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LIMITED ANGLE 3-D RECONSTRUCTIONS FROM CONTINUOUS

LBL-9965

AND PINHOLE PROJECTIONS

K. C. Tam, V. Perez-Mendez and B. Macdonald
Lawrence Berkeley Laboratory, Berkeley
and Radiology Department, U.C. San Francisco

» Abstract

The propagation of errors incurred in 3-D recon-
structions with limited angular input performed by de-
convolution and matrix inversion aigorithms is! ana-
1yzed. The convergence rate and noise properties of
an iterative scheme that utilizes the finite extent of
the object to recover the missing Fourier components in
deconvolution are studied. Methods are developed to
stabilize the performance of the reconstruction algor-
jthms in the presence of noise. An analysis is given
for the necessary condition for complete reconstruction
in .imaging situations involving a number of discrete
inputs confined to Timited angular range.

Introduction

Most emission and transmission imaging methods in-
volve taking data in a continuous range of angles or
series of discrete angles, as shown in Figs. 1 and 2.
The problem of reconstructing the object distribution
o{r) from the data is to solve the integral equation

o(r)= folr)e (r - r')d3 ' (D)

where ¢ is the scalar field constructed from the data,
and ¢, is the point response function. As presented in
a previous paper,! complete 3-D reconstructions can be
achieved through deconvolution followed by iteration$,
or through matrix inversion. In this paper we formu-
late the propagation of errors in each of these two
approaches and develop the methods to stabilize their
performance in.the presence of noise. .

Usually, 3-D imaging devices have an axis of rota-
tion (Fig. 2), which we shall take to-be the z-axis.
Due to the symmetry of the x and y axes, we shall write
out only the x-axis explicitly and suppress the y-axis
in most of the mathematical treatment and figures in
order to facilitate presentation.

Deconvolution with [terations

The deconvolution method?»3 Fourier-transfbrms
Equation (1) to the frequency space (k-space) and.
solves for R(k), the Fourier components of o(r):

2(k)/, (k).
R(K) = { -

undetermined, if ¢ (k) =0

if o (k) # 0
2 (2)

vhere ¢,{k), ¢(k) are the fourier transforms of the
point response function ¢o(r) and the data scalar field
¢(r),2 respectively. ~Some typical shapes of do{r) and
(k) for positron cameras are given in Figs. 3 and 4.
Hereafter, we shall refer to the region where ¢,(k) # 0
as the "allowed cone," and that where ¢o(k) = 0 as the

"missing cone," respectively.

k)is-present in the data, the propa-
n the reconstruction will be given by

If noise A

k
gated error Eg(k)3

#{
k)

) = 2L sro (3)

Equation (3) shows that the error in the data is

multiplied by the factor 1/44(k) in deconvolution. In -

the region where ¢,(k) is very small, the error will
be greatly magnified. This is the case in the missing
cone, as well as in the large |kx| region, since the

-1-

result in [1] shows that for fixed [ky/kyls 8o(K) @

1Y kel

In the jterative scheme to be analysed below, R(k)
is set to zero in the missing cone. This procedure
removes the instabilities there. A way to deal with
the instabilities in the large |k,| region has been
described in [2] in which the treatment of noise by
Phillips® was recast. By imposing the smoothness
condition »

[(v20(r))2d3r = minimum
on the solution p(r)with the constraint that the total
error in the data ¢(r) is a constant, Equation (2) is
modified to

oK)

R(K) = . (4)
oo (k) + %—i—&l)i— ‘

.Here, v(>0) is an adjustable parameter which depends

on the noise level. In the case of no noise, vy = 0,
and Equation (4) reduces back to (2}.

The modification made in Equation (4) can be

viewed as the action of a low spatial frequency pass
filter. The additional term in Equation (4)

I£2w€l‘ki
%o 5) )

is negligible in Tow frequency compared to ¢o(k), but

“increases rapidly in magnitude with frequency as both

k4 increases and ¢o(k) decreases. Thus the information
at low frequency is undistorted, whereas the noise at

~high frequency is suppressed.

