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ABSTRACT OF THE DISSERTATION

Willmore flow of complete surfaces in Euclidean space
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Professor Jeffrey D. Streets, Chair

In this dissertation, we discuss the behavior of Willmore flow, a fourth-order geometric flow,

for complete, properly immersed surfaces in Euclidean space.

We develop a-priori estimates for weighted Willmore flows. The estimates are later used to

generalize Kuwert and Schätzle’s short-time existence theorem in [10] for complete surfaces

with bounded geometry, to find a condition for uniqueness of Willmore flows on complete

surfaces, and show gap phenomena of Willmore energy. We also discuss blow-ups of Willmore

flow, as constructed by Kuwert and Schätzle in [13].

We also discuss the Fredholm property of Laplacian operator on the space of normal vector

fields, in view of weighted Sobolev spaces as defined by Lockhart in [17]. We give a few

conjectures regarding the Fredholm property of linearization of Willmore tensor, Łojasiewicz–

Simon inequality, and stability of minimal surfaces with finite energy as Willmore surfaces.

vi



Chapter 1

Introduction

1.1 Background of the study

One of the most basic and important problems in differential geometry is to find a “canonical

representative” for each “shape”. For example, the uniformization theorem for closed surfaces,

which shows that any closed surface admits a Riemannian metric such that the Gaussian

curvature is constant. In view of Gauss’ Theorema Egregium and Gauss–Bonnet theorem,

this essentially concluded the study of intrinsic geometry of closed surfaces.

To generalize the idea, instead of treating the “canonical representatives” as solutions to a

PDE (partial differential equation), we think of them as the equilibria of a function that we

refer to as an energy function, or simply as an energy. We can hence study the gradient flows

of the energy, which are called geometric flows, and study if a geometric flow converges to an

equilibrium. Famous examples of geometric flows include Ricci flow (which in 2-dimensional

case rediscovers the uniformization theorem, and in 3-dimensional case is used to solve the

famous Poincaré conjecture), mean-curvature flow, curve-shortening flow, etc.
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The Willmore energy of an immersed surface f : Σ2 ↬ Rn is defined as

W(f) :=
1

2

∫
Σ

|A|2 dµ ,

where A denotes the second fundamental form. By Gauss–Bonnet theorem, if f is a closed

surface,

W(f) =

∫
Σ

|A0|2 dµ+ 2πχ(Σ) =
1

2

∫
Σ

|H|2 dµ− 2πχ(Σ),

where A0 denotes the trace-free part of A. Therefore, all the aforementioned expressions are

used as the definition in different literature for different needs, while essentially they are all

the same. (cf. [11], [37], etc.)

An equilibrium of the Willmore energy is called a Willmore surface, while the gradient flow

for the Willmore energy is called a Willmore flow. It is worth noting that there are compact

Willmore surfaces, such as spheres and Clifford torus, as well as non-compact Willmore

surfaces, such as planes and catenoids. In fact, all minimal surfaces are Willmore surfaces.

The first variation of W is given by the Willmore tensor (cf. [11], etc.):

W(f) = △H +Q(A0)H,

where Q is defined by

Q(η)ϕ = gikgjℓηij⟨ηkℓ, ϕ⟩NΣ

for tensors η ∈ Γ(NΣ ⊗ Sym2(T ∗Σ)) and ϕ ∈ Γ(NΣ). Note that the first variation formula

holds whether Σ is compact or non-compact. Therefore, given initial data f0 : Σ ↬ Rn, we
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can consider the Willmore flow equation


∂tf = −W(f),

f
∣∣
t=0

= f0.

(1.1)

Some fundamental studies regarding Willmore surfaces and convergence of Willmore flows

to Willmore surfaces can be found in [7], [12], [13], [14], [20], [32] etc. There are also Will-

more flows that develop singularities (cf. [2], [22]), and there are open questions regarding

such singularities for compact surfaces, including existence of finite-time singularities and

classification of singularity types, etc. Related results include: in [10, Theorem 1.2], where

the authors showed that finite-time singularities require energy concentration, [4, Theorem

1.1], where the authors showed that blow-ups are not compact, and [24, Theorem 1.4], where

the authors showed an upper bound for the existence time of locally constrained Willmore

flows, while the upper bound increases to infinity as the PDE converges to the classical Will-

more flow equation, etc. It could hence be interesting to approximate Willmore blow-ups by

complete surfaces.

Willmore surfaces and Willmore flows are also studied in other works, including [9], [28],

[29], etc. Similar frameworks are also used to study 4-th order parabolic PDEs that are

related to the Willmore tensor and in fact sharing the leading order terms, in [23], [25], [30],

[31], [34], [35], [36], etc. In addition, regarding developments of studies on Willmore flow,

see, e.g., [11] and [21]; regarding general strategies for parabolic geometric PDEs, e.g., [19];

regarding Łojasiewicz inequalities, which are discussed in chapter 3 and section 4.2, see, e.g.,

[3] and [5].
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1.2 Results

This dissertation is devoted to extend the study of Willmore flow of closed surfaces to

complete, properly immersed surfaces in Rn.

In the first half of chapter 2, we generalize Kuwert and Schätzle’s short-time existence theo-

rem [10, Theorem 1.2] for complete surfaces, and find a similar lower bound for the existence

time with a similar upper bound for concentration concentration of curvature, which only

depend on concentration of curvature on the initial surface:

Theorem 2.4.6. Let f0 : Σ → Rn be a smooth, complete, properly immersed surface in

Rn. Then there exist ε1 > 0 and c1 > 0, both depending only on n, such that whenever the

initial energy concentration condition

∫
Σ0∩Bϱ(x)

|A0|2 dµ0 ≤ e0 ≤ ε1, ∀x ∈ Rn

holds for some ϱ > 0 and e0 > 0, there exists a solution f : Σ× [0, T ) → Rn to the Willmore

flow equation (1.1) such that T ≥ c−1
1 ϱ4. Moreover, f satisfies the following estimate for the

growth of energy concentration:

∫
Σt∩Bϱ(x)

|At|2 dµt ≤ ane0(1 + c1ϱ
−4t), ∀x ∈ Rn and 0 ≤ t ≤ c−1

1 ϱ4.

To prove our theorem, we consider solutions to a weighted PDE


∂tf = −θrW(f),

f
∣∣
t=0

= f0,

(1.2)

where 0 ≤ θ ≤ 1 is a smooth function defined on the ambient space, i.e., θ = θ̂ ◦ f for

some θ̂ : Rn → R, and r is a sufficiently large integer that we will specify later. First, we
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recover that the a-priori estimates in [10] hold for the weighted PDE. From the estimates,

we can show that if there were a Willmore flow with T < c−1
1 ϱ4, f would converge as t→ T

and hence can be extended to [0, T ]. However, well-posedness of (1.2), which allows f to

extended over T , generally only holds when Σ is compact and θ > 0.

To solve (1.1), we approximate solutions to (1.1) with solutions to (1.2) with compactly

supported θ. There are two main obstacles when having θ. One of them is extra efforts to

balance powers of θ in the a-priori estimates, for the correct exponents for θ don’t always

coincide those for γ, where γ is the same cutoff function as in [10]. The other obstacle is

that traditional short-time existence results fail when θ is not globally positive. We can

view Σ ∩ [θ > 0] as a subset of a closed surface, and hence we can modify θ to be positive

everywhere on the closed surface, and then finally approximate solutions for (1.2).

For compact surfaces, the vector field W(f) is the gradient of the energy W(f) and hence

we have energy identity for any family of surfaces:

d

dt
W(ft) =

∫
Σt

⟨W(ft), ∂tft⟩ dµt .

In particular, energy decreases along a negative gradient flow. For complete surfaces, energy

may escape into infinity and hence decreases even faster:

Corollary 2.4.7. If W(f0) < ∞ and f is the Willmore flow constructed in Theorem

2.4.6, then we have

∫
Σt

|At|2 dµt +

∫ t

0

∫
Σt′

|W(ft′)|2 dµt′ dt
′ ≤
∫
Σ0

|A0|2 dµ0 .

In section 2.5, in view of the Sobolev inequalities, initial non-concentration conditions for

A, . . . ,∇5A implies uniform bounds for A, . . . ,∇3A, which give us sufficient flatness to obtain

the following uniqueness result for the fourth-order PDE.
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Theorem 2.5.9. Assume that f0 : Σ → Rn is a smooth, complete, properly immersed

surface in Rn such that

lim inf
R→∞

R−4µ0

(
BR(0)

)
= 0, and

for some ϱ > 0 and M > 0,


∫
Σ0∩Bϱ(x)

|A0|2 dµ0 ≤ ε1, ∀x ∈ Rn,∫
Σ0∩Bϱ(x)

|∇kA0|2 dµ0 ≤M, ∀x ∈ Rn and k = 1, . . . , 5,

where ε1 is as given in Theorem 2.4.6. Let f = fi : Σ× [0, T ) → Rn, where i = 1, 2, be two

solutions to the Willmore flow equation (1.1), then there exists t3 > 0, only depending on n,

ϱ, and M , such that f1 = f2 for all 0 ≤ t < T̂ = min(t3, T ).

In section 2.6, given a Willmore flow f : Σ × [0, T ) → Rn with maximal existence time

T ∈ (0,∞), we consider the first time when there exists an ambient ball of radius r where

the curvature exceeds a given number e > 0. More precisely,

t(r, e) = inf

{
t ∈ [0, T ) : sup

x∈Rn

∫
Σt∩Br(x)

|At|2 dµt > e

}
.

A general strategy to study the singularity at t = T is to blow-up the Willmore flow, that

is, choose rj > 0, tj ∈ [0, T ), and xj ∈ Rn so that the rescaled Willmore flows

fj(p, τ) = r−1
j

(
f(p, tj + r4j τ)− xj

)
have a chance to converge smoothly as j→ ∞. Ideally, we take rj→ 0 and let tj = t(rj, e)

for some fixed e > 0. Existence of blow-ups has been discussed by Kuwert and Schätzle in

[13, Section 4]. We can then characterize the singularity by the behavior of the maximal

6



existence time r−4
j (T − tj). In particular, type-I singularities are defined as following:

Definition 2.6.2. Given 0 < e ≤ ε1, we say f has a type-I singularity with respect to

energy threshold e if


t(r, e) < T for all r > 0, and

lim sup
r→0+

[
r−1
(
T − t(r, e)

)1/4]
<∞,

which in particular implies T <∞.

However, when blowing up the singularity, we see that:

Theorem 2.6.5. For all e < ε1, a Willmore flow f of closed surfaces cannot have a type-I

singularity with respect to energy threshold e.

In chapter 3, we adopt Lockhart’s definition for weighted Sobolev spaces in [17] for complete

manifolds with finitely many ends, where the metric on each end is diffeomorphic to a cylinder

and is conformal to an asymptotically translation-invariant metric. For those surfaces that

are also Willmore surfaces, we conjecture that

Conjecture 3.2.8. (4) Let fW : Σ → Rn be a Willmore immersion that is complete and

proper. Assume that for some β ≥ 0,


ρ0 := inf

Σ
ρ > −∞, and

sup
Σ
(e(t+1)(1−β)ρ|∇t

(g)A|g) <∞, for some β ≥ 0 and ∀t = 0, 1.

Then for a.e. δ ∈ RL, the Willmore energy W satisfies the Łojasiewicz–Simon inequality,

namely, there exists θ ∈ (0, 1
2
] such that for all sufficiently small η ∈ W 4,2

δ,−4+3β(NΣ, g),

|W(fW + η)−W(fW )|1−θ ≤ C∥W(fW + η)∥W 0,2
δ,0
.

7



We list a few examples in section 3.3.

In chapter 4, we derive gap phenomena, namely convergence of Willmore flow to planes or

minimal surfaces given lower Willmore energy. The following result is also explained by more

general theorems such as [13, Theorem 2.7] and [36, Theorem 1, (2)].

Theorem 4.1.2. If f : Σ → Rn is a complete, smooth, properly immersed Willmore surface

with W(f) ≤ 1
2
ε0, then Σ is a plane, where ε0 > 0 only depends on n.

As a result, we can prove that Willmore flows with small initial energy converge to planes:

Corollary 4.1.4. Let f : Σ× [0,∞) → Rn be a solution to (1.1). Assume that W(f0) ≤
1
2
ε0 and that

sup
t≥0

µt

(
BR(0)

)
<∞ for all R > 0.

Then as t→ ∞, any subsequence has a further subsequence such that Σt converges locally

smoothly, up to diffeomorphisms, to a plane L : R2 → Rn in the sense as in Definition

2.6.3.

In the statement, we assume space-time bounds to guarantee convergence and to avoid having

a sum of planes as the limit. Alternatively, we have the same conclusion if we assume an

Euclidean area growth rate for the initial surface:

Corollary 4.1.5. Let f : Σ× [0,∞) → Rn be a solution to (1.1). Assume that W(f0) ≤
1
2
ε0 and that

lim inf
R→∞

R−2µ0

(
BR(0)

)
<∞.

Then as t→ ∞, any subsequence has a further subsequence such that Σt converges to a plane

L : R2 → Rn in the sense as in Definition 2.6.3.

8



In addition, using the Łojasiewicz inequality, we conjecture a stability result:

Conjecture 4.2.1. Let fW : Σ → Rn be a Willmore immersion that is complete and

proper. Assume that the induced metric g = e2ρh is admissible, as in Definition 3.1.2.

Assume condition (3.1) for some β ≥ 0 and s0 = 1.

If f : Σ× [0, T ) is a a Willmore flow, where:

• T is the maximal existence time,

• W(ft) ≥ W(fW ) whenever ∥K(ft ◦ Φ − fW )∥Ck(Σ,h) ≤ η up to some diffeomorphism

Φ ∈ Aut(Σ), and

• ∥f0 − fW∥W 2,2
δ,a ∩C1 < ε, where ε = ε(n, k, η),

then T = ∞, and as t→ ∞, ft converges locally smoothly up to diffeomorphisms to a Will-

more surface f∞ that satisfies W(f∞) = W(fW ).

In the appendix, we list and prove various interpolation inequalities and Sobolev inequalities

that are used in the main article.

1.3 Conventions

First, we list some notations that are used throughout the article.

• Σ is a smooth surface.

• f either denotes:

– A smooth immersion f : Σ ↬ Rn, where we identify Σ and f(Σ), or

9



– A family of smooth immersions f : Σ × [0, T ) → Rn, where we denote ft(x) :=

f(x, t) and Σt = ft(Σ).

We should always assume the immersed surface (Σ, f ∗gRn) or (Σt, f
∗
t gRn) is complete.

We denote the induced Levi-Civita connection as ∇ (where we don’t specify t for Σt),

and the 2-dimensional Hausdorff measure as µ or µt, correspondingly.

• A, At denote the second fundamental form of Σ and Σt, correspondingly. Similarly, H

and Ht denote the mean curvature, while A0 and A0
t denote the trace-free part of the

second fundamental form.

• ϕ: A tensor of class Γ((T ∗Σ)⊗rϕ ⊗ NΣ), where rϕ is a non-negative integer and NΣ is

the normal bundle on Σ.

• △ = −∇∗∇, where ∇∗ is the formal adjoint of ∇.

• s, r ≥ 2: sufficiently large positive integers.

• Pm
k =

∑
i1+···+ir=m

∇i1A∗· · ·∗∇ikA with unspecified coefficients that are bounded by some

c(n, s, r). The “star product” notation denotes an unspecified universal multilinear

form. See, for example, [10, Section 2] for more explanation. Here we don’t specify t

for Σt.

• κ(r, t) = sup
x∈Rn

∫
Σt∩Br(x)

|At|2 dµt measures the concentration of curvature. (adopted

from [13, Theorem 4.2].)

• c = c(. . .) denotes scalars that only depend on the arguments. All the c’s can denote

different numbers, even in the same line.

10



Next, we pick a smooth function χ defined on R such that


χ is decreasing,

χ(x) = 1 for all x ≤ 0, and

χ(x) = 0 for all x ≥ 1.

We will fix this choice so that sup |Dkχ| only depends on k. Next, we construct functions

γ̂, θ̂ on Rn such that for some given K > 0,



γ̂ and θ̂ are smooth,

0 ≤ γ̂, θ̂ ≤ 1 while also both are not identically 0,

γ̂θ̂ has compact support, and

∀k ≥ 1, |Dkγ̂| ≤ Kk sup |Dkχ| and |Dkθ̂| ≤ Kk sup |Dkχ|.

(1.3)

Lemma 1.3.1. Given any x1, x2 ∈ Rn, R1, R2 > 0, and 0 < K1, K2 ≤ K, we can let

γ̂(x) = χ
(
K1(|x− x1| −R1)

)
and θ̂(x) = χ

(
K2(|x− x2| −R2)

)
so that they satisfy (1.3).

Let γ = γ̂
∣∣
Σ

and θ = θ̂
∣∣
Σ
. We derive estimates for the covariant derivatives of γsθr:

Lemma 1.3.2. For all k ≥ 1,

|∇k(γsθr)| ≤ c

(
γmax(s−k,0)θmax(r−k,0)Kk

+
∑

1≤i0<k
i1··· ,iℓ≥0

i0+···+iℓ+ℓ=k

γmax(s−i0,0)θmax(s−i0,0)Ki0

ℓ∏
j=1

|∇iℓA|
)
,

11



where c = c(s, r, k). The cases when k = 1, 2 are especially frequently used:

|∇(γsθr)| ≤ c γs−1θr−1K,

and

|∇2(γsθr)| ≤ c
(
γs−2θr−2K2 + γs−1θr−1K|A|

)
.

Proof. The proof is clear by induction, while we only show the cases k = 1, 2. Let (u, v) be

a normal coordinate at p ∈ Σ and e1 = ∂u, e2 = ∂v. We have

∇(γsθr)(ei) = D
(
γ̂sθ̂r

)
(ei),

and

∇2(γsθr)(ei, ej) = D2
(
γ̂sθ̂r

)
(ei, ej) +D

(
γ̂sθ̂r

)(
A(ei, ej)

)
.

12



Chapter 2

Short-time existence and uniqueness

We consider the Willmore flow equation for complete, properly immersed surfaces in Rn.

Given bounded geometry on the initial surface, we extend the result in [10] with respect to

a similar energy concentration condition.

2.1 Geometry with low energy concentration

In this section, we derive general inequalities regarding low energy concentration. These

inequalities are later applied in the context of Willmore flows.

First, for convenience, we rewrite [10, Lemma 4.2], replacing γ4 with γsθr:

Lemma 2.1.1. If s, r ≥ 4, then

∫
Σ

γsθr
(
|∇A|2|A|2 + |A|6

)
dµ

≤ c

∫
[γθ>0]

|A|2 dµ
∫
Σ

γsθr
(
|∇2A|2 + |A|6

)
dµ+ cK4

(∫
[γθ>0]

|A|2 dµ
)2

,

13



where c = c(n, s, r). Moreover, there exists ε0 > 0, only depending on n, s, and r, such that

whenever

∫
[γθ>0]

|A|2 dµ ≤ ε0, (2.1)

we have

∫
Σ

γsθr
(
|∇A|2|A|2 + |A|6

)
dµ ≤

∫
Σ

γsθr|∇2A|2 + cK4

(∫
[γθ>0]

|A|2 dµ
)2

.

Lemma 2.1.2. If s ≥ 6 and r ≥ 8, then we can choose ε0 so that assuming (2.1), we have

∫
Σ

γsθr−2K2|A|8 dµ ≤
∫
Σ

γsθr|∇A|4|A|2 +K8

∫
[γθ>0]

|A|2 dµ .

Proof. By Theorem A.2.1,

∫
Σ

γsθr−2K2|A|8 dµ

≤ c

(∫
Σ

γs/2θr/2−1K|∇A| |A|3 dµ+

∫
Σ

γs/2−1θr/2−2K2|A|4 dµ

+

∫
Σ

γs/2θr/2−1K|A|5 dµ
)2

≤ c

(∫
Σ

γs/2θr/2|∇A|2|A|2 dµ+

∫
Σ

γs/2−1θr/2−2K2|A|4 dµ+

∫
Σ

γs/2θr/2−1K|A|5 dµ
)2

≤ c

(∫
Σ

γs/2θr/2|∇A|2|A|2 dµ+

∫
Σ

γs/2−3θr/2−4K4|A|2 dµ+

∫
Σ

γs/2θr/2−1K|A|5 dµ
)2

≤ c ε0

(∫
Σ

γsθr|∇A|4|A|2 dµ+

∫
Σ

γsθr−2K2|A|8 dµ+K8

∫
[γθ>0]

|A|2 dµ
)
.

We require c ε0 ≤ 1
2

to obtain the claimed statement.
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Proposition 2.1.3. If s ≥ 2 and r ≥ 4, then

∫
Σ

γsθr|∇A|4 dµ

≤ c ∥θr/4A∥2∞,[γ>0]

(∫
Σ

γsθr/2|∇2A|2 dµ+K2

∫
Σ

γs−2θr/2−2|∇A|2 dµ
)
,

where c = c(n, s, r).

Proof. Using integration by parts,

∫
Σ

γsθr|∇A|4 dµ

≤ c

∫
Σ

(
γsθr|∇2A| |∇A|2 + γs−1θr−1K|∇A|3

)
|A| dµ

≤ c ∥θr/4A∥∞,[γ>0]

(∫
Σ

γsθr|∇A|4 dµ
)1/2

·

[(∫
Σ

γsθr/2|∇2A|2 dµ
)1/2

+

(∫
Σ

γs−2θr/2−2K2|∇A|2 dµ
)1/2

]

≤ 1

2

∫
Σ

γsθr|∇A|4 dµ

+ c ∥θr/4A∥2∞,[γ>0]

(∫
Σ

γsθr/2|∇2A|2 dµ+K2

∫
Σ

γs−2θr/2−2|∇A|2 dµ
)
,

and hence we can obtain the stated inequality.

Proposition 2.1.4. If s ≥ 6 and r ≥ 20, then we can choose ε0 so that assuming (2.1),

we have

∫
Σ

γsθr|∇A|4|A|2 dµ

≤ cK2

∫
Σ

γs−2θr−2|∇A|3 dµ+ ∥θr/4A∥4∞,[γ>0]

∫
[θ>0]

γs|∇2A|2 dµ

+ c
(
K5∥θr/4A∥3∞,[γ>0] +K8

) ∫
[γθ>0]

|A|2 dµ ,

where c = c(n, s, r).
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Proof. First,

∫
Σ

γsθr|∇A|4|A|2 dµ ≤ ∥θr/4A∥2∞,[γ>0]

∫
Σ

γsθr/2|∇A|4 dµ .

Next, using integration by parts,

∫
Σ

γsθr/2|∇A|4 dµ

≤ c

∫
Σ

(
γsθr/2|∇2A| |∇A|2 + γs−1θr/2−1K|∇A|3

)
|A| dµ

≤ c ∥θr/4A∥∞,[γ>0]

(∫
Σ

γsθr/2|∇A|4 dµ
)1/2(∫

[θ>0]

γs|∇2A|2 dµ
)1/2

+ cK

(∫
Σ

γsθr/2|∇A|4 dµ
)3/4(∫

Σ

γs−4θr/2−4|A|4 dµ
)1/4

≤ 1

2

∫
Σ

γsθr/2|∇A|4 dµ+ c ∥θr/4A∥2∞,[γ>0]

∫
[θ>0]

γs|∇2A|2 dµ

+ cK4

∫
Σ

γs−4θr/2−4|A|4 dµ ,

so that we have

∫
Σ

γsθr|∇A|4|A|2 dµ

≤ c ∥θr/4A∥4∞,[γ>0]

∫
[θ>0]

γs|∇2A|2 dµ+ cK4∥θr/4A∥2∞,[γ>0]

∫
Σ

γs−4θr/2−4|A|4 dµ .

