UC Berkeley UC Berkeley Electronic Theses and Dissertations

Title

Advancing targeting radiopharmaceuticals for theranostic applications

Permalink https://escholarship.org/uc/item/0zr0n0g0

Author Bailey, Tyler Allan

Publication Date 2022

Peer reviewed|Thesis/dissertation

Advancing targeting radiopharmaceuticals for theranostic applications

By

Tyler Allan Bailey

A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering – Nuclear Engineering in the Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Rebecca J. Abergel, Chair Professor Moriel Vandsburger Professor Lee Bernstein Professor Kai Vetter

Spring 2022

Advancing targeting radiopharmaceuticals for theranostic applications

Copyright 2022 by Tyler Allan Bailey

Abstract

Advancing targeting radiopharmaceuticals for theranostic applications

by

Tyler Allan Bailey Doctor of Philosophy in Engineering - Nuclear Engineering University of California, Berkeley Professor Rebecca J. Abergel, Chair

In the past few decades, targeted radionuclide therapy has emerged as a potential strategy for combatting cancer. Through the delivery of alpha, beta-minus, or Auger electron emitting radionuclides to diseased tissue via targeting vectors, targeting radiopharmaceuticals can deal cytotoxic damage to cancerous cells while minimizing damage to healthy tissue. Furthermore, applying the theranostic approach, where a diagnostic radionuclide is delivered using the same targeting vector, allows targeted radionuclide therapy to become more personalized, potentially making these treatments more effective. This strategy allows for using the same targeting radiopharmaceutical for both diagnostics and therapy. This enables patient-specific dosimetry, the ability to predict the response for a given therapy, improved treatment planning, and monitoring of the ongoing treatment. Unfortunately, widespread use of the theranostic approach faces a variety of challenges in order to make theranostics more obtainable.

This dissertation seeks to advance targeting radiopharmaceuticals for theranostic applications by investigating a novel companion diagnostic radionuclide, ¹³⁴Ce, as a companion diagnostic for both ²²⁵Ac and ²²⁷Th. In addition, the use of the chelator 3,4,3-LI(1,2-HOPO) (HOPO) was investigated with ¹³⁴Ce, the ⁹⁰Y/⁸⁶Y theranostic pair, and ²²⁵Ac. HOPO has the potential to be a "theranostic chelator" due to its affinity for a variety of strategic trivalent and tetravalent radiometals. Furthermore, a novel elution strategy for ²²⁴Ra/²¹²Pb generators was benchmarked which could facilitate the use of the ²¹²Pb/²⁰³ Pb theranostics in clinical settings. Lastly, the use of Siderocalin fusion proteins, which could pave the doorway for the development of antibody-based "cold-kits" thereby allowing for the rapid, room temperature labeling of monoclonal antibodies for targeted radionuclide therapy, was explored.

The actinide radionuclides ²²⁵Ac and ²²⁷Th have recently shown great clinical and preclinical success for targeted radionuclide therapy due to their long decay chain which emits 4 or 5 α particles and their lack of a long-lived decay product. Unfortunately, neither of these radionuclides can be suitably imaged by contemporary molecular imaging modalities including positron emission tomography (PET) or single photon emission computed tomography (SPECT). Furthermore, there is not an actinium or thorium isotope that allows for PET or SPECT imaging. To address this need a surrogate diagnostic radionuclide with chemically similar properties using the *in vivo* generator system ¹³⁴Ce/¹³⁴La was investigated since it can be imaged by PET and has an unique redox chemistry that allows ¹³⁴Ce to be stabilized as ¹³⁴Ce^{III} to mimic ²²⁵Ac^{III} or as ¹³⁴Ce^{IV} to mimic ²²⁷Th^{IV}. The surrogacy of ¹³⁴Ce/¹³⁴La is investigated by assaying

the biodistribution and *in vivo* stability of ¹³⁴Ce complexes (¹³⁴Ce^{III}-DTPA, ¹³⁴Ce^{III}-DOTA, and ¹³⁴Ce^{IV}-HOPO) through microPET imaging of a murine model. All of these complexes displayed high *in vivo* stability and rapid pharmacokinetics, and they all had negligible residual activity 24 hours after administration. Furthermore, the long half-life of ¹³⁴Ce (3.2 days) allows for it to be compatible with antibody drug conjugates. This compatibility is investigated through microPET imaging ¹³⁴Ce^{III}-DOTA-Trastuzumab in a SK-OV-3 tumor-bearing murine model. Because of the high *in vivo* stability of ¹³⁴Ce-DOTA and long half-life of ¹³⁴Ce, ¹³⁴Ce-DOTA-Trastuzumab displayed elevated tumor uptake for up to 9 days after administration and has a similar biodistribution to ²²⁵Ac - DOTA -Trastuzumab. These proof of concept studies open the doorway for the development of targeting radiopharmaceuticals incorporating ¹³⁴Ce.

⁸⁶Y^{III} (a positron emitter) and ⁹⁰Y^{III} (a β- emitter) are rare earth metal theranostic pairs that facilitate the implementation of the theranostic approach due to both the therapeutic and diagnostic radionuclides having identical chemistry. Due to HOPO's affinity for trivalent radiometals, HOPO can rapidly form highly stable yttrium complexes at room temperature, unlike DTPA or DOTA which are commonly used for ⁹⁰Y/⁸⁶Y theranostics. Through *in vivo* microPET imaging, the biodistribution and *in vivo* stability of ⁸⁶Y-HOPO are assayed in a murine model. ⁸⁶Y-HOPO displayed high *in vivo* stability and rapid pharmacokinetics, and it had negligible residual activity 24 hours after administration which is valuable for future work investigating yttrium-based targeting radiopharmaceuticals.

²¹²Pb, another promising α emitting radionuclide, is available in a convenient ²²⁴Ra/²¹²Pb generator and has a diagnostic matched pair available, ²⁰³Pb, which allows for SPECT imaging. A new elution strategy that directly yields ²¹²Pb in a more favorable electrolytic solution (1.0 M sodium acetate) for radiolabeling, circumventing the need for long evaporation and redissolution processes, is benchmarked by a series of radiolabeling experiments comparing this new strategy to the conventional one. Through two weeks of labeling experiments, this elution strategy minimized the time needed to elute the ²²⁵Ra/²¹²Pb, and it maintained a high radiochemical yield and radiochemical purity while labeling ²¹²Pb to TCMC-Trastuzumab conjugates. This novel elution strategy can facilitate the use of ²²⁴Ra/²¹²Pb generators in clinical settings allowing a more widespread implementation of ²¹²Pb/²⁰³Pb theranostics.

Siderocalin fusion proteins allow for a novel way to deliver therapeutic radionuclides to diseased sites. Because of Siderocalin's ability to non-covalently bind to highly stable, negatively charged metal-HOPO complexes, these fusion proteins can allow for rapid, room temperature radiolabeling compared to DOTA which requires high temperatures in order for quantitative radiolabeling. In order to investigate their tumor targeting and tumor control properties, *ex vivo* biodistribution and tumor control experiments are performed with ²²⁵Ac and ⁹⁰Y labeled fusion proteins in a SK-OV-3 tumor-bearing murine model. While ²²⁵Ac labeled fusion proteins were not able to display elevated uptake in tumors due to the low *in vivo* stability of ²²⁵Ac-HOPO, the ⁹⁰Y fusion proteins were able to display tumor uptake within 50 hours. With further development, these Siderocalin fusion proteins can potentially become the blueprint for antibody-based "cold-kits".

CONTENTS

LIST OF FIGURES			
LIST OF TABLES	ix		
ACKNOWLEDGEMENTS	X		
CHAPTER 1: Introduction	1		
1.1 Overview	1		
1.2 Targeting Radiopharmaceuticals	3		
1.2.1 Radiometals	4		
1.2.2 Chelators	5		
1.2.3 Targeting Vectors	9		
1.2.4 Linkers	10		
1.3 Molecular Imaging	. 11		
1.4 Organization of this dissertation	12		
CHAPTER 2: Radionuclides of theranostic interest	.14		
2.1 Introduction	14		
2.2 Actinium-225 and its theranostic matched pairs	14		
2.2 1 Actinium-225	14		
2.2.17 Callium_68	10		
2.2.2 Calliant-00	20		
2.2.0 Radiolarithanding. Eanthanding 102 and Eanthanding 100	20		
2.2.5 Cerium/III)-134/I anthanum-134	27		
2.2.0 Centum(in)=104/Lanthandin=104	27		
2.3 1 Thorium-227	2 1 2/		
2 3 2 Cerium/IV)_13//Lanthanum_13/	2 4 97		
2 3 3 7irconium-89	27		
$2.0.0 \ge 100 \text{ mm} - 00 = 0.000 \text{ mm} - 0.000 \text{ mm} - 0.000 \text{ mm} - 0.0000 \text{ mm} - 0.0000 \text{ mm} - 0.0000 \text{ mm} - 0.0000 \text{ mm} - 0.00000 \text{ mm} - 0.00000 \text{ mm} - 0.0000000000000000000000000000000000$	27		
2.5 Lead-212 and lead-203	30		
2.6 Conclusion	30		
tomography	emission .34		
3.1 Introduction	34		
3 1 1 ¹³⁴ Ce as a theranostic matched pair for ²²⁵ Ac and ²²⁷ Th	35		
3.1.2 <i>In vivo</i> stability of ⁸⁶ Y-3.4.3-LI(1.2-HOPO)	35		
3.2 Materials and methods	36		
3 2 1 Materials	36		
$3.2.2^{134}$ Ce production and radiolabeling	36		
3.2.3 ⁸⁶ Y radiolabeling	37		
3.2.4 Live animal ¹³⁴ Ce PFT imaging and <i>in vivo</i> biodistribution	37		
325 Fx vivo biodistribution and postmortem ¹³⁴ Ce PFT imaging	38		
3.2.6 Live animal ⁸⁶ Y PET imaging and <i>in vivo</i> biodistribution	38		
3 2 7 MicroPFT scanner and reconstruction parameters	39		
3.3 Results	39		

3.4 3.5	 3.3.1 ¹³⁴Ce <i>in vivo</i> stability 3.3.2 ¹³⁴Ce <i>ex vivo</i> biodistribution and postmortem imaging 3.3.3 ⁸⁶Y <i>in vivo</i> stability Discussion Conclusions 	39 46 49 50 51
CHAPT incorpo	ER 4: Evaluating ¹³⁴ Ce as a theranostic matched pair for antibody drug c rating ²²⁵ Ac	onjugates .52
4.1 4.2 4.3 4.4 4.5	Introduction Materials and methods 4.2.1 Materials 4.2.2 Antibody conjugation 4.2.3 ¹³⁴ Ce production and radiolabeling 4.2.4 Small animal PET imaging and biodistribution Results Discussion Conclusions	52 53 53 53 53 53 54 55 60 61
CHAPT	ER 5: Optimizing radiolabeling of ²²⁴ Ra generator-produced ²¹² Pb	.62
5.1 5.2 5.3 5.4 5.5	Introduction Materials and methods	62 63 63 63 63 64 65 70 72
CHAPT molecul	ER 6: Delivering ²²⁵ Ac and ⁹⁰ Y through non-covalent interactions le ligands with siderocalin fusion proteins	of small .73
6.1 6.2	Introduction	73 75 75 76 76 ol studies
6.3 6.4 6.5	 6.2.5 ⁹⁰Y labeled fusion protein biodistribution and tumor control studie Results. 6.3.1 Fusion proteins labeled with ²²⁵Ac. 6.3.2 Fusion proteins labeled with ⁹⁰Y. Discussion. Conclusions 	// es78 79 79 83 92 94
CHAPT	ER 7: Conclusion	.95
7.1	Future Work	95

7.2	Outlook	
Bibliogra	iphy	
APPEN	DIX A: Concorde MicroPET R4 spatial resolution	114
APPEN	DIX B: Radiochemical Yield and Radiochemical Purity	118

LIST OF FIGURES

Figure 1.1: Generalized model of a targeted radiopharmaceutical. Figure 1.2: Diagram of the release of the radiometal from its chelator in targeting **Figure 1.3:** The chemical structure of DTPA. The red oxygens and the blue nitrogens are the coordinating atoms that bind to the metal when the oxygens are deprotonated. 7 Figure 1.4: The chemical structure of DOTA. The red oxygens and the blue nitrogens are the coordinating atoms that bind to the metal when the oxygens are deprotonated. 7 Figure 1.5: The chemical structure of TCMC. The red oxygens and the blue nitrogens are the coordinating atoms that bind to the metal when the oxygens are deprotonated. 8 Figure 1.6: The chemical structure of 3,4,3-LI(1,2-HOPO). The red oxygens are the Figure 1.7: The chemical structure of ¹³⁴Ce-p-SCN-Bn-DOTA-Trastuzumab. The Y-Figure 1.8: The chemical structure of ²¹²Pb-p-SCN-Bn-TCMC-Trastuzumab. The Yshaped structure is Trastuzumab. 11 Figure 2.1: ²²⁵Ac decay chain with the imageable radiation emitted by ²²⁵Ac and its daughters included......15 Figure 2.2: Postherapeutic planar scans of (a and g) ⁶⁸Ga-PSMA-11, (b and c) ¹⁷⁷Lu-PSMA-617, and (e and f) ²²⁵Ac-PSMA-617. This research was originally published by Kratochwil C, Bruchertseifer F, Giesel FL, et al. in the Journal of Nuclear Medicine¹¹. .18 Figure 2.3: A drawing depicting how cerium can have a similar ionic radius to either Figure 2.4: ²²⁷Th decay chain with the imageable radiation emitted by ²²⁷Th and its daughters included. The photons included have the highest intensity for the given **Figure 2.5:** ²¹²Pb decay chain with the imageable radiation emitted by ²¹²Pb. The Figure 3.1: Maximum intensity projection (MIP) PET images of a Swiss Webster mouse injected intravenously with 5.05 MBq of ¹³⁴Ce-citrate at (a) 20 minutes, (b) 5 Figure 3.2: Radio-ITLC traces of (A) free ¹³⁴Ce, (B) ¹³⁴Ce-DOTA, (C) ¹³⁴Ce-HOPO, and (D) ¹³⁴Ce-DTPA. The origin is located at 0 mm. For the experimental complexes, counts Figure 3.3: MIP PET images of a Swiss Webster mouse injected intravenously with 6.90 MBq of ¹³⁴Ce-DOTA at (a) 20 minutes, (b) 5 hours, and (c) 25 hours after administration. At 20 minutes, the majority of activity is located in the bladder indicating Figure 3.4: MIP PET images of a Swiss Webster mouse injected intravenously with 4.49 MBg of ¹³⁴Ce-HOPO at (a) 20 minutes, (b) 5 hours, and (c) 25 hours after administration. At 5 hours, the high concentration of activity is located in the gastrointestinal tract indicating hepatobiliary elimination of ¹³⁴Ce-HOPO......43

Figure 3.5: MIP PET images of a Swiss Webster mouse injected intravenously with 7.72 MBq of ¹³⁴ Ce-DTPA at (a) 20 minutes, (b) 5 hours, and (c) 25 hours after
administration. At 20 minutes, the majority of activity is located in the bladder indicating rapid renal elimination of ¹³⁴ Ce-DTPA 44
Figure 3.6: ROI analysis of organs of interest in Swiss Webster mice administered intravenously with (A) ¹³⁴ Ce-Citrate, (B) ¹³⁴ Ce-DOTA, (C) ¹³⁴ Ce-HOPO, or (D) ¹³⁴ Ce-
bars represent the 1-sigma standard deviation. Only the upper error bar is displayed for ease of visualization. ART is abdominal remaining tissue
intravenously with 3.19 MBq of ¹³⁴ Ce-HOPO at (a) 10 minutes, (b) 4 hours, and (c) 24 hours after administration
Figure 3.8: Postmortem MIP PET images of a Swiss Webster mouse injected intravenously with 6.27 MBq of ¹³⁴ Ce-DTPA at (a) 10 minutes, (b) 4 hours, and (c) 24 hours after administration
Figure 3.9: Ex vivo ¹³⁴ Ce-HOPO and ¹³⁴ Ce-DOTA biodistribution in Swiss Webster mice in terms of %RA/g at (a) 10 minutes, (b) 4 hours, and (c) 24 hours after administration measured by gamma counting. Each data point is the average value of the 3 mice in each group, and the error bars represent the 1-sigma standard deviation. Only the upper error bar is displayed for ease of visualization. ART is abdominal remaining tissue.
Figure 3.10: MIP PET images of a Swiss Webster mouse injected intravenously with 3.44 MBq of ⁸⁶ Y-HOPO at (a) 15 minutes, (b) 2 hours, (c) 24 hours, and (d) 48 hours after administration
Figure 3.11: ROI analysis of organs of interest in Swiss Webster mice administered intravenously with ⁸⁶ Y-HOPO. Each data point is the average value of the 3 mice in each group, and the error bars represent the 1-sigma standard deviation. Only the upper error bar is displayed for ease of visualization. ART is abdominal remaining tissue.
Figure 4.1: Radio-ITLC traces of (A) free ¹³⁴ Ce, (B) ¹³⁴ Ce-DOTA-Trastuzumab, and (C) ¹³⁴ Ce-DOTA-IgG
administration. (B) MIP PET images of a SK-OV-3 tumor-bearing mouse injected intravenously with 1.28 MBq ¹³⁴ Ce-DOTA-IgG over 147 hours after administration58 Figure 4.3: (A) Postmortem MIP PET image of a SK-OV-3 tumor-bearing NOD SCID mouse injected with 3 20 MBg ¹³⁴ Ce-DOTA-Trastuzumab at 214 hours after
administration. (B) Postmortem MIP PET image of a SK-OV-3 tumor-bearing NOD SCID mouse injected with 1.28 MBq ¹³⁴ Ce-DOTA-IgG at 214 hours after administration. Both mice were imaged 1 hour after euthanasia
Figure 4.4: ROI analysis of organs of interest in SK-OV-3 tumor-bearing NOD SCID mice administered intravenously with (A) ¹³⁴ Ce-DOTA-Trastuzumab or (B) ¹³⁴ Ce-DOTA-IgG. Each data point is the average value of the 3 mice in each group, and the error bars represent the 1-sigma standard deviation. Only the upper error bar is displayed for ease of visualization. ART is abdominal remaining tissue

Figure 4.5: Ex vivo ¹³⁴Ce-DOTA-Trastuzumab and ¹³⁴Ce-DOTA-IgG biodistribution SK-OV-3 tumor-bearing NOD SCID mice in terms of (A) %IA/g and (B) %IA at 9 days after administration measured by liquid scintillation counting. Each data point is the average value of the 3 mice in each group, and the error bars represent the 1-sigma standard deviation. Only the upper error bar is displayed for ease of visualization. ART is abdominal remaining tissue. Skel is the entire skeletal system. Soft is the remaining soft tissue that was not already harvested.60 Figure 5.1: Radio-ITLC traces of (A) ²¹²Pb-TCMC-Trastuzumab during week 1's labeling experiments, (B) free ²¹²Pb during week 1's labeling experiments, (C) ²¹²Pb-TCMC-Trastuzumab during week 2's labeling experiments, and (D) free ²¹²Pb during week 2's labeling experiments after reconstituting the lead residue in 0.1 M HCI.66 Figure 5.2: Radio-ITLC traces of (A) ²¹²Pb-TCMC-Trastuzumab during week 1's labeling experiments, (B) free ²¹²Pb during week 1's labeling experiments, (C) ²¹²Pb-TCMC-Trastuzumab during week 2's labeling experiments, and (D) free ²¹²Pb during week 2's labeling experiments after reconstituting the lead residue in 0.1 M HNO₃.....68 Figure 5.3: Radio-ITLC traces of (A) ²¹²Pb-TCMC-Trastuzumab during week 1's labeling experiments, (B) free ²¹²Pb during week 1's labeling experiments, (C) ²¹²Pb-TCMC-Trastuzumab during week 2's labeling experiments, and (D) free ²¹²Pb during week 2's labeling experiments after eluting the generator with 1.0 M NaOAc.70 Figure 6.1: The chemical structure of the Siderocalin-Trastuzumab fusion protein. Ab is Figure 6.2: A schematic of (A) Siderocalin-Trastuzumab-IgG and (B) Siderocalin-Trastuzumab-Fab. Siderocalin-Trastuzumab-IgG has two Siderocalin proteins while Siderocalin-Trastuzumab-Fab only has one Siderocalin protein. Scn is Siderocalin. ...75 Figure 6.3: Ex vivo ²²⁵Ac-HOPO-Siderocalin, ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG, and ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-Fab biodistribution in SK-OV-3 tumorbearing NOD SCID mice in terms of (A) %IA/g and (B) %IA at 1 day after administration measured by liquid scintillation counting. Each data point is the average value of the 3 mice in each group, and the error bars represent the 1-sigma standard deviation. Only the upper error bar is displayed for ease of visualization. IgG is Trastuzumab-IgG, Fab is Trastuzumab-Fab, and SCN is Siderocalin. ART is abdominal remaining tissue. Skel is the entire skeletal system. Soft is the remaining soft tissue that was not already harvested......80 Figure 6.4: Individual tumor growth curves of SK-OV-3 tumor-bearing NOD SCID mice administered with (A) cold HOPO-Siderocalin-Trastuzumab-IgG, (B) 3784.1 Bq of ²²⁵Ac-HOPO-Siderocalin, (C) 333.0 Bg of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG, (D) 603 Bq of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG, and (E) 59.2 Bq of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-Fab. Each data point is the tumor volume for a single mouse, and the error bars represent the experimental error of manually measuring tumors with calipers. Only the upper error bar is displayed for ease of visualization. IgG is Trastuzumab-IgG, Fab is Trastuzumab-Fab, and SCN is Siderocalin. LD is the low dose of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG at 333.0 Bq while HD is the high dose of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-lgG at 603 Bg.81 Figure 6.5: (A) Average tumor growth curves and (B) survival curves of SK-OV-3 tumor-bearing NOD SCID mice administered with cold HOPO-Siderocalin-Trastuzumab-IgG, 3784.1 Bg of ²²⁵Ac-HOPO-Siderocalin, 333 Bg of ²²⁵Ac-HOPO-Siderocalin-

Trastuzumab-IgG, 603.0 Bg of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG, and 59.2 Bg of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-Fab. Each data point is the average value of the 4 mice in each group, and the error bars represent the 1-sigma standard deviation. Only the upper error bar is displayed for ease of visualization. IgG is Trastuzumab-IgG, Fab is Trastuzumab-Fab, and SCN is Siderocalin. LD is the low dose of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG at 333.0 Bq while HD is the high dose of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG at 603.0 Bg. For the survival curve, the cold HOPO-Siderocalin-IgG curve is overlapping with the ²²⁵Ac-HOPO-Siderocalin-Fab curve and the ²²⁵Ac-HOPO-Siderocalin curve is overlapping with the HD ²²⁵Ac-HOPO-Siderocalin-Figure 6.7: Radio-ITLC traces of ⁹⁰Y-HOPO-Siderocalin (A) immediately after radiolabeling, (B) a day after radiolabeling, and (C) 3 days after radiolabeling. SCN is **Figure 6.8:** Radio-ITLC traces of ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-IgG (A) immediately after radiolabeling, (B) a day after radiolabeling, and (C) 3 days after **Figure 6.9:** Radio-ITLC traces of ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-Fab (A) immediately after radiolabeling, (B) a day after radiolabeling, and (C) 3 days after radiolabeling. SCN is Siderocalin and Fab is Trastuzumab-Fab.87 Figure 6.10: Ex vivo (A) ⁹⁰Y-HOPO-Siderocalin, (B) ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-lgG, and (C) ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-Fab biodistribution in SK-OV-3 tumor-bearing NOD SCID mice in terms of %IA/g at 5 hours, 25 hours, and 50 hours after administration measured by liquid scintillation counting. Each data point is the average value of the 3 mice in each group, and the error bars represent the 1-sigma standard deviation. IgG is Trastuzumab-IgG. Fab is Trastuzumab-Fab. and SCN is Figure 6.11: Individual tumor growth curves of SK-OV-3 tumor-bearing NOD SCID mice administered with (A) 1.63 MBq of 90Y-HOPO-Siderocalin, (B) 1.65 MBq of 90Y-HOPO-Siderocalin-Trastuzumab-IgG, (C) 1.70 MBg of ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-Fab, and (D) no treatment. Each data point is the tumor volume for a single mouse, and the error bars represent the experimental error of manually measuring tumors with calipers. Only the upper error bar is displayed for ease of visualization. IgG is Figure 6.12: (A) Average tumor growth curves and (B) survival curves of SK-OV-3 tumor-bearing NOD SCID mice administered with 1.63 MBg of ⁹⁰Y-HOPO-Siderocalin, 1.65 MBq of ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-IgG, 1.70 MBq of ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-Fab, and no treatment. Each data point is the average value of the 4 mice in each group, and the error bars represent the 1-sigma standard deviation. Only the upper error bar is displayed for ease of visualization. IgG is Trastuzumab-IgG, Fab is Trastuzumab-Fab, and SCN is Siderocalin. For the survival curve, the ⁹⁰Y-HOPO-Siderocalin curve is overlapping with the no treatment curve.92 Figure A.1: Sarah, the Concorde MicroPET R4 used for the preclinical studies in this

LIST OF TABLES

Table 2.1: Summary of ²²⁵ Ac and its theranostic matched pairs.	.19
Table 2.2: Summary of ²²⁷ Th and its theranostic matched pairs.	.26
Table 2.3: Summary of the theranostic pairs ⁹⁰ Y/ ⁸⁶ Y and ²¹² Pb/ ²⁰³ Pb.	.30
Table 3.1: Ligand molarity, radiometal molarity, and ligand to radiometal ratio for even	ry
complex injection dose discussed in Chapter 3	.39
Table 5.1: Mass of Trastuzumab added for each labeling trial.	.64
Table 5.2: Activity of ²¹² Pb per microgram of antibody, radiochemical yield, and	
radiochemical yield per microgram of antibody for each labeling trial.	.65
Table 5.3: Radiopurity of ²¹² Pb-TCMC-Trastuzumab for each labeling trial.	.65
Table 6.1: Protein molarity, ligand Molarity, goal ²²⁵ Ac molarity, and actual ²²⁵ Ac	
molarity for the ²²⁵ Ac labeled fusion proteins injection solutions	.78
Table 6.2: Protein molarity, ligand molarity, and ⁹⁰ Y molarity for the ⁹⁰ Y labeled fusion	ו
proteins	.79
Table 6.3: Radiopurity for ⁹⁰ Y-HOPO-Siderocalin, ⁹⁰ Y-HOPO-Siderocalin-Trastuzuma	ab-
IgG, and ⁹⁰ Y-HOPO-Siderocalin-Trastuzumab-Fab	.88
Table 6.4: Location of the peak and the full width at half maximum (FWHM) of the	
prominent peak for the ⁹⁰ Y-HOPO-Siderocalin, ⁹⁰ Y-HOPO-Siderocalin-Trastuzumab-	
IgG, and ⁹⁰ Y-HOPO-Siderocalin-Trastuzumab-Fab TLC traces	.88
Table A.1: Mean positron energy and positron range for positron emitters discussed i	in
this dissertation1	16

ACKNOWLEDGEMENTS

First and foremost, I would like to thank Professor Rebecca Abergel for supporting me as a graduate student throughout the years, especially for her mentorship in manuscript writing and conference presentations, and for tolerating my eccentricities and various shenanigans throughout the years. I would also like to thank Professor Kai Vetter, Professor Lee Bernstein, and Professor Moriel Vandsburger for being on my quals and dissertation committee and for all their support.