A convenient way for specifying yiste note the sur-
face Sy, in k-space where the two terms in the denomin-
ator of Equation (4) become equal. At these frequen-
cies the original Fourier components of the object are
attenuated by a factor of 1/2. The surface Sy, should
be chosen not too close to the origin so that recon-
structions are not oversmoothed beyond the desirable
resolution. As shown in [1,5], one way to recover the
components in the missing cone is by means of the iter-
ative scheme ‘shown in Fig. 5. A qualitative proof of
the convergence of this scheme has been given in [1,5],
In this paper we will give a more quantitative analy-
sis. 1In actual reconstruction, we will be dealing
with frequency components below a certain maximum
frequency ‘determined by such factors as the spatial
resolution of the imaging system, the available compu-
ter core memory, etc. In Fig. 6 Ra represents the
region in frequency space where vo{k) is known, and Rp
is the extent of the object. Define the operators A
and B operating on function f defined in frequency
space as follows: :

Af = XAf
Bf

fl

F-1xgFf

where F and F-1 vepresent Fourier transformation and
its iaverse, and Xp, ¥g are, respectively, the char-
acteristic functions of Ry and Ry, defined as:



1 keRy
) = {

0 kiRy

1 xeRp

0 X & Ry

With these operators we can formulate the itera-
tion procedure as follows. If R(k) represents the.
Fourier spectrum of the object op(r), and SO (k) the
Fourier spectrum of p(r) obtained from deconvolution,
then

s(0) (k)= AR(K)

Fourier transforming 5(0)(5) to the object.space, set-
ting the values outside the known extent of the object
to zero, then inverse transforiming to the frequency
space, we get the first iterated spectrum R{1)(k):

ROV (k) = BS(O)(K) = BAR(K)
Résetting the components of R(l)(g) inside the allowed

cone to the original values given by s(0) (k) we get
S(1)(k): o : . ‘

s(1) (k) = s(o)(k) + (1 - AR (k)
= AR(K) + (1 - AR( (k)
Iterating we obtain.the spectra R(2)(k), 5(2)(5) ----- .
RO, ’ ‘
R(2) (k) = BS(1)(k)
s(2)(k) = AR(K) + (1 - AR (k)
st () 2 ARGk + (1= AR ()
R(")(_lg) - BS(n'l)(B_)
= BAR(K) + (1 - BAR( V() (5)\

"Subtracting.R(k) from both sides of Equation (5)

BAR(K) - R(K) + (1 - BA)R®=D (k)
(1 - BRI (k) = R(K))

e

(1 -8R ROV (1) - R(K))

(1 - BAMROO (k) -"P(K)),

where we now define R(O)(h) = 0.

n

Thus we have

RO (k) = R(K) - (1 - BAPR(K) (6)
_Nth that throughout the iteraiions, all the spectra
R¥ (k) operated on by BA satisfy

BRI (k) = RUD (k) , | (7)

In the Appendix it is shown that the operator BA oper-
ating on the {unctions satisfying Equation (7) is a
positive definite operator. Thus the set of eigen-
functions {v;} of BA formsa complete set of functions

which are orthonormal in the entire.k-space; and orthog-

onal in the region Ry,®©

. .f ﬁj(3)¢:(£)d3kt 615

k-space

o (RDur(k)d%k= 2 e

{1

Thus any function f in k-space which satisfies (7),
ie.. Bf = f, can be expanded into a series of y; which
represents f everywhere. If Bf # f, the expansion is -
still valid in the region Ry, but it does not neces-
sarily represent f outside R;. .A11 the eigenvalues

of BA lie between 0 and 1, ie. 0 < a5 < 1.

Decompose R(k) into a linear combination of by

R(k) = ani“'i(i).