Next, by Theorem A.2.1,

∫
Σ

γs−4θr/2−4|A|4 dµ

≤ c

(∫
Σ

γs/2−2θr/4−2|∇A| |A| dµ+K

∫
Σ

γs/2−3θr/4−3|A|2 dµ

+

∫
Σ

γs/2−2θr/4−2|A|3 dµ
)2

≤ c ε0

(∫
Σ

γs−4θr/2−4|∇A|2 dµ+

∫
Σ

γs−4θr/2−4|A|4 dµ
)
+ c ε0K

2

∫
[γθ>0]

|A|2 dµ ,
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and hence we can require c ε0 ≤ 1
2

so that we have

∫
Σ

γsθr|∇A|4|A|2 dµ

≤ c ∥θr/4A∥4∞,[γ>0]

∫
[θ>0]

γs|∇2A|2 dµ+ cK4∥θr/4A∥2∞,[γ>0]

∫
Σ

γs−4θr/2−4|∇A|2 dµ

+ cK6∥θr/4A∥2∞,[γ>0]

∫
[γθ>0]

|A|2 dµ .

Next, by Proposition A.1.4 with α = K1/2∥θr/4A∥1/2∞,[γ>0], we have

K2∥θr/4A∥2∞,[γ>0]

∫
Σ

γs−4θr/2−4|∇A|2 dµ

≤ K2∥θr/4A∥2∞,[γ>0]

∫
Σ

γs−4θ(r−2)/3|∇A|2 dµ (r ≥ 20)

≤
∫
Σ

γs−2θr−2|∇3A|2 dµ+ c
(
K3∥θr/4A∥3∞,[γ>0] +K6

) ∫
[γθ>0]

|A|2 dµ .

In summary,

∫
Σ

γsθr|∇A|4|A|2 dµ

≤ cK2

∫
Σ

γs−2θr−2|∇A|3 dµ+ ∥θr/4A∥4∞,[γ>0]

∫
[θ>0]

γs|∇2A|2 dµ

+ c
(
K5∥θr/4A∥3∞,[γ>0] +K8

) ∫
[γθ>0]

|A|2 dµ .

Lemma 2.1.5 ([10, Lemma 4.3]). (i) We have

∥ϕ∥4∞,[γ=1] ≤ c ∥ϕ∥22,[γ>0]

(
∥∇2ϕ∥22,[γ>0] + ∥ϕ∥22,[γ>0] + ∥ |A|4|ϕ|2∥1,[γ>0]

)
,

where c = c(n, rϕ, K).
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(ii) Moreover, assuming (2.1), we have

∥A∥4∞,[γ=1] ≤ c ∥A∥22,[γ>0]

(
∥∇2A∥22,[γ>0] + ∥A∥22,[γ>0]

)
.

The following corollary refines both the previous lemma and [13, Lemma 2.8].

Corollary 2.1.6. If r ≥ 6, assuming (2.1), we have

∥θr/4A∥4∞,[γ=1] ≤ c ∥A∥22,[γθ>0]

(
∥θr/2∇2A∥22,[γ>0] + ∥A∥22,[γθ>0]

)
where c = c(n, r,K).

Proof. First, by Lemma A.2.4 with m = 2, p = 4, etc.,

∥γ2θr/4A∥∞ ≤ c ∥A∥1/32,[γθ>0]

(
∥γ3θ3r/8∇A∥4 + ∥γ2θ3r/8−1A∥4 + ∥γ3θ3r/8|A|2∥4

)2/3
.

Next, by Lemma A.2.3 with ϕ = A, p = 2, etc.,

∥γ3θ3r/8∇A∥24 ≤ c
(
∥γ4θr/2∇2A∥2∥γ2θr/4A∥∞ + ∥γ3θr/2−1∇A∥2∥γ2θr/4A∥∞

)
.

Moreover, we have

∥γ3θr/2−1∇A∥2 ≤ c
(
∥γ4θr/2∇2A∥2 + ∥A∥2,[γθ>0]

)
, (Lemma A.1.2)

∥γ2θ3r/8−1A∥44 ≤ ∥γ2θr/4A∥2∞∥A∥22,[γθ>0],

∥γ3θ3r/8|A|2∥44 ≤ ∥γ2θr/4A∥2∞∥γ8θr|A|6∥1, and

∥γ8θr|A|6∥1 ≤ c
(
∥γ4θr/2∇2A∥22 + ∥A∥22,[γθ>0]

)
. (Lemma 2.1.1)
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Combining all the inequalities above,

∥γ2θr/4A∥∞ ≤ c ∥A∥1/32,[γθ>0]∥γ
2θr/4A∥1/3∞

(
∥γ4θr/2∇2A∥1/32 + ∥A∥1/32,[γθ>0]

)
,

and hence

∥γ2θr/4A∥4∞ ≤ c ∥A∥22,[γθ>0]

(
∥γ4θr/2∇2A∥22 + ∥A∥22,[γθ>0]

)
,

which leads to the result we need to prove.

2.2 Evolution equations

In this section, we derive the evolution of tensors along Willmore flows. In particular, those

of ∇mA. First, as stated in section 2 of [10], we have the following lemmas.

Lemma 2.2.1. Let ϕ ∈ Γ((T ∗Σ)⊗(ℓ−1) ⊗NΣ), then

(∇∇∗ −∇∗∇)ϕ = A ∗ A ∗ ϕ− (∇∗T ),

where

T (X0, . . . , Xℓ) = (∇X0ϕ)(X1, X2, . . . , Xℓ)− (∇X1ϕ)(X0, X2, . . . , Xℓ)

= (Rℓ−1(X0, X1)ϕ)(X2, . . . , Xℓ)

= A ∗ A ∗ ϕ. (Gauss–Codazzi equation)

Corollary 2.2.2.

(△∇−∇△)ϕ = (∇∇∗ −∇∗∇)(∇ϕ) = A ∗ A ∗ ∇ϕ+ A ∗ ∇A ∗ ϕ,
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and hence

(△∇m −∇m△)ϕ = Pm
2 (A) ∗ ϕ+ Pm−1

2 (A) ∗ ∇ϕ+ · · ·+ P 0
2 (A) ∗ ∇mϕ

= ∇m(ϕ ∗ P 0
2 ).

Lemma 2.2.3 (Simons’ identity).

△Aij = ∇2
ijH + gkℓgpq(⟨Aik, Ajp⟩Aqℓ − ⟨Aqk, Ajp⟩Aiℓ).

In particular,

(a) △A = ∇2H + A ∗ A ∗ A, and

(b) △A0 = S0(∇2H)+ 1
2
|H|2A0+A0∗A0∗A0, where S0(∇2H)ij = ∇2

ijH− 1
2
Hgij− 1

2
(R⊥H)ij

denotes the symmetric, trace-free part of ∇2H.

Lemma 2.2.4. Letting V = ∂tf be a normal vector field on Σ, we have

(a) ∂⊥t ∇Xϕ−∇X∂
⊥
t ϕ = A(X, ei)⟨∇eiV, ϕ⟩+∇eiV ⟨A(X, ei), ϕ⟩ = A ∗ ∇V ∗ ϕ,

(b) ∂t(∇XY ) =
[
− ⟨(∇eiA)(X, Y ), V ⟩+ ⟨A(X, Y ),∇eiV ⟩ − ⟨A(X, ei),∇Y V ⟩

−⟨A(Y, ei),∇XV ⟩
]
ei, and

(c) ∂⊥t A(X, Y ) = ∇2
X,Y V−A(ei, X)⟨A(ei, Y ), V ⟩, i.e., ∂⊥t A = ∇2V−(A ei)⊗⟨(A ei), V ⟩.

In this article, we will let V = −θrW(f), where θ is the cutoff function described in section

1.3. The following statements are some consequences:

Lemma 2.2.5.

(∂⊥t + θr△2)A = θr(P 2
3 + P 0

5 ) +∇
(
∇(θr) ∗ (P 2

1 + P 0
3 )
)
.
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Proof. By (c) of Lemma 2.2.4,

∂⊥t A = ∇2V + A ∗ A ∗ V

= −∇2(θr△H + θrP 0
3 ) + θrP 0

2 ∗ (P 2
1 + P 0

3 )

= θr(−∇2△H + P 2
3 + P 0

5 ) +∇(θr) ∗ (P 3
1 + P 1

3 ) +∇2(θr) ∗ (P 2
1 + P 0

3 ).

Also, by Lemma 2.2.2 and (a) of Lemma 2.2.3,

△2A = △(∇2H + P 0
3 ) = △∇2H + P 2

3 = ∇2△H + P 2
3 .

Therefore,

(∂⊥t + θr△2)A = θr(P 2
3 + P 0

5 ) +∇(θr) ∗ (P 3
1 + P 1

3 ) +∇2(θr) ∗ (P 2
1 + P 0

3 )

= θr(P 2
3 + P 0

5 ) +∇
(
∇(θr) ∗ (P 2

1 + P 0
3 )
)
.

Lemma 2.2.6 (Cf. [10, Lemma 2.3]). If (∂⊥t + θr△2)ϕ = Y and ψ = ∇ϕ, then

(∂⊥t + θr△2)ψ = ∇Y +∇(θr) ∗ ((P 2
2 + P 0

4 ) ∗ ϕ+△2ϕ) + θr∇3(P 0
2 ∗ ϕ).

Proof. Let X1, . . . , Xℓ be time-independent. WLOG, assume ∇Xk
Xh vanishes at a given

position and time so that we have

(∂⊥t ψ)(X1, . . . , Xℓ)

= ∂⊥t

[
(∇X1ϕ)(X2, . . . , Xℓ)−

ℓ∑
k=2

ϕ(X2, . . . ,∇X1Xk, . . . , Xℓ)

]

= (∂⊥t ∇X1ϕ)(X2, . . . , Xℓ)−
ℓ∑

k=2

ϕ(X2, . . . , ∂t(∇X1Xk), . . . , Xℓ).
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By (a) of Lemma 2.2.4,

(∂⊥t ∇X1ϕ)(X2, . . . , Xℓ) = (∇X1∂
⊥
t ϕ)(X2, . . . , Xℓ) + A ∗ ∇V ∗ ϕ.

Also, by (b) of Lemma 2.2.4,

∂t∇X1Xk = ∇(A ∗ V ) ∗ (X1 ⊗Xk).

As a result,

∂⊥t ψ = ∇∂⊥t ϕ+∇(A ∗ V ) ∗ ϕ.

Next, by Lemma 2.2.2,

△2ψ = △2∇ϕ

= △∇△ϕ+△∇(P 0
2 ∗ ϕ)

= ∇△2ϕ+∇(P 0
2 ∗ △ϕ) +△∇(P 0

2 ∗ ϕ)

= ∇△2ϕ+∇3(P 0
2 ∗ ϕ).

Therefore,

(∂⊥t + θr△2)ψ

= ∇∂⊥t ϕ+∇(A ∗ V ) ∗ ϕ+ θr∇△2ϕ+ θr∇3(P 0
2 ∗ ϕ)

= ∇∂⊥t ϕ+∇(θr△2ϕ) +∇(θr) ∗ △2ϕ+∇(A ∗ V ) ∗ ϕ+ θr∇3(P 0
2 ∗ ϕ)

= ∇Y +∇(θr) ∗ △2ϕ+∇(A ∗ V ) ∗ ϕ+ θr∇3(P 0
2 ∗ ϕ).
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Since V = −θrW(f) = θr(P 2
1 + P 0

3 ),

∇(θr) ∗ △2ϕ+∇(A ∗ V ) ∗ ϕ+ θr∇3(P 0
2 ∗ ϕ)

= ∇(θr) ∗ △2ϕ+∇
(
θr(P 2

2 + P 0
4 )
)
∗ ϕ+ θr∇3(P 0

2 ∗ ϕ)

= ∇(θr) ∗
(
(P 2

2 + P 0
4 ) ∗ ϕ+△2ϕ

)
+ θr∇3(P 0

2 ∗ ϕ).

Proposition 2.2.7.

(∂⊥t + θr△2)(∇mA) = ∇m
(
θr(P 2

3 + P 0
5 )
)
+∇m+1

(
∇(θr) ∗ (P 2

1 + P 0
3 )
)
.

Proof. We have proved the case m = 0 in Lemma 2.2.5. Inductively, assume that we have

the conclusion for m− 1. Let ϕ = ∇m−1A in Lemma 2.2.6 so that

(∂⊥t + θr△2)(∇mA)

= ∇
(
(∂⊥t + θr△2)(∇m−1A)

)
+∇(θr) ∗

(
(P 2

2 + P 0
4 ) ∗ Pm−1

1 + Pm+3
1

)
+ θr∇3(P 0

2 ∗ Pm−1
1 ).

For the first term:

∇
(
(∂⊥t + θr△2)(∇m−1A)

)
= ∇

[
∇m−1

(
θr(P 2

3 + P 0
5 )
)
+∇m

(
∇(θr) ∗ (P 2

1 + P 0
3 )
)]

= ∇m
(
θr(P 2

3 + P 0
5 )
)
+∇m+1

(
∇(θr) ∗ (P 2

1 + P 0
3 )
)
;

for the second term:

∇(θr) ∗
(
(P 2

2 + P 0
4 ) ∗ Pm−1

1 + Pm+3
1

)
= ∇m+1

(
∇(θr) ∗ (P 2

1 + P 0
3 )
)
;
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and for the third term:

θr∇3(P 0
2 ∗ Pm−1

1 ) = ∇m
(
θr(P 2

3 + P 0
5 )
)
.

We can derive

(∂⊥t + θr△2)(∇mA) = ∇m
(
θr(P 2

3 + P 0
5 )
)
+∇m+1

(
∇(θr) ∗ (P 2

1 + P 0
3 )
)
,

so the claim holds by mathematical induction.

2.3 Energy estimates

In this section, we estimate the evolution of L2 norms of tensors.

Lemma 2.3.1. Let Y = (∂⊥t + θr△2)ϕ. We have

d

dt

∫
Σt

1

2
γs|ϕ|2 dµt +

∫
Σt

⟨△ϕ,△(γsθrϕ)⟩ − ⟨Y, γsϕ⟩ dµt

=
1

2

∫
Σt

(
∂t(γ

s)− γs⟨Ht, V ⟩
)
|ϕ|2 dµt

−
∫
Σt

γs⟨V,At(eik , ej)⟩⟨ϕ(ei1 , . . . , eirϕ ), ϕ(ei1 , . . . , eik−1
, ej, eik+1

, . . . , eirϕ )⟩ dµt ,

where {ei} denotes an orthonormal frame of Σt, and we use Einstein’s conventions on the

indices i1, . . . , irϕ , j ∈ {1, 2} and k ∈ {1, . . . , rϕ}.

Proof. (i) Abusing the notations, let {ei} denote the coordinate tangent vectors of a co-

ordinate system on Σ in a neighborhood of x ∈ Σ that is orthonormal with respect to
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f ∗gRn at x for some particular t. Then we have

∂⊥t
[
ϕ(ei1 , . . . , eiℓ)

]
= (Y − θr△2ϕ)(ei1 , . . . , eirϕ ) +

ℓ∑
k=1

ϕ(ei1 , . . . , eik−1
, ∂⊤t eik , eik+1

, . . . , eirϕ ),

where

g(∂⊤t ei, ej) = ⟨∂tei, ej⟩ = ⟨DV ej, ej⟩ = ⟨DeiV, ej⟩ = −⟨V,Deiej⟩

= −⟨V,At(ei, ej)⟩.

Therefore,

∂t

(
1

2
γs|ϕ(ei1 , . . . , eirϕ )|

2

)
= γs⟨ϕ(ei1 , . . . , eirϕ ), (Y − θr△2ϕ)(ei1 , . . . , eirϕ )⟩

− γs⟨V,At(eik , ej)⟩⟨ϕ(ei1 , . . . , eirϕ ), ϕ(ei1 , . . . , eik−1
, ej, eik+1

, . . . , eirϕ )⟩

+
1

2
∂t(γ

s)|ϕ(ei1 , . . . , eirϕ )|
2.

That is,

∂t

(
1

2
γs|ϕ|2

)
= ⟨Y, γsϕ⟩ − θr⟨△2ϕ, γsϕ⟩+ 1

2
∂t(γ

s)|ϕ|2

− γs⟨V,At(eik , ej)⟩⟨ϕ(ei1 , . . . , eirϕ ), ϕ(ei1 , . . . , eik−1
, ej, eik+1

, . . . , eirϕ )⟩.

In summary,

d

dt

∫
Σt

1

2
γs|ϕ|2 dµt
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=

∫
Σt

(
⟨Y, γsϕ⟩ − θr⟨△2ϕ, γsϕ⟩+ 1

2
∂t(γ

s)|ϕ|2 − 1

2
γs⟨Ht, V ⟩|ϕ|2

− γs⟨V,At(eik , ej)⟩⟨ϕ(ei1 , . . . , eirϕ ), ϕ(ei1 , . . . , eik−1
, ej, eik+1

, . . . , eirϕ )⟩
)
dµt

=

∫
Σt

(
⟨Y, γsϕ⟩ − ⟨△ϕ,△(γsθrϕ)⟩+ 1

2
∂t(γ

s)|ϕ|2 − 1

2
γs⟨Ht, V ⟩|ϕ|2

− γs⟨V,At(eik , ej)⟩⟨ϕ(ei1 , . . . , eirϕ ), ϕ(ei1 , . . . , eik−1
, ej, eik+1

, . . . , eirϕ )⟩
)
dµt .

Lemma 2.3.2 (Cf. [10, Lemma 3.2]). Again let Y = (∂⊥t + θr△2)ϕ. If s ≥ 4, r ≥ 4, we

have

d

dt

∫
Σt

γs|ϕ|2 dµt +
7

8

∫
Σt

γsθr|∇2ϕ|2 dµt

≤ c

∫
Σt

γsϕ ∗
(
Y + At ∗ ϕ ∗ V + θr|∇At|2ϕ+ θr|At|4ϕ

)
dµt

+ cK4

∫
Σt

γs−4θr−4|ϕ|2 dµt ,

where c = c(s, r, rϕ).

Proof. (i) By Lemma 2.3.1, we have

d

dt

∫
Σt

γs|ϕ|2 dµt + 2

∫
Σt

⟨△ϕ,△(γsθrϕ)⟩ − γs⟨Y, ϕ⟩ dµt

=

∫
Σt

(
sγs−1

(
∂tγ − γ⟨Ht, V ⟩

)
|ϕ|2

− 2γs
ℓ∑

k=1

⟨V,At(eik , ej)⟩⟨ϕ(ei1 , . . . , eiℓ), ϕ(ei1 , . . . , eik−1
, ej, eik+1

, . . . , eiℓ)⟩
)
dµt

≤ c

∫
Σt

γs−1∂tγ|ϕ|2 dµt + c

∫
Σt

γsAt ∗ ϕ ∗ ϕ ∗ V dµt ,
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so that

d

dt

∫
Σt

γs|ϕ|2 dµt

= −2

∫
Σt

⟨△ϕ,△(γsθrϕ)⟩ dµt + c

∫
Σt

γs−1∂tγ|ϕ|2 dµt

+ c

∫
Σt

γsϕ ∗ (Y + At ∗ ϕ ∗ V ) dµt .

(ii) Using integration by parts and the Cauchy-Schwarz inequality,

−
∫
Σt

⟨△ϕ,△(γsθrϕ)⟩ dµt

=

∫
Σt

⟨∇△ϕ,∇(γsθrϕ)⟩ dµt

=

∫
Σt

⟨(△∇ϕ+ At ∗ At ∗ ∇ϕ+ At ∗ ∇At ∗ ϕ),∇(γsθrϕ)⟩ dµt

≤ −
∫
Σt

⟨∇2ϕ,∇2(γsθrϕ)⟩ dµt

+ c

∫
Σt

(
|At|2|∇ϕ|+ |At| |∇At| |ϕ|

)(
γs−1θr−1K|ϕ|+ γsθr|∇ϕ|

)
dµt

≤ −
∫
Σt

⟨∇2ϕ, γsθr∇2ϕ⟩ dµt

+ c

∫
Σt

(
γs−1θr−1K|∇ϕ|+ γs−2θr−2K2|ϕ|+ γs−1θr−1K|At| |ϕ|

)
|∇2ϕ| dµt

+ c

∫
Σt

(
|At|2|∇ϕ|+ |At| |∇At| |ϕ|

)(
γs−1θr−1K|ϕ|+ γsθr|∇ϕ|

)
dµt

≤ −
∫
Σt

γsθr|∇2ϕ|2 dµt +
1

4

∫
Σt

γsθr|∇2ϕ|2 dµt

+ c

∫
Σt

(
γsθr|At|2|∇ϕ|2 + γsθr|∇At|2|ϕ|2

)
dµt

+ c

∫
Σt

(
γs−2θr−2K2|∇ϕ|2 + γs−4θr−4K4|ϕ|2 + γs−2θr−2K2|At|2|ϕ|2

)
dµt

≤ −3

4

∫
Σt

γsθr|∇2ϕ|2 dµt

+ c

∫
Σt

(
γsθr|At|2|∇ϕ|2 + γsθr|∇At|2|ϕ|2

)
dµt

+ c

∫
Σt

(
γs−2θr−2K2|∇ϕ|2 + γs−4θr−4K4|ϕ|2 + γsθr|At|4|ϕ|2

)
dµt ,
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so that the conclusion in (i) becomes

d

dt

∫
Σt

γs|ϕ|2 dµt +
3

2

∫
Σt

γsθr|∇2ϕ|2 dµt

≤ c

∫
Σt

γs−1∂tγ|ϕ|2 dµt

+ c

∫
Σt

γsϕ ∗ (Y + At ∗ ϕ ∗ V + θr|∇At|2ϕ+ θr|At|4ϕ) dµt

+ c

∫
Σt

(
γsθr|At|2|∇ϕ|2 + γs−2θr−2K2|∇ϕ|2 + γs−4θr−4K4|ϕ|2

)
dµt .