I would like to thank Dr. Korey Carter, Dr. Katherine Shield, Dr. Jennifer Wacker, and Dr. Andrew Lakes for collaborating on the various ¹³⁴Ce and ⁸⁶Y experiments. I would also like to thank Dr. Jennifer Wacker, Dr. Korey Carter, and Dr. Alyssa Gaiser for working with me on the ²¹²Pb and Siderocalin Work. I learned way more about actinide chemistry and inorganic chemistry than I ever thought I would want to know through you all.

I owe a special debt to Dahlia An who mentored me throughout my years as a graduate student and for teaching me about biology and preclinical experimental design. I would further like to thank Dahlia An, Stacey Gauny, and her undergraduates, Joshua Chen, Elizabeth Wang, Pariswi Tewari, Zirui Jiang, Vicky Kang, Fion Chang, and Jesus Rios, for assisting with these experiments and other experiments that were not included in this dissertation. None of this would be possible without any of you.

I also would like to thank Dr. Yufei Wang, Dr. David Faulkner, Carla McKinley, Matthew Verlie, and Dahlia An for appreciating my sense of humor and giving me plenty of ideas for jokes.

I would personally like to thank my mom and dad, my two dogs, Gracie and Sophie, and my tortoise, Mudkip, for supporting me over the years. I would not have been able to get this without all of you.

I would like to personally thank collaborators from other labs for playing instrumental roles in all of this work. For the ¹³⁴Ce experiments, I would like to thank Dr. Stosh Kozimor and Dr. Veronika Mocko from Los Alamos National Laboratory for producing and shipping ¹³⁴Ce to Lawrence Berkeley National Laboratory and working with us on manuscripts. For the ²²⁴Ra/²¹²Pb generator, I would to thank Matthew O'Hara and Dr. Lucas Boron-Brenner at Pacific Northwest National Lab for shipping us the ²²⁴Ra/²¹²Pb generator and working with us on implementing the sodium acetate elution strategy. I would like to thank Dr. Roland Strong, Dr. Peter Rupert, and Matthew Buerger at Fred Hutchinson Cancer Research Center for producing the Siderocalin Fusion Proteins and shipping them to us at Lawrence Berkeley National Laboratory.

I would like to acknowledge that the ¹³⁴Ce work was supported by the Director, Office of Science, Office of Nuclear Physics, Isotope Production program of the U.S. Department of Energy under Contract Number DE-AC02-05CH11231 at LBNL.

CHAPTER 1: Introduction

1.1 Overview

Targeted radionuclide therapy has emerged as an effective option for treating cancer. While traditional radiotherapy directs radiation through the careful delivery of a collimated x-ray beam to the specific disease site (external beam therapy) or the placement of a seed containing a radiation source near the specific disease (brachytherapy), targeted radionuclide therapy relies on the administration of molecular agent with a radionuclide payload that has a high affinity for a specific receptor or antigen on the diseased site¹. This molecular agent, acting as a "Zauberkugel" or "Magic Bullet" in the words of the German Nobel Laureate Paul Ehrlich, delivers its radionuclide payload to its target where the radionuclide emits ionizing radiation to disable or destroy the target². These molecular agents (herein referred to as targeting radiopharmaceuticals) have taken a variety of forms over the years.

Starting in the 1940s, radioactive iodine isotopes (particularly ¹³¹I and ¹²⁸I which are both β - emitters) were administered in patients with thyroid carcinomas without the aid of a molecular targeting vector (this radioactive iodine is administered as NaI which dissociates *in vivo*)¹. These therapies were effective due to iodine's natural propensity for uptaking in the thyroid due to its role in producing thyroid hormones. ¹³¹I soon was the dominant radioiodine to be in use for medical applications due to its longer half-life and its emission of a gamma photon. This photon allows ¹³¹I to be imaged by an external device which allows for the same molecule to be used for diagnostics and therapy (*vide infra*). This idea of using the radionuclide's natural biodistribution as the targeting vector has been extended to recent times in the form of ²²³RaCl₂, which was FDA-approved in 2013 for treating patients with castration-resistant prostate cancer that has spread to the bone³.

While relying on the natural biodistribution of the radionuclide is effective in some cases, more complex targeting vectors are required when the diseased tissue is not located on a "convenient" organ. One particular example is ¹³¹I-meta-iodobenzylguanidine or ¹³¹I-MIBG, an analogue of a catecholamine, which is a small molecule that is recognized by a receptor on adrenergic tissue. This targeted radiopharmaceutical has been used to treat unresectable (can't be surgically removed) or metastatic adrenergic tissue tumors since the 1990s and has recently been FDA-approved in 2018⁴.

Another potential avenue for targeted radionuclide therapy is radioimmunotherapy where the radionuclide is labeled to a monoclonal antibody that targets a specific antigen on the diseased tissue⁵. The first two FDA-approved radiopharmaceuticals for radioimmunotherapy were ⁹⁰Y-tiuxetan-Ibritumomab (approved in 2002) and ¹³¹I-Tositumomab (approved in 2003). Both of these targeting radiopharmaceuticals were used to treat CD20+ (the antigen) Non-Hodgkin's lymphoma. While the procedure for labeling ¹³¹I to Tositumomab was simpler (¹³¹I is just covalently bonded to the antibody itself), the preparation of ⁹⁰Y-tiuxetan-Ibritumomab is more involved since ⁹⁰Y is a metal and not a gas unlike ¹³¹I and requires the use of a bifunctional chelator (tiuxetan) which binds to the ⁹⁰Y and antibody. In addition, ⁹⁰Y does not emit a gamma photon (it is a pure β - emitter); therefore imaging targeting radiopharmaceuticals incorporating ⁹⁰Y requires swapping out ⁹⁰Y for a radionuclide that can be imaged. ¹¹¹In has commonly been used for this application even though it has different chemical properties than ⁹⁰Y⁶. Despite these complications, ⁹⁰Y-tiuxetan-Ibritumomab has some advantages and is still in use today since its more energetic β-particle allows for the more effective treatment of larger tumors because of the cross-fire effect. Moreover, ¹³¹I-Tositumomab was removed from the market in 2014 due to limited use.

Another potential subset of targeted radionuclide therapy is through peptide receptor radionuclide therapy where peptides are instead used as the targeting vector. A popular application for peptide receptor radionuclide therapy has been for the treatment of neuroendocrine tumors¹. A common feature of these types of tumors is that they are metastatic at the time of presentation, so resection of the primary tumor is not curative. It was discovered that these tumors expressed somatostatin receptors which could be inhibited by peptides. Early attempts at developing targeting radiopharmaceuticals to combat this type of cancer were to incorporate ⁹⁰Y (as a therapeutic agent) and ¹¹¹In (as a diagnostic agent) into peptides such as DOTA-TATE, DOTA-TOC, and DOTA-LAN (DOTA is a bifunctional chelator while the peptides TATE, TOC, and LAN are short for octreotate, octreotide, and lanreotide respectively). While these ⁹⁰Y labeled peptides yielded promising results, it was found that ¹⁷⁷Lu was more effective. ¹⁷⁷Lu has a lower β - energy than ⁹⁰Y which made it more effective at delivering high dose to micrometastases and smaller lesion sizes; in addition, ¹⁷⁷Lu also emits a gamma which also allows for imaging by single photon emission computed tomography. Because of this ¹⁷⁷Lu-DOTA-TATE was FDA approved in 2018⁷.

While the vast majority of targeting radiopharmaceuticals have incorporated β emitters, in the past couple of decades targeted radionuclide therapy with α emitters, or targeted alpha therapy, has been steadily expanding. This is because α particles deposit large amounts of energy in short distances (50-230 keV/um) compared to β particles (0.1-1.0 keV/um) which makes α emitters rather effective against small tumor volumes, micrometastases, and circulating cells⁸. Alpha particles only travel 50-100 µm (5-10 cell diameters) in soft tissue, which minimizes energy deposition in nearby healthy cells, especially in comparison to beta particles which can travel 2,000-10,000 µm (200-1000 cell diameters). In addition, alpha particles efficiently produce double-stranded breaks in DNA, the dominant cause of cell death from radiation interactions, through direct ionization, which, unlike beta particles, is independent of tissue oxygenation^{9,10}. Moreover, alpha emitters are effective at breaking chemotherapy-resistant, photon irradiation-resistant, and castration-resistant lesions^{11,12}.

While many alpha-emitting radionuclides have potential or are approved for medical use (²²³Ra for instance), ²²⁵Ac, ²²⁷Th, and ²¹²Pb are the preeminent candidates for targeted alpha therapy^{3,13,14}. This is due to ²²⁵Ac and ²²⁷Th having long decay chains including 4 or 5 alpha-emitting daughters, long half-lives granting adequate time for transportation, labeling, and compatibility with both peptides and monoclonal antibodies, and the lack of long-lived decay products that would deliver unnecessary dose to the patient. Moreover, there exists bifunctional chelators that allow for the sequestering of ²²⁵Ac, ²²⁷Th, and ²¹²Pb and the conjugation to targeting vectors. This is unlike ²²³Ra, which lacks strong chelators, thereby limiting its oncological application due to its affinity to the bone mineral hydroxyapatite¹⁵. This non-specific uptake can lead to a large

uptake in both the metastases and healthy, actively growing bone, which contains hydroxyapatite as well. Coupling ²²⁵Ac, ²²⁷Th, or ²¹²Pb to targeting vectors circumnavigates this non-specific uptake and expands the use of alpha-emitters to other cancer types.

Auger electron-emitting radionuclides are another avenue that targeted radionuclide therapy can turn to. The low-energy electrons that these radionuclides emit in cascades deposit their energy in short ranges (1-23 keV/µm) with the highest energy auger electrons only going several microns in soft tissue¹⁶. While these electrons further minimize the chance of the cross-fire effect occurring and are considered more precise than even α particles, it is often thought that auger electron emitters require to be internalized inside the nuclear membrane (as close as possible to the DNA) to yield efficacious results. There has been some *in vitro* and *in vivo* evidence that demonstrated cytotoxic effects can be realized without nuclear internalization due to the bystander effect, but these studies are in the minority^{17–19}. Because of these complications, clinical trials with auger electrons have been limited and have involved mainly ¹¹¹In and ¹²⁵I.

One reason for the prominence of ¹³¹I in early targeted radionuclide therapy treatments was that ¹³¹I also emitted a gamma photon which allowed for the imaging of its biodistribution. The emission of both of these particles allows targeting radiopharmaceuticals that incorporate ¹³¹I to be used for therapy and diagnostics. Theranostics, the portmanteau of therapy and diagnostics, allows for patient-specific dosimetry to be determined and the preparation of a treatment plan for each individual patient²⁰. This approach could determine whether a particular targeted radiopharmaceutical will benefit a particular patient and estimate whether it will lead to toxic side effects. While this idea isn't new, the widespread adoption of theranostics has been limited in targeted radionuclide therapy. The primary purpose of this dissertation is to discuss novel ways of advancing targeting radiopharmaceuticals to further facilitate the use of theranostics. While the radionuclides used can be radiometals (as is the case for ⁹⁰Y) or radioactive gases (as is the case for ¹³¹I), this dissertation focuses on the use of radiometals as it allows for greater modularity (if an appropriate chelator is chosen, one radiometal can potentially be swapped for another while keeping everything else the same).

1.2 Targeting Radiopharmaceuticals

To facilitate the discussion of targeting radiopharmaceuticals throughout the rest of this dissertation, a discussion of a generalized model and all its individual components is warranted. Figure 1.1 illustrates the beforementioned model which is comprised of a therapeutic and/or diagnostic radiometal, a chelator, a targeting vector, and a linker that attaches the chelator to the targeting vector.

1.2.1 Radiometals

In a targeted radiopharmaceutical, the radiometal can either be used for therapy, diagnostics, or both. If a different radiometal is used for therapy and diagnostics, both the radiometals must either have the same or similar chemistry for the theranostic approach to provide accurate dosimetry. This is because of the potential demetallation (or disassociation) of the radiometal from the chelator *in vivo* (*vide infra*). If this occurs, it is ideal for the therapeutic and diagnostic radiometal to have the same or similar chemistry because then they will have the same natural biodistribution. The therapeutic radiometals (and their companion diagnostics) that are discussed in this dissertation can be categorized into one of three different categories: theranostic radiometal, theranostic pair, and theranostic matched pair¹³.

A theranostic radiometal allows for the same radiometal to be used for therapy and imaging. In addition to emitting an α particle, β - particle, or auger electron(s), the radiometal also emits a gamma photon or a positron with sufficient intensity that can be imaged by SPECT or positron emission tomography (PET), respectively. One common example is ¹⁷⁷Lu which emits a β - particle and 2 gamma photons (112.95 keV (6.23%) and 208.37 keV (10.41%))⁷. A more novel example that has received attention recently is ¹⁴⁹Tb which can either decay by α emission approximately 16.7% of the time or by positron emission followed by a cascade of gamma photons allowing for the ability to directly image this α emitter via PET or SPECT²¹.

A theranostic pair is when the therapeutic radiometal and the diagnostic radiometal are of the same element. Because the two radiometals' chemistry is identical, their *in vivo* behavior is identical so the diagnostic targeted radiopharmaceutical can be used to accurately trace the biodistribution of the therapeutic targeted radiopharmaceutical. Two theranostic pairs that will be discussed

in detail in this dissertation include ⁹⁰Y (β - emitter) / ⁸⁶Y (positron emitter) and ²¹²Pb (α emitter) / ²⁰³Pb (gamma emitter)^{22,23}. Some other theranostic pairs that have also received interest in the past few years are ⁴⁷Sc (β - emitter) / ⁴⁴Sc (positron emitter) and ¹⁴⁹Tb (alpha and positron emitter) / ¹⁵²Tb (positron emitter) / ¹⁵⁵Tb (auger electron and gamma emitter) / ¹⁶¹Tb (β - emitter)²⁴.

A theranostic matched pair is required when the therapeutic radiometal does not emit a gamma photon or positron with sufficient intensity. Because of this, a diagnostic radiometal with similar chemistry is required to allow for similar *in vivo* behavior. Due to limitations of contemporary clinical SPECT and PET scanners, theranostic matched pairs are required for ²²⁵Ac and ²²⁷Th, two alpha emitters that have displayed promising preclinical and clinical results, to perform accurate dosimetry and treatment planning. ⁶⁸Ga and ⁸⁹Zr (both positron emitters) have commonly been used as theranostic matched pairs for ²²⁵Ac and ²²⁷Th, respectively^{11,25}. As will be discussed throughout this dissertation, both ⁶⁸Ga and ⁸⁹Zr unfortunately do not have similar chemistry to both ²²⁵Ac and ²²⁷Th.

1.2.2 Chelators

Chelators are organic molecules responsible for binding the therapeutic or diagnostic radiometal with high in vivo stability in targeting radiopharmaceuticals. If the chelator releases the radiometal *in vivo*, the radiometal may redistribute to its natural biodistribution and unnecessarily dose healthy organs, potentially leading to radiotoxicity and second cancers (Fig. 1.2)^{26,27}. While using targeting vectors that rapidly internalize in diseased cells or administering the targeted radiopharmaceutical directly into the diseased tissue can mitigate this redistribution, for general applications it is ideal to use chelators that display high in vivo stability for the radiometal of interest. Moreover, it is beneficial for the chelator to display higher selectivity for the corresponding radiometal compared to endogenous metals (such as calcium, zinc, and copper) as this will prevent transmetallation which leads to the release of the radiometal. Throughout the experiments discussed in this dissertation, the following chelators were used: diethylenetriamine pentaacetic acid (DTPA), 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), 1,4,7,10-tetraaza-1,4,7,10tetra(2-carbamoylmethyl)cyclododecane (TCMC), and 3,4,3-Ll(1,2-hydroxypyridinone) (HOPO).

Figure 1.2: Diagram of the release of the radiometal from its chelator in targeting radiopharmaceuticals due to low *in vivo* stability of the metal-chelator complex.

DTPA (Fig. 1.3) and DOTA (Fig. 1.4) are both octadentate (capable of forming 8 coordinate bonds) chelators that have been used frequently with a variety of rare-earth (⁹⁰Y, ⁸⁶Y, ⁴⁴Sc, ⁴⁷Sc, and ¹⁷⁷Lu) and group 3 (⁶⁸Ga and ¹¹¹In) radiometals²⁸. In addition, DOTA has been the most common chelator used for ²²⁵Ac. DTPA is an acyclic (linear) chelator and allows for fast radiolabeling (5 to 15 minutes) at room temperatures. This fast radiolabeling is due to a low energetic barrier which unfortunately can cause DTPA complexes to have a low kinetic inertness, leading to the release of metals *in vivo*. DOTA, being a macrocycle, has a much higher energetic barrier towards dissociation which causes DOTA complexes to have a much higher *in vivo* stability than DTPA complexes. Unfortunately, this enhanced stability comes at a cost and requires elevated heating (50-95 °C) for longer periods of time (1 hour) to afford efficient radiolabeling, which is not always feasible when the radiometal has a short half-life or when the targeting vector is heat sensitive such as monoclonal antibodies.

Figure 1.3: The chemical structure of DTPA. The red oxygens and the blue nitrogens are the coordinating atoms that bind to the metal when the oxygens are deprotonated.

Figure 1.4: The chemical structure of DOTA. The red oxygens and the blue nitrogens are the coordinating atoms that bind to the metal when the oxygens are deprotonated.

In terms of chelators for ²¹²Pb/²⁰³Pb theranostics, early preclinical studies used DOTA, but this leads to the high uptake of radiometal in the femurs which is indicative of ²¹²Pb release¹³. The macrocycle TCMC (Fig. 1.5), which has a cyclen ring like DOTA but uses amides to coordinate to metal instead of carboxylates, leads to more stable Pb complexes and is currently the gold standard for Pb-based targeting radiopharmaceuticals.

Figure 1.5: The chemical structure of TCMC. The red oxygens and the blue nitrogens are the coordinating atoms that bind to the metal when the oxygens are deprotonated.

While both ²²⁵Ac and ²²⁷Th fare better than ²²³Ra in terms of compatible chelator availability, most chelators in medical use are optimized for transition and/or main group metals and not for rare earth elements or actinides²⁹. While DOTA and DTPA have had some success, complexes formed with these chelators have low kinetic stability and unfavorable labeling conditions, which is detrimental to the development of targeting radiopharmaceuticals incorporating these strategic radiometals and demonstrating the need for developing new chelators³⁰. In the past, the development of chelators for actinides has mainly been for the application of decorporation³¹. This development has mainly been focused on siderophore derivatives, which are a class of molecules that are typically produced by bacteria or fungi and used to traffic Fe^{III} to them. One of these chelators incorporates hydroxypyridinone moieties on a spermine base, 3,4,3-LI(1,2-HOPO) (Fig. 1.6), and has been shown to rapidly bind both trivalent and tetravalent actinides and rare earth metals with higher selectivity compared to divalent endogenous metals^{32,33}. Furthermore, 3,4,3-LI(1,2-HOPO) allows for rapid, room temperature radiolabeling, which can facilitate its use as a chelator for targeting radiopharmaceuticals.

Figure 1.6: The chemical structure of 3,4,3-LI(1,2-HOPO). The red oxygens are the coordinating atoms that bind to the metal when the oxygens are deprotonated.

1.2.3 Targeting Vectors

The purpose of the targeting vector is to ferry the radioactive payload to the diseased tissue. Ideally, the targeting vector only binds to one type of receptor or antigen that is located on this diseased tissue, however there has been some exceptions where targeting occurs through the use of the radiometal's natural biodistribution (such as ¹³¹I and ²²³Ra)^{1,3}.

When using α emitters with long decay chains (such as ²²⁵Ac, ²²⁷Th, and ²¹²Pb), the emission of an α particle can cause the radioactive daughter nuclei to recoil which will release it from the chelator. This recoil effect can cause the daughter nuclei to redistribute away from the diseased site which decreases the therapeutic to toxicity ratio. One potential way to mitigate this effect is to utilize targeting vectors that internalize in the target cell³⁴.

Throughout this dissertation, the monoclonal antibody, Trastuzumab, will be employed as the targeting vector. Trastuzumab specifically targets the Human epidermal growth factor receptor 2 antigen (HER2), which can be overly expressed on breast cancers, ovarian cancers, and stomach cancers³⁵. While Trastuzumab is primarily used as an FDA-approved immunotherapy drug, it has been used in targeting radiopharmaceuticals in previous preclinical and clinical experiments^{36–38}. Because of this, the biodistribution of Trastuzumab is well known, allowing it to act as a platform for testing new strategies for targeting radiopharmaceuticals.