Then Equation (6) becomes

ROk = F a1 - (1-0))a (k)

The truncation error in terminating the iteration after
n steps is thus given by ’

EM) (k) = R(K) - R(K)

7020 a; (1 - a3)Py;(k) -~ (8)
1=0 _

which is identical to that obtained by Papoulis’ for
the case of one-dimensional signals. This error tends
to zero as n » o,

The rate of convergence, ie. the rate Eé“)(g)
goes to zero, depends on the distribution of {1;} and
{a;}. ‘The distribution of {x;} is determined by the
regions Ry and Ry. In general the region Ry, which
represents the extent occupied by the objec?, is
fixed, whereas the region Ry can be changed by varying
the angle subtended by the imaging.device.

Fig: 7 shows a plot of the eignevalues for dif-
ferent opening angles of Ry, while Ry is chosen to be
a 9 x 9 square sub-lattice in a 21 x 21 reconstruction
lattice. It can be seen that the spectrum shifts
towards zero as the angle decreases. The implication
is that . the convergence as expressed by Equation (8)

_will become worse when the angle of R, is reduced.

To show this effect we apply the iterative algor-
ithm to restore the missing cone components for a
2-D-phantom. The reconstruction area is a 128 x 32
lattice, with equal lattice spacings in the x(i) and
z(k) directions. The phantom has a square boundary
with perpendicular diagonals which are both 11 lattice
spacings long in the x and z directions, respectively.
The Fourier components of the phantom outside the al-
lowed cone were first set to zero, and then the itera-
tive scheme was employed to recover them. The solid
curve in Fig. 8 shows the root mean square error o of
the results after 20 iterations as a function of the
opening angle of Ry. Here o is defined as

¢ '= ‘Zl(reconstruction (i,3,k)-phantom(i,j,k)) 2

A 51

nuiber of pixels

Fig. 9 shows the corresponding results for a 3-D phan-
tom. The shape of the point response function ¢, was
in the form of a square pyramid with semi-vertical
angle 8, (Fig. 4). These two results show clearly the
dependence of the truncation error E%'(k) on the

size of the opening angle of the allowed conc.

The above results can be viewed as reconstructions
from perfect data generated by the phantows, using
deconvolution + iterations. TFor comparison, deconvolu-
tion + iterations were perfovied on a nunber of sets
of finite statistical positron annihilation events

-2 - ' : _ .
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.generated by the 2-D phantom.

- The improvement after iterations is

The values of ¢ for
these results are plotted as the broken curves in Fig.
8. It can be seen that the truncation error is the

. main source of error at small angles of Ry, whereas the

statistical error dominates at large angles. The mini-
mum in o which occurs for finite statistical recon-
structions is due to the competition of two effects:

the improvement in the behavior of the eigenvalues {i;}
on the one hand, and the increase in the error magn1-
tude of ¢(r) on the other, as the -angle increases while
keeping the number of the arinihilation events fixed.

Figs. 8 and 9 give on]y the re]ative maonitude of
the truncation ervor in iterating as a function of the
angular size of the allowed cone. To get a qualitative
feeling of how well the iterations work at small
allowed-cone angles,we applied the algorithm to restore
the missing cone components for a two-dimensional
point source located inside the square boundary of the
2-D phantom of Fig. 8. The assumed allowed cone sub-
tends a semi-vertical angle of tan-! (0.5) along the
ky-axis.

Fig. 10A shows the shape of the point source at
the center of the square with the Fourier components
in the missing cone set to zero. Only the middle 32 x
32 picture elements are shown. Two kinds of distor-
tions are seen.
ably widened. Secondly, decaying oscillating ridges
appear on the edges of the detection cone corresponding
to the assumed missing cone and centered at the point
source.

" Fig. 10B shows the same'point source after 30
iterations. The ridges are lowered in height. Also,
the point source is significantly narrowed.