(iii) Using integration by parts,

∫
Σt

γsθr|At|2|∇ϕ|2 dµt

=

∫
Σt

⟨ϕ,∇∗ (γsθr|At|2∇ϕ
)
⟩ dµt

≤ c

∫
Σt

(
γsθr|At|2|ϕ| |∇2ϕ|+ γs−1θr−1K|At|2|ϕ| |∇ϕ|

+ γsθr|At| |∇At| |ϕ| |∇ϕ|
)
dµt

≤ ε

∫
Σt

γsθr|∇2ϕ|2 dµt + ε

∫
Σt

γs−2θr−2K2|∇ϕ|2 dµt

+ c ε−1

∫
Σt

γsθr|At|4|ϕ|2 dµt + ε

∫
Σt

γsθr|At|2|∇ϕ|2 dµt

+ c ε−1

∫
Σt

γsθr|∇At|2|ϕ|2 dµt

for any ε > 0, and hence by taking ε to be sufficiently small,

d

dt

∫
Σt

γs|ϕ|2 dµt +

∫
Σt

γsθr|∇2ϕ|2 dµt

≤ c

∫
Σt

γs−1∂tγ|ϕ|2 dµt

+

∫
Σt

γsϕ ∗ (Y + At ∗ ϕ ∗ V + θr|∇At|2ϕ+ θr|At|4ϕ) dµt

+ c

∫
Σt

(
γs−2θr−2K2|∇ϕ|2 + γs−4θr−4K4|ϕ|2

)
dµt .
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(iv) Next, since V = −θr(△Ht + At ∗ At ∗ At),

∫
Σt

γs−1∂tγ|ϕ|2 dµt =

∫
Σt

γs−1Dγ̂(−θr△Ht + θrP 0
3 )|ϕ|2 dµt .

On one hand, by Young’s inequality,

∫
Σt

γs−1θrDγ̂P 0
3 |ϕ|2 dµt

≤ c

∫
Σt

γs−1θrK|At|3|ϕ|2 dµt

= c

∫
Σt

(
γ3s/4θ3r/4|At|3|ϕ|3/2

)(
γs/4−1θr/4K|ϕ|1/2

)
dµt

≤ c

∫
Σt

(
γsθr|At|4|ϕ|2 + γs−4θrK4|ϕ|2

)
dµt .

On the other hand, with integration by parts,

−
∫
Σt

γs−1θr|ϕ|2Dγ̂(△Ht) dµt

= −
∫
Σt

γs−1θr|ϕ|2Dγ̂
(
Dei∇eiHt − ⟨At(ei, ej),∇ejHt⟩Deif

)
dµt

=

∫
Σt

[
γs−1θr|ϕ|2D2γ̂(Deif,∇eiHt) + ⟨Dei

(
γs−1θr|ϕ|2

)
, (Dγ̂(∇eiHt)⟩

+ γs−1θr|ϕ|2⟨At(ei, ej),∇ejHt⟩Dγ̂(Deif)
]
dµt

≤ c

∫
Σt

γs−2θr−1
[
γθK2|∇At| |ϕ|2 + (γθ|∇ϕ|+K|ϕ|)K|∇At| |ϕ|

+ γθK|At| |∇At| |ϕ|2
]
dµt

≤ c

∫
γs−2θr−1

[
K2|∇At| |ϕ|2 + γθK|∇At| |ϕ| |∇ϕ|

+ γθK|At| |∇At| |ϕ|2
]
dµt

≤ c

∫
Σt

[
γsθr|∇At|2|ϕ|2 + γs−4θr−4K4|ϕ|2 + γs−2θrK2|∇ϕ|2

+ γs−2θrK2|At|2|ϕ|2
]
dµt

≤ c

∫
Σt

[
γsθr|∇At|2|ϕ|2 + γsθr|At|4|ϕ|2 + γs−4θr−4K4|ϕ|2 + γs−2θrK2|∇ϕ|2

]
dµt .
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As a result,

d

dt

∫
Σt

γs|ϕ|2 dµt +

∫
Σt

γsθr|∇2ϕ|2 dµt

≤ c

∫
Σt

γsϕ ∗ (Y + At ∗ ϕ ∗ V + θr|∇At|2ϕ+ θr|At|4ϕ) dµt

+ c

∫
Σt

(
γs−2θr−2K2|∇ϕ|2 + γs−4θr−4K4|ϕ|2

)
dµt .

(v) Finally, for arbitrary ε > 0,

∫
Σt

γs−2θr−2K2|∇ϕ|2 dµt

≤ c

∫
Σt

(
γs−2θr−2K2|∇2ϕ|+ γs−3θr−3K3|∇ϕ|

)
|ϕ| dµt

≤ ε

∫
Σt

(
γsθr|∇2ϕ|2 + γs−2θr−2K2|∇ϕ|2

)
dµt + c ε−1

∫
Σt

γs−4θr−4K4|ϕ|2 dµt ,

so that by taking ε to be sufficiently small,

d

dt

∫
Σt

γs|ϕ|2 dµt +
7

8

∫
Σt

γsθr|∇2ϕ|2 dµt

= c

∫
Σt

γsϕ ∗ (Y + At ∗ ϕ ∗ V + θr|∇At|2ϕ+ θr|At|4ϕ) dµt

+ c

∫
Σt

γs−4θr−4K4|ϕ|2 dµt ,

which is what we need to prove.

Proposition 2.3.3 (Cf. [10, Proposition 3.3]). Let 0 ≤ k ≤ m. If s, r ≥ 2k + 4, we have

d

dt

∫
Σt

γs|∇mAt|2 dµt +
3

4

∫
Σt

γsθr|∇m+2At|2 dµt
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≤ c

∫
Σt

γs∇mAt ∗
[
∇m
(
θr(P 2

3 + P 0
5 )
)
+∇m+1

(
θr−1∇θ ∗ (P 2

1 + P 0
3 )
)]

dµt

+ cK4+2k

∫
Σt

γs−4−2kθr−4−2k|∇m−kAt|2 dµt ,

where c = c(s, r,m).

Proof. By Proposition 2.2.7, we have

Y = (∂⊥t + θr△2)ϕ = ∇m
(
θr(P 2

3 + P 0
5 )
)
+∇m+1

(
θr−1∇θ ∗ (P 2

1 + P 0
3 )
)
.

In addition, V = θr(P 2
1 + P 0

3 ) implies

At ∗ ∇mAt ∗ V + θr|∇At|2∇mAt + θr|At|4∇mAt = θr(Pm+2
3 + Pm

5 ).

Therefore, by taking ϕ = ∇mAt in Lemma 2.3.2,

d

dt

∫
Σt

γs|∇mAt|2 +
7

8

∫
Σt

γsθr|∇m+2At|2 dµt

≤ c

∫
Σt

γs∇mAt ∗
(
Y + At ∗ ∇mAt ∗ V + θr|∇At|2∇mAt + θr|At|4∇mAt

)
dµt

+ cK4

∫
Σt

γs−4θr−4|∇mAt|2 dµt

≤ c

∫
Σt

γs∇mAt ∗
[
∇m
(
θr(P 2

3 + P 0
5 )
)
+∇m+1

(
θr−1∇θ ∗ (P 2

1 + P 0
3 )
)]

dµt

+ cK4

∫
Σt

γs−4θr−4|∇mAt|2 dµt .

If k > 0, by Proposition A.1.2,

K4

∫
Σt

γs−4θr−4|∇mAt|2 dµt

≤ ε

∫
Σt

γsθr|∇m+2At|2 dµt + c(s, r,m, ε)K4+2k

∫
Σt

γs−4−2kθr−4−2k|∇m−kAt|2 dµt ,
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and hence by taking ε to be sufficiently small,

d

dt

∫
Σt

|∇mAt|2γs dµt +
3

4

∫
Σt

γsθr|∇m+2At|2 dµt

≤ c

∫
Σt

γs∇mAt ∗
[
∇m
(
θr(P 2

3 + P 0
5 )
)
+∇m+1

(
θr−1∇θ ∗ (P 2

1 + P 0
3 )
)]

dµt

+ cK4+2k

∫
[γθ>0]

γs−4−2kθr−4−2k|∇m−kAt|2 dµt .

Lemma 2.3.4. Let f : Σ × [0, T ) → Rn be a solution to the modified equation (1.2). If

s, r ≥ 4, then we can choose ε0 so that assuming (2.1) for all 0 ≤ t ≤ t0 for some 0 < t0 < T ,

namely

sup
0≤t≤t0

∫
[γθ>0]

|At|2 dµt ≤ ε0, (2.2)

we have

∫
[γ=1]

|At|2 dµt +
1

2

∫ t

0

∫
[γ=1]

θr
(
|∇2At′|2 + |At′|6

)
dµt′ dt

′ ≤
∫
[γ>0]

|A0|2 dµ0 + cK4et

for all t ∈ [0, t0), where c = c(n, s, r) and

e := sup
0≤t≤t0

∫
[γθ>0]

|At|2 dµt .

Proof. By Proposition 2.3.3 (with m = 0 and k = 0),

d

dt

∫
Σt

γs|At|2 dµt +
3

4

∫
Σt

γsθr|∇2At|2 dµt +
3

4

∫
Σt

γsθr|At|6 dµt

≤ c

∫
Σt

γsAt ∗
[
θr(P 2

3 + P 0
5 ) +∇

(
θr−1∇θ ∗ (P 2

1 + P 0
3 )
)]

dµt

+ cK4

∫
Σt

γs−4θr−4|At|2 dµt +
3

4

∫
Σt

γsθr|At|6 dµt
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≤ c

∫
Σt

γsθrAt ∗ (P 2
3 + P 0

5 ) +∇(γsAt) ∗ (θr−1∇θ) ∗ (P 2
1 + P 0

3 ) dµt

+ cK4

∫
Σt

γs−4θr−4|At|2 dµt +
3

4

∫
Σt

γsθr|At|6 dµt

≤ c

∫
Σt

γsθr
(
|∇2At| |At|3 + |∇At|2|At|2 + |At|6

)
dµt

+ c

∫
Σt

(
γsθr−1K|∇At|+ γs−1θr−1K2|At|

)(
|∇2At|+ |At|3

)
dµt + cK4e

≤ 1

12

∫
Σt

γsθr|∇2At|2 dµt + c

∫
Σt

γsθr
(
|∇At|2|At|2 + |At|6

)
dµt

+ cK2

∫
Σt

γsθr−2|∇At|2 dµt + cK4e.

Therefore by Proposition A.1.2 and Lemma 2.1.1,

d

dt

∫
Σt

γs|At|2 dµt +
3

4

∫
Σt

γsθr(|∇2At|2 + |At|6) dµt

≤ 1

6

∫
Σt

γsθr|∇2At|2 dµt + c

∫
[γθ>0]

|At|2 dµt

∫
Σt

γsθr
(
|∇2At|2 + |At|6

)
dµt

+ cK4e+ cK4ε0e

≤ 1

4

∫
Σt

γsθr
(
|∇2At|2 + |At|6

)
dµt + cK4e,

and hence

∫
Σt

γs|At|2 dµt +
1

2

∫ t

0

∫
Σt′

γsθr
(
|∇2At′ |2 + |At′|6

)
dµt′ dt

′

≤
∫
Σ0

γsθr|A0|2 dµ0 + cK4et.

Proposition 2.3.5. Let m ≥ 1. If s ≥ 6 and r ≥ 20, then we can choose ε0 so that
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assuming (2.1), we have that for some c = c(n, s, r,m,K),

d

dt

∫
Σt

γs|∇mAt|2 dµt +
1

2

∫
Σt

γsθr|∇m+2At|2 dµt

≤ c ∥θr/4At∥4∞,[γ>0]

∫
[θ>0]

γs|∇mAt|2 dµt + βm,γ,

where

β1,γ = c ∥At∥22,[γθ>0],

β2,γ = c
(
1 + ∥θr/4At∥4∞,[γ>0]

)
∥At∥22,[γθ>0],

and when m ≥ 3, βm,γ only depends on n, s, r, m, K, and

∥∇jAt∥p,[γθ>0], where either


j = 0, . . . ,m− 2,

p = 2, . . . , 2m+ 4,

or


j = 0, 1,

p = ∞.

Proof. With c = c(n, s, r,m, ε), we have

(i) For m = 1,

∫
Σt

(γs∇At) ∗
[
∇
(
θr(P 2

3 + P 0
5 )
)
+∇2

(
θr−1∇θ ∗ (P 2

1 + P 0
3 )
)]

dµt

≤
∫
Σt

(γs∇At) ∗ ∇
(
θr(P 2

3 + P 0
5 )
)
+∇2(γs∇At) ∗

(
θr−1∇θ ∗ (P 2

1 + P 0
3 )
)
dµt

≤
∫
Σt

γs|∇At| ·
[
θr(|∇3At| |At|2 + |∇2At| |∇At| |At|+ |∇At|3 + |∇At| |At|4)

+ θr−1K(|∇2At| |At|2 + |∇At|2|At|+ |At|5)
]

+
[
γs|∇3At|+ γs−1K|∇2At|

+ (γs−2K2 + γs−1K|At|)|∇At|
]
· θr−1K(|∇2At|+ |At|3) dµt
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≤ ε

∫
Σt

γsθr|∇3At|2 dµt + c

∫
Σt

(γs−2θr−2K2 + γsθr|At|2)|∇2At|2 dµt

+ c

∫
Σt

(γs−4θr−4K4 + γsθr|At|4)|∇At|2 dµt

+ c

∫
Σt

γsθr−2K2|At|6 dµt + c

∫
Σt

γsθr|∇At|4 dµt

≤ ε

∫
Σt

γsθr|∇3At|2 dµt + c

∫
Σt

(γs−2θr−2K2 + γsθr|At|2)|∇2At|2 dµt

+ c

∫
Σt

(γs−4θr−4K4 + γsθr|At|4)|∇At|2 dµt + c

∫
Σt

γsθr|∇At|4 dµt

+ cK6∥At∥22,[γθ>0] (Lemma 2.1.1)

≤ ε

∫
Σt

γsθr|∇3At|2 dµt

+ c

∫
Σt

(
γs−2θr−2K2 + γsθr/2∥θr/4At∥2∞,[γ>0]

)
|∇2At|2 dµt

+ c

∫
[θ>0]

(
γs−4θr−4K4 + γs

∥∥θr/4At

∥∥4
∞,[γ>0]

)
|∇At|2 dµt + cK6∥At∥22,[γθ>0]

(Proposition 2.1.3)

≤ 2ε

∫
Σt

γsθr|∇3At|2 dµt + c

∫
Σt

γs−2θr−2K2|∇2At|2 dµt

+ c

∫
[θ>0]

(
γs−4θr−4K4 + γs∥θr/4At∥4∞,[γ>0]

)
|∇At|2 dµt + cK6∥At∥22,[γθ>0]

(Proposition A.1.3)

≤ 3ε

∫
Σt

γsθr|∇3At|2 dµt + c ∥θr/4At∥4∞,[γ>0]

∫
[θ>0]

γs|∇At|2 dµt

+ cK6∥At∥22,[γθ>0]. (Proposition A.1.2)

Finally, apply this estimate with sufficiently small ε and k = 1 in Proposition 2.3.3 so

that

d

dt

∫
Σt

γs|∇At|2 dµt +
1

2

∫
Σt

γsθr|∇3At|2 dµt

≤ c ∥θr/4At∥4∞,[γ>0]

∫
[θ>0]

γs|∇At|2 dµt + cK6∥At∥22,[γθ>0].
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(ii) For m = 2,

∫
Σt

γs∇2At ∗
[
∇2
(
θr(P 2

3 + P 0
5 )
)
+∇3

(
θr−1∇θ ∗ (P 2

1 + P 0
3 )
)]

dµt

≤
∫
Σt

(
∇2(γs∇2At) ∗

[
θrP 2

3 +∇
(
θr−1∇θ ∗ (P 2

1 + P 0
3 )
)]

+ γs∇2At ∗ ∇2
(
θrP 0

5

))
dµt

≤ c

∫
Σt

([
γs|∇4At|+ γs−1K(|∇3At|+ |∇2At| |At|) + γs−2K2|∇2At|

]
·
[
θr(|∇2At| |At|2 + |∇At|2 |At|)

+ θr−1K(|∇3At|+ |∇2At| |At|+ |∇At| |At|2 + |At|4)

+ θr−2K2(|∇2At|+ |At|3)
]

+ γs|∇2At|
[
θr(|∇2At| |At|4 + |∇At|2 |At|3)

+ θr−1K(|∇At| |At|4 + |At|6) + θr−2K2|At|5
])

dµt

≤ ε

∫
Σt

γsθr|∇4At|2 dµt + c

∫
Σt

(γs−2θr−2K2 + γsθr|At|2)|∇3At|2 dµt

+ c

∫
Σt

(γs−4θr−4K4 + γs−2θr−2K2|At|2 + γsθr|At|4)|∇2At|2 dµt

+ c

∫
Σt

γsθr−2K2|∇At|2|At|4 dµt + c

∫
Σt

γsθr−4K4|At|6 dµt

+ c

∫
Σt

γsθr−2K2|At|8 dµt + c

∫
Σt

γsθr|∇At|4|At|2 dµt

≤ ε

∫
Σt

γsθr|∇4At|2 dµt + c

∫
Σt

(γs−2θr−2K2 + γsθr|At|2)|∇3At|2 dµt

+ c

∫
Σt

(γs−4θr−4K4 + γsθr|At|4)|∇2At|2 dµt

+ c

∫
Σt

γsθr|∇At|4|At|2 dµt + c

∫
Σt

γsθr−8K8|At|2 dµt

+ c

∫
Σt

γsθr−2K2|At|8 dµt
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≤ ε

∫
Σt

γsθr|∇4At|2 dµt

+ c

∫
Σt

(
γs−2θr−2K2 + γsθr/2∥θr/4At∥2∞,[γ>0]

)
|∇3At|2 dµt

+ c

∫
[θ>0]

(
γs−4θr−4K4 + γs∥θr/4At∥4∞,[γ>0]

)
|∇2At|2 dµt

+ c

∫
Σt

γsθr|∇At|4|At|2 dµt + cK8∥At∥22,[γθ>0] (Lemma 2.1.2)

≤ ε

∫
Σt

γsθr|∇4At|2 dµt

+ c

∫
Σt

(
γs−2θr−2K2 + γsθr/2∥θr/4At∥2∞,[γ>0]

)
|∇3At|2 dµt

+ c

∫
[θ>0]

(
γs−4θr−4K4 + γs∥θr/4At∥4∞,[γ>0]

)
|∇2At|2 dµt

+ c
(
K8 +K5∥θr/4At∥3∞,[γ>0]

)
∥At∥22,[γθ>0] (Proposition 2.1.4)

≤ 2ε

∫
Σt

γsθr|∇4At|2 dµt + c ∥θr/4At∥4∞,[γ>0]

∫
[θ>0]

γs|∇2At|2 dµt

+ c
(
K8 +K4∥θr/4At∥4∞,[γ>0]

)
∥At∥22,[γθ>0]. (Proposition A.1.4)

Finally, apply this estimate with sufficiently small ε and k = 2 in Proposition 2.3.3 so

that

d

dt

∫
Σt

γs|∇2At|2 dµt +
1

2

∫
Σt

γsθr|∇4At|2 dµt

≤ c ∥θr/4At∥4∞,[γ>0]

∫
[θ>0]

γs|∇2At|2 dµt + c
(
K8 +K4∥θr/4At∥4∞,[γ>0]

)
∥At∥22,[γθ>0].

(iii) For m ≥ 3,

∫
Σt

γs∇mAt ∗
[
∇m
(
θr(P 2

3 + P 0
5 )
)
+∇m+1

(
θr−1∇θ ∗ (P 2

1 + P 0
3 )
)]

dµt

≤
∫
Σt

∇2(γ2∇mAt) ∗
[
∇m−2

(
θr(P 2

3 + P 0
5 )
)
+∇m−1

(
θr−1∇θ ∗ (P 2

1 + P 0
3 )
)]

dµt
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≤ c

∫
Σt

[
γs|∇m+2At|+ γs−1K|∇m+1At|+ (γs−2K2 + γs−1K|At|)|∇mAt|

]
·
[
θr
(
|∇mAt| |At|2 + |∇m−1At| |∇At| |At|

)
+ θr−1K

(
|∇m−1At| |At|2 + |∇m+1At|+ |∇mAt| |At|+ |∇m−1At| |∇At|

)
+ θr−2K2

(
|∇mAt|+ |∇m−1At| |At|

)
+ θr−3K3|∇m−1At|+ |T |

]
dµt ,

where T is a tensor that is supported on [γθ > 0] and can be described as a polynomial

defined by operators + and ∗, with variables being At, . . . ,∇m−2At, with coefficients

bounded by some c(n, s, r,m, ε,K), at most of degree (m + 2), and without constant

terms. In particular, using Hölder’s inequality, ∥T∥22 is bounded above by a quantity

in the same form as how βm,γ is described. Next, using Cauchy-Schwartz inequality

and Proposition A.1.4, we have

∫
Σt

γs∇mAt ∗
[
∇m
(
θr(P 2

3 + P 0
5 )
)
+∇m+1

(
θr−1∇θ ∗ (P 2

1 + P 0
3 )
)]

dµt

≤ ε

∫
Σt

γsθr|∇m+2At|2 dµt + c

∫
Σt

γs−2θr−2K2|∇m+1At|2 dµt

+ c

∫
Σt

(
γs−4θr−4K4 + γsθr∥At∥4∞,[γθ>0]

)
|∇mAt|2 dµt

+ c

∫
Σt

(
γs−6θr−6K6 + γs−2θr−2K2∥At∥4∞,[γθ>0] + γs−2θr−2K2∥∇At∥2∞,[γθ>0]

+ γsθr∥∇At∥2∞,[γθ>0]∥At∥2∞,[γθ>0]

)
· |∇m−1At|2 dµt + c ∥T∥22

≤ 2ε

∫
Σt

γsθr|∇m+2At|2 dµt

+ c
(
K8 + ∥At∥8∞,[γθ>0] + ∥∇At∥4∞,[γθ>0]

) ∫
[γθ>0]

|∇m−2At|2 dµt + c ∥T∥22.

Finally, apply this estimate with sufficiently small ε and k = 2 in Proposition 2.3.3 so

that

d

dt

∫
Σt

γs|∇mAt|2 dµt +
1

2

∫
Σt

γsθr|∇m+2At|2 dµt ≤ βm,γ
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for some appropriate choice for βm,γ.

Having s = 6 and r = 20 fixed, we will from now on omit them when describing dependence.

2.4 Short-time existence

Using Sobolev inequalities in section 3 and Gronwall’s lemma, we derive a-priori estimates

for L2 norms and L∞ norms. As a result, we can derive a short-time existence result for

Willmore flow.

Convention 2.4.1. For j = 1, 2, 3, let γ̂j = σj ◦ γ̂ and γj = σj ◦ γ = γ̂j
∣∣
Σt

, where each σj

is a function on R such that



σj is increasing and smooth,

σj(x) = 0 for all x ≤ 3−j
3

,

0 < σj(x) < 1 for all 3−j
3
< x < 4−j

3
,

σj(x) = 1 for all x ≥ 4−j
3

, and

|Dσj(x)| ≤ c and |D2σj(x)| ≤ c for some universal constant c.

In particular, by section 1.3, |Dγ̃j| ≤ cK and |D2γ̃j| ≤ cK2 with some universal constant

c.

Lemma 2.4.2. Let m ≥ 3 and βm,γ3 be as described in Proposition 2.3.5 but with γ replaced

by γ3. Assuming (2.1), we have

βm,γ3 ≤ c,
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where c = c(n,m,K, α) and

α :=
m−1∑
k=0

∥∇kAt∥2,[γ>0].