One of the disadvantages of using monoclonal antibodies in full Immunoglobulin G (IgG) form as a targeting vector is that they can take a few days to lead to elevated uptake in the lesion, which is disadvantageous if the radiometal has a short half-life³⁹. The fragment antigen-binding (Fab) region of these antibodies can be isolated, which

allows for faster tumor uptake and can accommodate shorter-lived radiometals with the caveat that these fragments are eliminated from the body through the kidneys.

1.2.4 Linkers

The purpose of a linker is to attach the chelator to the targeting vector. This is typically done through the use of bifunctional chelators. These are chelators that have an organic molecule that is covalently attached to their structure that can be conjugated to the targeting vector and can also maintain their metal-binding functionality⁴⁰. In this dissertation, this is done through the formation of thiourea bonds with isothiocyanatobenzyl (p-SCN-Bn) (which is the linker on the chelator) and the primary amine of lysine residues on the antibody. Figure 1.7 and Figure 1.8 display the chemical structures of ¹³⁴Ce-p-SCN-Bn-DOTA-Trastuzumab (or ¹³⁴Ce-DOTA-Trastuzumab) and ²¹²Pb-p-SCN-Bn-TCMC-Trastuzumab (or ²¹²Pb-TCMC-Trastuzumab), respectively as examples.

Figure 1.7: The chemical structure of ¹³⁴Ce-p-SCN-Bn-DOTA-Trastuzumab. The Y-shaped structure is Trastuzumab.

Figure 1.8: The chemical structure of ²¹²Pb-p-SCN-Bn-TCMC-Trastuzumab. The Y-shaped structure is Trastuzumab.

One of the disadvantages of 3,4,3-LI(1,2-HOPO) (HOPO) is that bifunctionalizing it has been challenging. While there has been a previously reported successful attempt to attach p-SCN-Bn to HOPO, this is a rather challenging synthesis process and has low yield, revealing the need to come up with other ways to link HOPO to targeting vectors³⁶. One potential way that will be discussed in this dissertation is related to siderophore's biological function. Two rather common bacterial species, Escherichia coli and Salmonella typhimurium, emit the siderophore, enterobactin, which is a hexadentate chelator with a high affinity for iron⁴¹. Enterobactin will bind to this iron, forming a negatively charged complex, and bring the iron back to the bacteria. To prevent this iron acquisition, mammals have evolved to produce a protein called Siderocalin that will bind to these negatively charged complexes through non-covalent bonds and prevent the iron acquisition. Furthermore, if the iron is swapped with an actinide or rare earth metal, the strong electrostatic binding still occurs between Siderocalin and the negatively charged complex⁴². Interestingly, this mechanism also applies if enterobactin is swapped with HOPO and HOPO binds to a trivalent rare earth metal or actinide (since the HOPO complex is negatively charged). This non-covalent binding from the Siderocalin can potentially be used as a linker if the Siderocalin is attached to a targeting vector. Unfortunately this non-covalent binding doesn't occur with tetravalent metals and HOPO, which limits the utility of this mechanism.

1.3 Molecular Imaging

Through the theranostic approach, the same targeted radiopharmaceutical can be used for therapy as well as molecular imaging. Assaying the biodistribution of the targeted radiopharmaceutical can allow for the prediction of patient-specific efficacy, determination of patient-specific dosimetry, preparation of an appropriate treatment plan, and allow for the monitoring of treatment. This molecular imaging is typically done through SPECT and PET, which both allow for assaying the three-dimensional *in vivo* biodistribution of the targeted radiopharmaceutical.

Image formation with SPECT has traditionally relied on absorptive collimators (lead or tungsten septa), which has limited the sensitivity of this modality in comparison to PET. Luckily, recent advances in reconstruction algorithms and CT-based attenuation and scatter compensation techniques have made quantitative SPECT/CT possible, which allows for accurate dosimetry putting the modality on more equal footing with PET^{43–45}. Unfortunately, limited sensitivity coupled with the limited amount of activity of ²²⁵Ac and ²²⁷Th that can safely be administered and the relatively weak gamma photon emissions from ²²⁵Ac and ²²⁷Th leads to images of the beforementioned radiometals to have low signal-to-noise ratios demonstrating the need for theranostic matched pairs^{11,46}. One of the downsides of the use of theranostic matched pairs is that they are unable to trace the daughters of ²²⁵Ac or ²²⁷Th if they are not internalized in the target cell. Future SPECT scanners that incorporate CZT detectors, which enhance the energy resolution of the system, allowing for multi-radionuclide images, could allow for the imaging of daughters⁴⁷. This coupled with the development of gamma cameras that do not require the use of collimators would be groundbreaking for the use of targeting radiopharmaceuticals incorporating ²²⁵Ac and ²²⁷Th^{48,49}.

Image formation with PET has been through electronic collimation, which leverages the approximate collinearity of high energy photons from positron annihilation removing the need for absorptive collimators. This approach has led to PET having much higher sensitivity than SPECT. This sensitivity has been increased 40-fold with the introduction of the EXPLORER total-body PET system⁵⁰. This increased sensitivity allows for smaller amounts of activity required for imaging (reducing the radiation dose), shorter frame durations as small as 1 second which could allow for kinetic modeling (making dosimetry even more accurate), and allow for imaging extremely long timepoints such as imaging antibodies labeled with ⁸⁹Zr through 30 days after administration.

While PET offers increased sensitivity, certain positron emitters like ¹³⁴La and ⁶⁸Ga have high positron energies that can degrade the spatial resolution⁵¹. This is particularly troublesome for preclinical microPET systems (Appendix B). However, the development and implementation of faster and brighter scintillators (such as LSO(Ce), LYSO(Ce), and LaBr₃(Ce)) and silicon photomultiplier detectors have allowed for PET scanners to incorporate time-of-flight capabilities which can improve this spatial resolution^{52,53}. In addition, these silicon photomultiplier detectors allow for multi-modality PET/MRI which offers excellent soft tissue contrast overlaid on PET images (compared to PET/CT) and further improvement of spatial resolution^{54,55}.

1.4 Organization of this dissertation

This dissertation presents the results of 5 targeting radiopharmaceutical research efforts organized in separate chapters

Chapter 2 discusses the therapeutic radiometals and their companion diagnostics that are prevalent in this dissertation. These therapeutic radiometals include the ⁹⁰Y (and its theranostic pair ⁸⁶Y), ²¹²Pb (and its theranostic pair ²⁰³Pb), ²²⁵Ac, and ²²⁷Th with their potential theranostic matched pairs and their chemical similarities. Other aspects of these radiometals that are discussed include decay properties, natural biodistribution, potential chelators, preclinical and clinical applications, and production.

Chapter 3 describes experiments investigating the *in vivo* stability of novel complexes using microPET imaging. The two positron-emitting radionuclides discussed in this chapter include the novel ¹³⁴Ce/¹³⁴La *in vivo* generator system, which is a potential theranostic matched pair for both ²²⁵Ac and ²²⁷Th and ⁸⁶Y, which is a theranostic pair for ⁹⁰Y. These experiments elucidate which chelators have a high affinity for both of these radiometals and pave the way for targeting radiopharmaceuticals to incorporate these complexes.

Chapter 4 describes an experiment that demonstrates the ability of ¹³⁴Ce/¹³⁴La to allow for long tumor imaging through antibody-based targeting radiopharmaceuticals due to the long half-life of ¹³⁴Ce. This is tested by administering ¹³⁴Ce-DOTA-Trastuzumab in a SK-OV-3 tumor-bearing murine model and imaging the biodistribution over 9 days via a microPET scanner. This proof of concept also demonstrates that ¹³⁴Ce can be used as a theranostic matched pair for ²²⁵Ac in antibody-based targeting radiopharmaceuticals.

Chapter 5 describes an experiment that benchmarks a novel elution strategy of ²²⁴Ra/²¹²Pb generators. This elution strategy is benchmarked through labeling TCMCconjugated Trastuzumab and using radiochemical yield and radiochemical purity as metrics to compare this new strategy with the currently used strategies. This experiment shows that this new strategy can optimize the production of targeting radiopharmaceuticals incorporating ²¹²Pb by allowing for more activity to be labeled, which potentially allows for more patients to be treated.

Chapter 6 describes experiments that test the tumor control capabilities and biodistribution of siderocalin fusion proteins with ²²⁵Ac and ⁹⁰Y. Instead of utilizing covalent bonds, these fusion proteins allow for labeling targeting vectors with non-covalent interactions. These experiments allow for the incorporation of highly stable 3,4,3-LI(1,2-HOPO) complexes in targeting radiopharmaceuticals and potentially open the doorway for antibody-based cold-kits.

Appendix A discusses the spatial resolution of the microPET scanner used for this dissertation. Appendix B discusses the definitions of radiochemical yield and radiochemical purity when producing targeting radiopharmaceuticals.

CHAPTER 2: Radionuclides of theranostic interest

2.1 Introduction

This dissertation discusses the advancement of targeting radiopharmaceuticals incorporating the following therapeutic radionuclides: ²²⁵Ac, ²²⁷Th, ²¹²Pb, and ⁹⁰Y. While β - emitters such as ⁹⁰Y have seen the most clinical use, the application of α emitters (²²⁵Ac, ²²⁷Th, and ²¹²Pb) in targeting radiopharmaceuticals has been increasing due to their effectiveness against smaller lesions and their ability to break chemotherapy-resistant, photon irradiation-resistant, and castration-resistant lesions^{8,11,12}. In particular, ²²⁵Ac-PSMA-617 and Targeted Thorium-227 Conjugates have shown promising preclinical and clinical results^{11,25}.

While ⁹⁰Y and ²¹²Pb have theranostic pairs, ⁸⁶Y and ²⁰³Pb, that share the same chemical properties and can be imaged by PET or SPECT facilitating the theranostic approach, ²²⁵Ac and ²²⁷Th lack theranostic pairs or suitable decay characteristics for direct imaging with contemporary molecular imaging modalities. Because of this, theranostic matched pairs that have similar chemical properties and can be imaged need to be developed. Potential theranostic matched pairs for these promising radionuclides are discussed here. Other metrics include decay properties, natural biodistribution, potential chelators, preclinical and clinical applications, and production.

2.2 Actinium-225 and its theranostic matched pairs

2.2.1 Actinium-225

²²⁵Ac (T_{1/2} =9.9 days) decays via a series of 4 alpha emissions to essentially stable ²⁰⁹Bi (²⁰⁹Bi has a half-life of 2 x 10¹⁹ years) (Fig. 2.1). Like other large trivalent actinides (ionic radius: 112 pm (coordination number = 6)), ²²⁵Ac predominately accumulates in the liver in rodents, with much of the rest accumulating in the skeletal system^{56–58}. If ²²⁵Ac is not internalized, two of its longer-lived daughters, ²¹³Bi (T_{1/2}=45.6 minutes) and ²²¹Fr (T_{1/2}=4.8 minutes), have been shown to accumulate in the kidneys³⁴. There has been some preclinical evidence that this uptake can lead to long-term renal toxicity⁵⁹. This long-term renal toxicity can translate to the clinical setting with three patients developing chronic kidney disease after treatment with the targeting radiopharmaceutical ²²⁵Ac-PSMA-617 for metastatic, castration-resistant prostate cancer²⁶. While the incidence of ²²⁵Ac therapy-associated kidney disease is rather rare (in this study, 3 patients developed kidney disease out of 33 patients treated with ²²⁵Ac-PSMA-617), it is necessary to develop strategies for both the targeted internalization in diseased cells and the determination of accurate dosimetry for ²²⁵Ac-based targeting radiopharmaceuticals.

Figure 2.1: ²²⁵Ac decay chain with the imageable radiation emitted by ²²⁵Ac and its daughters included.

The large ionic radius of ²²⁵Ac and the lack of long-lived actinium isotopes has made the development of chelators challenging. An early study evaluated the biodistribution of a few ligands in healthy female BALB/c mice (a mouse model that allows for the implantation of human xenograft tumors since they are immunodeficient). These ligands include ethylenediaminetetraacetic acid (EDTA), N-[(R)-2-amino-3-(4-nitrophenyl)propyl]-trans- (S,S)-cyclohexane-1,2-diamine-N,N,N',N",N"-pentaacetic acid (CHX-A" DTPA), 1,4,7,10-tetraazacyclododecaneN,N',N",N""-pentaacetic acid (DOTA), 1,4,7,10,13- pentaazacyclopentadecane-N,N',N",N""-pentaacetic acid (PEPA), and 1,4,7,10,13,16- hexaazacyclohexadecane-N,N',N",N"",N""-hexaacetic acid (HEHA)⁵⁷. Both acyclic ligands (EDTA and CHX-A" DTPA) led to increased skeletal and liver uptake with the liver uptake increasing over time, indicating low *in vivo* stability of the complex. The macrocyclic ligands (DOTA, PEPA, and HEHA) fared better even

though DOTA and PEPA still led to accumulation over time in the liver. At the time of this study, this led to the belief that macrocyclics with larger atom ring sizes were necessary to saturate the coordination sphere of ²²⁵Ac in order to form stable complexes (HEHA has an 18 atom ring while PEPA and DOTA only have a 15 atom ring and a 12 atom ring, respectively). However upon testing serum stability with an ²²⁵Ac-labeled antibody drug conjugate (CC49) incorporating HEHA (2-(4isothiocyanatobenzyl)-1,4,7,10,13,16-hexaazacyclohexadecane-1,4,7,10,13, 16hexaacetic acid), approximately only two-thirds of the antibody drug conjugate was intact by 5 hours⁶⁰. More recently, the use of a 1-step labeling procedure involving ²²⁵Ac-labeled antibody drug conjugate (Lintuzumab) was investigated with both S-2-(4-Isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (p-SCN-Bn-DOTA) and 1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid mono-Nhydroxysuccinimide (NHS-DOTA), with the former differing from the latter with an extra carboxylate group for binding⁶¹. The p-SCN-Bn-DOTA conjugate in comparison to the NHS-DOTA conjugate, which only has 7 donor atoms compared to p-SCN-Bn-DOTA having 8 donor atoms, was shown to have both higher radiochemical yield (52.2%) versus 10.5%) and higher radiochemical purity (98.3% versus 69.1%), demonstrating the need for a higher coordination number for ²²⁵Ac. In addition, the biodistribution in healthy BALB/c mice indicated a lack of time-dependent liver accumulation, which is indicative of high in vivo stability. Recently, the 18 atom ring macrocyclic macropa was rapidly labeled at room temperature in an antibody format with ²²⁵Ac with a radiochemical yield of greater than 99% and exceptionally high stability⁶². While DOTAbased chelators are currently the most commonly used for ²²⁵Ac, they require elevated temperatures to ensure quantitative labeling. Rapid room-temperature binding from macropa could be game-changing.

While the majority of ²²⁵Ac-based radiopharmaceutical development has used DOTA and other macrocyclic chelators, there has been some evidence that acyclic ligands with picolinic acid moieties have a high affinity for ²²⁵Ac as well. As an example, at 1 micromolar Py4pa was able to achieve 97% radiochemical yield when labeling ²²⁵Ac at room temperature for 30 minutes⁶³. In comparison, at 100 micromolar and under the same conditions, DOTA was only able to achieve 75% radiochemical yield. Furthermore, a biodistribution study of ²²⁵Ac-Py4pa-Trastuzumab in SK-OV-3 tumorbearing NOD.Cg-Rag1tm1Mom Il2rgtm1Wjl/SzJ (NRG) mouse model (a mouse model that allows for the implantation of human xenograft tumors since they are immunodeficient) showed excellent tumor targeting over 10 days with similar liver uptake compared to ²²⁵Ac-DOTA-Trastuzumab. Other acyclic chelators with picolinic acid moieties, such as Bispa², CHXoctapa, and noneunpa, have also demonstrated high radiochemical yields (98% at 100 µM concentration, 94% at 1 µM, and 95% at 1 µM respectively) at room temperature labeling conditions^{64–66}.

While still on the trend of acyclic chelators, hydroxypyridinone-based chelators may show a high affinity for ²²⁵Ac as well. In particular, 3,4,3-LI(1,2-HOPO) has been shown to offer fast binding kinetics at room temperature and high *in vivo* for both trivalent and tetravalent *f*-elements^{67,68}. To test this hypothesis, Chapter 6 discusses an experiment that investigated the biodistribution of ²²⁵Ac-3,4,3-LI(1,2-HOPO) non-covalently bound to Siderocalin-Trastuzumab fusion proteins in SK-OV-3 tumor-bearing

NOD SCID mice (an immunocompromised mouse model that is used predominately in the Bioactinide Chemistry Group for tumor imaging and tumor control studies).

One of the challenges that plagues ²²⁵Ac is its lack of availability. In the US, the ²²⁵Ac that is used for clinical trials is supplied through the elution of ²²⁹Th generators at Oak Ridge National Laboratory, which can produce approximately 2.2 GBq per month⁶⁹. To provide perspective, one of the patients with castration-resistant, metastatic prostate cancer in the Kratochwil, *et al.* study received fractions of 6.5 MBq of ²²⁵Ac-PSMA-617¹¹. This would only allow 338 patients per month to receive this exact fraction dose, and this number is neglecting decay and loss of activity during transport and radiolabeling procedures. While this is rather low, the production method does produce ²²⁵Ac clean of radioactive impurities.

As an alternative to generator produced ²²⁵Ac, Oak Ridge National Laboratory, Brookhaven National Laboratory, and Los Alamos National Laboratory have teamed up to produce ²²⁵Ac through the ²³²Th(p, x)²²⁵Ac reaction⁷⁰. This endeavor has been projected to be able to produce approximately 3120 GBq per month (about 1418 times more activity than the US supply from ²²⁹Th generators⁶⁹. Unfortunately, this method coproduces the long-lived radioisotope ²²⁷Ac (T_{1/2}=21.8 years) at an ²²⁷Ac to ²²⁵Ac activity ratio of up to 0.2%. In terms of atoms, this leads to approximately 1.6 atoms of ²²⁷Ac to 1 atom of ²²⁵Ac. While it is currently unclear what the long term impact of this ²²⁷Ac impurity especially if it is released from its targeting vector *in vivo* and whether it is safe for clinical use, accelerator-produced ²²⁵Ac provides a challenge from the radiolabeling front, since a high excess of chelator to metal is often needed for high radiochemical yields even just for generator produced ²²⁵Ac⁷¹.

From an imaging standpoint, ²²⁵Ac does not directly emit high intensity photons that can be imaged by SPECT. In addition, the decay chain does not emit positrons, which forgoes the option of using PET as well. Attempts have been made to image gammas from the ²²¹Fr and ²¹³Bi daughters, which have 218 keV (11.44%) and 440.45 keV (25.94%) respectively^{11,72,73}. Unfortunately, this does not image ²²⁵Ac directly but instead images the distribution of the daughters, and they may have different distributions due to redistribution. Moreover, due to the potency of alpha emitters, the activity of ²²⁵Ac that can safely be injected is rather low in comparison to more traditional SPECT isotopes. As a result, the number of photons emitted by ²²⁵Ac is inadequate for contemporary clinical SPECT scanners. This leads to images with low signal-to-noise ratios and contrast which minimizes the amount of useful information that can be gathered. As an example, Figure 2.2 shows posttherapeutic planar scans of ⁶⁸Ga-PSMA-11, ¹⁷⁷Lu-PSMA-617, and ²²⁵Ac-PSMA-617¹¹. The ²²⁵Ac-PSMA-617 images (Fig. 2.2e and 2.2f) where the dose administered was 100 kBq/kg have a significantly lower signal-to-noise ratio than the ¹⁷⁷Lu-PSMA-617 images (Fig. 2.2b and 2.2c) where the dose administered was 114 MBg/kg. Because of this, the co-development of theranostic matched pairs of ²²⁵Ac is warranted. Table 2.1 summarizes ²²⁵Ac and its theranostic matched pairs including half-life, imageable radiation, chelators, and targeting vectors.

Figure 2.2: Postherapeutic planar scans of (a and g) ⁶⁸Ga-PSMA-11, (b and c) ¹⁷⁷Lu-PSMA-617, and (e and f) ²²⁵Ac-PSMA-617. This research was originally published by Kratochwil C, Bruchertseifer F, Giesel FL, et al. in the Journal of Nuclear Medicine¹¹.

Radionuclide	Half-	lonic	Imageable	Chelators	Targeting Vectors
	Life	Radius ^{56,a}	Radiation		
²²⁵ Ac	9.9 d	112 pm	²²¹ Fr γ: 218 keV (11.44%); ²¹³ Bi γ: 440.45 keV (25.94%)	EDTA ⁵⁷ , CHX-A" DTPA ⁵⁷ PEPA ⁵⁷ DOTA ^{38,57,61–} $_{63,74-78}$ HEHA ^{57,60} Macropa ⁶² Py4pa ⁶³ Bispa ²⁶⁴ CHXoctapa ⁶⁵ Noneunpa ⁶⁶ 3,4,3-LI(1,2- HOPO) ^d	CC49 ⁶⁰ Lintuzumab ⁶¹ Trastuzumab ^{38,62,63,d} single-chain variable fragment ⁷⁴ hTAB004 ⁷⁵ PP-F11N ⁷⁶ Cixutumumab ⁷⁷ PSMA617 ^{11,26} NM600 ⁷⁸
⁶⁸ Ga	67.7 m	62 pm	β+: E(β+)=829.5 keV (88.91%)	DOTA ^{73,79–82} HBED-CC ^{11,82}	DOTATATE ⁷³ Neurotensin ⁸¹ PSMA11 ¹¹
¹³² La	4.8 h	116 pm	β+: E(β+)=1.29 MeV (42.10%)	DOTA ⁷⁸ Macropa ⁸³	NM600 ⁷⁸ DUPA ⁸³
¹³³ La	3.9 h	116 pm	β+: E(β+)=460 keV (7.20%)	DOTA ⁸⁴ Macropa ⁸⁴	PSMA-I&T ⁸⁴
¹¹¹ ln	2.8 d	92 pm	γ: 171.28 keV (90.7%); γ: 245.35 keV (94.1%)	DOTA ^{38,74–77} Bispa ^{2 64} Noneunpa ⁶⁶	Trastuzumab ³⁸ Single-chain variable fragment ⁷⁴ hTAB004 ⁷⁵ PP-F11N ⁷⁶ Cixutumumab ⁷⁷
¹³⁴ Ce ^{III/134} La	3.2 d / 6.5 m	114 pm	¹³⁴ La β+: E(β+)=1.22 MeV (63.6%)	DTPA ^{85,b} DOTA ^b	Trastuzumab ^c

 Table 2.1: Summary of ²²⁵Ac and its theranostic matched pairs.

^aFor ²²⁵Ac and ⁶⁸Ga, the ionic radius is given for a coordination number of 6. For every other element, the ionic radius is given for a coordination number of 8

^bChapter 3

°Chapter 4

^dChapter 6

2.2.2 Gallium-68

 68 Ga (T_{1/2} = 67.7 minutes) is one of the more popular theranostic matched pair in the clinical setting for 225 Ac and is predominately used as an analogue for 225 Ac-

PSMA617 as ⁶⁸Ga-PSMA11^{11,26}. This is due in part to it being a PET isotope with a high branching ratio (88.9%) and its availability in a ⁶⁸Ge (T_{1/2}=270.9 days)/⁶⁸Ga generator system, foregoing the need for on-site production⁸⁶. The utility of ⁶⁸Ga being a surrogate for ²²⁵Ac ends there, however. Although gallium is a trivalent cation in physiological conditions, gallium has an ionic radius that is almost half the size of actinium's ionic radius (62 pm versus 112 pm at coordination number = 6) and behaves more like an iron surrogate than an actinium surrogate in vivo⁵⁶. In fact, gallium-citrate accumulates predominately in the kidneys, heart, blood, and lungs instead of in the liver and skeleton in rodents^{87,88}. This is due to transferrin, a plasma glycoprotein in vertebrates that is responsible for transporting iron, and its high affinity for gallium⁸⁹.