Fig. 11 illustrates the corresponding results for
a point source located on the boundary of the square:
in this case at the corner with the lowest k-index.
much more impres-
sive in this case than that with the point source at
the center of the square. The improvement is due to
the fact that for the point source on the boundary, at
least two of the four decaying ridges lie outside the
square and thus are repeatedly reset to zero in iter-
ating; whereas for the point source at the center, only
those low-amplitude lobes of the ridges far away from
the p01nt source are reset to zero, producing smaller
effect in restoring the missing cone components in
comparison,

These results indicate that the volume elements on
the boundary of the phantom will reconstruct better
through itérations than the interior volume elements.

Besides.the truncation error Eﬁ(“), the measured
error AS{k) in the frequency components in the allowed
cone Ry a]<o propagates in the iterations. Fo]]bwing
Papoulis,’ we expand aS(k) into a series of e1gen—
functions of BA in the regicn Ry

aS(k) = Z Ci‘i’i(f:.)

with |aS|2 = [ |aS(K)|2d3%k= J c;2;
, R i :

a

Since the iteration is a.linear process, the result
after n steps of iterations on the measyred frequonc¥
components, S(k) + aS(k), is given by R(n}(k) + aR(n)(k)
where

) = T (1~ (g (k)

The constraint that the object is non-negative .
'was also utilized in the iterations.

Firstly, the point source is consider-

An upper bound of the magnitude of the propagated error
AR(n) (k) can be estimated as follows:

|AR(n)|2 } 21 - (1-2;)1)2
i .

Loe?g2ll+ (1-ag) + .o
1

+ (1‘Xi)n-1]_

Since all the Ai's Tie in (0,1), we have
1+ (1-ag) + o0+ (1-2g)7 <
Thus '
|8R(n) |2 < nZY ¢;2xg = n?[as|?
i=0
Therefore

[aR(®)| < nlas| .

Matrix Inversion

i

The matrix method® Fourier transforms Equatioh (1)

. in the x dimension only and solves the resulting

integral equation in the z dimension for every spat1a1

. frequency kx,

(kx,z) = j zfo kx,z 2 "p(ky,2')dz! n (9

where ¥, ¥, and p are the part1a] Fourier transforms
of ¢, ¢, and o in the x dimension. In’ {1}, it has
been shown that for k # 0-a unique solution exists
which is given by

aZ) Z.(_l__‘f) g (kxaz

where oy, g; are the eigenvalues and e1genfunct1ons of

the integral operator (9), and

(¢f,9) = I°° " (ky,2)¥(ky>2)dz
If the data w(k X,z) contain error A¥( (x»Z), then the
“propagated error in inversion w11] be
gi,A ) )
Ep(kynz) = ] ”—;_—i— gi(kx,Z) (10)
1

1

Again, the expression (10) shows that the major errors
*in the reconstruction come from the small eigenvalues.

As shown in (1], vy, is of the form

?o(kg,z—z') = feo E%ﬂexp[Znikxtane(z-z')]de

0

where F(e) is an anqu1ar weighting factor wh1ch is

. positive inside the detection cone and vanishes outside.

For the particular case F(0) = cos-2¢ inside the detec-

p tion cone, the expression for ¥, simplifies to

m

. Yo(kx,z-i') l-f oexp[2n1kxtane(z z )]d(tane)

sin[2rkytandg(z-2')1
wky(z-2")

The eigenvalue equation of this kernel is



2, \sinZnkytaneg(z-2') . ,
i) - ol

On rearranging, Equation (11) becomes

‘ z, sin(2nkxtangg{z-2" VY ot
("kx*i)gi(kxsl)f= f;f '_*Lfﬁ_l;fifggr——;%i(kx,Z Ydz

which is the zeroth order prolate spheriodal- eigen-
value equation.
prolate spheroidal eigenvalues. -As pointed out by
Slepian and Pollak,? the distribution of these eigen-
values depends on the quantity ¢ = 2nkxtano,(z,-21),
and for a fixed c, the eigenvalues fall off 'to zero
rapidly with increasing i once i exceeds (2/w)c.
These eigenvalues are shown in Fig. 12. This means
that noise multiplication would be especially serious
whenever k., tandy, or (z,-z;) becomes small.