Proof. Throughout this proof, we let c = c(n,m,K). First, by Lemma 2.1.5, we have

∥At∥∞,[γ3>0] ≤ ∥At∥∞,[γ2>0] ≤ c ∥At∥1/22,[γ>0]

(
∥∇2At∥1/22,[γ>0] + ∥At∥1/22,[γ>0]

)
≤ c α.

Next, also by Lemma 2.1.5,

∥∇At∥∞,[γ3>0]

≤ c ∥∇At∥1/22,[γ>0]

(
∥∇3At∥1/22,[γ>0] + ∥∇At∥1/22,[γ>0] + ∥ |At|4|∇At|2∥1/41,[γ2>0]

)
≤ c ∥∇At∥1/22,[γ>0]

(
∥∇3At∥1/22,[γ>0] + ∥∇At∥1/22,[γ>0] + ∥At∥∞,[γ2>0]∥∇At∥1/22,[γ2>0]

)
≤ c (α + α2).

Next, consider ∥∇jAt∥p,[γ3>0], where 0 ≤ j ≤ (m− 2) and 3 ≤ p ≤ (2m+4) are integers. By

Lemma A.2.5, we have

∥∇jAt∥p,[γ3>0]

≤ c
(
∥∇jAt∥2,[γ2>0] + ∥∇j+1At∥2,[γ2>0] + ∥∇jAt∥2,[γ2>0] + ∥At∥∞,[γ2>0]∥∇jAt∥2,[γ2>0]

)
≤ c (α + α2).

By the definition of βm,γ3 , we have the desired result.

Proposition 2.4.3. For all k ≥ 0, define

α0(k) =
k∑

j=0

∥∇jA0∥2,[γ>0].
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Assuming (2.2) for some 0 < t0 < T , we have

sup
0≤t≤t0

∥∇mAt∥2,[γ=1] ≤ c
(
n,K,m, t0, α0(m)

)
.

Proof. The case m = 0 is proved by hypothesis. We set m > 0 and assume that we have for

each k = 0, . . . , (m− 1),

∥∇kAt∥2,[γ=1] ≤ c
(
n,m,K, t0, α0(k)

)
.

First, we have

∫ t

0

∥θr/4At′∥4∞,[γ3>0] dt
′

≤ c(n,K)

∫ t

0

∥At′∥22,[γ2>0]

(
∥θr/2∇2At′∥22,[γ2>0] + ∥At′∥22,[γ2>0]

)
dt′ (Corollary 2.1.6)

≤ c(n,K) ε0

∫ t

0

∫
[γ1=0]

θr|∇2At′ |2 dµt′ dt
′ + ε0 c(n,K, t0)

≤ c(n,K, t0). (Lemma 2.3.4)

In particular,

β2,γ3 ≤ c(n,K, t0).

By the hypothesis and Lemma 2.4.2, we also have

β1,γ3 ≤ c(n,K),

and for all m ≥ 3,

βm,γ3 ≤ c
(
n,m,K, t0, α0(m− 1)

)
.
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In particular, for all m ≥ 1,

∫ t

0

βm,γ3 dt
′ ≤ c

(
n,m,K, t0, α0(m− 1)

)
.

Next, by replacing γ with γ3 in Proposition 2.3.5, we have

∫
Σt

γs3|∇mAt|2 dµt

≤
∫
Σt

γs3|∇mAt|2 dµt +
1

2

∫ t

0

∫
Σt

γs3θ
r|∇m+2At′ |2 dµt′ dt

′

≤
∫
Σ0

γs3|∇mA0|2 dµ0 + c(n,m,K)

∫ t

0

(
∥θr/4At′∥4∞,[γ3>0]

∫
Σt′

γs3|∇mAt′|2 dµt′

)
dt′

+ c(n,m,K) sup
0≤t<T

∥∇m−1At∥22,[γ>0]

∫ t

0

(
1 + ∥θr/4At′∥4∞,[γ3>0]

)
dt′ +

∫ t

0

βm,γ3 dt
′

≤ c(n,m,K)

∫ t

0

(
∥θr/4At′∥4∞,[γ3>0]

∫
Σt

γs3|∇mAt′ |2 dµt′

)
dt′ + c

(
n,m,K, t0, α0(m)

)
.

Therefore, by Gronwall’s lemma, we have

∥∇mAt∥22,[γ=1]

≤
∫
Σt

γs3|∇mAt|2 dµt

≤ c
(
n,m,K, t0, α0(m)

)
exp

(
c(n,m,K)

∫ t

0

∥θrAt∥4∞,[γ>0] dt
′
)

≤ c
(
n,m,K, t0, α0(m)

)
.

Corollary 2.4.4. Under the settings in Proposition 2.4.3, for all m ≥ 0,

sup
0≤t≤t0

∥∇mAt∥∞,[γ=1] ≤ c
(
n,m,K, t0, α0(m+ 2)

)
.
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Proof. By Lemma 2.1.5,

∥∇mAt∥∞,[γ=1]

≤ c(n,m,K) ∥∇mAt∥1/22,[γ3>0]

(
∥∇m+2At∥1/22,[γ3>0] + (1 + ∥At∥∞,[γ3>0])∥∇mAt∥1/22,[γ3>0]

)
≤ c
(
n,m,K, t0, α0(m+ 2)

)
.

Proposition 2.4.5 (Cf. [10, Proof of Theorem 1.2]). Let Σ be closed, and let 0 ≤ θ̂ ≤ 1

be a smooth function on Rn such that

K2 := sup |Dθ̂| <∞ and sup |Dkθ̂| ≤ c(k)Kk
2 , ∀k ≥ 1.

Then there exist an > 0 and c0 > 0, both depending only on n, such that whenever f0 : Σ →

Rn satisfies

κ(ϱ, 0) = sup
x∈Rn

∫
Σ0∩Bϱ(x)

|A0|2 dµ0 ≤ e0 ≤
ε0
2an

for some ϱ > 0, we can find a solution f : Σ× [0, T ) → Rn to equation (1.2) such that

T ≥ c−1
0 K−4,

where K = max{2/ϱ,K2} and T is the maximum existence time. Moreover, f satisfies the

following estimate for the growth of energy concentration:

κ(ϱ, t) ≤ ane0(1 + c0K
4t), ∀0 ≤ t ≤ c−1

0 K−4

Proof. Let an be the number of balls of radius 1 in Rn required to cover a ball of radius

2. Note that without loss of generality, we can assign these balls of radius 1 to have their
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centers in the bigger ball.

Netx, by hypothesis, κ(ϱ, 0) ≤ e0 < ε0 and κ(ϱ, t) is continuous in t. Whenever f exists

with T > 0, we define

t0 = max{0 ≤ t ≤ T : ∀0 ≤ τ < t, κ(ϱ, τ) ≤ 2ane0},

which is always a positive number. Moreover, we either have t0 = T or κ(ϱ, t0) = 2ane0.

For each x ∈ Rn, we can find γ̂ such that

χBϱ/2(x) ≤ γ̂ ≤ χBϱ(x)

as in Lemma 1.3.1 with K1 = 2/ϱ, so that K = max{K1, K2}. By Corollary 2.4.4,

sup
0≤t≤t0
0≤t<T

∥∇mAt∥∞ = sup
x∈Rn

sup
0≤t≤t0
0≤t<T

∥∇mAt∥∞,Σt∩Bϱ/2(x) ≤ c(n,m,K, t0, f0).

In addition, as shown in the proof of [10, Theorem 1.2], we can show that for all 0 ≤ t < t0,

|∂mx f(x, t)|, |∂mx ∂tf(x, t)| ≤ c
(
n,m,K, t0, f0

)
. (2.3)

Consider the following cases:

(i) Assume θ̂ > 0 and t0 = T .

Since θ̂ > 0, f exists with T > 0. By the estimate above, f(x, t) converges to a smooth

function f(x, T ) = fT (x) as t → T . Therefore, by short time existence theorems (e.g.

[19]), we can extend the solution to (1.2) for a longer time, a contradiction.

(ii) Assume θ̂ > 0 and κ(ϱ, t0) = 2ane0.
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Since θ̂ > 0, f exists with T > 0. For all 0 ≤ t < t0, by Lemma 2.3.4, we have

∫
Σt∩Bϱ/2(x)

|At|2 dµt ≤ e0 + cK4(2ane0)t = e0(1 + c0K
4t),

where c = c(n) and we define

c0 = 2anc,

which also depends only on n. Observe that we have

2ane0 = κ(ϱ, t0) ≤ anκ(ϱ/2, t0) ≤ ane0(1 + c0K
4t0),

which implies that

t0 ≥ c−1
0 K−4.

(iii) General case.

Let 0 < η < 1 and replace θ̂ with
(
η + (1 − η)θ̂

)
. Since (i) cannot hold, by applying

case (ii), we can find

f̂η : Σ× [0, c−1
0 K−4] → Rn

such that
∂tf̂η = −

(
η + (1− η)θ̂ ◦ f̂η

)r
W
(
f̂η(·, t)

)
,

f̂η
∣∣
t=0

= f0.

Moreover, we have (2.3) for all η and t without dependence on η on the right hand side.

Therefore, as η→ 0, there exists a subsequential limit f̂η → f such that f is defined
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for all

0 ≤ t ≤ c−1
0 K−4

and solves (1.2). Moreover, as shown in case (ii), the concentration growth estimate

holds for all f̂η, and hence holds for their limit, f .

Theorem 2.4.6 (Short time existence and minimal existence time). Let f0 : Σ → Rn be

a smooth, complete, properly immersed surface in Rn. Then there exist ε1 > 0 and c1 > 0,

both depending only on n, such that whenever the initial energy concentration condition

κ(ϱ, 0) ≤ e0 ≤ ε1

holds for some ϱ > 0 and e0 > 0, there exists a solution f : Σ× [0, T ) → Rn to the Willmore

flow equation (1.1) such that T ≥ c−1
1 ϱ4. Moreover, f satisfies the following estimate for the

growth of energy concentration:

κ(ϱ, t) ≤ ane0(1 + c1ϱ
−4t), ∀0 ≤ t ≤ c−1

1 ϱ4.

Proof. Define

ε1 =
ε0
2an

and c1 = 16c0, so that c−1
0

(
2

ϱ

)−4

= c−1
1 ϱ4.

Fix K = K2 = 2/ϱ and let

χBR−ϱ/2(0) ≤ θ̂ ≤ χBR(0)

as in Lemma 1.3.1, where R > ϱ/2.
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We claim that for all R, there exists a solution

fR : Σ× [0, c−4
1 ϱ4] → Rn

that solves (1.2). First, in general, we either let

fR : Σ× [0, TR) → Rn

be a solution to (1.2) with maximum existence time TR > 0, in which case we denote

tR := max

{
0 ≤ t ≤ TR : sup

0≤τ<t
κ(ϱ, τ) ≤ 2ane0

}
;

or in case such fR doesn’t exist for any TR > 0, we denote tR = TR = 0 for convenience. Note

that since the energy concentration doesn’t change outside of BR(0), we obtain by continuity

that either tR = TR or κ(ϱ, tR) = 2ane0.

Next, whether tR is 0 or positive, we extend fR to Σ× [0, tR], which is already done except

when tR = TR > 0. Recall that for all 0 ≤ t < tR, κ(ϱ, t) ≤ 2ane0 ≤ ε0. As in case (i)

of the proof of Proposition 2.4.5, we can derive an estimate, similarly with (2.3), and see

that fR(·, t) converges smoothly to some fR(·, tR) as t → tR, and that fR can be extended

as claimed.

Next, assume that κ(ϱ, tR) < 2ane0, which implies tR = TR. We can extend the subset

{fR(x, TR) : x ∈ Σ, f0(x) ∈ BR(0)}

to a closed surface S. By Proposition 2.4.5, we can find a solution f̂S to (1.2) with initial
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surface S. Since θ > 0 only when fR(x, TR) agrees with S, we can extend fR to

f̂R(x, t) =


fR(x, t) if 0 ≤ t ≤ TR,

f̂S
(
fR(x, tR), t− TR

)
if f0(x) ∈ BR(0) and TR ≤ t < TR + δ, and

f0(x) if f0(x) /∈ BR(0) and 0 ≤ t < TR + δ.

Despite that δ depends on S and that S depends on both R and fR, it turns out that f̂R is

another solution to (1.2) with a longer existence time than fR, a contradiction. That is, we

must have κ(ϱ, tR) = 2ane0.

Next, by Lemma 2.3.4, we have that at t = tR,

2ane0 = κ(ϱ, tR) ≤ anκ(ϱ/2, tR) ≤ ane0(1 + c1ϱ
−4tR),

and hence

TR ≥ tR ≥ c−1
1 ϱ4.

Recall that we have constructed fR on the time interval t ∈ [0, tR]. We will restrict it to

t ∈ [0, c−1
1 ϱ4].

Finally, (2.3) holds for all R, x ∈ Σ, and t ∈ [0, c−1
1 ϱ4], with t0 replaced by c−1

1 ϱ4. Note that

the right hand side doesn’t depend on R. Therefore, as R→ ∞, there exists a subsequential

limit fR → f such that each derivative converges locally uniformly, so that f solves (1.1)

and is defined on t ∈ [0, c−1
1 ϱ4]. Note that Lemma 2.3.4 applies for f on t ∈ [0, c−1

1 ϱ4], and

hence the concentration growth estimate follows.

Corollary 2.4.7 (Energy inequality). If W(f0) < ∞ and f is the Willmore flow con-
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structed in the theorem, then we have

∫
Σt

|At|2 dµt +

∫ t

0

∫
Σt′

|W(f(·, t′))|2 dµt′ dt
′ ≤
∫
Σ0

|A0|2 dµ0 .

Proof. Along fR, by the definition of variational derivative, we have

∫
fR(Σ,t)

|At|2 dµt +

∫ t

0

∫
fR(Σ,t′)

θr|W(fR(·, t′))|2 dµt′ dt
′ =

∫
Σ0

|A0|2 dµ0

since θ has compact support. As R→ ∞, both integrands on the left hand side converge

pointwise to the corresponding integrands for f . Thus by Fatou’s lemma,

∫
Σt

|At|2 dµt +

∫ t

0

∫
Σt′

|W(f(·, t′))|2 dµt′ dt
′ ≤
∫
Σ0

|A0|2 dµ0 .

Corollary 2.4.8. If f0 satisfies W(f0) < ∞, then there exists f with T > 0. Moreover,

if W(f0) ≤ anε1 =
1
2
ε0, then there exists f with T = ∞.

Proof. (i) For the former case, take R sufficiently large so that

∫
Σ0\BR(0)

|A0|2 dµ0 < ε1.

Since f0 is proper, we can find a finite open cover {Brk(xk)}Nk=1 of BR+1(0) so that for

all k,

∫
Σ0∩B2rk

(xk)

|A0|2 dµ0 < ε1.

Let ϱ = min{1, r1, . . . , rN}. As a result, for all x ∈ Rn, either x ∈ BR+1(0) so that for
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some k = k(x) we have

∫
Σ0∩Bϱ(x)

|A0|2 dµ0 ≤
∫
Σ0∩Bϱ+rk

(xk)

|A0|2 dµ0 < ε1,

or x /∈ BR+1(0) so that

∫
Σ0∩Bϱ(x)

|A0|2 dµ0 ≤
∫
Σ0\BR(0)

|A0|2 dµ0 < ε1.

We hence have T ≥ c−1
1 ϱ4 > 0 by Theorem 2.4.6.

(ii) For the latter case, we observe that along fR,

∫
fR(Σ,t)∩BR(0)

|At|2 dµt

=

∫
Σ0∩BR(0)

|A0|2 dµ0 −
∫ t

0

∫
fR(Σ,t′)

θr|W(fR(·, t′))|2 dµt′ dt
′ ≤ ε0

for all 0 ≤ t < TR. Corollary 2.4.4 hence applies and we have (2.3) for all 0 ≤ t ≤ t0 =

TR, provided TR <∞. However, fR(x, t) converges as t→ TR, a contradiction against

TR < ∞. As a result of TR = ∞, we can take a subsequential limit fR → f with the

functions being defined on Σ× [0,∞).

2.5 Uniqueness

In this section, we consider a Willmore flow f : Σ × [0, T ) → Rn (note that we assume

continuity as t→ 0+), where T > 0 is not necessarily the maximal existence time and

f(Φ(x; t), t) = f0(x) + η(x, t), (2.4)
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where η is perpendicular to TxΣ0, i.e., η is a 1-parameter family of sections of NΣ0, the

normal bundle of Σ0, and for each t, Φ is an automorphism of Σ. We also let f0(x) = f(x, 0)

denote the initial surface and assume η
∣∣
t=0

= 0 and Φ(x; 0) = x as the initial condition. In

particular, we should solve

∂tf
∣∣
Φ(x)

= −Df
∣∣
Φ(x)

(
∂tΦ
∣∣
x

)
+ ∂tη

∣∣
x
.

Note that the right hand side is uniquely determined by the other side as long as TΦ(x)Σ⊕

NxΣ0 = Rn.

Lemma 2.5.1. Let f : Σ× [0, T ) → Rn be a family of surfaces. If

M = sup
x,t

max
v∈TxΣ
|v|g=1

|∂tDvf | <∞,

then there exists t1 > 0, only depending on M , such that every term in expression (2.4) can

be determined for all 0 ≤ t < min(t1, T ).

Proof. Consider any unit tangent vector u0 ∈ TxΣ0. Let

u = f∗(u0) = v + w, where v ∈ TxΣ0 and w ∈ NxΣ0.

In particular, |v| = 1 and |w| = 0 when t = 0. By hypothesis, we have

√
|∂tv|2 + |∂tw|2 = |∂tu| ≤M |u|.

In particular,

|v| ≥ 2− eMt > 0 when t <
1

M
log 2.

Therefore, TxΣ⊕NxΣ0 = Rn, so that we can define π, the projection map from Rn onto TxΣ
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along NxΣ0. As a result, we can determine


∂tΦ = −π(∂tf),

∂tη = (I − π)(∂tf).

Moreover, for all u0,
|Du0Φ| = |u0| = 1,

|∂tDuΦ| ≤ ∥π∥∗|∂tDΦ∗uf | ≤MeMt ∥DΦ∥∗,

so that in particular,

2− ee
Mt−1 ≤ |DuΦ| ≤ ee

Mt−1.

In summary, η and Φ in (2.4) are well-determined within the interval 0 ≤ t < min(t1, T ),

where

t1 =
1

M
log(1 + log 2) <

1

M
log 2.

If we assume further that f(Φ(x), t) solves the Willmore flow equation (1.1), then η solves

the equation


∂tη = −WN(η),

η
∣∣
t=0

= 0;

(2.5)
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where

WN(η)
∣∣
x
−W(f)

∣∣
x
= Df

(
∂tΦ
∣∣
Φ−1(x)

)
∈ TxΣ.

We will also need the following volume estimate.

Lemma 2.5.2. There exists ε2 > 0 such that f = f0 + η defines an immersed surface

whenever

∥∥ |η|g0|A0|g0 + |∇η|2g0
∥∥
∞ ≤ ε2, (2.6)

where g0 and A0 denote the metric and the second fundamental form of Σ0, respectively. In

fact, we have

|g − g0|g0 ≤ b,

where 0 < b < 1
2

only depends on ε2, and furthermore,

det(g)

det(g0)
≥ 1− 2b > 0.

Proof. We can obtain

∂if = ∂if0 − (g0)
kℓ⟨η, (A0)ik⟩∂ℓf0 +∇iη

and

gij = (g0)ij − 2⟨η, (A0)ij⟩+ (g0)
kℓ⟨η, (A0)ik⟩⟨η, (A0)jℓ⟩+ ⟨∇iη,∇jη⟩,
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so that in particular,

|g − g0| ≤ 2|η| |A0|+ |η|2|A0|2 + |∇η|2.

As a result, we can choose any

0 < ε2 <

√
2− 1

2
,

so that

|g − g0| ≤ b = 2
(
ε2 + ε22

)
<

1

2

whenever inequality (2.6) holds. Moreover, we have

det(g)

det(g0)
≥ (1− b)2 − b2 = 1− 2b > 0,

so that f(Σ) is an immersed surface.

Convention 2.5.3. As tensors on Σ0:

• δT = T −
(
T
∣∣
t=0

)
as a tensor on Σ0, where all vectors are considered as Rn-valued so

that we can pull-back from Σ to Σ0 via the map f0(x) + η(x, t). When expressing δT

in terms of other tensors on Σ0, the subscript 0 that denotes t = 0 may be dropped.

• Given tensors T1, . . . , Tk on Σ0 and non-negative integers α1, . . . , αk, the notation

P̂0

(
∇α1T1, . . . ,∇αkTk

)
denotes a polynomial defined by operators + and ∗, with coefficients bounded by some

c(n), and with variables being ∇iTj, running through 1 ≤ j ≤ k and 0 ≤ i ≤ αj.
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• When Tk is not A0,

P̂d

(
∇α1T1, . . . ,∇αkTk

)
denotes a polynomial that is of the form P̂0

(
∇α1T1, . . . ,∇αkTk

)
while also every term

has at least degree d.

• When Tk is A0,

P̂d

(
∇α1T1, . . . ,∇αk−1Tk−1,∇αkA0

)
denotes a polynomial that is of the form P̂0

(
∇α1T1, . . . ,∇αkA0

)
while also every term

has at least degree d in ∇iTj (1 ≤ j ≤ k − 1) together.

We will compute in normal coordinates for Σ0. As mentioned in the proof of Lemma 2.5.2,

we already know

δ(gRn) = 0,

δ(∂f) = η ∗ A0 +∇η = P̂1(∇η, A0), and

δ(g) = η ∗ A0 + η ∗ η ∗ A0 ∗ A0 +∇η ∗ ∇η = P̂1(∇η, A0).

We should also compute

∇kδ(gij) = ∇k

(
− 2⟨η, (A0)ij⟩+ gkℓ⟨η, (A0)ik⟩⟨η, (A0)jℓ⟩+ ⟨∇iη,∇jη⟩

)
= P̂1(∇2η,∇A0).

As a result,

δ(∂g) = ∂δ(g) = ∇δ(g) = P̂1(∇2η,∇A0),
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so that

δ(Γ) = δ(∂g) + δ(g−1) ∗ δ(∂g) = P̂1

(
δ(g−1),∇2η,∇A0

)
,

and also,

∇kδ(g
ij) = ∂kδ(g

ij) = δ(∂kg
ij) = δ(−gipgjq∂kgpq) = P̂1

(
δ(g−1),∇2η,∇A0

)
.

Proposition 2.5.4. Let h = (hij) be given by

δik =
(
(g0)

ij + hij
)
⟨∂jf, ∂kf0⟩ =

(
(g0)

ij + hij
)(
(g0)jk − ⟨η, Ajk⟩

)
∀i, k.

Then for η that satisfies condition (2.6),

WN = W(f0) +△4η +∇3η ∗ A0 +∇2η ∗ P̂0(∇A0) +∇η ∗ P̂0(∇2A0) + η ∗ P̂0(∇3A0)

+∇4η ∗ P̂1

(
δ(g−1), h,∇η,A0

)
+ P̂2

(
δ(g−1), h,∇3η,∇3A0

)
.