Gallium's small size limits its stability with DOTA due to Ga-DOTA complexes having 2 free carboxylate groups^{79,80}. In addition, the need for heating to facilitate labeling DOTA, which can take up to an hour, is another constraint due to the short halflife of ⁶⁸Ga. Despite this, DOTA has seen some use for gallium-actinium theranostics with DOTATE in the clinical setting and DOTA-Neurotensin analogs in the preclinical setting^{73,81}.

Another commonly used chelator for gallium-actinium theranostics is the hexadentate acyclic ligand bis(2- hydroxybenzyl)ethylenediaminediacetic acid (HBED); its derivative, HBED-CC, is most commonly used in ⁶⁸Ga-PSMA11¹¹. HBED offers both higher stability for gallium and allows for higher radiochemical yield (>80%) at room temperature⁸². While certainly advantageous compared to radiolabeling with DOTA, the high stability of ⁶⁸Ga-HBED does not "match" well to ²²⁵Ac-DOTA found in ²²⁵Ac-PSMA-617, which can demetallate *in vivo* due to the lower *in vivo* stability of ²²⁵Ac-DOTA⁵⁷. Because of this, pretreatment dosimetry using ⁶⁸Ga-PSMA-11 may not account for the impact of this demetallation and may be inaccurate.

One of the other downsides of utilizing ⁶⁸Ga as a theranostic matched pair for ²²⁵Ac is the difference in half-life (67.7 minutes versus 9.9 days). While the short half-life of ⁶⁸Ga is optimal for small, rapidly uptaking peptides due to the diminished radiation dose imparted on the patient, ⁶⁸Ga can only mirror the acute biodistribution of the radiopharmaceutical incorporating ²²⁵Ac. In addition, the short half-life of ⁶⁸Ga is incompatible when treatment planning for ²²⁵Ac labeled antibody drug conjugates due to antibodies having both a longer biological life time and uptaking much slower in diseased tissue compared to peptides. This long-term compatibility versus radiation dose should be taken into account when choosing a theranostic matched pair, especially due to recent reports of long-term chronic kidney disease in some patients after being treated with ²²⁵Ac-PSMA617 as mentioned previously²⁶.

2.2.3 Radiolanthanums: Lanthanum-132 and Lanthanum-135

¹³²La (T_{1/2}=4.8 hours) and ¹³³La (T_{1/2}=3.9 hours) are two relatively new PET radionuclides that can act as theranostic matched pairs for ²²⁵Ac. Lanthanum (ionic radius: 116 pm (coordination number = 8)) in particular is well matched to actinium because they are trivalent in physiological conditions and have similar ionic radii⁵⁶. ¹³²La was shown to mirror ²²⁵Ac's natural biodistribution by accumulating predominately in the liver with much of the rest in the bone⁹⁰. In addition, the DOTA-based small molecule alkylphosphocholine (NM600) was used to verify this surrogacy of ²²⁵Ac and ¹³²La in a murine mammary adenocarcinoma 4T1 model through 24 hours⁷⁸. Promising

radiolabeling and *in vivo* tumor targeting results were shown as well with ¹³³La-PSMA-I&T (a DOTA-based peptide) in LNCaP tumor-bearing NU/NU Nude mice (a mouse model that allows for the implantation of human xenograft tumors since they are immunodeficient)⁸⁴. While DOTA has been shown to form suitably stable complexes with the radiolanthanums, the 18 atom ring macrocycle macropa has been shown to be labeled with ¹³²La rapidly at room temperature with a high yield in comparison to DOTA⁸³. This compatibility with radiolanthanums and ²²⁵Ac may make macropa a cornerstone in actinium-lanthanum theranostics. Unfortunately, like ⁶⁸Ga, both radiolanthanum's short half-lives do not allow for the imaging of long timepoints, which makes its potential long-term accumulation in the liver more difficult to image. This relegates radiolanthums to only small molecule applications.

While both ¹³²La and ¹³³La can be produced using natural barium targets, only ¹³²La can be produced using on-site low energy cyclotrons (11.9 MeV proton beam)^{90,91}. ¹³⁵La requires a higher proton energy of 22 MeV which is out of reach of most medical cyclotrons which may limit availability. Despite this, ¹³³La grants a better spatial resolution compared to ¹³²La since it has a lower average positron energy (0.46 MeV versus 1.29 MeV) and is more dosimetrically favorable since it emits fewer gammas. Unfortunately, the longer-lived, Auger electron emitting 135 La (T_{1/2}=19.5 hours) is also coproduced with both isotopes. While ¹³⁵La minimally impacts the image formation (it has 1 gamma at 480.51 keV with an intensity of 1.52% that can lead to a small number of false coincidences), it does impart unnecessary dose. For ¹³³La, the amount of ¹³³La produced is much smaller than for ¹³²La. The ratio of ¹³⁵La to ¹³³La (at 22 MeV) shortly after the end of bombardment is only 0.72 while the ratio of ¹³⁵La to ¹³²La (at 11.9 MeV) is 18⁹¹. Using enriched ¹³²Ba targets and increasing the proton energy could decrease the ¹³⁵La to ¹³²La ratio; however, there are currently no published results that support this⁹⁰. Despite this, the use of the Auger electrons from ¹³⁵ La could potentially be used for added therapeutic effect in actinium-lanthanum theranostics or could be leveraged for radiopharmaceuticals only incorporating ¹³²La/¹³³La and ¹³⁵La as matched pairs.

2.2.4 Indium-111

¹¹¹In (T_{1/2}=2.8 days) is a SPECT radionuclide (it has two intense gammas at 171.28 keV and 245.35 keV with intensities of 90.7% and 94.1% respectively) that has been commonly been used as a theranostic matched pair for ²²⁵Ac due to its widespread availability and prevalence in clinical settings⁹². Moreover, its long half-life allows for compatibility with larger macromolecules such as antibodies and opens the gateway for acting as a surrogate for ²²⁵Ac for longer timepoints. Even though the trivalent ¹¹¹In matches ²²⁵Ac better than ⁶⁸Ga matches ²²⁵Ac due to its larger ionic radius (ionic radius: 92 pm (coordination number = 8)), ¹¹¹In has more in common with ⁶⁸Ga *in vivo* since transferrin has a high affinity for both ¹¹¹In and ⁶⁸Ga^{56,89,93}. This difference in natural biodistribution when compared to ²²⁵Ac may limit the ability of ¹¹¹In to see time-dependent liver accumulation, which is common with ²²⁵Ac-based radiopharmaceuticals.

Unlike ⁶⁸Ga, ¹¹¹In forms stable, non-deformed complexes with DOTA since the larger indium cation allows for octadentate coordination⁷⁹. Because of DOTA's compatibility with both actinium and indium, virtually all of the investigations utilizing indium-actinium theranostics use DOTA^{38,74–77}. As mentioned previously, ²²⁵Ac-DOTA complexes are not stable in the long term and the requirement for heating is detrimental
for labeling larger macromolecules like antibodies. Luckily, the 18 atom ring chelator macropa may also display a high affinity for ¹¹¹In since actinium and indium have similar ionic radii⁶². In addition, the acyclic ligands with picolinic acid moieties bispa² and noneunpa have shown high radiochemical yields (>99% at 100 nM and 91% at 1 μ M, respectively) when labeling with ¹¹¹In at room temperature which are comparable to the yields achieved with ²²⁵Ac^{64,66}.

Cheal, et al. directly compared the biodistribution of single chain variable fragments incorporating ²²⁵Ac and ¹¹¹In in colorectal SW1222 tumor-bearing athymic nude mice (a mouse model that allows for the implantation of human xenograft tumors since they are immunodeficient)⁷⁴. Both of the radionuclides had a similar tumor uptake and follow a similar biodistribution with the exception of the ²²⁵Ac accumulating more in the bone and the liver in comparison to indium at 24 hours. Borchardt, et al. also directly compared the biodistribution of ²²⁵Ac-DOTA-Trastuzumab and ¹¹¹In-DOTA-Trastuzumab in ovarian SKOV3-NMP2 tumor-bearing nude mice³⁸. Interestingly, no difference was found for ²²⁵Ac and ¹¹¹In in bone and liver uptake in this study. Because of the longer half-life of ¹¹¹In, actinium-indium theranostics can be applied both to small rapidly uptaking targeting vectors such as single chain variable fragments and larger, slower uptaking targeting vectors such as antibodies.

2.2.5 Cerium(III)-134/Lanthanum-134

¹³⁴Ce (T_{1/2}=3.2 days)/¹³⁴La (T_{1/2}=6.5 minutes) is an *in vivo* generator system in which ¹³⁴Ce is incorporated in the radiopharmaceutical and then decays *in vivo* to ¹³⁴La, which can be imaged with PET since it decays via positron emission⁹⁴. The long half-life of the parent allows for the imaging of both fast and slow uptaking targeting vectors unlike the radiolanthanums. However, the high average positron energy of ¹³⁴La (1.22 MeV) leads to a worse spatial resolution which can be problematic for preclinical imaging or accurate quantification of small structures.

Another unique feature of this *in vivo* generator system is cerium's easily accessible 4+ oxidation state. The Ce(III)/Ce(IV) redox couple can be leveraged for both purification purposes after production and to allow this system to serve as a theranostic pair for both ²²⁵Ac and ²²⁷Th⁸⁵. The rest of this section will discuss the production of ¹³⁴Ce and ¹³⁴Ce^{III}/¹³⁴La as a theranostic matched pair for ²²⁵Ac. Section 2.3.2 will discuss ¹³⁴Ce^{IV}/¹³⁴La as a theranostic matched pair for ²²⁷Th.

The state-of-the-art production/purification method for producing ¹³⁴Ce occurs at the Isotope Production Facility at Los Alamos National Laboratory where a natural Lanthanum target is bombarded by a 100 MeV proton beam (99 μ A) for 30 hours through a ¹³⁹La(p,6n)¹³⁴Ce reaction⁸⁵. The irradiated target is allowed to cool for 6 days, it is then dissolved using 8 M HNO₃. After dissolution, separation of ¹³⁴Ce from the rest of the lanthanum is achieved through the oxidation of cerium from +3 to +4 using NaBrO₃, and Ce^{IV} was separated from La^{III} using anion-exchange chromatography. At 7.8 days after irradiation, the cerium radioisotopes, activity, and half-life were reported as follows: ¹³⁴Ce (18.3 GBq), ^{137m}Ce (1.6 GBq; T_{1/2}=34.4 hours), ¹³⁷Ce (activity dependent on ^{137m}Ce; T_{1/2}=9.0 hours), ¹³⁵Ce (148.0 MBq; T_{1/2}=17.7 hours) and ¹³⁹Ce (207.2 MBqi; T_{1/2}=137.6 days). The high activity of the short-lived impurities necessitates that the ¹³⁴Ce reach Lawrence Berkeley National Laboratory, the only

impurity in non-negligible amounts was ¹³⁹Ce which emits an intense gamma (165.9 keV at an intensity of 80%). This impurity is not ideal from a radiation dose perspective, but it does offer the capability for multimodality PET/SPECT imaging. While the SPECT images which are generated from the ¹³⁹Ce gamma display the biodistribution of the radiopharmaceutical containing cerium, the PET images which are generated from the ¹³⁴La's annihilation photons display the distribution of the ¹³⁴La radionuclides. This can elucidate whether redistribution of ¹³⁴La and internalization of radiopharmaceuticals are occurring.

Cerium's 3+ ionic radius at 114 pm (at coordination number = 8) allows ¹³⁴Ce^{III} to act as a theranostic matched pair for ²²⁵Ac (Fig. 2.3)⁵⁶. Based on an *in vivo* biodistribution study of ¹³⁴Ce-citrate (citrate complexes dissociate in vivo allowing for the determination of the biodistribution of free ¹³⁴Ce), free ¹³⁴Ce behaves more like free ²²⁵Ac *in vivo* since it uptakes primarily in the liver and the skeletal system (Chapter 3). Using L₃-edge x-ray absorption spectroscopy, it was confirmed that Ce-DTPA is in a 3+ oxidation state⁸⁵. The acute biodistribution and *in vivo* stability were investigated in Swiss Webster mice (an immunocompetent mouse model where the biodistribution of a variety of metal-chelator complexes has been extensively assayed by the Bioactinide Chemistry Group) which confirmed ¹³⁴Ce^{III}-DTPA surrogacy to ²²⁵Ac-DTPA (Chapter 3)⁵⁷. A similar study also demonstrated ¹³⁴Ce-DOTA surrogacy to ²²⁵Ac-DOTA (Chapter 3). A proof of concept study further showed DOTA's compatibility for ¹³⁴Ce through an *in* vivo PET imaging study of ¹³⁴Ce-DOTA-Trastuzumab in SK-OV-3 tumor-bearing NOD SCID mice demonstrating elevated tumor uptake over 9 days and limited skeletal and liver uptake (Chapter 4). Due to the similar sizes of ¹³⁴Ce^{III} and ²²⁵Ac, it is also anticipated that other novel chelators such as macropa, Py4pa, Bispa², CHXoctapa, and noneunpa will also show an exceptional affinity for ¹³⁴Ce^{III} as well^{62–66}.

^{*}The only known ionic radius for ²²⁵Ac is at coordination number 6⁵⁶. For the chelators discussed in this dissertation, its ionic radius and coordination number are most likely larger.

2.3 Thorium-227 and its theranostic matched pairs

2.3.1 Thorium-227

 227 Th (T_{1/2}=18.7 days) decays via a series of 5 alpha emissions to stable 207 Pb (Fig. 2.4). Like other large tetravalent actinides (ionic radius: 105 pm (coordination number = 8)), the vast majority of 227 Th accumulates in the bone with limited uptake in the liver^{56,58}. Its rather long-lived daughter, 223 Ra (T_{1/2}=11.4 days), can redistribute to the bone and the small intestine^{95–97}. Long term toxicity has not been reported, and the clinical experience with 223 RaCl₂ has shown that 223 Ra is well tolerated³.

Figure 2.4: ²²⁷Th decay chain with the imageable radiation emitted by ²²⁷Th and its daughters included. The photons included have the highest intensity for the given isotope.

Both DTPA and DOTA complexes with ²²⁷Th have been studied to some extent. While ²²⁷Th-DTPA complexes may be effective for labeling rapidly uptaking targeting vectors such as peptides and antibody fragments, ²²⁷Th-DTPA will decomplex in the long term due to competition with endogenous divalent cations (similarly to ²²⁵Ac-CHX-A" DTPA)⁹⁸. p-SCN-Bn-DOTA was utilized to label ²²⁷Th to both trastuzumab and rituximab in a 2-step labeling procedure (labeling the ligand first then conjugating)⁹⁹. The results were lackluster, however, and only led to a radiochemical yield of 6%-17%. While the 1-step labeling procedure improves the yield for DOTA conjugates (70-85%), interest has recently shifted to acyclic, oxygen-rich hydroxypyridinone ligands^{68,100}. More specifically, the octadentate bifunctional p-SCN-Bn-(Me-3,2-HOPO) has been shown to have a 96% radiochemical yield with much faster binding kinetics than DOTA-based chelators (30 minutes at room temperature versus 40 minutes to 2 hours at elevated temperatures)¹⁰¹. This development has led to *in vitro* and preclinical studies on a variety of antibodies incorporating p-SCN-BN-(Me-3,2-HOPO) and ²²⁷Th (aptly termed Targeted Thorium Conjugates)²⁵.

An advantage of ²²⁷Th compared to ²²⁵Ac is that it can be produced in clinically relevant amounts¹⁰². Through the thermal neutron irradiation of ²²⁶Ra (T_{1/2} =1600 years) in a reactor, ²²⁷Ra (T_{1/2} =42.2 minutes) is produced which β - decays into ²²⁷Ac (T_{1/2} =21.8 years). This long-lived isotope (which subsequently β - decays into ²²⁷Th) provides the basis for a generator that can produce both ²²⁷Th and ²²³Ra for FDA approved ²²³RaCl₂ through anion exchange chromatography (²²⁷Th β - decays into ²²³Ra). This availability of ²²⁷Th may help streamline the FDA approval process for Targeted Thorium Conjugates in the future.

Unlike ²²⁵Ac, ²²⁷Th does directly emit imageable gammas, which allows for assaying the distribution of the radiopharmaceutical incorporating ²²⁷Th. Moreover, ²²³Ra and a few of the shorter-lived daughters also emit some imageable photons. Utilizing different energy windows in a SPECT scanner allows for simultaneous imaging of both the candidate molecule and the redistribution of ²²⁷Th's daughters^{46,103}. While this has great potential for applying the theranostic approach for ²²⁷Th radiopharmaceuticals, current SPECT technology incorporating collimators does not offer enough sensitivity for low activity imaging, leading to low signal-to-noise images. In the future, collimatorless gamma cameras would be groundbreaking for this field^{48,49}. However, in the meantime, the codevelopment of theranostic matched pairs of ²²⁷Th and its theranostic matched pairs including half-life, imageable radiation, chelators, and targeting vectors.

Radionuclide	Half-	Ionic	Imageable	Chelators	Targeting
	Life	Radius ⁵⁶	Radiation ^a		Vectors
²²⁷ Th	18.7 d	105 pm	 ²²⁷Th: 88 keV (2.2%), 236 keV (12.9%), 256 keV (7.0%) ²²³Ra: 81 keV (14.7%), 84 keV (24.3%), 95 keV^b (10.8%)^b, 144 keV (3.5%), 154 keV (6.0%), 270 keV (13.3%), 324 keV (6.0%), 338 keV (2.6%) ²¹⁹Rn: 271 keV (10.8%), 402 keV (6.6%) ²¹¹Pb: 405 keV (3.8%), 832 keV (3.5%) ²¹¹Bi: 351 keV (13.2%) 	DTPA ⁹⁸ DOTA ^{99,100,102} Me-3,2- HOPO ^{25,68,101,104}	Trastuzumab ^{99,102} Rituximab ⁹⁹ CD22 ²⁵ CD33 ²⁵ MSLN ²⁵ PSMA ²⁵ CD70 ²⁵ FGFR2 ²⁵
¹³⁴ Ce ^{IV} / ¹³⁴ La	3.2 d / 6.5 m	97 pm	¹³⁴ La β+: E(β+)=1.22 MeV (63.6%)	3,4,3-LI(1,2- HOPO) ^{85,c}	N/A
⁸⁹ Zr	3.3 d	84 pm	β+: E(β+)=396 keV (22.74%)	DFO ¹⁰⁵ Me-3,2- HOPO ^{25,104} 3,4,3-LI(1,2- HOPO) ^{36,106}	MSLN ¹⁰⁴ PSMA ²⁵ Trastuzumab ³⁶

Table 2.2: Summary of ²²⁷Th and its theranostic matched pairs.

^aImageable radiation from ²²⁷Th is taken from Larsson, *et al*⁴⁶. The gamma energies are given in units of keV, and their respective intensities are given in the corresponding parentheses as a percentage. ^bWeighted mean energy and summed intensity from photons between 94 keV and 98 keV.

^cChapter 3

2.3.2 Cerium(IV)-134/Lanthanum-134

As discussed previously, due to the Ce^{III}/Ce^{IV} redox couple, the oxidation state of cerium can be stabilized to 4+ with appropriate chelator selection. When ¹³⁴Ce is tuned to 4+, it has an ionic radius of 97 pm (coordination number = 8) allowing it to act as a theranostic matched pair for ²²⁷Th (Fig. 2.3)⁵⁶. To test this hypothesis, an L₃-edge x-ray absorption spectroscopy measurement was done on Ce-3,4,3-LI(1,2-HOPO), confirming that the chelator stabilizes the oxidation state to 4+⁸⁵. Furthermore, the acute biodistribution and *in vivo* stability were investigated in Swiss Webster mice which confirmed ¹³⁴Ce^{IV}-3,4,3-LI(1,2-HOPO) surrogacy to ²²⁷Th HOPO-based complexes (Chapter 3). It is currently unclear what the oxidation state of other HOPO-based (such as Me-3,2-HOPO) cerium complexes is, and future work investigating the chemical properties of these complexes is warranted.

2.3.3 Zirconium-89

⁸⁹Zr (T_{1/2}=3.3 days) has several advantages as a PET radioisotope. It can be produced through the ⁸⁹Y(p,n)⁸⁹Zr with a proton energy of 14 MeV, allowing for local production using a low energy cyclotron¹⁰⁵. In addition, ⁸⁹Y has 100% natural abundance which minimizes the cost for targetry. Moreover because of its long half-life and great spatial resolution (its average positron energy is 396 keV), ⁸⁹Zr has seen widespread clinical and preclinical use in the realm of ImmunoPET, where monoclonal antibodies and other immune agents are labeled with PET isotopes and subsequently administered and imaged for treatment planning. On top of this, ⁸⁹Zr shares similar chemical properties and *in vivo* behavior to ²²⁷Th. For one, ⁸⁹Zr is a tetravalent cation in physiological conditions and has a similar ionic radius to ²²⁷Th (84 pm (coordination number = 8))⁵⁶. In addition, ⁸⁹Zr-chloride has been shown to accumulate predominantly in the skeleton of healthy, female NIH Swiss mice (an immunocompetent mouse model that is used commonly for general-purpose research), which is similar to ²²⁷Th biodistribution¹⁰⁷.

Most radiopharmaceuticals incorporating ⁸⁹Zr have utilized the hexadentate siderophore desferrioxamine (DFO)¹⁰⁵. Unfortunately, due to ⁸⁹Zr preference for octadentate coordination, ⁸⁹Zr-DFO complexes have the propensity of demetallating in vivo and ⁸⁹Zr uptakes in the skeleton. This can lead to an unnecessary radiation dose to the radiosensitive bone marrow. Fortunately, like ²²⁷Th, HOPO-based ligands have shown great affinity for ⁸⁹Zr and form complexes with incredibly high in vivo stability, leading to limited uptake of ⁸⁹Zr in the skeleton that is similar to ²²⁷Th^{68,101,106}. In particular, a PSMA-targeting monoclonal antibody and a MSLN-targeting monoclonal antibody using p-SCN-BN-(Me-3,2-HOPO) were leveraged to display the surrogacy of ²²⁷Th and ⁸⁹Zr^{25,104}. It is anticipated that p-SCN-BN-3,4,3-LI(1,2-HOPO) and other bifunctional variants of 3,4,3-LI(1,2-HOPO) will show great utility with thorium-zirconium theranostics³⁶.

2.4 Yttrium-90 and yttrium-86

⁹⁰Y (T_{1/2}=2.7 days) and ⁸⁶Y (T_{1/2}=14.7 hours) are a theranostic pair where ⁹⁰Y can be used for β- therapy (E(β-)=932 keV (100%)) and ⁸⁶Y can be used for PET imaging (E(β+)=660 keV (31.9%)). This is certainly advantageous compared to theranostic match pairs since both ⁹⁰Y and ⁸⁶Y have identical chemical properties. Yttrium, although

technically a trivalent transition metal due to its positioning in the periodic table, is considered a rare earth element due to it having a rather large ionic radius and preference for higher coordination numbers (ionic radius: 102 pm (coordination number = 8))⁵⁶. Because of this chemical similarity and more widespread availability, it can often be used as a testbed for novel chelating strategies designed for *f*-elements. However unlike other trivalent *f*-elements (such as lanthanum, cerium, and actinium), free yttrium accumulates primarily in the kidneys and bones instead of the liver and bones¹⁰⁸.

⁹⁰Y is widely available from ⁹⁰Sr (T_{1/2}=28.9 years) generators⁷⁹. ⁹⁰Sr is a ²³⁵U fission product available in concentrations 74–740 GBq/L from high-level liquid waste. Because of the long-lived nature of ⁹⁰Sr and the use of ²³⁵U nuclear reactors, ⁹⁰Y is an attractive therapeutic radiometal for targeting radiopharmaceuticals. In fact, an antibody drug conjugate, ⁹⁰Y-tiuxetan-lbritumomab (tiuxetan is a bifunctional version of DTPA with a methyl group and an isothiocyanatobenzyl linker), was approved for radioimmunotherapy of non-Hodgkin lymphomas by the United States FDA in 2002¹⁰⁹. Because ⁹⁰Y is a pure β- (it emits no gamma photons), ¹¹¹In-tiuxeta-lbritumomab was originally used to determine if any altered biodistribution occurred in a specific patient that may cause unintended organ damage⁶. In 2011, the US FDA declared this procedure no longer necessary since it was determined that the ¹¹¹In scan had poor discriminating power in determining altered biodistribution¹¹⁰.