One way to stabilize the method, for fixed tane,
and (z,-2z,), is to discard the results at small k;
where the errors dominate, and, by making use of the
finite extent of the object in the x dimension, fill
in those values using the results obtained from the
higher ky values through the iterative scheme shown
in Fig. 13." ' : : ‘

Another way to stabilize the matrix method is by
means of the smoothing procedure .proposed by Phillips"
and Twomey.!® Instead of solving the ill-conditioned

- matrix equation . : S

Y = AX

which is the digital version of Equation (9), another
matrix equation with a modified kernel

Y = (A + ¥B)X

. is solved. Here the matrix B is ‘obtained from A in
the following manner: -

b]k = ak..z,] - 43};..1’] + 6ak., 17 4ak+1’ 1 +ak+2s 1
and y is a parameter dependent on the noise level in
the data. This procedure will remove the instabil-

ities at the high spatial frequencies 'k, for each of
the operators (9) characterized by k.

Comparison Between Deconvolution +.°

Iterations and Matrix Inversion

After analyzing the basic properties of the deconvolu-
tion + iterations and the matrix methods, a comparison
of their relative merit is now in order. If the data
contain no error or only a negligible amount of error,
the main error in the result of deconvolution + itera-
tions will come from the truncation error Ey(n) in
iterating, as the deconvolution error Eg will be
insignificant in this case. For the matrix method,
the inversion error E, will also be negligible. The
only unknown solution at ky = O could be filled in by
continuation from other non-zero k, values, and the
error introduced in-continuing the solution to one
point would be very small compared to the error EL(“)
in continuing the solution outside Ry for general
opening angle 20,. Thus in the case of very small
amounts of ncise, the matrix inversion has an advan-
tage over the deconvolution + iterations approach,
unless some accelerated scheme can be devised to
reduce E4 (n),

Thus {wkci;} is a set of zeroth order .

To predict their relative performance in the
presence of significant amounts of noise, it suffices
to compare the condition numbers of the deconvolution
operation and matrix inVersion respectively. For
deconvolution, the condition number kg is given by

o = $80(K) Jmax
fd 7 Too(k))min

and for each'kx # 0, the condition number n@(k } of : "
the integral operator (9) is given by ‘

enlke) = GIo%

Now Equation (A.2) in [1] shows that ¢,(k) is in the
form .

. ) 0z 2n-

dolkyrky) = TLELJCOSOL
. i"| x|
where tanej = -k,/ky, and F(8) is the angular factor
used in constructing ¢,(r) [1]. For each k, # 0, the
condition number is thus given by

- E,elﬁgéfégmax_
Kalkx) = %?ég)cos‘o min .

In general the maximum and minimum values of F(e)cos?e
do not differ by several orders of magnitude; in fact,
for the generally used angular factors F(e) = 1 and
F(b) = cos-20, xq(ky) equals sec2e, and 1 respectively.
On the other hand, opax and apip can differ by a factor
of order hundreds of thousands; in fact, apip asywp-
totically approaches zero as the index of the eigen-
value increases. The decrease of « with the index is
especially fast at small values of k¢ and 6o. Thus
matrix inversion is expected to be more unstable to
noise than deconvolution + iterations.

This comparison is still valid even if the itera-
tive scheme Fig. 13 is employed to stabilize the
matrix method. The reason is the following. In
iterating, all the solutions from inversion with ky
below some ko('>0) are discarded, and they are filled
in using those with ky » ko. But as the solution from
inversion for every ky contains both reliable and
unreliable components corresponding to the large and
small eigenvalues of the integral operator (9) char-

‘acterized by that ky, the solutions used to start the

iterations for the matrix method always contain some
unreliable components. In comparison, the deconvolu-
tion results used to start iterations do not have such
a mixed population of reliable and unreliable compo-
nents.