Proof. First assume normal coordinate on Σ0 so that (A0)ij = ∂i∂jf0, and hence

∂i∂jf = ∂i
(
∂jf0 +∇jη − (g0)

kℓ⟨η, (A0)jk⟩∂ℓf0
)

= ∂i∂jf0 +∇2
ijη − (g0)

kℓ⟨∇jη, (A0)ik⟩∂ℓf0 − (g0)
kℓ⟨∇iη, (A0)jk⟩∂ℓf0

− (g0)
kℓ⟨η,∇i(A0)jk⟩∂ℓf0 − (g0)

kℓ⟨η, (A0)jk⟩(A0)iℓ

=
[
(A0)ij +∇2

ijη + η ∗ A0 ∗ A0

]
+
[
∇η ∗ A0 + η ∗ ∇A0

]
where the first bracket is normal to Σ0, and the second bracket is tangent to Σ0. Next, we
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have

δ(Aij) = δ
(
∂i∂jf − gpq⟨∂i∂jf, ∂pf⟩∂qf

)
= δ(∂i∂jf)−

(
gpq0 + δ(gpq)

)(
⟨(A0)ij +∇2

ijη − η ∗ A0 ∗ A0,∇pη⟩

+ ⟨∇η ∗ A0 + η ∗ ∇A0, ∂pf0 + η ∗ A0⟩
)(
∂qf0 + η ∗ A0 +∇η

)

= ∇2
ijη + η ∗ A0 ∗ A0 +∇η ∗ A0 + η ∗ ∇A0

+∇2η ∗ P̂1

(
δ(g−1),∇η, A0

)
+ P̂2(δ(g

−1),∇η,∇A0

)
.

Taking contractions and derivatives, we have

δ(△H) = △2η +∇3η ∗ A0 +∇2η ∗ (∇A0 + A0 ∗ A0) +∇η ∗ (∇2A0 +∇A0 ∗ A0)

+ η ∗ (∇3A0 +∇2A0 ∗ A0 +∇A0 ∗ ∇A0)

+∇4η ∗ P̂1

(
δ(g−1),∇η, A0

)
+ P̂2

(
δ(g−1),∇3η,∇3A0

)
,

and also

δ
(
Q(A0)H

)
= ∇2η ∗ A0 ∗ A0 +∇η ∗ A0 ∗ A0 ∗ A0 + η ∗ (∇A0 ∗ A0 ∗ A0

+ A0 ∗ A0 ∗ A0 ∗ A0) + P̂2

(
δ(g−1),∇2η,∇A0

)
.

Therefore,

δ(W) = △4η +∇3η ∗ A0 +∇2η ∗ (∇A0 + A0 ∗ A0) +∇η ∗ (∇2A0 +∇A0 ∗ A0

+ A0 ∗ A0 ∗ A0) + η ∗ (∇3A0 +∇2A0 ∗ A0 +∇A0 ∗ ∇A0 +∇A0 ∗ A0 ∗ A0

+ A0 ∗ A0 ∗ A0 ∗ A0)

+∇4η ∗ P̂1

(
δ(g−1),∇η, A0

)
+ P̂2

(
δ(g−1),∇3η,∇3A0

)
.
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Finally,

δ(WN) = δ(W)− ⟨W, ∂if0⟩
(
(g0)

ij + hij
)
∂jf

= △4η +∇3η ∗ A0 +∇2η ∗ (∇A0 + A0 ∗ A0) +∇η ∗ (∇2A0 +∇A0 ∗ A0

+ A0 ∗ A0 ∗ A0) + η ∗ (∇3A0 +∇2A0 ∗ A0 +∇A0 ∗ ∇A0 +∇A0 ∗ A0 ∗ A0

+ A0 ∗ A0 ∗ A0 ∗ A0)

+∇4η ∗ P̂1

(
δ(g−1), h,∇η,A0

)
+ P̂2

(
δ(g−1), h,∇3η,∇3A0

)
.

Definition 2.5.5. If η1, η2 are normal vector fields that satisfy condition (2.6), we denote

Gij(η1, η2) = gij
∣∣
η=η2

− gij
∣∣
η=η1

= δ(g−1)
∣∣
η=η2

− δ(g−1)
∣∣
η=η1

.

Next, by distributive law, we can derive the following.

Corollary 2.5.6. If η1, η2 satisfy (2.6) and are two solutions for equation (2.5), then we

can consider η̃ = η2 − η1, which is a normal vector field on Σ0 that satisfies


∂tη̃ +△2η̃ =

∑4
k=0∇kη̃ ∗Qk +G(η1, η2) ∗ S,

η̃
∣∣
t=0

= 0,

where Q4 is of the form

P̂1

(
δ(g−1)|η=η1 , δ(g

−1)|η=η2 ,∇η1,∇η2
)
,

Q3 is of the form

P̂0

(
δ(g−1)|η=η1 , δ(g

−1)|η=η2 ,∇η1,∇η2,∇A0

)
,
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Q2 is of the form

P̂1

(
δ(g−1)|η=η1 , δ(g

−1)|η=η2 ,∇2η1,∇2η2,∇3A0

)
,

and Q1, Q0, and S are of the form

∇P̂1

(
δ(g−1)|η=η1 , δ(g

−1)|η=η2 ,∇3η1,∇3η2,∇A0

)
+ P̂0

(
δ(g−1)|η=η1 , δ(g

−1)|η=η2 ,∇3η1,∇3η2,∇3A0

)
.

Lemma 2.5.7. For all η1, η2 satisfying (2.6),

|G(η1, η2)| ≤ c
(
|η̃| |A0|+ |∇η̃|

)
,

where η̃ = η2 − η1 and c = c(ε2). Also,

|∇G(η1, η2)| ≤ c
(
|η̃|+ |∇η̃|+ |∇2η̃|

)
,

where

c = c
(
ε2, ∥A0∥C1 , ∥η1∥C2 , ∥η2∥C2

)
.

Proof. Letting η = tη2 + (1− t)η1, we have

∂

∂t
gij = η̃ ∗ A0 + η̃ ∗ η ∗ A0 ∗ A0 +∇η̃ ∗ ∇η,
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and hence

∂

∂t
gij

=
(−1)i+j(

g11g22 − g212
)2 ((g11g22 − g212

) ∂
∂t
gij − gijg22

∂

∂t
g11 − gijg11

∂

∂t
g22 + 2gijg12

∂

∂t
g12

)
,

where i = 3− i, etc. In particular,

∣∣∣∣ ∂∂tgij
∣∣∣∣ ≤ c

(
(1− 2b)−1 + (1− 2b)−2

)(
1 + b2

)
·
(
|η̃| |A0|+ |η̃| |η| |A0|2 + |∇η̃| |∇η|

)
≤ c (1 + ε2)(1 + b2)

1− 2b

(
|η̃| |A0|+ |∇η̃|

)
.

As a result, we have

∣∣Gij(η1, η2)
∣∣ ≤ sup

0≤t≤1

∣∣∣∣ ∂∂tgij
∣∣∣∣ ≤ c (1 + ε2)(1 + b2)

1− 2b

(
|η̃| |A0|+ |∇η̃|

)
.

Next, as mentioned earlier, we have

∇δ(g−1) = P̂1

(
δ(g−1),∇2η,∇A0

)
.

Therefore,

∇G(η1, η2) = G(η1, η2) ∗ P̂0

(
δ(g−1)|η=η1 , δ(g

−1)|η=η2 ,∇2η1,∇2η2,∇A0

)
+ η̃ ∗ P̂0

(
δ(g−1)|η=η1 , δ(g

−1)|η=η2 ,∇2η1,∇2η2,∇A0

)
+∇η̃ ∗ P̂0

(
δ(g−1)|η=η1 , δ(g

−1)|η=η2 ,∇2η1,∇2η2,∇A0

)
+∇2η̃ ∗ P̂0

(
δ(g−1)|η=η1 , δ(g

−1)|η=η2 ,∇2η1,∇2η2,∇A0

)
,
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and hence

|∇G(η1, η2)| ≤ c
(
|η̃|+ |∇η̃|+ |∇2η̃|

)
,

where

c = c
(
ε2, ∥A0∥C1 , ∥η1∥C2 , ∥η2∥C2

)
.

Proposition 2.5.8. Let f0 : Σ ↬ Rn be a complete, proper, immersed surface with

∥A0∥C3 <∞ and

lim inf
R→∞

R−4µ0

(
BR(0)

)
= 0.

If ηi : Σ× [0, T ) → Rn solves the Willmore flow equation (2.5) while satisfying (2.6) and

sup
0≤t<T

∥ηi∥C3 <∞, ∀i = 1, 2,

then η1 = η2.

Proof. For any R > 0, we can find

χBR(0) ≤ γ̂ ≤ χ(A0)2R(0)

as in Lemma 1.3.1 with K = R−1 and γ to be the restriction of γ̂ on Σ. As in Lemma 2.3.2
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but with θ = 1 and V = 0, we have

d

dt

∫
Σ

γs|η̃|2 dµ+
7

8

∫
Σ

γs|∇2η̃|2 dµ

≤ c

∫
Σ

γsη̃ ∗
(
Y + |∇A0|2η̃ + |A0|4η̃

)
dµ+ cR−4

∫
Σ

γs−4|η̃|2 dµ , (2.7)

where c is universal and

Y =
4∑

k=0

∇kη̃ ∗Qk +G(η1, η2) ∗ S

by Corollary 2.5.6. Next, we have

∫
Σ

γsη̃ ∗ Y dµ ≤
∫
Σ

∇2
(
γsη̃ ∗Q4

)
∗ ∇2η̃ dµ+

∫
Σ

∇
(
γsη̃ ∗Q3

)
∗ ∇2η̃ dµ

+

∫
Σ

γsη̃ ∗ ∇2η̃ ∗Q2 dµ+

∫
Σ

(
γsη̃ ∗ ∇η̃

)
∗Q1 dµ

+

∫
Σ

(
γsη̃ ∗ η̃

)
∗Q0 dµ+

∫
Σ

(
γsη̃ ∗G(η1, η2)

)
∗ S dµ .

Thus, using integration by parts, Cauchy-Schwarz inequality, Lemma 2.5.7, and Proposition

A.1.3,

∫
Σ

γsη̃ ∗ Y dµ ≤
(

1

16
+ ∥Q4∥∞

)∫
Σ

γs|∇2η̃|2 dµ+ c

∫
Σ

(γs + γs−4R−4)|η̃|2 dµ ,

where

c = c
(
ε2, ∥A0∥C3 , ∥η1∥C3 , ∥η2∥C3

)
.

Moreover, we can choose ε2 to be sufficiently small so that ∥Q4∥∞ ≤ 1
16

, and hence in

inequality (2.7), we have

d

dt

∫
Σ

γs|η̃|2 dµ+
3

4

∫
Σ

γs|∇2η̃|2 dµ ≤ c

∫
Σ

γs|η̃|2 dµ+ cR−4

∫
Σ

γs−4|η̃|2 dµ .
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In particular,

d

dt

∫
Σ

γs|η̃|2 dµ ≤ c

∫
Σ

γs|η̃|2 dµ+ cR−4µ0

(
B2R(0)

)
.

Since η̃ = 0 at t = 0, by Gronwall’s lemma,

∫
Σ

γs|η̃|2 dµ ≤ c
(
ect − 1

)
R−4µ0

(
B2R(0)

)
.

Fixing t, we take R→ ∞ to conclude

∫
Σ

|η̃|2 dµ = lim
R→∞

∫
Σ

γs|η̃|2 dµ = 0,

and hence η̃ = 0 for all time, i.e., η1 = η2.

Theorem 2.5.9. Assume that f0 : Σ → Rn is a smooth, complete, properly immersed

surface in Rn such that

lim inf
R→∞

R−4µ0

(
BR(0)

)
= 0, and

for some ϱ > 0 and M > 0,


κ(ϱ, 0) ≤ ε1∫
Σ0∩Bϱ(x)

|∇kA0|2 dµ0 ≤M, ∀x ∈ Rn and k = 1, . . . , 5,

where ε1 is as given in Theorem 2.4.6. Let f = fi : Σ× [0, T ) → Rn, where i = 1, 2, be two

solutions to the Willmore flow equation (1.1), then there exists t3 > 0, only depending on n,

ϱ, and M , such that f1 = f2 for all 0 ≤ t < T̂ = min(t3, T ).
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Proof. Either let f denote f1 or f2. As shown in the proof of Theorem 2.4.6, we have

κ(ϱ/2, t) ≤ ε0, ∀0 ≤ t ≤ min(t0, T ),

where t0 only depends on n and ϱ. Therefore, we can apply Corollary 2.4.4 and obtain that

sup
0≤t<min(t0,T )

∥∇kA∥∞ ≤ c(t0, ϱ,M), ∀k = 0, . . . , 3.

In particular, for all 0 ≤ t ≤ min(t0, T ),

sup
x∈Σ

max
v∈TxΣ
|v|=1

|∂tDvf | = ∥∇W(f)∥∞ ≤ ∥∇3A∥∞ + c ∥∇A∥∞∥A∥2∞ ≤ c(n, ϱ,M).

Thus by Lemma 2.5.1, there exists t1 such that f = f0 + η can be determined for all

0 ≤ t < min(t1, T ), where 0 < t1 ≤ t0 only depends on n, ϱ, and M .

Next, we claim that


sup0≤t<t1 ∥∂t∇

kη∥∞ <∞ ∀k = 0, 1, and

sup0≤t<t1 ∥∇
kη∥∞ <∞, ∀k = 2, 3.

If the claim holds, since η = 0 at t = 0, there exists t2 such that (2.6) holds for all 0 ≤ t <

min(t2, T ), where 0 < t2 ≤ t1. Moreover, we can apply Proposition 2.5.8 and conclude that

f1 = f2.

To prove the first part of the claim, we have

∥η∥∞ ≤ ∥I − π∥∗∥W(f)∥∞ and ∥∇η∥∞ ≤ ∥I − π∥∗∥∇W(f)∥∞,

so that the required upper bound can be found, where π is as defined in Lemma 2.5.1. To
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prove the second part of the claim, recall that

δ(Aij) = ∇2
ijη +∇2η ∗ P̂1

(
δ(g),∇η

)
+ P̂1

(
δ(g),∇η,∇A0

)
= ∇2

kℓη
[
δki δ

ℓ
j + P̂1

(
δ(g),∇η

)]
+ P̂1

(
δ(g),∇η,∇A0

)
.

Therefore, if 0 < t3 ≤ t2 is chosen to be sufficiently small, then for all 0 ≤ t < min(t3, T ),

δki δ
ℓ
j + P̂1

(
δ(g),∇η

)
,

as an 4 × 4 matrix with rows indexed by (i, j) and columns indexed by (k, ℓ), is invertible

with determinant at least c−1, where c = c(n, ϱ,M) > 0. As a result,

∥∇2η∥∞ ≤ c.

A similar discussion regarding δ(∇A) shows

∥∇3η∥∞ ≤ c.

As mentioned, these conditions together prove the theorem.

2.6 Type-I singularity

In this section, we give an analogous definition of type-I singularity for Willmore flows, and

show that it does not exist for all sufficiently small thresholds.

Let f : Σ× [0, T ) → Rn be a Willmore flow with maximal existence time T ∈ (0,∞].

Convention 2.6.1 (cf. [13, Section 4]). Given e > 0, we denote the time when energy in
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a r-ball exceeds e by the formula:

t(r, e) = inf{t ∈ [0, T ) : κ(r, t) > e}.

Note that by short time existence, for all 0 < e ≤ ε1, T − t(r, e) ≥ c−1
1 r4. In particular,

lim inf
r→0+

r−1
(
T − t(r, e)

)1/4 ≥ c
−1/4
1 > 0.

Definition 2.6.2. Given 0 < e ≤ ε1, we say f has a type-I singularity with respect to

energy threshold e if


t(r, e) < T for all r > 0, and

lim sup
r→0+

[
r−1
(
T − t(r, e)

)1/4]
<∞,

which in particular implies T <∞.

We will also consider the following definition for convergence of surfaces, as described in

the compactness theorem [13, Theorem 4.2], which is a generalization for [15, Compactness

theorem].

Definition 2.6.3. Let fi : Σi → Rn and f̂ : Σ̂ → Rn be properly immersed surfaces

without boundary. We say that Σi converges to Σ̂ (locally smoothly up to diffeomorphisms)

if we can find numbers Ri and functions φi, ui that satisfy the following.

• Ri is an increasing sequence of positive numbers such that lim
i→∞

Ri = ∞;

• For all i, φi : f̂(Σ̂)∩BRi
(0)

∼−→Ui ⊂ Σi is a diffeomorphism, and ui is a smooth normal

vector field over f̂(Σ̂) ∩BRi
(0) such that fi ◦ φi = f̂ + ui;

• For all R > 0, there exists i0 = i0(R) such that for all i ≥ i0, fi(Σi) ∩BR(0) ⊂ fi(Ui);

66



and

• For each k ≥ 0, lim
i→∞

∥∇kui∥∞,f̂(Σ̂)∩BRi
(0) = 0.

Lemma 2.6.4. Let Σ be a closed surface. For all 0 < e1 < e2 ≤ ε1, f cannot have a type-I

singularity with respect to both energy thresholds e1 and e2.

Proof. Pick rj ↘ 0 such that

λi := lim
j→∞

r−1
j (T − t

(i)
j )1/4

converges for both i = 1, 2, where

t
(i)
j := t(rj, ei).

By definition, we have t(1)j < t
(2)
j < T for all j. In particular, λ1 ≤ λ2. Since each Σt is

compact, we can find xj ∈ Rn such that

∫
Σt∩Brj (xj)

|A
t
(2)
j
|2 dµ

t
(2)
j

= κ(rj, t(2)j ) = e2.

We consider a sequence rescaled Willmore flows

fj : Σ× [−r−4
j t

(2)
j , r−4

j (T − t
(2)
j ))

by assigning

fj(p, t) = r−1
j

(
f(p, t

(2)
j + r4j t)− xj

)
.

While t = t2j on the original flow corresponds to t = 0 on the rescaled flow, t = t1j corresponds
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to

t = r−4
j (t

(1)
j − t

(2)
j ),

which converges to −(λ42 − λ41).

As shown in [13, pp. 432–433], by passing to a subsequence, fj converges to some f̂ : Σ̂ → Rn

for all −(λ42 − λ41) ≤ t ≤ c−1
1 ϱ4 in the sense as in Definition 2.6.3.

Observe that on Σ̂,

∫
Σ̂∩B1(0)

|AΣ̂|
2 dµ∗ = lim

j→∞

∫
Σj∩B1(0)

|Aj,0|2 dµj,0 = lim
j→∞

∫
Σ∩Brj (xj)

|A
t
(2)
j
|2 dµ

t
(2)
j

= e2.

Fix arbitrary τ < −(λ42 − λ41) so that

0 < t
(2)
j + r4j τ < t

(1)
j

for all sufficiently large j. By definition, at time τ ,

∫
Σj∩B1(0)

|Aj,τ |2 dµj,τ =

∫
Σ∩Brj (xj)

|A
t
(2)
j +r4j τ

|2 dµ
t
(2)
j +r4j τ

≤ e1

whenever t(2)j + r4j τ < t
(1)
j . Therefore,

∫
Σ̂∩B1(0)

|AΣ̂|
2 dµ∗ = lim

j→∞

∫
Σj∩B1(0)

|Aj,τ |2 dµj,τ ≤ e1 < e2,

a contradiction.

Theorem 2.6.5. For all e < ε1, a Willmore flow f of closed surfaces cannot have a type-I

singularity with respect to energy threshold e.
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Proof. If f has a type-I singularity with respect to some energy threshold e < ε1, then as

t(r, ε1) ≥ t(r, e),

we have

lim sup
r→0+

r−1
(
T − t(r, ε1)

)1/4 ≤ lim sup
r→0+

r−1
(
T − t(r, e)

)1/4
<∞,

i.e., f also has a type-I singularity with respect to energy threshold ε1. By the previous

lemma, f cannot have a type-I singularity with respect to e, a contradiction.

Remark 2.6.6. The condition e < ε1 is not sharp, as the choice of ε1 in Proposition 2.4.5,

Theorem 2.4.6 is not sharp.
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Chapter 3

Łojasiewicz inequality

In this chapter, we adopt from [17] the concept of weighted Sobolev spaces on complete

manifolds with certain asymptotic translation invariance. We then conjecture Łojasiewicz

inequality for Willmore flows near such Willmore surfaces while showing some partial results.

3.1 Weighted Sobolev spaces

Definition 3.1.1 ([17, Section 1]). An m-dimensional differentiable manifold Σ is said to

have finitely many ends if for some compact subset Σ0 with smooth boundary, there exists a

diffeomorphism

Σ\Σ0 ≃ ∂Σ0 × R+.

For convenience, we also denote the number of ends as L, and denote

ΣR = Σ0 ∪
(
∂Σ0 × (0, R)

)
.
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Throughout this chapter, we will always assume that Σ is a manifold with finitely many

ends.

Definition 3.1.2 ([17, Section 2]). 1. A tensor on ∂Σ0×R+ (or the restriction of one

onto ∂Σ0×R+) is said to be translation-invariant if it is invariant under the R+-action

(ω, z) 7→ (ω, z + z0), ∀z0 > 0.

2. A Riemannian metric g is said to be admissible if g = e2ρh, where:

• h is an asymptotically translation-invariant metric on ∂Σ0 × R+, i.e., for some

translation-invariant metric h∞ and all t ∈ Z≥0,

lim
z→∞

sup
ω∈∂Σ0

|Dt
∞h−Dt

∞h∞|h∞ = 0,

where D∞ denotes the covariant derivative induced by h∞; and

• ρ ∈ C∞(Σ), and for some translation-invariant 1-form θ and all t ∈ Z≥0,

lim
z→∞

sup
ω∈∂Σ0

|Dt+1
(h) ρ−Dt

(h)θ|h = 0,

where D(h) denotes the covariant derivative induced by h.

We denote the covariant derivative induced by g as D(g).

It is worth mentioning that for fixed g, the background data h, ρ, etc. are not unique. In

fact, we have

Theorem 3.1.3 (Lockhart, [17, Theorem 2.9]). If g = e2ρh is an admissible metric, then

g = e2ρh for some asymptotically translation-invariant metric h and ρ ∈ C∞(Σ) such that

on each connected component of ∂Σ0 × R+, ρ only depends on z.

Convention 3.1.4. • Given Σ and q, r ∈ Z ≥ 0, denote the bundle of (r, q)-tensors
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as

T q
rΣ := (T ∗Σ)⊗q ⊗ (TΣ)⊗r,

and, as usual, denote the bundle of differential q-forms as ΛqΣ.

• Given a vector bundle E on Σ, let Γ(E) denote the space of measurable global sections

on E, and let C∞
0 (E) denote the space of smooth global sections on E with compact

support, correspondingly.

Definition 3.1.5 ([17, Section 1]). For s ∈ Z≥0, 1 ≤ p < ∞, and a tensor bundle E, we

define

Ls,p
loc(E) =

σ ∈ Γ(E) : ∀φ ∈ C∞
0 (Σ),

(
s∑

t=0

∫
Σ

|Dt
(g)(φσ)|pg dµg

)1/p

<∞


Note that Ls,p

loc(E) does not depend on the choice of g.