One reason that ¹¹¹In was used previously as a surrogate of ⁹⁰Y instead of ⁸⁶Y is the more limited availability of ⁸⁶Y. Currently, the most attractive method is through the ⁸⁶Sr(p,n)⁸⁶Y reaction using 14 MeV protons from a low energy cyclotron onto a ⁸⁶SrCO₃ target^{22,79}. The challenging aspect of this production route is the need for a highly enriched ⁸⁶Sr target (⁸⁶Sr has only a 9.86% natural abundance) in order to minimize the coproduction of the impurity ^{87m}Y (T_{1/2}=13.4 hours) which decays into the long-lived ⁸⁷Y (T_{1/2}=3.3 days). Target enrichment of 95.6%-97% ⁸⁶Y is required to minimize the ^{87m}Y impurity to less than 3%²².

The majority of yttrium-based targeting radiopharmaceuticals use either DTPA or DOTA-based chelators. Both of these chelators have shown the capability of labeling yttrium at low concentrations and demonstrate high kinetic inertness against endogenous metals (iron, copper, zinc, and calcium) and serum proetins^{111,112}. Because of this, these chelators have been used in a few preclinical experiments demonstrating ⁸⁶Y/⁹⁰Y theranostics in a variety of diseased models^{113–117}. However, a recent study showed that in a murine model both ⁸⁶Y-DTPA and ⁸⁶Y-DOTA releases retained elevated levels of ⁸⁶Y in the kidneys 48 hours after administration²⁷. This suggests the need for the development of chelators with a higher affinity for vttrium. One potential alternative is acyclic chelators with picolinic acid moieties such as octapa^{118,119}. While conjugated to Trastuzumab, octapa allowed for rapid (15 minutes), room temperature labeling with ⁹⁰Y granting a radiochemical yield of >95%. In addition, a 96 hour serum stability showed that ⁹⁰Y-octapa-Trastuzumab retained more ⁹⁰Y than ⁹⁰Y-CHX-A"-Trastuzumab (94.8% versus 87.1%). Another alternative is hydroxypyridinone-based chelators such as 3,4,3-LI(1,2-HOPO). Because of 3,4,3-LI(1,2-HOPO) affinity for trivalent rare earth elements and its capability for rapid, room temperature radiolabeling, an in vivo biodistribution was performed to demonstrate the high in vivo stability of ⁸⁶Y-3,4,3-LI(1,2-HOPO) complexes in Swiss Webster mice¹²⁰. This work is discussed in detail in Chapter 3. Furthermore, the biodistribution and tumor control efficacy of ⁹⁰Y-

3,4,3-LI(1,2-HOPO) complexes non-covalently bound to Siderocalin-Trastuzumab fusion proteins was investigated in SK-OV-3 tumor-bearing NOD SCID mice. This study is discussed in Chapter 6. Table 2.3 summarizes ⁹⁰Y and ⁸⁶Y as theranostic pairs including half-life, imageable radiation, chelators, and targeting vectors.

While the ⁸⁶Y positron energy does not degrade the spatial resolution of PET images as bad as some of the other positron emitters discussed in this Chapter, ⁸⁶Y emits a myriad of gammas that range from 187.87 keV to 2610.11 keV. While some of these gammas are out of the energy window range of PET scanners (typically 350 keV to 650 keV), the ones that are in the range or the higher energy ones that Compton scatter inside the patient into the range can lead to false coincidences (recorded events that are not actually attributed to a positron annihilation)²². These false coincidences can lead to a low frequency background which can overestimate organ uptake. While these false coincidences can be minimized in 2-D mode PET through projection tail fitting, global tail fitting, or longitudinal collimators, there has been no correction mechanism validated for 3-D mode PET^{22,121}. This overestimation problem is more apparent in clinical PET however where Compton scattering in a human is more common compared to a small rodent.

Theranostic Pair	Half- Life	lonic Radius ⁵ 6	Imageable Radiation	Chelators	Targeting Vectors
					Ibritumomab ^{6,109,1} 10
⁹⁰ Y / ⁸⁶ Y	18.7 d / 14.7 h	102 pm	⁸⁶ Υ β+: E(β+)=660 keV (31.9%)	DTPA ^{6,27,109,110,112} -115,117,119 DOTA ^{27,111,112,116} Octapa ^{118,119} 3,4,3-LI(1,2- HOPO) ^{120,a}	DOTATOC ¹¹¹ DOTATATE ¹¹¹ Trastuzumab ^{113,11} 9,c TRC105 ^{114,115} ALT836 ¹¹⁷ Ultrasmall Mesoporous Silica
²¹² Pb / ²⁰³ Pb	2.2 d / 10.6 m	129 pm	²⁰³ Pb: 279 keV (81.0%) ²¹² Pb: 239 keV (43.6%), 300 keV (3.3%)	DOTA ^{122–127} TCMC ^{122,123,125,128} –130,b	Trastuzumab ^{128,b} PSMA ^{122,129,130} CC49 ¹²³ PEG4-VMT- MCR1 ¹²⁴ Biotin ¹²⁶ GGNIe- CycMSH _{hex} ¹²⁷
^a Chapter 3 ^b Chapter 5 ^c Chapter 6					

Table 2.3: Summary of the theranostic pairs ⁹⁰Y/⁸⁶Y and ²¹²Pb/²⁰³Pb.

2.5 Lead-212 and lead-203

The final theranostic pair that will be discussed in this Chapter are ²¹²Pb (T_{1/2} = 10.6 hours) and ²⁰³Pb (T_{1/2}=2.2 days). ²¹²Pb own low energy β - decay (E(β -)=101.3 keV) is not why this pair is attractive; ²¹²Pb's short-lived daughter, ²¹²Bi (T_{1/2}=1.01 hours) decays either by alpha emission (with a 35.9% branching ratio) or it β - decays into ²¹²Po (T_{1/2}=300 ns) which decays instantaneously via alpha emission (Fig. 2.5). This allows ²¹²Pb to act as an *in vivo* generator system (like ¹³⁴Ce/¹³⁴La) where ²¹²Pb is labeled to a targeting vector, administered to the patient, and then decays into ²¹²Bi *in vivo* which emits the potent alpha particle¹²⁸. In addition, lead, being a divalent group 4 metal (ionic radius: 129 pm (coordination number = 8)), behaves differently *in vivo* compared to rare

earth elements and actinides discussed in this chapter⁵⁶. Free lead has been shown to uptake in the liver, kidneys, bone, and the brain^{23,131}.

Figure 2.5: ²¹²Pb decay chain with the imageable radiation emitted by ²¹²Pb.The photon included has the highest intensity emitted by ²¹²Pb.

Similarly to ²²⁷Th, ²¹²Pb emits gamma photons that could potentially allow for direct SPECT imaging of ²¹²Pb-labeled targeting radiopharmaceuticals¹³². Unfortunately, like ²²⁵Ac and ²²⁷Th, the activity of administered ²¹²Pb is low compared to typical radionuclides and this can lead to images with low signal-to-noise ratios. Unlike ²²⁵Ac and ²²⁷Th, the electron capture isotope ²⁰³Pb, which can be imaged through SPECT due to the emission of a 279.2 keV (81%) gamma, leads to high quality images for preclinical and clinical lead theranostic studies^{23,122,127,129,130}.

In the US, ²¹²Pb is generally available through the elution ²²⁴Ra/²¹²Pb generators¹⁴. ²²⁴Ra (T_{1/2}=3.6 days) is generally separated from its ²²⁸Th parent (T_{1/2}=1.9 years) which decays and is separated from ²³²U (T_{1/2}=68.9 years) stockpiles¹²⁵. From there, ²²⁴Ra is loaded onto a cation exchange column which is either eluted with hydrochloric or hydroiodic acid yielding ²¹²Pb with limited impurities (breakthrough of ²²⁴Ra is less than 1 ppm)^{128,133}. Unfortunately, this method leads to large volumes of ²¹²Pb in ab unfavorable electrolytic solution which is unideal for radiolabeling. Because of this, the ²¹²Pb solution has to be evaporated down to a residue and then redissolved into a more appropriate electrolytic solution. This is problematic because these steps can add a few more hours to an already time intensive procedure (which leads to a smaller activity of ²¹²Pb from decay and process losses). In Chapter 5, a series of radiolabeling experiments with the goal of benchmarking the elution of these generators with 1.0 M sodium acetate is discussed. This novel elution strategy allows the direct radiolabeling of targeting vectors without the need for evaporation and redissolution.

 203 Pb can be produced using low energy cyclotrons through the 203 Tl(p,n) 203 Pb reaction using protons on a natural thallium target 23 . The target is then dissolved and pushed through either an anion exchange column or a Pb-selective column 124 .

Afterwards, either nitric acid or hydrochloric acid is pushed through to remove the ²⁰³Pb from the column. This process leads to a very pure solution of ²⁰³Pb where no radio-impurities were detected through gamma spectroscopy²³.

Early studies evaluated DOTA as a potential chelator of lead isotopes. In a SW122 tumor-bearing murine model, the biodistribution ²¹²Pb-DOTA-biotin and ²⁰³Pb-DOTA-biotin were compared¹²⁶. ²⁰³Pb and ²¹²Pb had similar biodistributions in all organs besides the kidney, spleen, and femur. The kidneys in particular had an excess amount of ²¹²Bi which primarily may be from the recoil effect where the alpha emission from ²¹²Pb causes ²¹²Bi to recoil and release from its chelator, resulting in the redistribution to the kidneys. The excess femur uptake is particularly from the *in vivo* release of ²¹²Pb from the chelator which can redistribute to the bone. The macrocyclic TCMC was found to be more stable *in vivo* and led to ²¹²Pb-TCMC-Trastuzumab being the first lead-based targeted radiopharmaceutical to be administered in humans with no toxicity noted up to 1 year^{123,125,134,135}. TCMC has continued to be touted as the gold standard of lead theranostics and has demonstrated to have superior radiolabeling yield and higher *in vivo* stability with both ²¹²Pb and ²⁰³Pb than DOTA in PSMA models as well¹²². Table 2.3 summarizes ²¹²Pb and ²⁰³Pb as theranostic pairs including half-life, imageable radiation, chelators, and targeting vectors.

2.6 Conclusion

For targeted radionuclide therapy, no single therapeutic radionuclide is the best choice for every situation. While ²²⁵Ac and ²²⁷Th with their long series of alpha emissions have shown promising preclinical and clinical results for metastatic cancers and small tumor volumes, they both suffer from a lack of theranostic pairs and require the development of chemically similar theranostic matched pairs in order to perform accurate dosimetry and treatment planning^{11,25}. In addition, if not handled correctly, the recoiling daughters can lead to radiotoxicity and potentially second cancers²⁶. Moreover, the lack of fundamental understanding of actinium has made the development of effective chelators rather challenging, and the lack of availability of ²²⁵Ac has inhibited its development in targeting radiopharmaceuticals^{69,136}.

²¹²Pb is another alpha emitter that solves a lot of problems that ²²⁵Ac and ²²⁷Th pose. For instance, ²¹²Pb has a theranostic pair, ²⁰³Pb, that can be imaged via SPECT¹³⁰. In addition, ²¹²Pb is available in ²²⁴Ra/²¹²Pb generators which are rather convenient for hospitals as they act as a self-renewing source of ²¹²Pb for a couple weeks¹²⁸. The main disadvantage of ²¹²Pb is the current elution strategy (which involves time consuming evaporation and redissolution steps) is rather time consuming which can lead to the loss of activity due to the processes that are involved and to decay. The development of methodologies that can shorten this elution time can greatly facilitate the development of targeting radiopharmaceuticals incorporating ²¹²Pb.

Finally, ⁹⁰Y is a tried and true therapeutic radionuclide with experience in FDAapproved drugs unlike the other therapeutic radionuclides discussed in this chapter¹⁰⁹. While not as effective against smaller tumor volumes and metastatic cancers as alpha emitters, beta emitters such as ⁹⁰Y are rather effective at larger tumor volumes. In addition, ⁹⁰Y is much easier to control *in vivo* since it lacks recoiling radioactive daughters unlike ²²⁵Ac, ²²⁷Th, and ²¹²Pb. Furthermore, the use of ⁸⁶Y as a theranostic pair can allow for accurate dosimetry and treatment planning of yttrium-based targeted radiopharamceuticals²².

CHAPTER 3: Investigating the *in vivo* stability of novel complexes using positron emission tomography

3.1 Introduction

Targeted radiopharmaceuticals are an advantageous weapon against cancer because it allows for the systematic treatment of the disease without having to know the exact location of the diseased tissue (unlike in external beam therapy); only the tumor biology needs to be known (which dictates the specific targeting vector that needs to be used)¹³⁷. This therapy is rather versatile where for a specific targeting vector the payload can be swapped to fit the needs of the patient. For larger tumor volumes, a β emitter can be used while for smaller tumor volumes, an α -emitter can be used. ⁹⁰Y, a β- emitter that has been FDA approved as an antibody drug conjugate (⁹⁰Y-tiuxetan-Ibritumomab) for approximately 2 decades, and ²²⁵Ac and ²²⁷Th, both of which have recently demonstrated astonishing preclinical and clinical results due to their long decay series which results in a series of α emissions, are all attractive candidates^{11,25,109}. The theranostic approach can improve this therapy by using a molecular imaging modality (such as PET or SPECT imaging) to do treatment planning and dosimetry. While it is ideal for the diagnostic radionuclide to be either the same isotope or the same element (like the ⁹⁰Y/⁸⁶Y theranostic pair) as the therapeutic radionuclide, some radionuclides (like ²²⁵Ac and ²²⁷Th) don't have a suitable theranostic pair nor emit enough photons to yield high quality SPECT images with the typical administered activity for alpha emitters. It has been hypothesized that the ¹³⁴Ce/¹³⁴La *in vivo* generator system can act as a chemically analogous companion diagnostic for both ²²⁵Ac and ²²⁷Th.

In addition, it has recently been reported that DOTA and DTPA (both commonly used chelators in targeted radiopharmaceuticals incorporating ⁹⁰Y and ⁸⁶Y) lead to the release of yttrium *in vivo*^{27,114–117}. This release could potentially lead to the unnecessary dosing of healthy organs and potentially lead to radiotoxicity and second cancers^{26,138}. Developing chelators that form complexes with high kinetic inertness is imperative in ensuring the safety and efficacy of these targeted radiopharmaceuticals.

Herein, the *in vivo* stability of novel ¹³⁴Ce (a potential theranostic matched pair for ²²⁵Ac and ²²⁷Th) complexes and the novel ⁸⁶Y-3,4,3-LI(1,2-HOPO) complex are investigated. Some of the data and methods in this Chapter have been previously published in peer-reviewed journals with the permission of all authors. All of the figures have been altered from how they were published for stylistic purposes.

Relevant Publications:

Bailey TA, Mocko V, Shield KM, et al. Developing the 134Ce and 134La pair as companion positron emission tomography diagnostic isotopes for 225Ac and 227Th radiotherapeutics. *Nat Chem.* 2021;13(3):284-289. doi:10.1038/s41557-020-00598-7

Carter KP, Deblonde GJP, Lohrey TD, **Bailey TA**, An DD, Shield KM, Lukens Jr. WW, and Abergel RJ. Developing scandium and yttrium coordination chemistry to advance theranostic radiopharmaceuticals. *Commun Chem.* 2020;3(1):1-7. doi:10.1038/s42004-020-0307-0

3.1.1 ¹³⁴Ce as a theranostic matched pair for ²²⁵Ac and ²²⁷Th

For ²²⁵Ac (ionic radius: 112 pm (coordination number = 6)), the PET radiometal, ⁶⁸Ga (ionic radius: 62 pm (coordination number = 6) and the SPECT radiometal, ¹¹¹In (ionic radius: 92 pm (coordination number = 8), have commonly been used as theranostic matched pairs; while for ²²⁷Th (ionic radius: 105 pm (coordination number = 8), the PET radiometal, ⁸⁹Zr (ionic radius: 84 pm (coordination number =8), has commonly been used as a theranostic matched pair^{11,25,38,56,74–77,104}. These main group and transition diagnostic radionuclides poorly represent the chemical properties of ²²⁵Ac and ²²⁷Th (being actinides) due to having much smaller ionic radii which leads to vast differences in the *in vivo* biodistribution.

The ¹³⁴Ce (T_{1/2}=3.2 days) / ¹³⁴La (T_{1/2}=6.5 minutes) *in vivo* generator system (where the longer-lived ¹³⁴Ce is labeled to a targeting vector and then decays to ¹³⁴La *in vivo* which can then be imaged by PET) is in a unique position due to the Ce^{III}/Ce^{IV} redox couple. When its oxidation state is stabilized to 3+ with appropriate chelator selection, ¹³⁴Ce^{III} (ionic radius: 114 pm (coordination number = 8)) can mimic ²²⁵Ac^{III} due to similar ionic radii⁵⁶. When its oxidation state is stabilized to 4+ with appropriate chelator selection, ¹³⁴Ce^{IV} (ionic radius: 97 pm (coordination number = 8)) can mimic ²²⁷Th^{IV} due to similar ionic radii⁵⁶. This allows ¹³⁴Ce to serve as a companion diagnostic for targeted radiopharmaceuticals incorporating either ²²⁵Ac or ²²⁷Th.

Before incorporating ¹³⁴Ce into targeted radiopharmaceuticals, investigating its compatibility and *in vivo* stability with commonly used chelators for ²²⁵Ac and ²²⁷Th is paramount. Both DTPA and DOTA have been used with ²²⁵Ac (with DOTA being the most commonly used chelator for ²²⁵Ac) while the hydroxypyridinone-based chelators have become a mainstay in Targeted Thorium Conjugated (particularly Me-3,2-HOPO). Herein, the ¹³⁴Ce^{III}-DTPA and ¹³⁴Ce^{III}-DOTA complexes are investigated as surrogates of ²²⁵Ac^{III}-DTPA and ²²⁵Ac^{III}-DOTA while the ¹³⁴Ce^{IV}-3,4,3-LI(1,2-HOPO) (another hydroxypyridinone-based chelator) complex is investigated as a surrogate of ²²⁷Th^{IV}-3,4,3-LI(1,2-HOPO). The radiochemical yield through radio-instant thin layer chromatography (see Appendix A) and the *in vivo* stability through microPET imaging are determined for all three complexes. In addition, an *ex vivo* biodistribution experiment was performed for both the ¹³⁴Ce^{III}-DTPA and ¹³⁴Ce^{III}-DTPA and ¹³⁴Ce^{IV}-3,4,3-LI(1,2-HOPO) complexes.

3.1.2 *In vivo* stability of ⁸⁶Y-3,4,3-LI(1,2-HOPO)

Despite the frequent use of DTPA and DOTA in targeted radiopharmaceuticals incorporating ⁹⁰Y and ⁸⁶Y (and other radionuclides), both of these chelators have a number of limitations. DOTA in particular has poor binding kinetics which requires the need for incubating at elevated temperatures for long period of time which is disadvantageous for short-lived radionuclides and labeling antibodies¹¹¹. While the acyclic DTPA allows for faster binding kinetics, DTPA complexes often suffer from low *in vivo* stability when complexed to radionuclides of interest^{27,57}.

An ideal chelator in targeted radiopharmaceuticals would allow for fast, room temperature binding and high *in vivo* stability. Chelators with hydroxypyridinone moieties are known to meet these criteria^{67,68}. 3,4,3-LI(1,2-HOPO) (referred to as HOPO from now on) is a particularly attractive option as it is known to form highly stable complexes with a variety of trivalent and tetravalent metals, including rare earth elements and the actinides^{139,140}. Furthermore, density functional theory calculations

have shown structural deformities for HOPO complexes with endogenous metals, which minimizes *in vivo* competition with radiometals of interest¹⁴¹. Applied to ⁹⁰Y/⁸⁶Y, this could potentially negate the release of these radiometals *in vivo*. Herein, the *in vivo* stability of ⁸⁶Y-HOPO in a murine model is investigated through microPET imaging.

3.2 Materials and methods

All procedures and protocols used in these studies were reviewed and approved by the Institutional Animal Care and Use Committee of LBNL and were performed in AAALAC-accredited facilities, according to prescribed guidelines and regulations. Intravenous injections into a warmed lateral tail vein and euthanasia by cervical dislocation were performed under isoflurane anesthesia.

3.2.1 Materials

The following chemicals were used as received from chemical suppliers: Yttrium-86 (⁸⁶Y; Eckert & Ziegler), 1,4,7,10-tetraazacylododecane tetraacetic acid (DOTA; Macrocyclics), Diethylenetriaminepentaacetic acid (DTPA; Sigma Aldrich), 3,4,3-LI(1,2-HOPO) (HOPO; Ash Stevens), sodium citrate dihydrate (citrate; Mallinckrodt), 10x sterile phosphate buffered saline (10X PBS, VWR), ammonium acetate (NH₄OAc; Fluka), 0.9% sterile saline (saline; APP Pharmaceuticals), Ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA; VWR), Dimethyl sulfoxide (DMSO; Amresco). All solutions were prepared with deionized water purified by a Millipore Milli-Q water purification system.

3.2.2 ¹³⁴Ce production and radiolabeling

¹³⁴Ce was produced at the Isotope Production Facility (IPF) of Los Alamos National Laboratory (LANL)⁸⁵. In brief, ¹³⁴Ce was obtained through a ¹³⁹La(p,6n)¹³⁴Ce reaction by the 100 MeV proton bombardment of a natural lanthanum target. After dissolving the target, separation of ¹³⁴Ce from the rest of the lanthanum was achieved through the oxidation of Ce from +3 to +4 using NaBrO₃, and Ce^{IV} was separated from La^{III} using anion-exchange chromatography. At 7.8 days after end of irradiation, the purified product contained 18.3 GBq of ¹³⁴Ce (T_{1/2} = 3.16 days), 1.59 GBq of ^{137m}Ce (T_{1/2} = 34.4 hours), 148 MBq of ¹³⁵Ce (T_{1/2} = 17.7 hours), and 207.2 MBq of ¹³⁹Ce (T_{1/2} = 137.6 days). 370 MBq samples of ¹³⁴Ce were then shipped to Lawrence Berkeley National Laboratory with a specific activity ranging from 16.4 kBq/ng (activity of ¹³⁴Ce to the total mass of cerium) to 96.2 of ¹³⁴Ce kBq/ng.

The ¹³⁴Ce-DOTA solution was prepared by adding DOTA to ¹³⁴Ce (25:1 chelator to cerium nuclide molar ratio) in 0.165 M NH₄OAc, followed by an incubation period of 60 min at 60°C. This ¹³⁴Ce- DOTA solution was then diluted into saline for animal injection. The ¹³⁴Ce-citrate solution was prepared by the addition of ¹³⁴Ce to a solution of 0.008 M citrate and 0.14 M NaCl in MilliQ water.

For labeling HOPO and DTPA for live-animal microPET imaging, aliquots of ¹³⁴Ce in a 0.05 N HCl solution were added to pre-prepared 10X PBS solutions containing either HOPO or DTPA to form solutions with a 25:1 chelator to cerium nuclides molar ratio. Both solutions were incubated at 60 °C for 1 hour and then diluted with saline for animal injection.

For labeling HOPO and DTPA for postmortem microPET imaging and *ex vivo* biodistribution, aliquots of ¹³⁴Ce in a 0.05 N HCl solution were added to pre-prepared 10X PBS solutions containing either HOPO or DTPA to form solutions with a 10,000:1 chelator to ¹³⁴Ce ratio (this ratio is approximately on the same order of magnitude to the 25:1 ligand to cerium nuclides ratio that was used for the live animal microPET imaging solutions). Both solutions were incubated at 45 °C for 2 hours and then diluted with saline for animal injection.