Discrete Angular Input Data

‘Analytic continuation in limited-angle reconstruc- -
tion is not restricted to continuous angular input data
only. With slight modifications it can be appiied to
discrete angular input data from a device such as a
limited-angle pinhole array.

Fig. 14 shows a limited-angle pinhole array
imaging a two-dimensional cbject. The pinholes are
separated from each other by a gap d, and each of them
produces a fan beam projection of the object on a
detector at a distance s away from the pinhole array.
For simplicity the images from different pinholes are
assured to be non-overlapping. Through the coordinate
transformation represented by .

-4 - ) | : .



Ny

= S - S
X = T X

the fan beam projection produced by each pinhole is
deformed into a parallel beam projection of the dis-

-torted object §(X,Z) which has a one-to-one corres-

pondence with the original object o(x,z) through the
equationlil:

- 2
5(%,2)did7 = (g5—) e (x.2)dxdz

By the projection theorem, each of these para]]e] pro-

jections, upon Fourier transformation, yields a line of

the Fourier components of the object up tn the maximum
frequency Kmax 1mposed by the resolution A of the
detector, where kpax = %A. This is illustrated in

Fig. 15, which is again a limited-angle imaging prob-
lem, the angular range 26, being limited by the lateral
extent Tpax of the outermost pinhole

1
= -1(_Max
Fan (55

The other missing components can be rcfovered from
those shown in Fig. 15, through analytic continuation,
if the resolution of the Fourier components in kg and
the extent L, of the object in the z direction satisfy
the Nyquist sampling condition.1? Referring to Fig.
15, this condition can be expressed as

kmaxCOS6, | tane; - tanog.q] < Q%—
: . Z

A,lgffff

We have shown that the deconvolution + iterations
a1gor1thm is stable to noise, and that the matrix
inversion algorithin can be stabilized by iterations or
smoothing. The iterative scheme works will even in
cases where the data inputs are restricted io a small
continuous angular range. It was also found that com-
plete reconstruction is possibie in imaging situations

- involving discrete data inputs confined to limited

angular range if the Nyquist ssmpling condition is
satisfied.

. Acknowledaements

We would Tike to lake this opportuhity to thank
Dr. Alberto Grunbaum for many helpful discussions.

This work was supported by the Physics Division of
the U. S. Department of Energy under Contract No.
W-7405-ENG-48.

Appendix

Proof for the Positive Definitencss of BA

We want to prove that BA is a positive definite
operator for all functions y satisfying by = .

Lemma 1 For all Psuch that Ap =,

definite oprrator
L.u = ( -

B is a positive

Proof:

[1] Tam, K.

- [31 Tam, K. C.,

s Fo1(XgFx,¥) = 0

= XpFXp¥ =

® Fxpp =0 "~ Fxay is an entire
> xb = 0 function)

= d,.v= 0

Lenma 2 For all g such that By = p, A is a positive

definite operator
Proof: Ay =
= xAF'leFw =0

» FrlxFe =0 ' (0 F lxgFy is an

s =0 entire function)

Combining ]emma 1 and 1emma 2 we get the desired

result. ‘
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 Fig. 8. Root mean square error in reconstructing a 2-D phantom
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cone for various statistics.
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- Recovering the missing cone c0mponents’for a 2-D point

Fig. 10.

source located at the center of a square which acts as

The semi-

vertical ‘angle of the allowed cone is tan~!(0.5)."

the finite object extent in the iterations.

set to zero. -
-B. The point source after 30 iterations.

A. The point source with the missing cone components
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Recovering thé,missing cone components for a 2-D point

source located on the boundary of a square which acts as

the finite object extent in the iterations.-

Fig. 11.

The semi-

vertical angle of the allowed cone is tan~!(0.5).

set to zero. .
B. The point source after 30 iterations.

A. The point source with the missing cone components

7.
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Fig. 15. Fourier components of the d1storted object in
pinhole array imaging.
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