Convention 3.1.6 ([17, Section 3]). Let RL be identified with the set of locally constant

functions on ∂Σ0 × R+. RL is equipped with the natural partial order: δ ≥ δ′ if δj ≥ δ′j for

all j = 1, . . . , L, while δ > δ′ if δj > δ′j for all j. In addition, given δ ∈ RL, δz extends to an

unspecified smooth function on Σ, and is hence identified with the extension.

Definition 3.1.7 ([17, Definition 4.1]). Given an admissible metric g, 1 < p <∞, δ ∈ RL,

and a ∈ R, we define the weighted Sobolev space for s ∈ Z≥0 that

W s,p
δ,a (E, g) := {σ ∈ Ls,p

loc(E) : ∥σ∥W s,p
δ,a
<∞},

where

∥σ∥W s,p
δ,a

:=

(
s∑

t=0

∫
Σ

|eδz+(t+a)ρDt
(g)σ|pg dµg

)1/p

,
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omitting E when referring to this norm; and for s ∈ Z<0 that W s,p
δ,a (E, g) is the dual space

of W−s,p′

−δ,−a(E, g), where 1/p+ 1/p′ = 1.

Moreover, we identify u ∈ C∞
0 (E, g) with ℓu ∈ W s,p

δ,a (E, g), defined by

ℓu : W−s,p′

−δ,−a(E, g) → R

v 7→
∫
Σ

⟨u, v⟩g dµg .

For convenience, we also define seminorms

∥σ∥W s,p
δ,a (S) :=

(
s∑

t=0

∫
S

|eδz+(t+a)ρDt
(g)σ|pg dµg

)1/p

for all measurable set S ⊂ Σ.

Weighted Sobolev spaces are defined this way to make sure the following differential operators

are continuous maps. See Proposition 4.6 and Corollary 4.7 of [17].

Lemma 3.1.8. Given s ∈ Z≥0, q ≥ 1, and V , a global smooth vector field on Σ, if

sup
Σ
e(a−a+t)ρ|Dt

(g)V |g <∞, ∀t = 0, . . . , s

for some a ∈ R, then contraction with V defines a continuous map

ιV : W s,p
δ,a (T

q
rΣ, g) → W s,p

δ,a (T
q−1
r Σ, g).

Proof. Observe that for all t = 0, . . . , s,

|eδz+(a+t)ρDt
(g)(ιV σ)|(g)

≤ c

t∑
b=0

eδz+(a+t)ρ|Dt−b
(g) V |(g)|Db

(g)σ|(g)
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≤ c
t∑

b=0

(
e(a−a+t−b)ρ|Dt−b

(g) V |(g)
)(
eδz+(a+b)ρ|Db

(g)σ|(g)
)

≤ c
t∑

b=0

|eδz+(a+b)ρDb
(g)σ|(g).

The rest of the proof is trivial.

Convention 3.1.9. For the rest of this chapter, we will consider the scenario when Σ is

a m-dimensional immersed submanifold in Rn, say f : Σ ↬ Rn.

Let g be the induced metric on Σ, which we will assume to be admissible. Let E = f ∗(TRn),

which is the trivial vector bundle of rank n, and let NΣ denote the normal vector bundle,

which is a sub-bundle of E of rank (n−m). Let P denote the orthogonal projection E → NΣ.

Let W s,p
δ,a (T

q
rΣ⊗ E , g) be as given by Definition 3.1.7, i.e., the weighted Sobolev space of Rn-

valued q-forms on Σ. Let W s,p
δ,a (T

q
rΣ⊗NΣ, g) denote the closure of C∞

0 (T q
rΣ⊗NΣ) as a

subspace of W s,p
δ,a (T

q
rΣ⊗ E , g).

Remark 3.1.10. Note that the conventions and many of the following results also apply

for Λq ⊗NΣ by setting r = 0. However, we will focus on (0, q)-tensors.

Proposition 3.1.11. For all q, the projection map

P : W 0,p
δ,a (T

q
rΣ⊗ E , g) → W 0,p

δ,a (T
q
rΣ⊗ E , g)

is continuous. In addition, if for some β ∈ R and s0 ∈ Z>0,


inf
Σ
(βρ) > −∞,

sup
Σ
(e(t+1)(1−β)ρ|∇t

(g)A|g) <∞, ∀t = 0, . . . , s0,
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then for all s ∈ Z such that |s| ≤ s0,

P : W s,p
δ,a (T

q
rΣ⊗ E , g) → W s,p

δ,a−β|s|(T
q
rΣ⊗ E , g)

is continuous, where when s < 0,

P : W s,p
δ,a (T

q
rΣ⊗ E , g) → W s,p

δ,a+βs(T
q
rΣ⊗ E , g)

is given by

(Pσ)(φ) = σ(Pφ), ∀φ ∈ W−s,p′

−δ,−a−βs(T
q
rΣ⊗ E , g).

Remark 3.1.12. We will often assume a slightly stronger condition:



β ≥ 0

ρ0 := inf
Σ
ρ > −∞, and

Ct,β := sup
Σ
(e(t+1)(1−β)ρ|∇t

(g)A|g) <∞, ∀t = 0, . . . , s0.

(3.1)

Proof. (i) First, we claim that when s ≥ 0, for all σ ∈ C∞
0 (T q

rΣ⊗NΣ),

∥Pσ∥W s,p
δ,a−βs

≤ c ∥σ∥W s,p
δ,a
.

The case for s = 0 is trivial because derivative is not involved. In fact, c = 1.

For s > 0, we see that for all 0 ≤ t ≤ s (cf. Lemma 1.3.2),

|Dt
(g)(Pσ)|g ≤ c(t)

∑
i0,...,ik≥0

i0+···+ik+k=t

(
|Di0

(g)σ|g
k∏

j=1

|∇ij
(g)A|g

)
.
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In particular,

eδz+(a−βs+t)ρ|Dt
(g)(Pσ)|g

≤ c(t)eδz+aρ
∑

i0,...,ik≥0
i0+···+ik+k=t

(
eβ(t−s−i0)ρ(ei0ρ|Di0

(g)σ|g)
k∏

j=1

(e(ij+1)(1−β)ρ|∇ij
(g)A|g)

)

≤ c(t)e−s inf(βρ)

t∑
i0=0

(eδz+(a+i0)ρ|Di0
(g)σ|g),

so that

∥Pσ∥W s,p
δ,a−βs

≤ c(s)e−s inf(βρ)∥σ∥W s,p
δ,a
.

(ii) For all σ ∈ W s,p
δ,a (T

q
rΣ⊗ E , g), where s ≥ 0, by Corollary 4.5 of [17], we can find a

sequence {σj} in C∞
0 (T q

rΣ⊗ E) such that

lim
j→∞

∥σj − σ∥W s,p
δ,a

= 0.

Thus

lim
j,k→∞

∥Pσj − Pσk∥W s,p
δ,a−βs

≤ c lim
j,→∞

∥σj − σk∥W s,p
δ,a

= 0,

so that {Pσj} converges to some τ ∈ W s,p
δ,a−βs(T

q
rΣ⊗ E , g).

It’s not hard to see that for all ψ ∈ C∞
0 (Σ), ψPσ = ψτ . That is, Pσ = τ .

(iii) For s < 0, we have

∥Pσ∥W s,p
δ,a+βs

≤ ∥σ∥W s,p
δ,a

sup
φ ̸=0

∥Pφ∥
W−s,p′

−δ,−a

∥φ∥
W−s,p′

−δ,−a−βs

,

and hence P is continuous.
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Corollary 3.1.13. Under the same condition,

∇(g) = P ◦D(g) : W
s+1,p
δ,a (T q

rΣ⊗NΣ, g) → W s,p
δ,a+1−β|s|(T

q+1
r Σ⊗NΣ, g)

is continuous.

In view of Theorem 3.1.3, δ and a are interchangeable. Nevertheless, we can rewrite the

Sobolev embedding and compactness theorems [17] for a instead of δ without using Theorem

3.1.3.

Proposition 3.1.14 (Weighted Sobolev embedding). Given s, s ∈ Z, 1 < p, p < ∞,

δ, δ ∈ RL, and a, a ∈ R, if

(i) inf
Σ
ρ > −∞,

(ii) s− s ≥ m/p−m/p,

(iii) s ≥ s ≥ 0,

(iv) p ≤ p with δ ≥ δ or p > p with δ > δ, and

(v) a+m/p ≥ a+m/p,

then the identity map

W s,p
δ,a (E, g) → W s,p

δ,a
(E, g)

is continuous.

Remark 3.1.15. By Theorem 4.8 of [17],

W s,p
δ,a (E, g) → W s,p

δ,a+m(1/p−1/p)
(E, g)
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is continuous. Thus it suffices to show continuity of

W s,p

δ,a+m(1/p−1/p)
(E, g) → W s,p

δ,a
(E, g),

or equivalently, the special case of the proposition above when s = s, p = p, and δ = δ.

Proof of Proposition 3.1.14. As in the remark, we assume a ≥ a and will show that the

identity map

W s,p
δ,a (E, g) → W s,p

δ,a (E, g)

is continuous. Indeed, the aforementioned map is bounded because by definition,

∥σ∥W s,p
δ,a

≤ e−(a−a)ρ0∥σ∥W s,p
δ,a
,

where ρ0 = inf ρ.

Corollary 3.1.16. Under the same condition,

(i) W s,p
δ,a (E, g) is embedded into W s,p

δ,a
(E, g) as a dense subspace, and

(ii) W s,p
δ,a (T

q
rΣ⊗NΣ, g) is embedded into W s,p

δ,a
(T q

rΣ⊗NΣ, g) continuously as a dense sub-

space.

In particular, the embedding maps are Fredholm operators with Fredholm index 0.

Proof. (i) By the proposition, we have

C∞
0 (E) ⊂ W s,p

δ,a (E, g) ⊂ W s,p

δ,a
(E, g).
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By Corollary 4.5 of [17], C∞
0 (E) is dense in W s,p

δ,a
(E, g), and hence W s,p

δ,a (E, g) is also

dense in W s,p

δ,a
(E, g).

(ii) For all σ ∈ W s,p
δ,a (T

q
rΣ⊗NΣ, g), let {σj} ⊂ C∞

0 (T q
rΣ⊗NΣ) such that

lim
j→∞

∥σj − σ∥W s,p
δ,a

= 0.

By the proposition, there exists c > 0 such that

∥τ∥W s,p

δ,a

≤ c ∥τ∥W s,p
δ,a
, ∀τ ∈ W s,p

δ,a (T
q
rΣ⊗NΣ, g).

This implies

lim
j→∞

∥σj − σ∥W s,p

δ,a

≤ c lim
j→∞

∥σj − σ∥W s,p
δ,a

= 0,

and hence σ ∈ W s,p

δ,a
(T q

rΣ⊗NΣ, g). In addition,

∥σ∥W s,p

δ,a

≤ c ∥σ∥W s,p
δ,a
,

so the embedding is continuous. Finally, observe that

C∞
0 (T q

rΣ⊗NΣ) ⊂ W s,p
δ (T q

rΣ⊗NΣ, g) ⊂ W s,p

δ,a
(T q

rΣ⊗NΣ, g),

while C∞
0 (T q

rΣ⊗NΣ) is dense in W s,p

δ,a
(T q

rΣ⊗NΣ, g). Therefore, W s,p
δ (T q

rΣ⊗NΣ, g)

is dense in W s,p

δ,a
(T q

rΣ⊗NΣ, g).

Theorem 3.1.17 (Weighted compact embedding). Given s, s ∈ Z, 1 < p, p <∞, δ, δ ∈ RL,

and a, a ∈ R, if
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(i) lim
z→∞

inf
ω∈∂Σ0

ρ(ω, z) = ∞,

(ii) s− s > m/p−m/p,

(iii) s > s ≥ 0,

(iv) p ≤ p,

(v) δ ≥ δ, and

(vi) a+m/p > a+m/p,

then the embedding

W s,p
δ,a (T

q
rΣ⊗NΣ, g) → W s,p

δ,a
(T q

rΣ⊗NΣ, g)

is compact.

Proof. Denote τ = a − a + m/p − m/p, which is a positive number by hypothesis. First,

condition (i) implies inf
Σ
ρ > −∞. Thus by Proposition 3.1.14,

W s,p
δ,a (T

q
rΣ⊗NΣ, g) → W s,p

δ,a
(T q

rΣ⊗NΣ, g)

is continuous.

Next, consider the Banach space defined in Definition 3.4 of [17]:

W s,p
δ (T q

rΣ⊗NΣ) := {σ ∈ Ls,p
loc(T

q
rΣ⊗NΣ) : ∥σ∥W s,p

δ
<∞},

where the norm is given by

∥σ∥W s,p
δ

:=

(
s∑

t=0

∫
Σ

|eδzD(g)σ|pg dµg

)1/p

.
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By Proposition/Definition 4.4 of [17],

Ka,p : W s,p
δ,a (T

q
rΣ⊗NΣ, g) → W s,p

δ (T q
rΣ⊗NΣ)

σ 7→ e(a+r−q+m/p)ρσ

is an isomorphism. Therefore, we have the following commuting diagram:

W s,p
δ,a (T

q
rΣ⊗NΣ, g) W s,p

δ,a
(T q

rΣ⊗NΣ, g)

W s,p
δ (T q

rΣ⊗NΣ) W s,p

δ
(T q

rΣ⊗NΣ)

Ka,p ≀ Ka,p ≀

Ψ

where Ψσ = e−τρσ. Since the vertical maps are isomorphisms, it suffices to prove that Ψ is

compact.

Let {σj} be a bounded sequence in W s,p
δ (T q

rΣ⊗NΣ). WLOG, let

sup
j

∥σj∥W s,p
δ

≤ 1.

Since Ψ is continuous, {Ψσj} is bounded in W s,p

δ
(T q

rΣ⊗NΣ). For all R > 0, by Rellich

theorem, there exists a subsequence, which we still denote by {Ψσj} by abusing notation,

that converges on ΣR in the sense that

lim
j,k→∞

∥Ψ(σj − σk)∥W s,p

δ
(ΣR) = 0.

In fact, using diagonal argument, we can find a subsequence such that

lim
j,k→∞

∥Ψ(σj − σk)∥W s,p

δ
(ΣR) = 0, ∀R > 0.
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By Lemma 3.11 of [17], we have

∥Ψσj∥W s,p

δ
(Σ\Σ2R) ≤ c ∥Ψσj∥W s,p

δ (Σ\ΣR).

Moreover, the right hand side can be estimated by

∥Ψσj∥W s,p
δ (Σ\ΣR) =

(
s∑

t=0

∫
∂Σ0×(R,∞)

|eδzDt
(h)(e

−τρσj)|p(h) dµh

)1/p

≤ cR

(
s∑

t=0

∫
∂Σ0×(R,∞)

|eδzDt
(h)σj|

p
(h) dµh

)1/p

= cR∥σj∥W s,p
δ (Σ\ΣR) ≤ cR,

where

cR = c(s) sup
∂Σ0×(R,∞)

s∑
t=0

|Dt
(h)e

−τρ|(h) ≤ c(s) exp(−τ inf
∂Σ0×(R,∞)

ρ)
s∑

t=0

|Dt
(h)ρ|(h).

Since |Dt
(h)ρ|(h) is bounded by Definition 3.1.2 and

lim
R→∞

inf
Σ\ΣR

ρ = ∞,

which equivalent to condition (i), we have

lim
R→∞

cR = 0.

In particular, for all ε > 0, we can choose sufficiently large R such that cR < ε/3. Also, we

can choose sufficiently large j0 such that

∥Ψ(σj − σk)∥W s,p
δ (Σ2R) <

ε

3
, ∀j, k ≥ j0.
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Therefore, by Minkowski’s inequality,

∥Ψ(σj − σk)∥W s,p
δ

≤ ∥Ψ(σj − σk)∥W s,p
δ (Σ2R) + ∥Ψσj∥W s,p

δ (Σ\Σ2R) + ∥Ψσk∥W s,p
δ (Σ\Σ2R) < ε

whenever j, k ≥ j0. That is, the subsequence converges.

Remark 3.1.18. Disregarding conditions (iv) and (vi), if δ > δ and a = a, the theorem

reduces to Theorem 4.9 of [17] for arbitrary p, p.

Remark 3.1.19. If p = p = 2 and δ = δ, then condition (ii) is implied by condition (iii),

conditions (iv) and (v) are satisfied, and condition (vi) reduces to “a > a”.

3.2 Łojasiewicz inequality for Willmore flows

As pointed out in Theorem 5.2 of [17], given Σ, g, p, q, and a, the Laplace operator for

scalar-valued functions

△g : W
s+2,p
δ,a (Σ, g) → W s,p

δ,a (Σ, g)

is Fredholm for a.e. δ ∈ RL, but not necessarily for all δ. Therefore, for specific choices of δ,

we need to prove otherwise.

We will fix p = 2 and assume condition (3.1) for β = 0 and s0 = 1. In particular, by

Corollary 3.1.13 and Proposition 3.1.14,

△ : W 2,2
δ,a−2(NΣ, g) → W 0,2

δ,a (NΣ, g)

is continuous. In addition, we fix arbitrary δ ∈ Rn and a ∈ R.
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We define a bilinear form on W 1,2
δ,a−2(NΣ, g):

B(u, v) := ⟨∇u,∇v⟩W 0,2
δ,a−1

.

Also, for all u ∈ W 1,2
δ,a−2(NΣ, g), we define B̂(u) = v if v ∈ W 0,2

δ,a (NΣ, g) and

B(u, ψ) = −⟨v, e−2ρψ⟩W 0,2
δ,a

for all ψ ∈ C∞
0 (NΣ).

We can immediately see the following:

Lemma 3.2.1. For all u ∈ W 2,2
δ,a−2(NΣ, g), we have u ∈ Dom(B̂) and

B̂u = △u− 2∇(δ∂z+(a−1)gradρ)u ∈ W 0,2
δ,a (NΣ, g)

In particular,

W 2,2
δ,a−2(NΣ, g) ⊂ Dom(B̂).

Proof. Observe that for all ψ ∈ C∞
0 (NΣ),

− ⟨△u, e−2ρψ⟩W 0,2
δ,a

= ⟨∇∗∇u, e−2ρψ⟩W 0,2
δ,a

=

∫
Σ

e2δz+2aρ⟨∇∗∇u, e−2ρψ⟩ dµg

=

∫
Σ

⟨∇u,∇(e2δz+2(a−1)ρψ)⟩g dµg

= B(u, ψ) +

∫
Σ

e2δz+2(a−1)ρ⟨∇u, (2δ dz + 2(a− 1) dρ)⊗ ψ⟩g dµg

= B(u, ψ)− ⟨∇(2δ∂z+2(a−1)gradρ)u, e
−2ρψ⟩

W 0,2
δ,a

and hence the aforementioned formula for B̂ follows.

84



Lemma 3.2.2 (Coercivity). There exist sufficiently large ζ > 0 and sufficiently small η > 0

such that for all u ∈ W 1,2
δ,a−2(NΣ, g),

B(u, u) + ζ∥u∥2
W 0,2

δ,a−2

≥ η∥u∥2
W 1,2

δ,a−2

.

Proof. For all u ∈ W 1,2
δ,a−2(NΣ, g), we have

B(u, u) + ζ∥u∥2
W 0,2

δ,a−2

=

(∫
Σ

e2δz+2(a−1)ρ|∇(g)u|2g dµg

)
+ ζ∥u∥2

W 0,2
δ,a

=

∫
Σ

e2δz+2(a−1)ρ
(
|D(g)u|2g − ⟨PD(g)u,D(g)u⟩g

)
dµg + ζ∥u∥2

W 0,2
δ,a−2

=

∫
Σ

e2δz+2(a−1)ρ
(
|D(g)u|2g − gijgkℓ⟨D(g)i

u,D(g)k
f⟩⟨D(g)ℓ

f,D(g)j
u⟩
)
dµg + ζ∥u∥2

W 0,2
δ,a−2

=

∫
Σ

e2δz+2(a−1)ρ
(
|D(g)u|2g + gijgkℓ⟨D(g)i

u,D(g)k
f⟩⟨D(g)j

D(g)ℓ
f, u⟩

)
dµg + ζ∥u∥2

W 0,2
δ,a−2

≥
∫
Σ

e2δz+2(a−1)ρ
(
|D(g)u|2g − |A|g|D(g)u|g|u|

)
dµg + ζ∥u∥2

W 0,2
δ,a−2

≥
∫
Σ

e2δz+2(a−1)ρ
(3
4
|D(g)u|2g − |A|2g|u|2

)
dµg + ζ∥u∥2

W 0,2
δ,a−2

=

∫
Σ

[3
4
e2δz+2(a−1)ρ|D(g)u|2g + e2δz+2(a−2)ρ

(
− e2ρ|A|2g + ζ

)
|u|2
]
dµg

≥
∫
Σ

[3
4
e2δz+2(a−1)ρ|D(g)u|2g + e2δz+2(a−2)ρ

(
ζ − C2

0,0

)
|u|2
]
dµg

≥ η∥u∥2
W 1,2

δ,a−2

for some sufficiently large ζ > 0 and sufficiently small η > 0.

Lemma 3.2.3 (Regularity). Let s ≥ 0. For all u ∈ Dom(B̂), if B̂u ∈ W s,2
δ,a (NΣ, g), then

u ∈ W s+2,2
δ,a−2 (NΣ, g). Moreover, for all u ∈ Dom(B̂),

∥u∥W s+2,2
δ,a−2

≤ c
(
∥u∥W 1,2

δ,a−2
+ ∥B̂u∥W s,2

δ,a

)
.
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Moreover,

Dom(B̂) ⊂ W 2,2
δ,a−2(NΣ, g).

Proof. Let U = {(Uα, φα)} be an atlas, i.e., an open cover {Uα} for ∂Σ0 and coordinate maps

φα : Uα
∼−→ B2(0) ⊂ Rm−1.

We denote Vα = φ−1
α

(
B1(0)

)
and

Φα : Uα × R+
∼−→ B2(0)× R+

(ω, z) 7→ (φα(ω), z).

Since ∂Σ0 is compact, we can choose U such that {Uα} is a finite open cover of ∂Σ0, that

{Vα} also covers ∂Σ0, and that

c−1Id ≤ (Φ−1
α )∗h ≤ c Id

for some 0 < c <∞. We will abuse the notation and identify h with Φ∗
αh, etc.

For all u ∈ Dom(B̂), consider e−2δz−(2a−4+n)ρψ as a test function, where ψ ∈ C∞
0 (NΣ) is

supported on Uα × R+. We hence obtain

∫
Uα×R+

e2δz+(2a−2)ρ
〈
∇(g)u,∇(g)(e

−2δz−(2a−4+n)ρψ)
〉
g
dµg

= −
∫
Uα×R+

e2δz+2aρ⟨B̂u, e−2δz−(2a−2+n)ρψ⟩ dµg .