Activities of the ¹³⁴Ce-DOTA, ¹³⁴Ce-citrate, live-animal ¹³⁴Ce-HOPO, and liveanimal ¹³⁴Ce-DTPA injection solutions were determined by gamma spectroscopy via a P-Type High Purity Germanium gamma spectrometer using the 511.00 and 604.72 keV lines of ¹³⁴La. Activities of the postmortem ¹³⁴Ce-HOPO and postmortem ¹³⁴Ce-DTPA injection solutions were measured by Liquid Scintillation Counting (Packard Tri-Carb model B4430, Perkin Elmer), using a 20 – 2000 keV window and Ultima Gold LLT. For both methods, samples were allowed to sit at rest for more than 1 hour prior to measurements to allow ¹³⁴La to reach secular equilibrium with ¹³⁴Ce before counting, allowing the ¹³⁴La activity to be equivalent to ¹³⁴Ce. The radiochemical yields of these radiolabeled small molecule solutions were determined by radio-instant thin layer chromatography (Bioscan System 200 Imaging Scanner), using Varian ITLC-SA strips (Agilent Technologies) and 50 mM EDTA at pH 10.5 as the mobile phase. Radiochemical yields were determined by drawing two regions of interest (using Bioscan System 200 Imaging Scanner software) over the prominent gaussian peak (which contains the labeled chelators) and the region to the left of the prominent peak (which constitutes unlabeled radiometal). The radiochemical purity is then calculated by the ratio of labeled radiometal to the total amount of radiometal on the plate.

3.2.3 ⁸⁶Y radiolabeling

A 2.86 mL 10X PBS solution containing 5 µL of HOPO (34.9 µM) in DMSO was added to the ⁸⁶Y stock solution in 0.1 M HCl in order to form a 10,000 to 1 ligand to ⁸⁶Y ratio. The reaction was incubated at room temperature for 10 minutes. In order to confirm ⁸⁶Y-HOPO binding, an aliquot of the solution was combined with a wild-type Siderocalin protein solution, and upon Siderocalin recognition, separation from free ⁸⁶Y was done via spin filtration using 0.5 mL 10 kDa Amicon Ultra centrifugal filter units (see Chapter 6 for a discussion on Siderocalin proteins)¹⁴². Free ⁸⁶Y goes through the filter, and a Ludlum 2224-1 Alpha-Beta Scaler-Ratemeter was used to determine the proportion of activity that remained in the filter versus the activity that went through the filter. The solution was then diluted with saline for animal injection. The activity of the solution was determined by gamma spectroscopy via a P-Type High Purity Germanium gamma spectrometer using the 307.00, 443.13, 580.57, and 777.37 keV lines of ⁸⁶Y.

3.2.4 Live animal ¹³⁴Ce PET imaging and *in vivo* biodistribution

Biodistribution studies were performed to evaluate the *in vivo* stability of ¹³⁴Ce-DOTA, ¹³⁴Ce-HOPO, and ¹³⁴Ce-DTPA in adult female Swiss Webster mice (12-19 weeks; 31.9 ± 2.8 g; Simonsen Laboratories, CA). ¹³⁴Ce-citrate was also administered since it would be representative of free ¹³⁴Ce *in vivo*. Groups of four mice were injected intravenously with a single 0.2 mL dose of either ¹³⁴Ce-DOTA (6.90 ± 0.03 MBq, 22.6 nM), ¹³⁴Ce-HOPO (4.49 ± 0.02 MBq, 14.7 nM), ¹³⁴Ce-DTPA (7.72 ± 0.03 MBq, 25.3

nM), or ¹³⁴Ce-citrate (5.05 \pm 0.02 MBq, 16.5 nM). Molarities of the ligands and the metals in each injection dose are included in Table 3.1. The mice were anesthetized at 20 minutes, 5 hours, and 25 hours and subsequently imaged with a Concorde microPET R4 in the head first prone position. After the 25 hour timepoint, mice were euthanized by cervical dislocation.

3.2.5 Ex vivo biodistribution and postmortem ¹³⁴Ce PET imaging

A separate *ex vivo* biodistribution study was also performed to evaluate the *in vivo* stability of ¹³⁴Ce-HOPO and ¹³⁴Ce-DTPA in adult female Swiss Webster mice (14-15 weeks old; 32.4 ± 1.6 g; Simonsen Laboratories, CA). Groups of three mice were injected intravenously with a single 0.2 mL dose of either ¹³⁴Ce-HOPO (3.19 ± 0.01 MBq, 10.4 nM) or ¹³⁴Ce-DTPA (6.27 ± 0.01 MBq, 20.5 nM). Molarities of the ligands and the metals in each injection dose are included in Table 3.1. Each group was euthanized by cervical dislocation at 10 minutes, 4 hours, and 24 hours after injection. After at least 1 hour after euthanasia (to ensure ¹³⁴Ce and ¹³⁴La are in secular equilibrium), the euthanized mice were subsequently imaged with a Concorde MicroPET R4 in the head first supine position. For each mouse, the liver, kidneys, spleen, lungs, and the abdominal remaining tissue (ART, which includes the (GI) tract, reproductive organs, urinary bladder, and abdominal fat) were dissected and counted by a gamma counter (Packard A5530 gamma spectrometer) with the results being reported in terms of percent recovered activity per gram of tissue (%RA/g).

3.2.6 Live animal ⁸⁶ Y PET imaging and *in vivo* biodistribution

Biodistribution studies were performed to evaluate the *in vivo* stability of ⁸⁶Y-HOPO in adult female Swiss Webster mice (11-12 weeks; 32.6 ± 1.5 g; Simonsen Laboratories, CA). Groups of three mice were injected intravenously with a single 0.2 mL dose of ⁸⁶Y-HOPO (3.44 ± 0.11 MBq, 2.18 nM). Molarities of the ligands and the metals in each injection dose are included in Table 3.1. The mice were anesthetized at 15 minutes, 2 hours, 24 hours, and 48 hours after injection on a Concorde microPET R4 in the head first prone position. After the 48 hour timepoint, mice were euthanized by cervical dislocation.

Table 3.1: Ligand molarity, radiometal molarity, and ligand to radiometal ratio for every complex injection dose discussed in Chapter 3.

Complexes ^a	Ligand Molarity	Radiometal Molarity	Ligand to
			radiometal ratio
¹³⁴ Ce-DOTA	241.0 µM	22.6 nM	10,664
¹³⁴ Ce-HOPO	255.0 µM	14.7 nM	17,347
premortem			
¹³⁴ Ce-DTPA	439.0 µM	25.3 nM	17,352
premortem			
¹³⁴ Ce-citrate	8.0 mM	16.5 nM	484,484
¹³⁴ Ce-HOPO	104.0 µM	10.4 nM	10,000
postmortem			
¹³⁴ Ce-DTPA	205.0 µM	20.5 nM	10,000
postmortem			
⁸⁶ Y-HOPO	21.8 µM	2.18 nM	10,000

^aInjection dose was 0.2 mL injected intravenously for all complexes

3.2.7 MicroPET scanner and reconstruction parameters

The Concorde microPET R4 supports a transaxial resolution of 1.66 mm FWHM, an energy window of 350-650 keV, and a coincidence timing window of 6 ns were used during image acquisition. Images were reconstructed using 3D ordered subset expectation maximum followed by maximum a posteriori onto a 128 x 128 x 63 (0.85 x 0.85 x 1.2 mm³) matrix. Image data underwent normalization, dead-time count losses, positron branching ratio, and decay corrections. The counting rates in the processed images were converted to the percentage of injected activity per gram of tissue (%IA/g) using a system calibration factor obtained by imaging a cylinder filled with a known concentration and volume of the injection solutions. The reported images are coronal maximum intensity projection (MIP) images. Quantitative imaging analysis on organs of interest was done by hand-drawing three-dimensional regions of interest (ROI) using AMIDE v1.0.5 with the results being reported in terms of percent injected activity per gram of tissue (%IA/g)¹⁴³.

3.3 Results

3.3.1 ¹³⁴Ce *in vivo* stability

Figure 3.1 shows representative coronal (MIP) PET images of ¹³⁴Ce-citrate biodistribution through 25 h in healthy female Swiss Webster mice. All three timepoints display high uptake in both the liver and the skeletal system (the knee bones are used as a surrogate for the skeletal system reference, for ROI purposes) (Fig. 6A). The liver uptake was initially high (18.18 ± 2.08 %IA/g at 20 minutes) and then increased and plateaued at the two latter timepoints (30.04 ± 2.54 %IA/g at 5 hours and 29.87 ±1.75 %IA/g at 25 hours). Isotope burden in the knee bones gradually increased over time from 1.54 +/- 0.54 %IA/g at 20 minutes to 2.54 ± 0.49 %IA/g at 25 hours. Minimal uptake was apparent in the rest of the mice besides minute accumulation in the bladder at 20 minutes indicating a minor renal elimination pathway.

Figure 3.1: Maximum intensity projection (MIP) PET images of a Swiss Webster mouse injected intravenously with 5.05 MBq of ¹³⁴Ce-citrate at (a) 20 minutes, (b) 5 hours, and (c) 25 hours after administration.

Radio-instant thin layer chromatography (radio-ITLC) allows for the separation of unlabeled or "free" ¹³⁴Ce from labeled ¹³⁴Ce. This proportion of labeled to unlabeled ¹³⁴Ce is then quantified through the use of a position-sensitive proportional counter. When the ¹³⁴Ce solution is spotted at the origin of the silica gel plate (the stationary phase), free ¹³⁴Ce is complexed by the EDTA in the mobile phase (50 mM of EDTA at pH 10.5). Through these investigations, it was discovered that the ¹³⁴Ce-EDTA complex moved much further up the plate than the experimental ¹³⁴Ce complexes (DOTA, HOPO, and DTPA) since ¹³⁴Ce-EDTA has a much higher polarity than the other complexes.

¹³⁴Ce-DOTA exhibited a high radiochemical yield (93.9%) measured by radio-ITLC where free ¹³⁴Ce moved up the plate with the solvent front while the prominent ¹³⁴Ce-DOTA peak lagged behind the solvent front (Fig. 3.2A and 3.2B). This high stability was also apparent *in vivo* with the majority of activity located in the bladder at 20 minutes, which indicates rapid renal elimination (Fig. 3.3). High *in vivo* stability is further demonstrated by virtually all activity being eliminated by 5 hours (notice the low signal to noise of the 5 hours and 25 hours images), no apparent bone uptake, and minimal liver and kidney uptake at 25 hours (Fig. 3.6B). Both liver and kidney uptakes decreased rapidly between 20 minutes and 5 hours, with liver uptake reduced from 2.65 ± 0.47 %IA/g to 0.04 \pm 0.01 %IA/g and kidney uptake from 1.49 \pm 0.42 to 0.20 \pm 0.03 %IA/g.

Figure 3.2: Radio-ITLC traces of (A) free ¹³⁴Ce, (B) ¹³⁴Ce-DOTA, (C) ¹³⁴Ce-HOPO, and (D) ¹³⁴Ce-DTPA. The origin is located at 0 mm. For the experimental complexes, counts outside the prominent peak correspond to unlabeled ¹³⁴Ce.

Figure 3.3: MIP PET images of a Swiss Webster mouse injected intravenously with 6.90 MBq of ¹³⁴Ce-DOTA at (a) 20 minutes, (b) 5 hours, and (c) 25 hours after administration. At 20 minutes, the majority of activity is located in the bladder indicating rapid, renal elimination of ¹³⁴Ce-DOTA.

¹³⁴Ce-HOPO displayed a radiochemical yield (83.6%) measured by radio-ITLC where the prominent ¹³⁴Ce-HOPO lagged behind the solvent front (Fig. 3.2C). ¹³⁴Ce-HOPO is unique compared to all of the cerium complexes discussed in this chapter because it is eliminated through the hepatobiliary pathway as shown in figure 3.4. At 20 minutes and 5 hours, activity is shown accumulated in the liver and traversing the gastrointestinal tract. At 25 hours, minimal activity remains in the liver and the abdominal remaining tissue (notice the high signal-to-noise in Fig. 3.4C) with no apparent bone uptake indicating high *in vivo* stability. Due to the slower nature of the hepatobiliary pathway in comparison to the renal pathway, the initial liver and abdominal remaining tissue start out high (liver is 3.92 ± 0.69 %IA/g and ART is 60.37 ± 7.44 at 20 minutes) but decrease to minimal levels by 25 hours (liver is 0.31 ± 0.05 %IA/g and ART is 0.40 ± 0.11 %IA/g at 25 hours) (Fig. 3.6C).

Figure 3.4: MIP PET images of a Swiss Webster mouse injected intravenously with 4.49 MBq of ¹³⁴Ce-HOPO at (a) 20 minutes, (b) 5 hours, and (c) 25 hours after administration. At 5 hours, the high concentration of activity is located in the gastrointestinal tract indicating hepatobiliary elimination of ¹³⁴Ce-HOPO.

¹³⁴Ce-DTPA displayed a radiochemical yield (83%) measured by radio-ITLC where the prominent ¹³⁴Ce-DTPA peak lagged behind the solvent front. Like ¹³⁴Ce-DOTA, ¹³⁴Ce-DTPA is eliminated through the rapid renal pathway with the majority of activity located in the bladder at 20 minutes. High *in vivo* stability is confirmed at 5 hours and 25 hours with minimal activity located in the kidneys (0.31 ± 0.24 %IA/g at 5 hours and 0.29 ± 0.05 at 25 hours) and liver (0.49 ± 0.30 %IA/g at 5 hours and 0.25 ± 0.03 %IA/g at 25 hours) and no apparent uptake in the knee bones (Fig. 3.6D).

Figure 3.5: MIP PET images of a Swiss Webster mouse injected intravenously with 7.72 MBq of ¹³⁴Ce-DTPA at (a) 20 minutes, (b) 5 hours, and (c) 25 hours after administration. At 20 minutes, the majority of activity is located in the bladder indicating rapid, renal elimination of ¹³⁴Ce-DTPA.

Figure 3.6: ROI analysis of organs of interest in Swiss Webster mice administered intravenously with (A) ¹³⁴Ce-Citrate, (B) ¹³⁴Ce-DOTA, (C) ¹³⁴Ce-HOPO, or (D) ¹³⁴Ce-DTPA. Each data point is the average value of the 4 mice in each group, and the error bars represent the 1-sigma standard deviation. Only the upper error bar is displayed for ease of visualization. ART is abdominal remaining tissue.

3.3.2 ¹³⁴Ce ex vivo biodistribution and postmortem imaging

The postmortem images of ¹³⁴Ce-HOPO biodistribution corroborate with the live animal images (Fig. 3.7). The early timepoints (10 minutes and 4 hours) exhibit uptake in the liver and the gastrointestinal tract exhibiting the familiar hepatobiliary elimination pathway. By 24 hours, minimal activity remains (notice the high signal to noise ratio in Figure 3.7C) with the residual predominately in the liver. The *ex vivo* biodistribution is also indicative of the hepatobiliary elimination pathway with the liver having an uptake of 13.22 ± 4.54 %RA/g at 10 minutes and decreasing to 1.60 ± 0.35 %RA/g at 24 hours (Fig. 3.9). The abdominal remaining tissue gradually decreases from 5.54 ± 0.43 %RA/g at 10 minutes to 0.26 ± 0.35 %RA/g at 24 hours. Minimal uptake is also apparent in the lungs, kidneys, and spleen throughout the study.

Figure 3.7: Postmortem MIP PET images of a Swiss Webster mouse injected intravenously with 3.19 MBq of ¹³⁴Ce-HOPO at (a) 10 minutes, (b) 4 hours, and (c) 24 hours after administration.

The postmortem images of ¹³⁴Ce-DTPA biodistribution display rapid renal elimination like the live animal images (Fig. 3.8). The majority of the activity is located in the bladder and kidneys at 10 minutes. By 4 hours, most of the activity was already eliminated from the mouse with the residual activity located in the liver and the kidneys. By 24 hours, the only remaining activity is located in the liver. The *ex vivo* biodistribution further confirms these results by indicating renal elimination with the kidneys having an uptake of 56.41 ± 24.38 %RA/g at 10 minutes and rapidly decreasing to 0.67 ± 0.06

%RA/g at 4 hours (Fig. 3.9). The abdominal remaining tissue (which contains the bladder) also shows elevated uptake at 10 minutes $(6.66 \pm 1.14 \ \text{%RA/g})$ and rapidly decreases to minimal levels by 4 hours $(0.22 \pm .09 \ \text{%RA/g})$. One of the challenging aspects of doing any postmortem bladder measurement is that the euthanasia technique that is used causes the mouse to empty its bladder upon death. This leads to the activity levels that are reported to be smaller than actual activity levels when the mouse is alive. This difference in bladder activities is also apparent when comparing the 10 minute postmortem and live animal images (Fig. 3.8A and 3.5A) where the postmortem bladder is smaller in volume than the live animal image bladder. The liver uptake also shows a rapid decline from $6.78 \pm 3.72 \ \text{%RA/g}$ at 10 minutes to $1.44 \pm 0.29 \ \text{%RA/g}$ at 4 hours and then stabilizes.

Figure 3.8: Postmortem MIP PET images of a Swiss Webster mouse injected intravenously with 6.27 MBq of ¹³⁴Ce-DTPA at (a) 10 minutes, (b) 4 hours, and (c) 24 hours after administration.

Figure 3.9: *Ex vivo* ¹³⁴Ce-HOPO and ¹³⁴Ce-DOTA biodistribution in Swiss Webster mice in terms of %RA/g at (a) 10 minutes, (b) 4 hours, and (c) 24 hours after administration measured by gamma counting. Each data point is the average value of the 3 mice in each group, and the error bars represent the 1-sigma standard deviation. Only the upper error bar is displayed for ease of visualization. ART is abdominal remaining tissue.

3.3.3 ⁸⁶Y in vivo stability

The siderocalin binding assay indicated negligible amounts of ⁸⁶Y went through the denoting a >99% radiochemical yield. Similarly to ¹³⁴Ce-HOPO, ⁸⁶Y-HOPO displayed hepatobiliary elimination with the live animal PET images displaying activity predominately traversing through the liver and gastrointestinal tract (Fig. 3.10). By 24 hours, the vast majority of activity was eliminated by the mice (notice the high signal to noise ratio in Figure 3.10C), and at 48 hours just noise was imaged indicating high *in vivo* stability. This is corroborated by the ROI analysis where the uptake in both the liver (101.77 ± 42.93 %IA/g at 15 minutes to 0.32 ± 0.44 %IA/g at 24 hours) and abdominal remaining tissue (136.35 ± 42.64 %IA/g at 15 minutes to 0.22 ± 0.11 %IA/g at 24 hours) decreases to negligible values by 24 hours (Fig. 3.11). No ROI results are provided for the 48 hour image since no activity uptake was apparent.

Figure 3.10: MIP PET images of a Swiss Webster mouse injected intravenously with 3.44 MBq of ⁸⁶Y-HOPO at (a) 15 minutes, (b) 2 hours, (c) 24 hours, and (d) 48 hours after administration.

Figure 3.11: ROI analysis of organs of interest in Swiss Webster mice administered intravenously with ⁸⁶Y-HOPO. Each data point is the average value of the 3 mice in each group, and the error bars represent the 1-sigma standard deviation. Only the upper error bar is displayed for ease of visualization. ART is abdominal remaining tissue.

3.4 Discussion

The goal of these *in vivo* stability studies is to see if the radiometal follows the pharmacokinetics and elimination pathways of the chelator. All of these chelators that were discussed in this chapter should be eliminated within 24-48 hours. A complex with a high in vivo stability would be represented by little to no activity at later timepoints. A complex with poor *in vivo* stability would be represented by a large amount of activity located at organs associated with the corresponding radiometal's natural biodistribution. As an example, the ¹³⁴Ce-citrate (which models cerium natural biodistribution since ¹³⁴Ce-citrate demetallates *in vivo*) images indicate uptake primarily in the liver and some bone uptake which is similar to the ²²⁵Ac-acetate (which models free ²²⁵Ac)^{57,58}. The ¹³⁴Ce^{III}-DOTA and ¹³⁴Ce^{III}-DTPA follow both ²²⁵Ac^{III}-DOTA and ²²⁵Ac^{III}-DTPA biodistribution with a rapid renal elimination pathway and minimal activity remaining in the liver, kidneys, and bones⁵⁷. ¹³⁴Ce^{IV}-HOPO follows a slower hepatobiliary with the residual activity located in the liver and the GI tract with no apparent bone uptake. This elimination pathway is indicative of chelators with hydroxypyridinone moieties such as Me-3,2-HOPO^{101,106}. One thing to consider if using ¹³⁴Ce^{IV} as a surrogate for ²²⁷Th^{IV} is that if cerium is released in vivo, it will be stabilized to 3+ and no longer acts as a surrogate for ²²⁷Th^{IV144–146}. This fact demonstrates the necessity of using a chelator, such as HOPO, that can strongly bind to both ¹³⁴Ce^{IV} and ²²⁷Th^{IV}.

Moreover, the ⁸⁶Y-HOPO complex follows a similar elimination pathway as ¹³⁴Ce^{IV}-HOPO with minimal activity remaining in the GI tract at 24 hours and no apparent activity at all at 48 hours. Furthermore, no apparent activity was located in the

bones and kidneys (where free yttrium tends to accumulate) which is indicative of high *in vivo* stability¹⁰⁸.

One of the caveats of using ¹³⁴Ce in radiopharmaceuticals is the amount of excess chelator that is necessary to ensure a high radiochemical yield. The specific activity of the shipments of ¹³⁴Ce has ranged from 16.4 kBq/ng (activity of ¹³⁴Ce to the total mass of cerium) to 96.2 of ¹³⁴Ce kBq/ng. This corresponds to anywhere from 114-666 total atoms of cerium to atoms of ¹³⁴Ce (this excess of cerium atoms is primarily from all the radiompurities). While these experiments used excess chelator to ensure high radiochemical in order to investigate the *in vivo* stability of ¹³⁴Ce complexes, a large excess of chelators is not always possible nor feasible for producing targeted radiopharmaceuticals. In addition, heating at an elevated temperature for a long duration of time was performed on all complexes discussed in this Chapter in order to minimize experimental variables. This is not necessarily needed for HOPO which can form rapidly form stable complexes at room temperature^{139,140}. Future work will optimize the radiolabeling condition for these complexes (amount of excess chelator and incubation temperature and time).

One open ended question that remains is whether ¹³⁴La stays in the chelator after the decay of ¹³⁴Ce. One potential way to investigate this phenomenon is to use liquid chromatography mass spectrometry¹⁴⁷. The liquid chromatography can separate free ¹³⁴La from the ¹³⁴Ce-complex while the mass spectrometer can determine the ratio of each of the species. While this doesn't give insight into what happens to the ¹³⁴Ce complex *in vivo*, it would illuminate what types of target vectors are compatible with ¹³⁴Ce based on whether they internalize or not³⁴.

3.5 Conclusions

Herein, it was demonstrated that ¹³⁴Ce^{III}-DTPA, ¹³⁴Ce^{III}-DOTA, ¹³⁴Ce^{IV}-HOPO, and ⁸⁶Y-HOPO all had high *in vivo* stability, rapid pharmacokinetics, and little to no residual activity after 24-48 hours after administration. These studies illuminate that ¹³⁴Ce could potentially be an effective theranostic matched pair for either ²²⁵Ac^{III} or ²²⁷Th^{IV} (based on appropriate chelator selection) and that 3,4,3-LI(1,2-HOPO) could advance ⁹⁰Y/⁸⁶Y theranostics. Future work will investigate DOTA-based antibody drug conjugates incorporating ¹³⁴Ce (see Chapter 4), bifunctional variants of 3,4,3-LI(1,2-HOPO) labeled with ¹³⁴Ce or ⁸⁶Y, and siderocalin fusion proteins bound to ⁸⁶Y-3,4,3-LI(1,2-HOPO) complexes (see Chapter 6)^{36,148,149}.

