)(pfj)erquJr(erl)(qu)|¢|j d,u> :|
P

1/j
+ Oé2éfilbm,1 (/ ,ysf(Mferl)pesf(Mferl)q|Vm71¢’j d,u> .
b
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We can construct a sequence {/b\m} inductively by

max{b,,, 1} if m =m; or my + 1, and

bm: 62
by + ==L ifm +2<m< M,
bm72
so that
ngbm for all m =mq,..., M, and

/b\m < 2\//b\m_1(/b\m+1 —bpy1) foralm=m;+1,... . M —1,

and hence

1/3
oz/l;me (/ 7s—Merm(p—j)g7“—1\/lq+m(61—j)|¢|j dp)
s

1/(25)
< a/[;me </ ,ys—MZH-(m-l-l)(p_j)QT_Mq+(m+1)(q_j)|¢|j d'“)
%

1/(24)
) </ 7s—Mer(m—l)(p—j)gr—Mcﬂr(7n—1)(tz—J')Wj d,u)
by
R 1/j
< (s — b)) K™ ( / e MPHm DG gr M O a9 g du)
by

1/j
+ O425*16”1_1](Wl </ stMm(m*l)(pfj)grfMﬁ(mfl)(qu)|¢|j dﬂ) _
by
Let

1/j
P — OéM—m[ </ ,Ys—(M—m)pQr—(M—m)q|vm¢|j dﬂ/)
%

1/j
_,_Eme (/ 7s’—l\/lerm(p—j)@r—f\/qun(q—j)‘¢|J’ dM) ]
by
so that by the two inequalities above, we get

—1
Om < EQma1 T € Q1.
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Therefore, by Lemma A.1.1, there exists some ¢ = ¢(s,r,&,74, M) such that

1/4
aM—mo (/ ,ys—(M—mo)pgr—(M—mo)q|Vmo¢|j d,u)
b

< Uy

< eay + cap,
N
<- ( JREARL du)
b
‘ 1/j
+ caM—m (/ 78—(M—m1)p9r—(M—m1)q|Vm1¢|3 dﬂ)
2

+ (KM 4+ MM Km™)

. (/ ,_ys—max (Mp—ml(p—j),Mj) gr—max (Mq_ml(q—j),Mj) ’¢|] dlu) 1/j |
Y

A.2 Multiplicative Sobolev inequalities

Sobolev inequalities provide an upper bound of the target norm of a function in terms of
the given norm of the function, and hence characterize embeddings from a Sobolev space to
another, say, from W?22 to LP = WP for some p > 2. In general, constants that are involved
in Sobolev inequalities would depend on the domain. In our case, the constants only depend

on the mean curvature of the surface and the dimension of the ambient Euclidean space.

THEOREM A.2.1 (Michael-Simon Sobolev inequality [26]). Let f : X2 — R™ be a smooth

immersion. Then for any u € C1(X) we have

1/2
(/u2d,u) <cp (/\Vuldu—l—/]HHuMu),
> > >

where ¢, 18 a constant only depending on n.
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CONVENTION A.2.2. Let h € CHX) satisfy |Vh|e < ¢K, where ¢ = c(n,s,r). For
example, h = y*0".
We can rewrite [10, Lemma 5.1] as the following.

LEMMA A.2.3. Let 1 <p,q,w < oo satisfy -+ = 4 and o, B € R satisfy a + = 1. For

any b > max(aq, fp) and —Il) <t< %, we have

1

IR IV GI5, < e [BE OV, A7 0, + cOR(RYP Il 106,

where ¢ = c(n,w,ry).

LEMMA A.2.4 (Cf. [10, Theorem 5.6]). For all u € C*(X) and h € C*(X) such that their

product has compact support, 0 < m < 0o, and 2 < p < 00,
1hulloo < cllully, ®(1hVull, + K llull, + [huH]|,)",

where

2p
(p—2)m+2p

=
and ¢ = c¢(n,m,p).

Proof. Let

1
1-1
p

q= € (172)7

70 = m/q € (0, 00),

50:07
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2\" T
2\"” <q> T4
=\ -To+2—€(0,oo) forallv=1,2,..., and
9 q
)2 € (0,00) forallv =1,2,...;
q

so that the numbers solve the inductive formulas (where v =0,1,...)
Tv+14 = 2(1 + Tu)a

61/4-1 _ 1 + 61/
Tyt 14+7,°

namely,

/6V+1 _ Tl/-‘rl :g
1+8, 1+7, q

As a result, we see that

147,
Tv+19

Hh5u+1/7'u+1u

= [y i

- e,

<ec, (Hv(hlwuuun)

L+ HhHﬂqu“HHl) (Theorem A.2.1)
<ec, ((1—1—7 [P o V||, + (14 8,) | a7 V||, + || WP ut T H | )

<e, ” hPv ™

(@ m)l[avul,+ @+ B,)[uvh], + |pat], )

Tv

qu’

< ABVHhB”/T"u

where

A=y (|09l + [V, + [[hut],) and B, =1+7,>1+8,
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Observe that

q\” 2
<—> B, <c¢c..=19+—.

2 2—q
Therefore,
92 vy 1/(147) . .
Hhﬁu_g_1/7'V+1 < <AC* (_) ) Hhﬁy/ﬂ,u v/ (1+ v).
Tv419 q Tvq

Define €, = 7,,/(1 + 7,) so that we get from the previous inequality that

v—1 j
sl < iy T e (2))

]:

€j ><~~-><€V,1/Tj

On the left hand side, we have

li = d L B = 2 =

VLI&Tuq—ooan Vgrgo?y—m—a,
and hence

o I

v—00 Tvq o0

On the right hand side, observe that

g; X X € i 2 o
J vl = 1—|—7',/ 1 q

so that we have

: ( )0
1 _—QQ_
Jim (50 X X €, 1) ( 7o
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which implies

i [ < ol
V—+00 0q m

[y

v—

lim <€j X X 81,,1/73') =

vV—00

<.
I
o

which implies
v—1

. €j><"'><51/71/7—j — o
Jim HO<AC*> (Ac.),
i

and

v—1
. . 4
1/11—>I£10 ;0 (jxejx - Xe, /1) = Bt r22—q)

In summary,

[noull, < el (1B9ull, + uvall, + |mu]],)

< clull,, (I1nul, + K], + [[hu]],).

where

9\ #/[(2=9)*10+2(2-9)]
c=(cpe)™ - (—)

q
only depends on n, m, and p.

LEMMA A.2.5. For allu € C}(X) and 2 < p < oo,

2 1-2/
lully < e llully (I Vall2 + 1 Hull) 7,
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where ¢ = c¢(n, p).

Proof. For all positive integers 7, by Theorem A.2.1, we have

[u'* 72 < en (147) (/ IUITIVUIdqu/ |H| IUI”TdM)
b P

< e (L4 1) l2(IVullz2 + | Hull2).
As a result, by induction,
w2 < ¢~ (WD) [ullo (IVulla + || Hull) ™™,
or equivalently,

T—1 17
lullar < e |7 ulla (1970l + | Hulls) ™|

Finally, take 7 = Pﬂ so that

= e
lull, < Jlully™™ " [Jullg "

p—2

27—p
< e fully™ " lulls™ (IVullz + || Hull)

p=2
p

T : 1-2
= co()7|lull3 (I[Vullz + || Hull2) 7.
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