(3.2)

For the left hand side of equation (3.2), we see that

⟨∇(g)u,∇(g)(e
−2δz−(2a−4+n)ρψ)⟩

g
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= gij⟨∂iu,∇(g)j
(e−2δz−(2a−4+n)ρψ)⟩

= e−2δz−(2a−4+n)ρgij
〈
∂iu, (∂jψ − ∂j[2δz + (2a− 4 + n)ρ]ψ + gkℓ⟨Ajk, ψ⟩∂ℓf)

〉
= e−2δz−(2a−4+n)ρgij

(
⟨∂iu, ∂jψ⟩ − ∂j[2δz + (2a− 4 + n)ρ]⟨∂iu, ψ⟩

− gkℓ⟨Aiℓ, u⟩⟨Ajk, ψ⟩
)
.

Therefore, equation (3.2) can be rewritten on the coordinates as the following:

∫
B2(0)×R+

e(2−n)ρ
√

det(g)gij⟨∂iu, ∂jψ⟩ dx

−
∫
B2(0)×R+

e(2−n)ρ
√

det(g)
〈
gij∂j[2δz + (2a− 4 + n)ρ]∂iu, ψ

〉
dx

+

∫
B2(0)×R+

e(2−n)ρ
√

det(g)
〈
gijgkℓ⟨Aiℓ, u⟩Ajk, ψ

〉
dx

= −
∫
B2(0)×R+

e−nρ
√

det(g)⟨e2ρB̂u, ψ⟩ dx

By construction, we have

c−1Id ≤ e(2−n)ρ
√

det(g)gij ≤ c Id,

e(2−n)ρ
√
det(g)gij∂j[2δz + (2a− 4 + n)ρ] ≤ c for all i,

e(2−n)ρ
√

det(g)gijgkℓ|Aiℓ| |Ajk| ≤ c e2ρ|A|2g ≤ c, and

e−nρ
√

det(g) ≤ c,

where c = c(C0,0,U , h). As a result, by Theorem 8.10 in [8], we have

∥u∥W s+2,2(Ω′) ≤ c
(
∥u∥W 1,2(Ω) + ∥e2ρB̂u∥W s,2(Ω)

)
,

where Ω = B2(0) × (K,K + 3) and Ω′ = B1(0) × (K + 1, K + 2) for arbitrary K ≥ 0. By
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definition of the weighted Sobolev norms, we have

∥u∥W s+2,2
δ,a−2 (Vα×(K+1,K+2))

=

(
s+2∑
t=0

∫
Vα×(K+1,K+2))

|eδz+(a−2+t)ρDt
(g)u|2g dµg

)1/2

≤ c

(
s+2∑
t=0

∫
Ω′
e2δz+(2a−4+n)ρ|∂tu|2 dx

)1/2

≤ c

(
sup

z∈(K+1,K+2)

e2δz+(2a−4+n)ρ

)
∥u∥W s+2,2(Ω′)

≤ c

(
sup

z∈(K+1,K+2)

e2δz+(2a−4+n)ρ

)(
∥u∥W 1,2(Ω) + ∥e2ρB̂u∥W s,2(Ω)

)
= c

(
sup

z∈(K+1,K+2)

e2δz+(2a−4+n)ρ

)

·

[(
1∑

t=0

∫
Ω

|∂tu|2 dx

)1/2

+

(
s∑

t=0

∫
Ω

|∂t(e2ρB̂u)|2 dx

)1/2]

≤ c

(
sup

z∈(K+1,K+2)

e2δz+(2a−4+n)ρ

)

·

[(
1∑

t=0

∫
Uα×(K,K+3)

e−2δz−(2a−2+n)ρ|eδz+(a−4+t)ρDt
(g)u|2g dµg

)1/2

+

(
s∑

t=0

∫
Uα×(K,K+3)

e−2δz−(2a−4+n)ρ|eδz+(a+t)ρDt
(g)(B̂u)|2g dµg

)1/2 ]

≤ c

(
sup

z∈(K+1,K+2)

e2δz+(2a−4+n)ρ

)(
sup

z∈(K,K+3)

e−2δz−(2a−4+n)ρ

)

·
(
∥u∥W 1,2

δ,a−2(Uα×(K,K+3)) + ∥B̂u∥W s,2
δ,a (Uα×(K,K+3))

)
Note that ρ only depends on z. Observe that

log

[(
sup

z∈(K+1,K+2)

e2δz+(2a−4+n)ρ

)(
sup

z∈(K,K+3)

e−2δz−(2a−4+n)ρ

)]

= sup
z∈(K+1,K+2)

(2δz + (2a− 4 + n)ρ)− inf
z∈(K,K+3)

(2δz + (2a− 4 + n)ρ)

88



≤ 2 sup
z∈(K,K+3)

|∂z(2δz + (2a+ n)ρ)| ≤ c,

and hence

∥u∥W s+2,2
δ,a−2 (Vα×(K+1,K+2)) ≤ c

(
∥u∥W 1,2

δ,a−2(Uα×(K,K+3)) + ∥B̂u∥W s,2
δ,a (Uα×(K,K+3))

)
.

Similarly,

∥u∥W s+2,2
δ,a−2 (Σ1)

≤ c
(
∥u∥W 1,2

δ,a−2(Σ2)
+ ∥B̂u∥W s,2

δ,a (Σ2)

)
.

As a result, we have

∥u∥W s+2,2
δ,a−2

=

(
∥u∥2

W s+2,2
δ,a− (Σ1)

+
∑
α

∞∑
K=0

∥u∥2
W s+2,2

δ,a−2 (Vα×(K+1,K+2))

)1/2

≤ c

(
∥u∥2

W 1,2
δ,a−2(Σ2)

+
∑
α

∞∑
K=0

∥u∥2
W 1,2

δ,a−2(Uα×(K,K+3))

+ ∥B̂u∥2
W s,2

δ,a (Σ2)
+
∑
α

∞∑
K=0

∥B̂u∥2
W s,2

δ,a (Uα×(K,K+3))

)1/2

≤ c
(
∥u∥2

W 1,2
δ,a−2

+ ∥B̂u∥2
W s,2

δ,a

)1/2
≤ c

(
∥u∥W 1,2

δ,a−2
+ ∥B̂u∥W s,2

δ,a

)
.

In particular, u ∈ W s+2,2
δ,a−2 (NΣ, g).

Finally, we can take s = 0 and obtain Dom(B̂) ⊂ W 2,2
δ,a−2(NΣ, g).

By comparing Lemmas 3.2.1 and 3.2.3, we conclude that

Dom(B̂) = W 2,2
δ,a−2(NΣ, g).

Proposition 3.2.4. Assume lim
z→∞

inf
ω∈∂Σ0

ρ = ∞ and condition (3.1) with β = 0 and s0 = 1.
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Then given k ∈ Z and ε > 0,

△ : W 2,2
δ,a−2(NΣ, g) → W 0,2

δ,a−ε(NΣ, g)

is Fredholm with Fredholm index 0.

Proof. By Lemma 3.2.2 and Lax–Milgram theorem,

W 2,2
δ,a−2(NΣ, g) → W 0,2

δ,a (NΣ, g)

u 7→ B̂u+ ζe−2ρu

is an isomorphism, where ζ > 0 is as given in Lemma 3.2.2. As a result, for all ε > 0,

W 2,2
δ,a−2(NΣ, g) → W 0,2

δ,a−ε(NΣ, g)

u 7→ B̂u+ ζe−2ρu

is Fredholm with Fredholm index 0.

In addition,

W 2,2
δ,a−2(NΣ, g) → W 1,2

δ,a (NΣ, g)

u 7→ −2∇(δ∂z+(a−1)gradρ)u+ ζe−2ρu

is continuous. Thus by Theorem 3.1.17,

W 2,2
δ,a−2(NΣ, g) → W 0,2

δ,a−ε(NΣ, g)

u 7→ −2∇(δ∂z+(a−1)gradρ)u− ζe−2ρu

is compact.

Therefore, by Lemma 3.2.1, △ : W 2,2
δ,a−2(NΣ, g) → W 0,2

δ,a−ε(NΣ, g) is Fredholm with Fredholm

index 0.
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Corollary 3.2.5. For all ε > 0,

△2
(g) : W

4,2
δ,a−4(NΣ, g) → W 0,2

δ,a−ε(NΣ, g)

is also Fredholm with Fredholm index 0.

Proof. First, observe that by Proposition 3.2.4,

△(g) : W
2,2
δ,−a+2ε(NΣ, g) → W 0,2

−δ,−a+ε(NΣ, g)

is Fredholm with Fredholm index 0, and hence its dual map,

△(g) : W
0,2
δ,a−ε(NΣ, g) → W−2,2

δ,a−2ε(NΣ, g),

is also Fredholm with Fredholm index 0.

Finally, since both operators are Fredholm with Fredholm index 0, the composition is also

Fredholm with Fredholm index 0.

Convention 3.2.6. Let fW : Σ → Rn be a complete, properly immersed Willmore surface.

Let F denote the Willmore energy in any of the following forms:

• F (η) =
1

2

∫
Σ

|A|2 dµ,

• F (η) =
1

2

∫
Σ

|H|2 dµ,

• F (η) =
1

2

∫
Σ

|A0|2 dµ, or

• F (η) =
1

2

∫
Σ

(|A|2 dµ− |AW |2 dµW ),

where AW and A denote the second fundamental forms of fW (Σ) and (fW + η)(Σ), respec-

tively, and µW and µ denote the volume forms of fW (Σ) and (fW + η)(Σ), respectively. As
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usual, H = trA and A0 = A− 1
2
Hg.

Proposition 3.2.7. If A, ∇A, ∇2A, and ∇3A are pointwise bounded:

(i) There exists an open neighborhood 0 ∈ U ⊂ W 4,2
0,ε (NΣ, gW ) where g = (fW + η)∗gRn is

uniformly equivalent to gW ,

(ii) F is well-defined and analytic on U , and

(iii) The second derivative

D2F (0) : W 4,2
0,ε (NΣ, gW ) → W−4,2

0,−ε (NΣ, gW )

is Fredholm with Fredholm index 0.

Proof. (i) First, let γ̂ satisfy


χBR(0) ≤ γ̂ ≤ χBR+1(0 for some R > 0 and

|Dγ̂| ≤ 2,

and let γ = γ̂
∣∣
Σ
. Then by Lemma 2.1.5, we have that for all η ∈ W 2,2

0,0 (NΣ, gW ),

∥η∥∞ = lim
R→∞

∥η∥∞,[γ=1]

≤ c lim inf
R→∞

∥η∥1/22,[γ>0]

(
∥∇2η∥22,[γ>0] + ∥η∥22,[γ>0] + ∥ |AW |4|η|∥1,[γ>0]

)1/4
≤ c (1 + ∥AW∥∞)∥η∥W 2,2

0,0
.

Similarly,

∥∇η∥∞ ≤ c (1 + ∥AW∥∞)∥η∥W 3,2
0,0
.
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Thus by Lemma 2.5.2, we can find an open neighborhood U ⊂ W 4,2
0,ε (NΣ, gW ) of 0

where mapping η ∈ U to g−1 ∈ L∞(T 2
0Σ, gW ) is well-defined and continuous.

Using the formula for A in the proof of Proposition 2.5.4, by abusing notation,

Aij = (AW )ij +∇2
ijη + (∇2η +∇η + η) ∗ P̂0

(
δ(g−1),∇η,∇AW

)
.

Therefore, the integrand in F (η) can be rewritten as

|A|2 dµ− |AW |2 dµW = (∇2η +∇η + η)⊗2 ∗ P̂0

(
δ(g−1,∇η,∇AW

)
dµW .

Recall that η ∈ L2, ∇η ∈ L2, ∇2η ∈ L2, and everything else involved in L∞ are

continuous with respect to η ∈ W 4,2
0,ε (NΣ, gW ), and hence F is continuous on U .

Moreover, every term involved are analytic (cf. [4, Lemma 3.2]), and hence F is also

analytic.

(ii) By Proposition 2.5.4, DF : U → W−2,2
0,−ε (NΣ, gW ) is given by

DF (η) = WN(η)

= △2η +∇3η ∗ AW +∇2η ∗ (∇AW + AW ∗ AW )

+∇η ∗ (∇2AW +∇AW ∗ AW + AW ∗ AW ∗ AW )

+ η ∗ (∇3AW +∇2AW ∗ AW +∇AW ∗ ∇AW

+∇AW ∗ AW ∗ AW + AW ∗ AW ∗ AW ∗ AW )

+ P̂2

(
δ(g−1), h,∇4η,∇3AW

)
.

Taking derivative, we obtain that D2W(0) : W 4,2
0,ε (NΣ, gW ) → W 0,2

0,0 (NΣ, gW ) is given
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by

D2W(0)(v) = △2v +∇3v ∗ AW +∇2v ∗ (∇AW + AW ∗ A)

+∇v ∗ (∇2AW +∇AW ∗ A+ AW ∗ AW ∗ AW )

+ v ∗ (∇3AW +∇2AW ∗ AW +∇AW ∗ ∇AW +∇AW ∗ AW ∗ AW

+ AW ∗ AW ∗ AW ∗ A).

In particular, by hypothesis and Theorem 3.1.17, (D2W(0)−△2) is compact. There-

fore, by Corollary 3.2.5, D2W is Fredholm with Fredholm index 0.

In view of [3, Corollary 3.11] and [17, Theorem 5.2] (cf. [18]), the following is conjectured:

Conjecture 3.2.8. Let fW : Σ → Rn be a Willmore immersion that is complete and

proper, and satisfies condition (3.1) for some β ≥ 0 and s0 = 1. Then:

(1) There exists D△ ⊂ RL, which is a union of hyperplanes and is of measure zero, such

that for all δ ∈ RL\D△,

△ : W 2,2
δ,a−2(NΣ, g) → W 0,2

δ,a−β(NΣ, g)

is Fredholm with Fredholm index 0.

(2) Let F be as described in Convention 3.2.6. Then for all δ ∈ RL\D△,

D2F : W 2,2
δ,−2+β(NΣ, g) → W−2,2

δ,2−β(NΣ, g)

is Fredholm with Fredholm index 0.
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(3) For all δ ∈ RL\D△, the restriction

D2F : W 4,2
δ,−4+6β(NΣ, g) → W 0,2

δ,0 (NΣ, g)

is well-defined, and the image is a direct summand for a finite-dimensional subspace.

(4) Moreover, for all δ ∈ RL\D△, F satisfies the Łojasiewicz–Simon inequality: there

exists θ ∈ (0, 1
2
] such that for all v ∈ U ,

|F (η)− F (0)|1−θ ≤ C∥W(fW + η)∥W 0,2
δ,0
.

Remark 3.2.9. When fW (Σ) is a plane, the normal bundle is trivial, and hence statements

(1) and (2) are proved in [17].

3.3 Examples

Example 3.3.1 (Plane). Let Σ be the plane {x3 = 0} in R3. Σ0 = B
2

1(0)× {0} and Σ\Σ0

is parameterized by the logarithmic polar coordinate Φ(ω, z) = (ez cosω, ez sinω, 0) for all

ω ∈ R/2π and z ∈ R+. Also, L = 1.

The induced metric g = ez(dz2 + dω2) is equal to e2ρh, where:

• h = h∞ = dz2 + dω2, which is a translation invariant metric, and

• ρ = 1
2
, making Dρ = θ = 1

2
dz a translation invariant 1-form.

Example 3.3.2 (Catenoid). Consider a catenoid

Σ = {(x1, x2, x3) ∈ R3 :
√
x22 + x23 = cosh(x1)}.
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We let Σ0 = {x = 0, y2 + z2 = 1}, and let Σ\Σ0 be parameterized by

Φj(ω, z) = ((−1)jz , cosh z cosω , cosh z sinω)

for all j = 1, 2, ω ∈ R/2π, and z ∈ R+. Also, L = 2.

The induced metric g = cosh z (dz2 + dω2) is equal to e2ρh, where:

• h = h∞ = dz2 + dω2, which is a translation invariant metric, and

• ρ = log(cosh z/2), where Dρ = tanh z dz satisfies that limz→∞ supω |Dρ− dz |h = 0.

In addition, the second fundamental form is given by

A(g) = (− dz2 + dω2)⊗ n̂,

where the unit normal vector is

n̂
∣∣
Φj(ω,z)

=
(
(−1)j tanh z,− sech z cosω,− sech z sinω

)
.

In particular,

|A(g)|2(g) = 2 sech z = 2e−2ρ.

In addition, it may be useful to know

|∇A(g)|2(g) = 4 tanh2 z sech3 z ≤ 4e−3ρ,

|∇2A(g)|2(g) = 18 tanh4 z sech4 z − 12 tanh2 z sech6 z + 4 sech8 z ≤ 22e−4ρ,

|∇3A(g)|2(g) = 144 tanh6 z − 288 tanh4 z sech2 z + 242 tanh2 z sech4 z ≤ 386.
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Example 3.3.3 (Costa surface). Consider the Weierstrass representation for minimal sur-

faces:

X(ζ) = Re


∫
(1−G2)F dζ∫
i(1 +G2)F dζ∫

2FG dζ

 ,

where F = F (ζ) and G = G(ζ) are meromorphic functions. Writing ζ = u+ iv, we have

∥∂uX∥ = ∥∂vX∥ = (1 + |G|2)|F |, ⟨∂uX, ∂vX⟩ = 0.

Costa showed in [6] that for all a ∈ R\{0},

F (ζ) = ℘(ζ) and G(ζ) =
a

℘′(ζ)
,

where ℘(ζ) denotes the Weierstrass ℘-function with respect to the lattice Λ = Z+ iZ, defines

a complete minimal surface of genus 1 with 3 ends and total curvature −12π. This surface

is referred to as the Costa surface. One of the ends is “planar” while the other two are

“catenoidal.”

Denote Σ = (C/Λ)\{Q1, Q2, Q3}, where Q1, Q2, Q3 are represented by 1
2
, 0, i

2
, respectively.

Let Σ0 = Σ\
(
B1/4(Q1) ∪B1/4(Q2) ∪B1/4(Q3)

)
. We let Σ\Σ0 be parameterized by

Φj(ω, z) = Qj +
1

4
e−z+iω

for all j = 1, 2, 3, ω ∈ R/2π, and z ∈ R+. Also, L = 3. Consider the translation invariant

metric

h∞ = dz2 + dω2 =
1

16
e−2z(du2 + dv2).
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As pointed out by Costa, F has a order-2 pole at Q2, G has order-1 poles at Q1 and Q3,

while both are holomorphic elsewhere. Consider the metric induced by X : Σ → R3:

g = (1 + |G|2)2|F |2(du2 + dv2) = e2ρh,

where ρ = 3z + b with b being a real constant on each component of Σ\Σ0. This makes g

satisfy item 2 of Definition 3.1.2.

Since X(Σ) is minimal, by [27, Lemma 9.1],

|A|g =
√
−2K =

4
√
2|G′|

|F |(1 + |G|2)2
.

In particular, in a sufficiently small neighborhood of each Qj,

|A|g ≤ Ce−2z ≤ Ce−
2
3
ρ.

For more examples and properties of complete minimal surfaces in R3, see [27], [33], etc.
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Chapter 4

Stability of Willmore surfaces

4.1 Gap phenomena and low energy convergence

Assuming small total energy, we derive rigidity results for a Willmore surface to be a plane

and a Willmore flow to converge to a plane when given sufficient conditions to converge to

some surface.

Proposition 4.1.1. If f : Σ× [0, T ) → Rn is a Willmore flow and W(f0) <
1
2
ε0, then

∫
Σt

|At|2 dµt +
1

2

∫ t

0

∫
Σt′

(
|∇At′|2 + |At′ |6

)
dµt′ dt

′ ≤
∫
Σ0

|A0|2 dµ0

for all t.

Proof. For any R > 0, we can find

χBR(0) ≤ γ̂ ≤ χB2R(0)
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as in Lemma 1.3.1 with K = R−1 and γ to be the restriction of γ̂ on Σ. Consider

e(t, R) =

∫
Σt∩BR(0)

|At|2 dµt ,

and

t0(R) = max{t ∈ [0, T ] : ∀τ ∈ [0, t), e(τ, R) ≤ ε0}.

As in part (ii) of the proof of Proposition 2.4.5, a continuity argument using Lemma 2.3.4

shows that

t0(R) ≥ min

{
T , c−1R4

(
1− ε−1

0

∫
Σ0

|A0|2 dµ0

)}
.

However, by definition, t0(R) is decreasing in R, so we can take R→ ∞ on the right hand

side and obtain t0(R) = T for all R. Equivalently, for all 0 ≤ t < T , e(t, R) ≤ ε0 and hence

∫
Σt

|At|2 dµt = lim
R→∞

e(t, R) ≤ ε0.

Next, we use Lemma 2.3.4 on all 0 ≤ t < T and obtain by monotone convergence theorem

that:

∫
Σt

|At|2 dµt +
1

2

∫ t

0

∫
Σt′

(
|∇2At′ + |At′ |6

)
dµt′ dt

′

= lim
R→∞

(∫
Σt∩BR(0)

|At|2 dµt +
1

2

∫ t

0

∫
Σt′∩BR(0)

(
|∇2At′ + |At′ |6

)
dµt′ dt

′

)

≤ lim inf
R→∞

(∫
Σ0∩B2R(0)

|A0|2 dµ0 + cR−4ε0t

)
=

∫
Σ0

|A0|2 dµ0 .
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As mentioned in the introduction, the following theorem is a special case of both [13, Theorem

2.7] and [36, Theorem 1, (2)].

Theorem 4.1.2 (Gap rigidity). If Σ0 is a complete, smooth, properly immersed Willmore

surface with W(f0) <
1
2
ε0, then Σ0 is a plane.

Proof. By hypotheses, f(x, t) = f0(x) is a Willmore flow. Since W(f) = W(f0), by Propo-

sition 4.1.1,

∫
Σ0

|A0|6 dµ0 = 0.

That is, A0 vanishes globally. Therefore, Σ0 is a plane.

Remark 4.1.3. Alternatively, one can show that f(x, t) = f0(x) is the Willmore flow in

Theorem 2.4.6.

Corollary 4.1.4 (Low energy convergence). Let f : Σ × [0,∞) → Rn be a solution to

(1.1). Assume that W(f0) <
1
2
ε0 and that

sup
t≥0

µt

(
BR(0)

)
<∞ for all R > 0.

Then as t→ ∞, any subsequence has a further subsequence such that Σt converges to a plane

L : R2 → Rn in the sense as in Definition 2.6.3.

Proof. By Proposition 4.1.1,

∫
Σt

|At|2 dµt ≤
∫
Σ0

|A0|2 dµ0 ≤ ε0.

Note that the proof for [13, Theorem 3.5] doesn’t require Σ to be closed, and in fact holds

as long as the boundary of Σ is not involved. Therefore, by taking ϱ to be arbitrarily big in
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the aforementioned theorem, we have

∥∇kAt∥∞ ≤ c(k)ε0t
− k+1

4 , for all k ≥ 0.

Now we have upper bounds for area and derivatives of curvature in BR(0), and the bounds

depends on R but not on t. As t→ ∞, we can use [13, Theorem 4.2] to find a properly

immersed surface L to be the limit of Σ. In particular,

∥AL∥∞,L ≤ lim sup
t→∞

∥At∥∞,Σt = 0,

where AL denotes the second fundamental form of L. Therefore, L is a plane.