CHAPTER 4: Evaluating ¹³⁴Ce as a theranostic matched pair for antibody drug conjugates incorporating ²²⁵Ac

4.1 Introduction

Targeted alpha therapy, where alpha-emitting radionuclides are transported to diseased tissues via biochemical targeting vectors, is a promising approach for cancer therapy^{8–10,150}. Once at the targeted sites, radionuclides deliver alpha particles that can deposit large amounts of energy in short distances, thus minimizing the damage to surrounding, non-diseased tissue. Both ²²⁵Ac ($T_{1/2} = 9.9$ days) and ²²⁷Th ($T_{1/2} = 18.7$ days) have shown early success, in part due to decay chains that generate a series of four or five alpha particles^{11,62,151–153}. In addition, the long half-lives of both radionuclides allow for compatibility with a wide variety of targeting vectors ranging from small peptides and antibody fragments to large antibodies^{62,78,101}.

One of the challenges associated with the development of radiopharmaceuticals incorporating ²²⁵Ac and ²²⁷Th is the lack of imageable photons or positrons from therapeutic quantities of either of these radionuclides or other actinium and thorium isotopes. This prevents routine treatment planning and monitoring of the radiopharmaceuticals with contemporary clinical SPECT and PET scanners, necessitating the use of a chemically analogous diagnostic radionuclide. Among available PET imaging radiometals, 68 Ga ($T_{1/2}$ = 67.7 min) and 89 Zr ($T_{1/2}$ = 78.4 h) have been used as theranostic matched pairs ²²⁵Ac and ²²⁷Th, respectively^{11,154}. Unfortunately, both of these PET isotopes display different coordination properties from those of their proposed therapeutic counterparts making them poor chemical surrogates. Furthermore, because of the short half-life of ⁶⁸Ga, monitoring the biodistribution of ²²⁵Ac over a few days is not possible. Recently, it was demonstrated that the *in vivo* generator 134 Ce (T_{1/2} = 3.2 days)/ 134 La (T_{1/2} = 6.5 minutes) can mimic either ²²⁵Ac^{III} or ²²⁷Th^{IV} with appropriate chelator selection (using DTPA to tune ¹³⁴Ce to 3+ and 3,4,3-LI(1,2-HOPO) to tune ¹³⁴Ce to 4+) due to the readily accessible Ce^{III}/Ce^{IV} redox couple⁸⁵. Moreover, ¹³⁴Ce^{III}-DOTA was shown to have a high *in vivo* stability and a similar biodistribution to ²²⁵Ac^{III}-DOTA which is the most commonly used complex for ²²⁵Ac-based targeted radiopharmaceuticals (Chapter 3). In addition, the half-life of ¹³⁴Ce is long enough to allow tracing the long-term biodistribution of both ²²⁵Ac and ²²⁷Th.

Herein, the compatibility of ¹³⁴Ce in DOTA-based antibody drug conjugates is investigated. This is done by demonstrating long-term targeting for up to 9 days after injection of ¹³⁴Ce-DOTA-Trastuzumab in a SK-OV-3 tumor-bearing murine model. Some of the data and methods included in this Chapter have been published in a peerreviewed journal with the permission of all authors. All of the figures have been altered for stylistic purposes.

Relevant Publications:

Bailey TA, Wacker JN, An DD, et al. Evaluation of 134Ce as a PET imaging surrogate for antibody drug conjugates incorporating 225Ac. *Nuclear Medicine and Biology*. 2022;110-111:28-36. doi:10.1016/j.nucmedbio.2022.04.007

4.2 Materials and methods

All procedures and protocols used in these studies were reviewed and approved by the Institutional Animal Care and Use Committee of LBNL and were performed in AAALAC-accredited facilities, according to prescribed guidelines and regulations. Intravenous injections into a warmed lateral tail vein and euthanasia by cervical dislocation were performed under isoflurane anesthesia.

4.2.1 Materials

The following chemicals were used as received from chemical suppliers: Trastuzumab (Absolute Antibody), S-2-(4-Isothiocyanatobenzyl)-1,4,7,10tetraazacylododecane tetraacetic acid (p-SCN-Bn-DOTA; Macrocyclics), Mouse IgG Isotype control (IgG; ImmunoReagents), L-arginine hydrochloride (L-arginine; Spectrum), sodium bicarbonate (NaHCO3; Ward's Science), 1x sterile phosphate buffered saline (PBS, VWR), ammonium acetate (NH₄OAc; Fluka), 0.9% sterile saline (saline; APP Pharmaceuticals), Ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA; VWR), Dimethyl sulfoxide (DMSO; Amresco), 40-86% Nitric Acid (HNO₃; Sigma-Aldrich), and Matrigel matrix (Matrigel; VWR). All solutions were prepared with deionized water purified by a Millipore Milli-Q water purification system. SK-OV-3 cells were used as received from ATCC.

4.2.2 Antibody conjugation

Conjugation of Trastuzumab antibodies occurred through covalent coupling of p-SCN-Bn-DOTA to the lysine residues of the antibodies¹⁵⁵. In brief, 0.9 mg of Trastuzumab was buffer-exchanged into 0.1 M NaHCO₃ using 0.5 mL 30 kDa Amicon Ultra Centrifugal Filter Units (Millipore Sigma). Trastuzumab was then incubated with p-SCN-Bn-DOTA for 60 min at 37 °C in a DMSO matrix at a 1:40 molar ratio. The resulting solution was buffer-exchanged into 0.2 M NH₄OAc for radiolabeling. Conjugation of IgG antibodies occurred with 0.2 mg of IgG and a 1:20 antibody to chelator molar ratio using the same procedure outlined above.

4.2.3 ¹³⁴Ce production and radiolabeling

 134 Ce was produced according to a previously described method at the Isotope Production Facility (IPF) of Los Alamos National Laboratory (LANL)⁸⁵. In brief, 134 Ce was obtained through a 139 La(p,6n) 134 Ce reaction by the 100 MeV proton bombardment of a natural lanthanum target. After dissolving the target, separation of 134 Ce from the rest of the lanthanum was achieved through the oxidation of Ce from +3 to +4 using NaBrO₃, and Ce^{IV} was separated from La^{III} using anion-exchange chromatography. At 7.3 days after end of irradiation, the purified product contained 24.7 GBq of 134 Ce (T_{1/2} = 3.16 days), 1.4 GBq of 137m Ce (T_{1/2} = 34.4 hours), 122.1 MBq of 135 Ce (T_{1/2} = 17.7 hours), and 177.6 MBq of 139 Ce (T_{1/2} = 137.6 days). A 370 MBq sample of 134 Ce was

then shipped to Lawrence Berkeley National Laboratory with a specific activity of 162 kBq/ng (activity of ¹³⁴Ce to the total mass of cerium).

For labeling Trastuzumab and IgG, 125 MBq and 100 MBq aliquots of ¹³⁴Ce were added to the DOTA-Trastuzumab and DOTA-IgG solutions, respectively, followed by an incubation period of 90 min at 45 °C. The solutions were then buffer-exchanged 4 times into PBS using 0.5 mL 30 kDa Amicon Ultra centrifugal filter units to remove unlabeled metal. The ¹³⁴Ce-DOTA-Trastuzumab solution was diluted into saline while ¹³⁴Ce-DOTA-IgG was diluted into 0.1 M L-arginine in saline for animal injections.

Activities of the injection solutions were determined by gamma spectroscopy via a P-Type High Purity Germanium gamma spectrometer using the 511.00 and 604.72 keV lines of ¹³⁴La. Before counting, samples were allowed to sit at rest for more than 1 hour prior to measurements to allow ¹³⁴La to reach secular equilibrium with ¹³⁴Ce, allowing the ¹³⁴La activity to be equivalent to ¹³⁴Ce. The radiochemical yields were determined by measuring the activity of ¹³⁴Ce that stayed at the top of the 30 kDa filter (the labeled ¹³⁴Ce) and the activity of ¹³⁴Ce that was in the filtrate (the unlabeled ¹³⁴Ce). The radiochemical yield is then calculated by the ratio of labeled radiometal to the sum of labeled radiometal and unlabeled radiometal. The radiochemical purities of radiolabeled antibody drug conjugate solutions were determined by radio-ITLC (Bioscan System 200 Imaging Scanner), using Varian ITLC-SA strips (Agilent Technologies) and 50 mM EDTA at pH 10.5 as the mobile phase. Radiochemical purities were determined by drawing two regions of interest (using Bioscan System 200 Imaging Scanner software) over the gaussian peak at the origin (which contains the labeled antibodies) and the region outside the origin peak (which constitutes unlabeled radiometal. The radiochemical purity is then calculated by the ratio of labeled radiometal to the total amount of radiometal on the plate.

4.2.4 Small animal PET imaging and biodistribution

Biodistribution studies were performed to evaluate the tumor targeting capability of ¹³⁴Ce-DOTA-Trastuzumab in SK-OV-3 tumor-bearing (0.39 ± 0.11 cm³), adult female NOD SCID mice (15 weeks; 24.3 ± 1.7 g; Charles River Laboratories, NY). The SK-OV-3 tumors were passaged in mice and prepared as single-cell suspensions (10⁶ cells) in 50% Matrigel prior to subcutaneous transplantation in the right mammary fat pad of NOD SCID mice under isoflurane anesthesia. Groups of three mice were injected intravenously with a single 0.2 mL dose of either 134 Ce-DOTA-Trastuzumab (3.20 ± 0.1 MBq, 738.5 nM of antibody) or ¹³⁴Ce-DOTA-IgG (1.28 ± 0.19 MBq, 189.6 nM of antibody). Mice were anesthetized at 20 minutes, 5 hours, 25 hours, 52 hours, 75 hours, 100 hours, 124 hours, and 147 hours, and subsequently imaged on a Concorde microPET R4 in the head first prone position. At 214 hours, mice were euthanized by cervical dislocation, subsequently imaged 1 hour after euthanasia, and then dissected for an ex vivo biodistribution study. For each mouse, kidneys, liver, spleen, and tumor were dissected, and the abdominal remainder tissue (ART, which includes the (GI) tract, reproductive organs, urinary bladder, and abdominal fat) was removed. The organ samples and the partially eviscerated carcasses were managed as individual samples. All samples were dried at 100 °C, dry-ashed at 575 °C, and dissolved in concentrated nitric acid. The ashed-soft tissue in the carcass was rinsed from the ashed-bone with HNO₃ and both soft tissue and bone were diluted with water into polyethylene bottles.

The dissolved organs, 2 g aliquots of the soft tissue and bone, and 2 mL aliquots of standard solutions were mixed with 10 mL of Ultima Gold LLT (Perkin Elmer, Shelton) for counting by liquid scintillation counting (Packard Tri-Carb model B4430, Perkin Elmer) using a window of 50 keV-2000 keV with the results being reported in terms of percent injected activity per gram of tissue (%IA/g).

The Concorde microPET R4 supports a transaxial resolution of 1.66 mm FWHM, an energy window of 350-650 keV, and a coincidence timing window of 6 ns were used during image acquisition. Images were reconstructed using 3D ordered subset expectation maximum followed by maximum a posteriori onto a 128 x 128 x 63 (0.85 x 0.85 x 1.2 mm³) matrix. Image data underwent normalization, dead-time count losses, positron branching ratio, and decay corrections. The counting rates in the processed images were converted to the percentage of injected activity per gram of tissue (%IA/g) using a system calibration factor obtained by imaging a cylinder filled with a known concentration and volume of the injection solutions. The reported images are coronal maximum intensity projection images. Quantitative imaging analysis on organs of interest was done by hand-drawing three-dimensional regions of interest (ROI) using AMIDE v1.0.5 with the results being reported in terms of percent injected activity per gram of tissue (%IA/g)¹⁴³.

4.3 Results

The radiochemical yield was determined to be 80.9% for ¹³⁴Ce-DOTA-Trastuzumab, while it was 43.7% for ¹³⁴Ce-DOTA-IgG. Radiochemical purity was determined by radio-ITLC where the antibody drug conjugate stayed at the origin and the free metal moved up the plate with the solvent front (Fig. 4.1A). The radiochemical purity was determined to be 80.7% for ¹³⁴Ce-DOTA-Trastuzumab (Fig 4.1B) and 68.8% for ¹³⁴Ce-DOTA-IgG (Fig 4.1C).

Figure 4.1: Radio-ITLC traces of (A) free ¹³⁴Ce, (B) ¹³⁴Ce-DOTA-Trastuzumab, and (C) ¹³⁴Ce-DOTA-IgG.

Figure 4.2A shows representative MIP PET images of 134Ce-DOTA-Trastuzumab in a SK-OV-3 tumor-bearing NOD SCID mouse through 147 h. At 214 h, mice were euthanized and imaged 1 h later (allowing ¹³⁴La to reach secular equilibrium with ¹³⁴Ce) (Fig. 4.3A). Through the first 25 h after administration, tumor uptake steadily increased over time (1.76 ± 0.17 %IA/g to 9.28 ± 2.07 %IA/g) (Fig. 4.4A). From 25 h to 75 h, tumor uptake plateaued and then steadily decreased from 75 h through 147 h (8.83 ± 2.73 %IA/g to 5.49 ± 2.00 %IA/g). The postmortem image at 214 h also displayed tumor uptake at 3.74 ± 0.86 %IA/g. The liver uptake steadily decreased over time, from 16.90 ± 4.87 %IA/g at 20 min to 4.30 ± 0.18 %IA/g at 147 h. The knee bones uptake generally remained constant over the 147 h (2.99 ± 0.36 %IA/g at 20 min to 2.37 ± 0.79 %IA/g at 147 h), while the ART steadily decreased over the 147 h (2.78 ± 1.06 %IA/g to 1.41 ± 0.61 %IA/g). *Ex vivo* biodistribution confirmed tumor uptake at 214 h (6.19 ± 2.08 %IA/g) (Fig. 4.5A). Elevated uptake in both the liver and spleen was also apparent with respective burdens of 4.77 ± 1.06 %IA/g and 20.72 ± 12.83 %IA/g. The entire skeletal system was also counted, revealing an uptake of 4.20 ± 0.36 %IA at 214 h (Fig. 4.5B).

Figure 4.2B shows representative coronal MIP PET images of 134Ce-DOTA-IgG in a SK-OV-3 tumor-bearing NOD SCID mouse through 147 h. At 214 h, mice were euthanized and imaged 1 hour later (allowing ¹³⁴La to reach secular equilibrium with ¹³⁴Ce) (Fig. 4.3B). Through all 147 h, tumor uptake remained minimal (0.70 ± 0.14 %IA/g at 20 min to 0.59 ± 0.11 %IA/g at 147 h) (Fig. 4.4B). The postmortem images at 214 h also displayed minimal tumor uptake (0.50 ± 0.28 %IA/g). Liver uptake increased initially from 39.78 ± 2.65 %IA/g at 20 min to 43.67 ± 2.39 %IA/g at 5 h and slightly decreased over time, ending up at 37.58 ± 5.68 %IA/g at 147 h. The knee bone uptake remained relatively constant over time (1.23 ± 0.15 %IA/g at 20 min to 1.05 ± 0.14 %IA/g at 147 h), while the ART uptake slightly decreased over time (0.59 ± 0.10 %IA/g at 20 min to 0.36 ± 0.07 %IA/g at 147 h). *Ex vivo* biodistribution confirmed minimal tumor uptake at 214 h (0.49 ± 0.18 %IA/g) (Fig. 4.5A). Elevated uptake was confirmed in both the liver and the spleen with respective burdens of 53.37 ± 5.84 %IA/g and 28.30 ± 7.71 %IA/g. The entire skeletal system was also counted, displaying an uptake of 5.77 ± 0.74 %IA at 214 h (Fig. 4.5B).

Figure 4.2: (A) MIP PET images of a SK-OV-3 tumor bearing NOD SCID mice injected intravenously with 3.20 MBq ¹³⁴Ce-DOTA-Trastuzumab over 147 hours after administration. (B) MIP PET images of a SK-OV-3 tumor bearing mice injected intravenously with 1.28 MBq ¹³⁴Ce-DOTA-IgG over 147 hours after administration.

Figure 4.3: (A) Postmortem MIP PET image of a SK-OV-3 tumor bearing NOD SCID mouse injected with 3.20 MBq ¹³⁴Ce-DOTA-Trastuzumab at 214 hours after administration. (B) Postmortem MIP PET image of a SK-OV-3 tumor-bearing NOD SCID mouse injected with 1.28 MBq ¹³⁴Ce-DOTA-IgG at 214 hours after administration. Both mice were imaged at 1 hour after euthanasia.

Figure 4.4: ROI analysis of organs of interest in SK-OV-3 tumor bearing NOD SCID mice administered intravenously with (A) ¹³⁴Ce-DOTA-Trastuzumab or (B) ¹³⁴Ce-DOTA-IgG. Each data point is the average value of the 3 mice in each group, and the error bars represent the 1-sigma standard deviation. Only the upper error bar is displayed for ease of visualization. ART is abdominal remaining tissue.

Figure 4.5: *Ex vivo* ¹³⁴Ce-DOTA-Trastuzumab and ¹³⁴Ce-DOTA-IgG biodistribution SK-OV-3 tumor bearing NOD SCID mice in terms of (A) %IA/g and (B) %IA at 9 days after administration measured by liquid scintillation counting. Each data point is the average value of the 3 mice in each group, and the error bars represent the 1-sigma standard deviation. Only the upper error bar is displayed for ease of visualization. ART is abdominal remaining tissue. Skel is the entire skeletal system. Soft is the remaining soft tissue that was not already harvested.

4.4 Discussion

As discussed in Chapter 2, there has been recent interest in other PET-active lanthanum isotopes as surrogates for ²²⁵Ac such as ¹³²La ($T_{1/2}$ = 4.8 hours) and ¹³³La ($T_{1/2}$ = 3.9 hours)^{78,84}. The ¹³⁴Ce/¹³⁴La *in vivo* generator system stands out amongst these other radiolanthanum isotopes due to its much longer half-life, allowing the tracing of large macromolecules (such as antibodies) over long periods of time. These results demonstrate that ¹³⁴Ce allows for monitoring elevated tumor uptake of Trastuzumab over 214 h which would not be possible with ¹³²La or ¹³³La.

When compared to a previously published ²²⁵Ac-DOTA-Trastuzumab biodistribution study, the *in vivo* stability and biodistribution of the ¹³⁴Ce radimmunoconjugate were both similar^{38,63}. The Borchardt, et al. study also displayed minimal bone uptake, gradually decreasing liver uptake, and elevated tumor uptake is evident over 120 h.

One of the challenges involved in PET imaging ¹³⁴Ce is the high positron endpoint energy (2709 keV) of ¹³⁴La can degrade the system spatial resolution of a PET scanner⁵¹. While not as pertinent for clinical PET scanners, in preclinical PET scanners this can lead to partial volume effects, which can then result in underestimation of the true activity concentration of a small structure. This is apparent when comparing the ROI analysis at 214 h to the ex vivo biodistribution of the tumor in the mice that were administered ¹³⁴Ce-DOTA-Trastuzumab. The ROI analysis yielded 3.74 \pm 0.86 %IA/g at 214 h, less than the *ex vivo* biodistribution result of 6.19 \pm 2.08 %IA/g, which is not impacted by the partial volume effect. To minimize this partial volume effect in ¹³⁴Ce preclinical imaging, it is advisable to use dual-modality PET-MRI scanners, which will reduce the range of the positrons^{55,156}.

One of the open-ended questions that is yet to be addressed by the ¹³⁴Ce/¹³⁴La system is whether ¹³⁴La is released from its chelate after the decay of ¹³⁴Ce *in vivo*, leading to the potential redistribution of ¹³⁴La. While a similar *in vivo* generator system, ¹⁴⁰Nd (ε , T_{1/2} = 3.4 days) /¹⁴⁰Pr (β +, T_{1/2} = 3.4 minutes), was shown to display this redistribution effect with the non-internalizing targeting vector DOTA-LM3, the methodology used would not work with a targeting vector that can be internalized (such as Trastuzumab)^{35,157}. One potential way to evaluate if redistribution occurs with any targeting vector is to leverage the ¹³⁹Ce radio-impurity 165.86 keV gamma photon⁸⁵. If a ¹³⁴Ce labeled targeting vector is imaged by a dual-modality PET-SPECT scanner, the PET image will display the biodistribution of ¹³⁴La, and the SPECT image will display the biodistribution of ¹³⁴Ce. Any significant differences between the two isotopes' biodistribution would indicate redistribution. Future work will attempt to tackle this question.

4.5 Conclusions

Herein, it was demonstrated that the long half-life of ¹³⁴Ce allows for antibody drug conjugates incorporating ¹³⁴Ce to image tumors for long periods of time after administration. In addition, because of the high *in vivo* stability of ¹³⁴Ce^{III}-DOTA and ¹³⁴Ce^{III} chemical similarity to ²²⁵Ac^{III}, ¹³⁴Ce-DOTA-Trastuzumab can act as a surrogate for ²²⁵Ac-DOTA-Trastuzumab. Future work will focus on investigating the redistribution effect of ¹³⁴La from its ¹³⁴Ce parent.

CHAPTER 5: Optimizing radiolabeling of ²²⁴Ra generatorproduced ²¹²Pb

5.1 Introduction

The use of α emitters in targeted radionuclide therapy has been shown to have many advantages in comparison to β emitters. The short path lengths of α particles allow for diseased tissue to be selectively destroyed while sparing nearby healthy tissue unlike β particles. In addition, there has been clinical evidence that targeted alpha therapy can be effective against chemotherapy-resistant, photon irradiation-resistant, and castration-resistant lesions^{11,12}. Despite these advantages, the availability of α emitters with a suitable half-life for clinical use is limited. Often, the radionuclide needs to be produced offsite, purified, shipped to the clinic, radiolabeled to a targeting vector, and after quality control, the targeted radiopharmaceutical can be administered to the patient. Moreover, monoclonal antibodies are common targeting vectors and can take multiple days to uptake sufficiently in a lesion due to their slower pharmacokinetics^{36,129}. Both ^{225}Ac (T_{1/2}=9.9 days) and ^{227}Th (T_{1/2}=18.7 days) have long enough half-lives to be effective in targeted radiopharmaceuticals, and they have shown great success in clinical trials due to their decay chains which feature 4 or 5 alpha emissions^{11,25}. Unfortunately, these long half-lives are a double-edged sword that may become a problem in terms of waste disposal if used in large enough quantities¹²⁹. Also, ²²⁵Ac low availability makes clinical trials rather difficult⁶⁹.

 212 Pb (T_{1/2}=10.6 hours) medium length half-life negates this problem and its more commonly available by 224 Ra (T_{1/2}=3.6 days) generators which are rather convenient for clinical sites since a single generator can be used for a couple weeks¹⁴. Unlike ²²⁵Ac and ²²⁷Th, ²¹²Pb has a theranostic pair, ²⁰³Pb (T_{1/2}=2.2 days) which can be imaged via SPECT imaging allowing treatment planning and accurate dosimetry²³. Unfortunately, the common method of eluting ²²⁴Ra/²¹²Pb generators requires running high concentrations of hydrochloric acid through the cation exchange column (which separates the ²¹²Pb from the ²²⁴Ra) which yields rather pure ²¹²Pb (²²⁴Ra breakthrough is typically less than 1 ppm) in an unfavorable electrolytic solution for radiolabeling^{14,128}. Because of this, it is required to evaporate the ²¹²Pb solution down to a residue and then redissolve the residue in a more favorable matrix before radiolabeling. Moreover, targeted radiopharmaceuticals commonly use the chelator TCMC which requires incubating at elevated temperatures in order to ensure quantitative radiolabeling^{123,128}. All of these steps including guality control can take several hours to produce the targeted radiopharmaceutical which can limit the amount of activity that can be administered to the patient.

Herein, an elution method of using a 1.0 M sodium acetate and a Pb selective column is applied to a ²²⁴Ra/²¹²Pb generator¹²⁵. This method circumnavigates the need for the evaporation and redissolution steps and allows for direct labeling of the targeting vector since the sodium acetate matrix is more favorable. This method is tested by labeling TCMC conjugated Trastuzumab with the ²¹²Pb from the 1.0 M sodium acetate method and from the evaporation and redissolution with 0.1 M hydrochloric acid and 0.1 M nitric acid over two labeling trials over two weeks. The metrics used to compare each of the methods are radiochemical yield and radiochemical purity (see Appendix A).