Alternatively, we also obtain the following convergence result:

Corollary 4.1.5. Let f : Σ× [0,∞) → Rn be a solution to (1.1). Assume that W(f0) <

1
2
ε0 and that

lim inf
R→∞

R−2µ0

(
BR(0)

)
<∞.

Then as t→ ∞, any subsequence has a further subsequence such that Σ converges to a plane

L : R2 → Rn in the sense as in Definition 2.6.3.

Proof. We denote c = c(n). For any R > 0, we can find

χBR(0) ≤ γ̂ ≤ χB2R(0)

as in Lemma 1.3.1 with K = R−1 and γ to be the restriction of γ̂ on Σ. Along the Willmore
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flow, by [13, Theorem 3.5],

d

dt

∫
Σt

γ4 dµt

=

∫
Σt

(
⟨−△Ht −Q(A0

t )Ht,−γ4Ht⟩+ sγ3⟨−△Ht −Q(A0
t )Ht, Dγ̂⟩

)
dµt

≤
∫
Σt

γ4
(
− |∇Ht|2 + |A0

t |2|Ht|2
)
dµt

+ c

∫
Σt

(
|∇Ht|

[
γ3|Dγ̂| |At|+ γ2

(
|Dγ̂|2 + |D2γ̂|

)]
+ γ3|Dγ̂| |A0

t |2|Ht|
)
dµt

≤
∫
Σt

γ4
(
− |∇Ht|2 + |A0

t |2|Ht|2
)
dµt +R−2

∫
Σt

γ4 dµt

+ cR−1
(
∥At∥22,[γ>0] + ∥∇Ht∥22,[γ>0] + ∥Ht∥∞,[γ>0]∥A0

t∥22,[γ>0]

)
+ cR−2∥∇Ht∥22,[γ>0]

≤
∫
Σt

γ4
(
− |∇Ht|2 + |A0

t |2|Ht|2
)
dµt +R−2

∫
Σt

γ4 dµt

+ cR−1
(
ε0 + ε0t

− 1
2 + ε

3
2
0 t

− 1
4

)
+ cR−2ε0t

− 1
2 .

Using (b) of Lemma 2.2.3, Gauss–Codazzi equations, and [13, Theorem 3.5], we have (cf.

[13, equation 68]):

∫
Σt

γ4
(
− |∇Ht|2 + |A0

t |2|Ht|2
)
dµt

≤ −2

∫
Σt

γ4|∇A0
t |2 dµt + cR−1

∫
Σt

γ3|A0
t |
(
|∇Ht|+ |∇A0

t |
)
dµt + c

∫
Σt

γ4|A0
t |4 dµt

≤ c ∥A0
t∥4∞,[γ>0]

∫
Σt

γ4 dµt + cR−1
(
ε0 + ε0t

− 1
2

)
.

Therefore,

d

dt

∫
Σt

γ4 dµt

≤
(
R−2 + c ∥A0

t∥4∞,[γ>0]

) ∫
Σt

γ4 dµt + cR−1
(
ε0 + ε0t

− 1
2 + ε

3
2
0 t

− 1
4

)
+ cR−2ε0t

− 1
2 .
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In addition, since

∫
[γ>0]

|A0
0|2 dµ0 ≤

∫
Σ0

|A0|2 dµ0 ≤ ε0,

by [13, Proposition 3.4], we have

∫ t

0

∥A0
τ∥4∞,[γ>0] dτ ≤ c ε0(1 +R−4t),

and hence by Gronwall’s lemma,

∫
Σt

γ4 dµt ≤
(∫

Σ0

γ4 dµ0 + cR−1
(
ε0t+ ε0t

1
2 + ε

3
2
0 t

3
4

)
+ cR−2ε0t

1
2

)
eR

−2t+c ε0(1+R−4t).

In particular,

µt

(
BR(0)

)
≤
(
µ0

(
B2R(0)

)
+ cR−1

(
ε0t+ ε0t

1
2 + ε

3
2
0 t

3
4

)
+ cR−2ε0t

1
2

)
eR

−2t+c ε0(1+R−4t).

Next, by monotonicity formula, for any 0 < r < R,

r−2µt

(
Br(0)

)
≤ c

(
R−2µt

(
BR(0)

)
+

∫
Σt∩BR(0)

|Ht|2 dµt

)
.

Moreover, fixing r, t and letting R→ ∞,

µt

(
Br(0)

)
≤ c

(
lim inf
R→∞

[
R−2µ0

(
B2R(0)

)]
ec ε0 + ε0

)
r2,

which is an area bound that is independent of the time variable t. Therefore, the statement

can be proved by Corollary 4.1.4.
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4.2 Global existence

Finally, in view of [4, Lemma 4.1], Conjecture 3.2.8 (Łojasiewicz inequality) may lead to

another stability result:

Conjecture 4.2.1. Let fW : Σ → Rn be a Willmore immersion that is complete and

proper. Assume that the induced metric g = e2ρh is admissible, as in Definition 3.1.2.

Assume condition (3.1) for some β ≥ 0 and s0 = 1.

If f : Σ× [0, T ) is a a Willmore flow, where:

• T is the maximal existence time,

• W(ft) ≥ W(fW ) whenever ∥K(ft ◦ Φ − fW )∥Ck(Σ,h) ≤ η up to some diffeomorphism

Φ ∈ Aut(Σ), and

• ∥f0 − fW∥W 2,2
δ,a ∩C1 < ε, where ε = ε(n, k, η),

then T = ∞, and as t→ ∞, ft converges locally smoothly up to diffeomorphisms to a Will-

more surface f∞ that satisfies W(f∞) = W(fW ).

Remark 4.2.2. [1] may suggest a different statement that has stronger assumption while

is more likely to be true.
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Appendix A

Geometric inequalities

In this appendix, we derive several different variants of inequalities regarding Lp norms of

tensors with the cutoff functions on manifolds.

A.1 Interpolation inequalities

Interpolation inequalities characterize the convexity property of certain sequences. In the

context of this article, we consider the sequence of Lp norms of different derivatives of a

given tensor.

Lemma A.1.1. Let {am}Mm=0 be a sequence of non-negative real numbers, and c1(ε), . . .,

cM−1(ε) be a sequence of functions taking non-negative values such that for all ε > 0 and

1 ≤ m ≤ (M − 1),

am ≤ εam+1 + cm(ε) am−1.
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Then for all 1 ≤ m0 ≤ (M − 1) we also have

am0 ≤ εaM + c a0,

where c = c(ε,M, c1, . . . , cM−1).

Proof. We prove inductively and start with an observation that the statement is trivial for

M = 2. Let M0 ≥ 3 and assume that the statement is true for all 2 ≤ M ≤ (M0 − 1). For

the case M =M0, if 2 ≤ m ≤ (M0 − 1), we have


am ≤ ε

2
aM + b1a1

a1 ≤
1

2b1
am + b2a0

so that am ≤ εaM + b1b2a0; and if m = 1, we have


aM−1 ≤ εaM + b1am

am ≤ 1

b1 + 1
aM−1 + b2a0

so that am ≤ εaM + (b1 +1)b2a0, where in both cases, b1 and b2 only depend on ε,M, c1, . . .,

and cM−1. This proves that the statement holds for M = M0. Hence by induction, it holds

for all M ≥ 2.

Proposition A.1.2. Let 0 < m0 < M be integers, 2 ≤ j < ∞, and p, q ≥ j. If s ≥ Mp

and r ≥Mq, then for all ε > 0,

KM−m0

(∫
Σ

γs−(M−m0)pθr−(M−m0)q|∇m0ϕ|j dµ
)1/j

≤ ε

(∫
Σ

γsθr|∇Mϕ|j dµ
)1/j

+ cKM

(∫
Σ

γs−Mpθr−Mq|ϕ|j dµ
)1/j

where c = c(s, r, ε, rϕ,M, j).
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Proof. Throughout this proof, we let c = c(s, r, rϕ,M, j). Define

am = KM−m

(∫
Σ

γs−(M−m)pθr−(M−m)q|∇mϕ|j dµ
)1/j

.

Then for each m0 + 1 ≤ m ≤M − 1, using integration by parts and Hölder’s inequality,

ajm ≤ cK(M−m)j

∫
Σ

(
γs−(M−m)pθr−(M−m)q|∇m+1ϕ|

+
∣∣∇(γs−(M−m)pθr−(M−m)q

)∣∣ |∇mϕ|
)
|∇mϕ|j−2 |∇m−1ϕ| dµ

≤ cK(M−m)j

∫
Σ

γs−(M−m)pθr−(M−m)q|∇m+1ϕ| |∇mϕ|j−2 |∇m−1ϕ| dµ

+ cK(M−m)j+1

∫
Σ

γs−(M−m)p−1θr−(M−m)q−1|∇mϕ|j−1 |∇m−1ϕ| dµ

≤ c (am+1 + am)a
j−2
m am−1.

Thus for arbitrary ε > 0,

am ≤ c
√

(am+1 + am)am−1 ≤
ε

2
am+1 +

1

2
am + c (1 + ε−1)am−1,

which implies

am ≤ εam+1 + c (1 + ε−1)am−1.

By Lemma A.1.1, we can conclude the result.

Proposition A.1.3. Let M ≥ 2 be an integer, α ≥ 0, 2 ≤ j < ∞, and p, q ≥ 0. If
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s ≥ max(2p,Mj) and r ≥ max(2q,Mj), then for all ε > 0,

α

(∫
Σ

γs−pθr−q|∇M−1ϕ|j dµ
)1/j

≤ ε

[(∫
Σ

γsθr|∇Mϕ|j dµ
)1/j

+ cKM

(∫
Σ

γs−Mjθr−Mj|ϕ|j dµ
)1/j

]

+ c α2ε−1

(∫
Σ

γs−2pθr−2q|∇M−2ϕ|j dµ
)1/j

,

where c = c(s, r, rϕ,M).

Proof. Using integration by parts,

αj

∫
Σ

γs−pθr−q|∇M−1ϕ|j dµ

≤ c αj

∫
Σ

(
γs−pθr−q|∇Mϕ|+ γs−p−1θr−q−1K|∇M−1ϕ|

)
|∇M−1ϕ|j−2|∇M−2ϕ| dµ

≤ c αj

(∫
Σ

γsθr|∇Mϕ|j dµ+

∫
Σ

γs−jθr−jKj|∇M−1ϕ|j dµ
)1/j

·
(∫

Σ

γs−pθr−q|∇M−1ϕ|j dµ
)(j−2)/j (∫

Σ

γs−2pθs−2q|∇M−2ϕ|j dµ
)1/j

≤ εj

4

∫
Σ

γsθr|∇Mϕ|j dµ+
εj

2

∫
Σ

γs−jθr−jKj|∇M−1ϕ|j dµ

+
αj

2

∫
Σ

γs−pθr−q|∇M−1ϕ|j dµ+ c α2jε−j

∫
Σ

γs−2pθs−2q|∇M−2ϕ|j dµ ,

and hence

αj

∫
Σ

γs−pθr−q|∇M−1ϕ|j dµ

≤ εj

2

∫
Σ

γsθr|∇Mϕ|j dµ+ εj
∫
Σ

γs−jθr−jKj|∇M−1ϕ|j dµ

+ c α2jε−j

∫
Σ

γs−2pθs−2q|∇M−2ϕ|j dµ .
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Next, by Proposition A.1.2,

αj

∫
Σ

γs−pθr−q|∇M−1ϕ|j dµ

≤ εj
∫
Σ

γsθr|∇Mϕ|j dµ+ c α2jε−j

∫
Σ

γs−2pθs−2q|∇M−2ϕ|j dµ

+ c εjKMj

∫
Σ

γs−Mjθr−Mj|ϕ|j dµ ,

which is equivalent to the inequality to be proved.

Proposition A.1.4. Let 0 ≤ m1 < m0 < M be integers, α ≥ 0, 2 ≤ j <∞, and p, q ≥ 0.

If s ≥ max
(
Mp−m1(p− j),Mj

)
and r ≥ max

(
Mq −m1(q − j),Mj

)
, then for all ε > 0,

αM−m0

(∫
Σ

γs−(M−m0)pθr−(M−m0)q|∇m0ϕ|j dµ
)1/j

≤ ε

(∫
Σ

γsθr|∇Mϕ|j dµ
)1/j

+ c αM−m1

(∫
Σ

γs−(M−m1)pθr−(M−m1)q|∇m1ϕ|j dµ
)1/j

+ c
(
KM + αM−m1Km1

)(∫
[γθ>0]

|ϕ|j dµ
)1/j

,

where c = c(s, r, ε, rϕ,M).

Proof. By Proposition A.1.3, for all m = (m1 + 1), . . . , (M − 1), there exists bm ≥ 0 such

that

α

(∫
Σ

γs−(M−m)pθr−(M−m)q|∇mϕ|j dµ
)1/j

≤ ε

[(∫
Σ

γs−(M−m−1)pθr−(M−m−1)q|∇m+1ϕ|j dµ
)1/j

+ bm+1K
m+1

(∫
Σ

γs−Mp+(m+1)(p−j)θr−Mq+(m+1)(q−j)|ϕ|j dµ
)1/j ]

+ α2ε−1bm−1

(∫
Σ

γs−(M−m+1)pθs−(M−m+1)q|∇m−1ϕ|j dµ
)1/j

.
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We can construct a sequence {b̂m} inductively by

b̂m =


max{bm, 1} if m = m1 or m1 + 1, and

bm +
b̂2m−1

4b̂m−2

if m1 + 2 ≤ m ≤M,

so that
b̂m ≥ bm for all m = m1, . . . ,M , and

b̂m ≤ 2

√
b̂m−1(̂bm+1 − bm+1) for all m = m1 + 1, . . . ,M − 1,

and hence

α b̂mK
m

(∫
Σ

γs−Mp+m(p−j)θr−Mq+m(q−j)|ϕ|j dµ
)1/j

≤ α b̂mK
m

(∫
Σ

γs−Mp+(m+1)(p−j)θr−Mq+(m+1)(q−j)|ϕ|j dµ
)1/(2j)

·
(∫

Σ

γs−Mp+(m−1)(p−j)θr−Mq+(m−1)(q−j)|ϕ|j dµ
)1/(2j)

≤ ε(̂bm+1 − bm+1)K
m+1

(∫
Σ

γs−Mp+(m+1)(p−j)θr−Mq+(m+1)(q−j)|ϕ|j dµ
)1/j

+ α2ε−1b̂m−1K
m−1

(∫
Σ

γs−Mp+(m−1)(p−j)θr−Mq+(m−1)(q−j)|ϕ|j dµ
)1/j

.

Let

am = αM−m

[(∫
Σ

γs−(M−m)pθr−(M−m)q|∇mϕ|j dµ
)1/j

+ b̂mK
m

(∫
Σ

γs−Mp+m(p−j)θr−Mq+m(q−j)|ϕ|j dµ
)1/j ]

so that by the two inequalities above, we get

am ≤ εam+1 + ε−1am−1.
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Therefore, by Lemma A.1.1, there exists some c = c(s, r, ε, rϕ,M) such that

αM−m0

(∫
Σ

γs−(M−m0)pθr−(M−m0)q|∇m0ϕ|j dµ
)1/j

≤ am0

≤ εaM + c am1

≤ ε

(∫
Σ

γsθr|∇Mϕ|j dµ
)1/j

+ c αM−m1

(∫
Σ

γs−(M−m1)pθr−(M−m1)q|∇m1ϕ|j dµ
)1/j

+ c
(
KM + αM−m1Km1

)
·
(∫

Σ

γs−max
(
Mp−m1(p−j),Mj

)
θr−max

(
Mq−m1(q−j),Mj

)
|ϕ|j dµ

)1/j

.

A.2 Multiplicative Sobolev inequalities

Sobolev inequalities provide an upper bound of the target norm of a function in terms of

the given norm of the function, and hence characterize embeddings from a Sobolev space to

another, say, from W 2,2 to Lp = W 0,p for some p > 2. In general, constants that are involved

in Sobolev inequalities would depend on the domain. In our case, the constants only depend

on the mean curvature of the surface and the dimension of the ambient Euclidean space.

Theorem A.2.1 (Michael–Simon Sobolev inequality [26]). Let f : Σ2 → Rn be a smooth

immersion. Then for any u ∈ C1
c (Σ) we have

(∫
Σ

u2 dµ

)1/2

≤ cn

(∫
Σ

|∇u| dµ+

∫
Σ

|H| |u| dµ
)
,

where cn is a constant only depending on n.
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Convention A.2.2. Let h ∈ C1
c (Σ) satisfy ∥∇h∥∞ ≤ cK, where c = c(n, s, r). For

example, h = γsθr.

We can rewrite [10, Lemma 5.1] as the following.

Lemma A.2.3. Let 1 ≤ p, q, w ≤ ∞ satisfy 1
p
+ 1

q
= 1

w
and α, β ∈ R satisfy α+ β = 1. For

any b ≥ max(αq, βp) and −1
p
≤ t ≤ 1

q
, we have

∥hb/(2w)∇ϕ∥22w ≤ c ∥hb(p−1+t)∇2ϕ∥p ∥hb(q
−1−t)ϕ∥q + c bK∥hb/p−β∇ϕ∥p ∥hb/q−αϕ∥q,

where c = c(n,w, rϕ).

Lemma A.2.4 (Cf. [10, Theorem 5.6]). For all u ∈ C1(Σ) and h ∈ C1(Σ) such that their

product has compact support, 0 < m <∞, and 2 < p <∞,

∥hαu∥∞ ≤ c ∥u∥1−α
m

(
∥h∇u∥p +K∥u∥p + ∥huH∥p

)α
,

where

α =
2p

(p− 2)m+ 2p

and c = c(n,m, p).

Proof. Let

q =
1

1− 1
p

∈ (1, 2),

τ0 = m/q ∈ (0,∞),

β0 = 0,
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τν =

(
2

q

)ν

· τ0 +

(
2
q

)ν+1

− 2
q

2
q
− 1

∈ (0,∞) for all ν = 1, 2, . . . , and

βν =

(
2
q

)ν+1

− 2
q

2
q
− 1

∈ (0,∞) for all ν = 1, 2, . . . ;

so that the numbers solve the inductive formulas (where ν = 0, 1, . . .)


τν+1q = 2(1 + τν),

βν+1

τν+1

=
1 + βν
1 + τν

,

namely,

βν+1

1 + βν
=

τν+1

1 + τν
=

2

q
.

As a result, we see that

∥∥hβν+1/τν+1u
∥∥1+τν

τν+1q

=
∥∥h(1+βν)/(1+τν)u

∥∥1+τν

2(1+τν)

=
∥∥h1+βνu1+τν

∥∥
2

≤ cn

(∥∥∇(h1+βνu1+τν
)∥∥

1
+
∥∥h1+βνu1+τνH

∥∥
1

)
(Theorem A.2.1)

≤ cn

(
(1 + τν)

∥∥h1+βνuτν∇u
∥∥
1
+ (1 + βν)

∥∥hβνu1+τν∇h
∥∥
1
+
∥∥h1+βνu1+τνH

∥∥
1

)
≤ cn

∥∥hβνuτν
∥∥
q

(
(1 + τν)

∥∥h∇u∥∥
p
+ (1 + βν)

∥∥u∇h∥∥
p
+
∥∥huH∥∥

p

)
≤ ABν

∥∥hβν/τνu
∥∥τν
τνq
,

where

A = cn

(∥∥h∇u∥∥
p
+
∥∥u∇h∥∥

p
+
∥∥huH∥∥

p

)
and Bν = 1 + τν ≥ 1 + βν .
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Observe that

(q
2

)ν
Bν ≤ c∗ := τ0 +

2

2− q
.

Therefore,

∥∥hβν+1/τν+1u
∥∥
τν+1q

≤
(
Ac∗

(
2

q

)ν)1/(1+τν) ∥∥hβν/τνu
∥∥τν/(1+τν)

τνq
.

Define εν = τν/(1 + τν) so that we get from the previous inequality that

∥∥hβν/τνu
∥∥
τνq

≤
∥∥u∥∥ε0×···×εν−1

τ0q

ν−1∏
j=0

(
Ac∗

(
2

q

)j
)εj×···×εν−1/τj

On the left hand side, we have

lim
ν→∞

τνq = ∞ and lim
ν→∞

βν
τν

=
2

(2− q)τ0 + 2
= α,

and hence

lim
ν→∞

∥∥hβν/τνu
∥∥
τνq

=
∥∥hαu∥∥∞.

On the right hand side, observe that

εj × · · · × εν−1 =
τj

1 + τν−1

(
2

q

)ν−j−1

so that we have

lim
ν→∞

(
ε0 × · · · × εν−1

)
=

(2− q)τ0
(2− q)τ0 + 2

= 1− α,
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which implies

lim
ν→∞

∥∥hβ0/τ0u
∥∥ε0×···εν−1

τ0q
≤
∥∥u∥∥1−α

m
,

lim
ν→∞

ν−1∑
j=0

(
εj × · · · × εν−1/τj

)
=

2

(2− q)τ0 + 2
= α,

which implies

lim
ν→∞

ν−1∏
j=0

(Ac∗)
εj×···×εν−1/τj = (Ac∗)

α,

and

lim
ν→∞

ν−1∑
j=0

(
j × εj × · · · × εν−1/τj

)
=

4

(2− q)2τ0 + 2(2− q)
.

In summary,

∥∥hαu∥∥∞ ≤ c
∥∥u∥∥

m

(∥∥h∇u∥∥
p
+
∥∥u∇h∥∥

p
+
∥∥huH∥∥

p

)
≤ c

∥∥u∥∥
m

(∥∥h∇u∥∥
p
+K

∥∥u∥∥
p
+
∥∥huH∥∥

p

)
,

where

c = (cnc∗)
α ·
(
2

q

)4/[(2−q)2τ0+2(2−q)]

only depends on n, m, and p.

Lemma A.2.5. For all u ∈ C1
c (Σ) and 2 < p <∞,

∥u∥p ≤ c ∥u∥2/p2

(
∥∇u∥2 + ∥Hu∥2

)1−2/p
,
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where c = c(n, p).

Proof. For all positive integers τ , by Theorem A.2.1, we have

∥u1+τ∥2 ≤ cn (1 + τ)

(∫
Σ

|u|τ |∇u| dµ+

∫
Σ

|H| |u|1+τ dµ

)
≤ cn (1 + τ)∥uτ∥2

(
∥∇u∥2 + ∥Hu∥2

)
.

As a result, by induction,

∥uτ∥2 ≤ cτ−1
n (τ !)∥u∥2

(
∥∇u∥2 + ∥Hu∥2

)τ−1
,

or equivalently,

∥u∥2τ ≤ cn

[
τ ! ∥u∥2

(
∥∇u∥2 + ∥Hu∥2

)τ−1
]1/τ

.

Finally, take τ =
⌈
p
2

⌉
so that

∥u∥p ≤ ∥u∥
2τ−p
(τ−1)p

2 ∥u∥
τ(p−2)
(τ−1)p

2τ

≤ cn(τ !)
1/τ∥u∥

2τ−p
(τ−1)p

2 ∥u∥
p−2

(τ−1)p

2

(
∥∇u∥2 + ∥Hu∥2

) p−2
p

= cn(τ !)
1/τ∥u∥

2
p

2

(
∥∇u∥2 + ∥Hu∥2

)1− 2
p .
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