5.2 Materials and methods

5.2.1 Materials

The following chemicals were used as received from chemical suppliers: Trastuzumab (Absolute Antibody), S-2-(4-Isothiocyanatobenzyl)-1,4,7,10-tetraaza-1,4,7,10-tetra(2-carbamoylmethyl)cyclododecane (p-SCN-Bn-TCMC; Macrocyclics), sodium bicarbonate (NaHCO3; Ward's Science), hydrochloric acid optima (HCl; Fisher Scientific), nitric acid optima (HNO₃; Fisher Scientific), sodium acetate trihydrate (NaOAc; VWR), L-ascorbic acid (ascorbic acid; Sigma-Aldrich), 1x sterile phosphate buffered saline (PBS, VWR), ammonium acetate (NH₄OAc; Fluka), 0.9% sterile saline (saline; APP Pharmaceuticals), Ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA; VWR), and Dimethyl sulfoxide (DMSO; Amresco). All solutions were prepared with deionized water purified by a Millipore Milli-Q water purification system. The 2 mL 50-100 micron lead resin cartridges were purchased from Eichrom Technologies, Inc.

5.2.2 Antibody conjugation

Conjugation of Trastuzumab antibodies occurred through covalent coupling of p-SCN-Bn-DOTA to the lysine residues of the antibodies¹⁵⁵. In brief, known masses of Trastuzumab were buffer-exchanged into 0.1 M NaHCO₃ using 0.5 mL 30 kDa Amicon Ultra Centrifugal Filter Units (Millipore Sigma). Trastuzumab was then incubated with p-SCN-Bn-TCMC for 60 min at 37 °C in a DMSO matrix at a 1:40 molar ratio. The resulting solution was buffer-exchanged into 0.2 M NH₄OAc for radiolabeling.

5.2.3 ²²⁴Ra/²¹²Pb generator elution

The 89.5 MBq ²²⁴Ra/²¹²Pb generator that was used for this study was designed by, produced by, and shipped to Lawrence Berkeley National Laboratory by the Nuclear Chemistry and Engineering technical group at Pacific Northwest National Laboratory. The generator was eluted by two different methods two times over two weeks.

The first method used was based on a procedure described by Baidoo, et al¹²⁸. In brief, ²¹²Bi (the daughter of ²¹²Pb) can be removed by washing the generator with 1 mL of 0.5 M HCI. From there, ²¹²Pb can be eluted by washing the column twice with 250 μ L of 2.0 M HCI followed by 250 μ L of Milli-Q water. Two separate aliquots of the total solution were taken, and both were evaporated down (using a stirring and hot plate) to a ²¹²Pb-chloride residue. One of the residues was dissolved into 8.0 M HNO₃ and subsequently evaporated down to a ²¹²Pb-nitrate residue. Finally, the ²¹²Pb-chloride residue was redissolved using 0.1 M HCI, and the ²¹²Pb-nitrate residue was redissolved using 0.1 M HNO₃. Both of these solutions were then used for radiolabeling

The second method uses 1.0 M NaOAc and a Pb selective column. The 2 mL 50-100 micron lead resin cartridge is attached to the end of the ²²⁴Ra column. 1 mL of 2.0 M HCl is then pushed through the generator which causes the majority of the ²¹²Pb to be at the top of the lead resin. The lead resin is then detached from the generator, flipped upside down, and reattached again to the end of the generator. 1.0 M NaOAc is then pushed through the generator to collect the ²¹²Pb in a 1.0 M NaOAc matrix. This solution can then be assayed and prepared for radiolabeling.

5.2.4 ²¹²Pb radiolabeling

After elution, the three ²¹²Pb solutions (in 0.1 M HCl, 0.1 M HNO₃, or 1.0 M NaOAc) were used to label TCMC-conjugated Trastuzumab antibodies in order to compare the three methods. These radiolabeling experiments were performed twice over two weeks to emulate a fractionated radiotherapy therapy study that is commonly performed in the Bioactinide Chemistry Group. The radiolabeling procedures employed were also adapted from Baidoo, et al (which described the labeling of TCMC-conjugated Trastuzumab with ²¹²Pb in a 0.1 M HNO₃ matrix)¹²⁸.

For both the 0.1 M HCl ²¹²Pb solution and the 0.1 M HNO₃ solution, the pH was adjusted to 5.0-5.5 by adding 1 part 5 M NH₄OAc to 10 part acid (volume-wise). In addition, 220 mg/ml of ascorbic acid was also added as a radioprotectant in a 1 part ascorbic acid to 10 part acid ratio (volume-wise). A known mass of TCMC-conjugated Trastuzumab in a 0.2 M NH₄OAc matrix was then added to each ²¹²Pb solution. For the 0.1 M HCl ²¹²Pb solution, 10 µg of trastuzumab was added during week 1 while 26.7 µg of trastuzumab was added during week 2 (Table 5.1). For the 0.1 M HNO₃ solution, 10 µg of trastuzumab was added during week 1 while 25.2 µg of Trastruzumab was added during week 2. Both reaction solutions were then heated at 37 °C for 1 hour, and the reactions were quenched by the addition of 50 mM EDTA in a 2 part EDTA to 125 part acid ratio (volume-wise). The solutions were then buffer-exchanged into saline using 0.5 mL 30 kDa Amicon Ultra centrifugal filter units to remove unlabeled metal.

For the 1.0 M NaOAc ²¹²Pb solution, just 220 mg/ml of ascorbic acid was added in a 1 part ascorbic acid to 10 part NaOAc ratio (volume-wise) in order to reach the desired pH (5.0-5.5) and to serve as a radioprotectant. A known mass of TCMCconjugated Trastuzumab in a 0.2 M NH₄OAc matrix was then added to the ²¹²Pb solution (10 µg during week 1 and 25.2 µg during week 2) (Table 5.1). The reaction solution was then heated at 37 °C for 1 hour, and the reaction was then quenched by the addition of 50 mM EDTA in a 2 part EDTA to 125 part NaOAc ratio (volume-wise). The solution was then buffer-exchanged into saline using 0.5 mL 30 kDa Amicon Ultra centrifugal filter units to remove unlabeled metal.

Week	0.1 M HCI	0.1 M HNO3	1.0 M NaOAc
1	10 µg	10 µg	10 µg
2	26.7 µg	25.2 µg	25.2 µg

Table 5.1: Mass of Trastuzumab added for each labeling trial.

Activities of the ²¹²Pb solutions were determined by gamma spectroscopy via a P-Type High Purity Germanium gamma spectrometer using the 238.63 keV line. The radiochemical yields were determined by measuring the activity of ²¹²Pb that stayed at the top of the 30 kDa filter (the labeled ²¹²Pb) and the activity of ²¹²Pb that was in the filtrate (the unlabeled ²¹²Pb). The radiochemical yield is then calculated by the ratio of labeled radiometal to the sum of labeled radiometal and unlabeled radiometal. The radiochemical purities of radiolabeled antibody drug conjugate solutions were determined by radio-ITLC (Bioscan System 200 Imaging Scanner), using Supelco ITLC-SG glass plates (Sigma-Aldrich) and 20 mM EDTA at pH 5.5 as the mobile phase. Radiochemical purities were determined by drawing two regions of interest (using Bioscan System 200 Imaging Scanner software) over the gaussian peak at the origin

(which contains the labeled antibodies) and the region outside the origin peak (which constitutes unlabeled radiometal. The radiochemical purity is then calculated by the ratio of labeled radiometal to the total amount of radiometal on the plate.

5.3 Results

For the 0.1 M HCI labeling trials, the activity of ²¹²Pb per microgram of antibody incubation was 58.8 kBq/µg for week 1 (588.0 kBq of ²¹²Pb and 10 µg of Trastuzumab) and was 25.5 kBq/µg for week 2 (680.9 µCi of ²¹²Pb and 26.7 µg of Trastuzumab) (Table 5.2). The radiochemical yield was consistently low at 17.66% for week 1 and 19.18% for week 2 (Table 5.2). Table 5.2 also contains the radiochemical yield per microgram of antibody in order to normalize the radiochemical with respect to the amount of antibody added for each trial. For this trial, this quantity was 1.77 %/µg for week 1 and was 0.72 %/µg for week 2. Radiochemical purity was determined by radio-ITLC where the antibody drug conjugate stayed at the origin and the free metal moved up the plate with the solvent front and formed a double peak (one peak for ²¹²Pb and another peak for ²¹²Bi) (Fig. 5.1B and Fig. 5.1D). Radiochemical purity (Table 5.3) stayed consistent over both weeks with 85.5% at week 1 (Fig. 5.1A) and 80.3% at week 2 (Fig. 5.1C).

Table 5.2: Activity of ²¹² Pb per microgram of antibody, radiochemical yield, and
radiochemical yield per microgram of antibody for each labeling trial.

	0.1 M HCI		0.1 M HNO ₃			1.0 M NaOAc			
Week	A/µgª	RCY⁵	RCY/µg⁰	A/µg	RCY	RCY/µg	A/µg	RCY	RCY/µg
	(kBq/µg)	(%)	(%/µg)	(kBq/µg)	(%)	(%/ug)	(kBq/ug)	(%)	(%/µg)
1	58.8	17.66	1.77	75.5	28.69	2.87	170.9	75.41	7.54
2	25.5	19.18	0.72	22.2	26.83	1.06	8.9	88.65	3.52

 $^aA/\mu g$ is the activity of ^{212}Pb per microgram of antibody at the time of antibody incubation bRCY is radiochemical yield

°RCY/µg is the radiochemical yield per microgram of antibody

Table 5.3: Radiopurity	^v of ²¹² Pb-TCMC-Trastuzumab 1	for each labeling trial.
------------------------	--	--------------------------

Week	0.1 M HCI	0.1 M HNO3	1.0 M NaOAc
1	85.5%	88.8%	85.8%
2	80.3%	93.2%	88.2%

Figure 5.1: Radio-ITLC traces of (A) ²¹²Pb-TCMC-Trastuzumab during week 1's labeling experiments, (B) free ²¹²Pb during week 1's labeling experiments, (C) ²¹²Pb-TCMC-Trastuzumab during week 2's labeling experiments, and (D) free ²¹²Pb during week 2's labeling experiments after reconstituting the lead residue in 0.1 M HCl.

For the 0.1 M HNO₃ labeling trial, the activity of ²¹²Pb per microgram of antibody incubation was 75.5 kBq/µg for week 1 (755.0 kBq of ²¹²Pb and 10 µg of Trastuzumab) and was 22.2 kBq/µg for week 2 (559.4 kBq of ²¹²Pb and 25.2 µg of Trastuzumab) (Table 5.2). The radiochemical yield was slightly higher than the 0.1 M HCl labeling trial

at 28.69% for week 1 and 26.83% for week 2 (Table 5.2). The radiochemical yield per microgram of antibody was 2.87 %/µg for week 1 and was 1.06 %/µg for week 2 (Table 5.2). Radiochemical purity (Table 5.3) was determined by radio-ITLC where the antibody drug conjugate stayed at the origin and the free metal moved up the plate with the solvent front and formed a double peak (one peak for 212 Pb and another peak for 212 Bi) (Fig. 5.2B and Fig. 5.2D). Radiochemical purity stayed consistent over both weeks with 88.8% at week 1 (Fig. 5.2A) and 93.2% at week 2 (Fig. 5.2C).

Figure 5.2: Radio-ITLC traces of (A) ²¹²Pb-TCMC-Trastuzumab during week 1's labeling experiments, (B) free ²¹²Pb during week 1's labeling experiments, (C) ²¹²Pb-TCMC-Trastuzumab during week 2's labeling experiments, and (D) free ²¹²Pb during week 2's labeling experiments after reconstituting the lead residue in 0.1 M HNO₃.

For the 1.0 M NaOAc labeling trial, the activity of ²¹²Pb per microgram of antibody incubation was 170.9 kBq/µg for week 1 (1709.0 kBq of ²¹²Pb and 10 µg of Trastuzumab) and was 8.9 kBq/µg for week 2 (224.3 kBq of ²¹²Pb and 25.2 µg of Trastuzumab) (Table 5.2). The radiochemical yield was dramatically higher than the other labeling trials at 75.41% for week 1 and 88.65% for week 2 (Table 5.2). The

radiochemical yield per microgram of antibody was 7.54 %/µg for week 1 and was 3.52 %/µg for week 2 (Table 5.2). Radiochemical purity (Table 5.3) was determined by radio-ITLC where the antibody drug conjugate stayed at the origin and the free metal moved up the plate with the solvent front and formed a double peak (one peak for 212 Pb and another peak for 212 Bi) (Fig. 5.3B and Fig. 5.3D). Radiochemical purity stayed consistent over both weeks with 85.8% at week 1 (Fig. 5.2A) and 88.2% at week 2 (Fig. 5.2C).

Figure 5.3: Radio-ITLC traces of (A) ²¹²Pb-TCMC-Trastuzumab during week 1's labeling experiments, (B) free ²¹²Pb during week 1's labeling experiments, (C) ²¹²Pb-TCMC-Trastuzumab during week 2's labeling experiments, and (D) free ²¹²Pb during week 2's labeling experiments after eluting the generator with 1.0 M NaOAc.

5.4 Discussion

One of the benefits of the 1.0 M NaOAc method is that it circumvents the need for the evaporation and redissolution step. The evaporation step alone takes anywhere from 1 to 1.5 hours. Removing this step can minimize the loss of activity due to decay

and process loss during the extra steps. In addition, for both of the weeks, the radiochemical yield was substantially higher for the NaOAc method compared to the other 2 methods. The radiochemical yields for the 0.1 M HCl and 0.1 M HNO₃ trials were considerably lower than what has been reported¹²⁸. Adding more antibody the second week only slightly increased the radiochemical yield for the 0.1 M HCl trial but decreased for the 0.1 M HNO₃ trials. One other possibility is that the pH of the solution before antibody addition needed to be brought even higher by adding more 5 M NH₄OAc.

Another reason for increasing the amount of antibodies for the second week is that in previous studies involving TCMC conjugated antibodies incorporating ²¹²Pb in the Bioactinide Chemistry Group, the radiochemical yield and radiochemical purity dramatically decreased during the second week of using the ²²⁴Ra/²¹²Pb generator. It is suspected that this labeling degradation is due to the radiolytic break down of the cation exchange column, and this led to the formation of ²¹²Pb complexes with organic molecules from the column which outcompeted TCMC^{14,133,138}. In the future, this hypothesis will be verified using mass spectrometry.

It is common during running radio-TLC for ²¹²Pb to allow the plate to decay over 24 hours in order for all the free ²¹²Bi (T_{1/2}= 1.0 hours) to decay and for the remaining ²¹²Pb and ²¹²Bi to reach secular equilibrium¹²⁵. While this leads to more accurate results (radio-ITLC typically can't distinguish between ²¹²Pb and ²¹²Bi), this isn't feasible if being used as a quality control procedure to determine whether a dose will be administered to the patient. For this study in order to emulate a typical preclinical study, the plate was ran right after radiolabeling. This leads to a double peak where the free metal is located where one peak is ²¹²Pb and the other peak is ²¹²Bi. While radio-TLC is not able to determine which peak is which and thus limits the accuracy of this measurement, high performance liquid chromatography could be collecting fractions of the mobile phase and counting each fraction which would allow for more accurate quality control before administration. If the plate was allowed to decay in place for 24 hours getting rid of the free ²¹²Bi peak, the radiochemical purity would be higher since the free ²¹²Bi peak contributes to the degradation of the radiochemical purity.

While the 1.0 M NaOAc elution method was first demonstrated using a ²²⁸Th/²¹²Pb generator, this study demonstrates that this method is also compatible with ²²⁴Ra/²¹²Pb generators. While ²²⁸Th/²¹²Pb can be used for much longer periods of time because of the 1.9 year half-life of ²²⁸Th, the generators are known to break down over time and leading to more and more ²²⁸Th breakthrough^{14,133,138}. While the ²²⁴Ra/²¹²Pb generator is only usable for up to two weeks due to the shorter half-life of ²²⁴Ra and is only typically available with up to 740 MBq of ²²⁴Ra, there is minimal ²²⁴Ra breakthrough, which is acceptable for clinical trials. This new elution method could potentially facilitate future clinical trials.

While TCMC has been the most commonly used chelator for ²¹²Pb, its slower binding kinetics also make the logistics of prepping ²¹²Pb-based targeted radiopharmaceuticals challenging. The hydroxypyridinone-based 3,4,3-LI(1,2-HOPO) could potentially allow for highly stable lead complexes and the ability to rapidly bind lead at room temperature³². While HOPO may form more stable complexes with tetravalent metal cations compared to divalent metal cations, limiting the radiolabeling

time through 3,4,3-LI(1,2-HOPO) could minimize activity loss potentially allowing for the treatment of more patients.

5.5 Conclusions

Herein, it was demonstrated that the elution of ²²⁴Ra/²¹²Pb generators with 1.0 M NaOAc both minimizes the time to fabricate targeted radiopharmaceuticals and maintains a high radiochemical yield and radiochemical purity over two weeks. Incorporation of this strategy could advance ²¹²Pb/²⁰³Pb theranostics and facilitate clinical studies Future work will investigate ²¹²Pb-3,4,3-LI(1,2-HOPO) complexes and incorporate ²¹²Pb into siderocalin fusion proteins^{32,36,148,149}.

CHAPTER 6: Delivering ²²⁵Ac and ⁹⁰Y through non-covalent interactions of small molecule ligands with siderocalin fusion proteins

6.1 Introduction

One of the key components of a targeted radiopharmaceutical is the chelator which is responsible for binding the therapeutic and diagnostic radiometal with high *in vivo* stability. If the chelator releases the radiometal *in vivo*, the metal could potentially redistribute to a healthy organ and unnecessary dose it potentially leading to radiotoxicity and second cancers^{26,27}. The ideal chelator for theranostic applications would have high *in vivo* stability, allow for rapid room temperature radiolabeling, and be compatible with a wide variety of metal cations. This last point would facilitate the further modularization of targeted radiopharmaceuticals: easily allowing the radiometal to be swapped to another radiometal in a targeted radiopharmaceutical without changing the chelator.

Several strategic radiometals for theranostic applications are trivalent and tetravalent actinides (²²⁵Ac^{III} and ²²⁷Th^{IV}) and rare earth metals (⁸⁶Y^{III}, ⁹⁰Y^{III}, ⁴⁴Sc^{III}, ⁴⁷Sc^{III}, ¹³²La^{III}, ¹³³La^{III}, ¹³⁴Ce^{III}, ¹⁴⁹Tb^{III}, ¹⁵⁵Tb^{III}, ¹⁵²Tb^{III}, ¹⁶¹Tb^{III}, and ¹⁷⁷Lu^{III})^{21,78,84,85,120,158–160}. In the past, chelation of actinides for the application of decorporation has been focused on siderophore derivatives, which are a class of molecules that are typically produced by bacteria or fungi and used to traffic Fe^{III} to them³¹. A siderophore-derived chelator with hydroxypyridinone moieties, 3,4,3-LI(1,2-HOPO), has been shown to rapidly bind both trivalent and tetravalent actinides and rare earth metals with higher selectivity compared to divalent endogenous metals^{30,32,33}.

While 3,4,3-LI(1,2-HOPO) (referred to now as HOPO) has been bifunctionalized as p-SCN-Bn-HOPO, conjugated to Trastuzumab, and labeled with ⁸⁹Zr in order to image BT474 tumor bearing mice, the synthesis process is challenging and has low yield prompting the need to investigate other means of linking HOPO to targeting vectors^{36,161}. One potential option is to use the mammalian 24 kDa Siderocalin protein. Siderocalin has been shown to be part of the innate immune system where it binds through electrostatic interactions with the negatively charged [Fe^{III}-enterobactin]-3 complex where enterobactin is a hexadentate siderophore produced by Escherichia coli and Salmonella typhimurium⁴¹. Interestingly, If the iron is swapped with a trivalent or tetravalent actinide or rare earth metal, siderocalin will still bind rather strongly with the complex⁴². Furthermore, swapping enterobactin with HOPO allows for the same electrostatic binding if the metal is a trivalent cation because HOPO trivalent metal complexes have a charge of negative 1⁴². If a HOPO is bound to a tetravalent metal cation, the complex that is formed is neutral and is not recognized by Siderocalin. This non-covalent interaction could potentially be used as a linker to bind M^{III}-HOPO complexes to a targeting vector if the targeting vector incorporates Siderocalin's binding pocket.

In order to investigate this hypothesis, Siderocalin-Trastuzumab fusion proteins were developed (Fig. 6.1). These fusion proteins have the functionality of both the original proteins, Siderocalin's ability to tightly bind negatively charged HOPO

complexes and Trastuzumab's ability to selectively bind to the HER2+ protein, allowing them to be used for targeted radiopharmaceuticals^{148,149}. Two different fusion proteins were developed: Siderocalin-Trastuzumab-IgG (Fig. 6.2(A)) which contains two siderocalin proteins allowing for the binding of 2 [M^{III}-HOPO]⁻¹ complexes and Siderocalin-Trastuzumab-Fab (Fig. 6.2(B)) which contains one Siderocalin protein allowing for the binding of 1 [M^{III}-HOPO]⁻¹ complex.

Figure 6.1: The chemical structure of the Siderocalin-Trastuzumab fusion protein. Ab is antibody, and Scn is Siderocalin.

Figure 6.2: A schematic of (A) Siderocalin-Trastuzumab-IgG and (B) Siderocalin-Trastuzumab-Fab. Siderocalin-Trastuzumab-IgG has two Siderocalin proteins while Siderocalin-Trastuzumab-Fab only has one Siderocalin protein. Scn is Siderocalin.

Herein, the *ex vivo* biodistribution of ⁹⁰Y and ²²⁵Ac bound to both of these fusion proteins in SK-OV-3 tumor bearing NOD SCID mice is investigated. In addition, a tumor control efficacy study is performed with both of these therapeutic radionuclides.

6.2 Materials and methods

All procedures and protocols used in these studies were reviewed and approved by the Institutional Animal Care and Use Committee of LBNL and were performed in AAALAC-accredited facilities, according to prescribed guidelines and regulations. Intraperitoneal (IP) injections and euthanasia by cervical dislocation were performed under isoflurane anesthesia.

6.2.1 Materials

The following chemicals were used as received from chemical suppliers: Yttrium-90 (⁹⁰Y; Eckert & Ziegler), hydrochloric acid optima (HCI; Fisher Scientific), 1x sterile phosphate buffered saline (PBS, VWR), 0.9% sterile saline (saline; APP Pharmaceuticals), 3,4,3-LI(1,2-HOPO) (HOPO; Ash Stevens), Ethylenediaminetetraacetic acid disodium salt dihydrate (EDTA; VWR), 40-86% Nitric Acid (HNO₃; Sigma-Aldrich), Dimethyl sulfoxide (DMSO; Amresco), and Matrigel matrix (Matrigel; VWR). The wild-type Siderocalin proteins were produced as previously described by Roland Strong's laboratory at Fred Hutchinson Cancer Research Center⁴¹. Also, the Siderocalin fusion proteins were produced at the beforementioned lab. Generator-produced ²²⁵Ac was received from the National Isotope Development Center at Oak Ridge National Laboratory as ²²⁵Ac trichloride⁶⁹. All solutions were prepared with deionized water purified by a Millipore Milli-Q water purification system. SK-OV-3 cells were used as received from ATCC.

6.2.2 ²²⁵Ac radiolabeling

Radiolabeling of the fusion proteins with ²²⁵Ac was performed by Dr. Korey Carter while gamma spectroscopy was performed by me. ²²⁵Ac trichloride was dissolved in 0.05 N of HCl. 3 aliquots of the ²²⁵Ac solution were added to pre-prepared PBS solutions containing HOPO in DMSO in a 100:1 ligand to metal ratio. The solution was mixed thoroughly by pipetting up and down and then allowed to incubate for 1 hour at 60 degrees Celsius. Afterwards, the solutions were then added to either wild-type Siderocalin proteins (200:1 protein to metal ratio), Siderocalin-Trastuzumab-IgG proteins (100:1 protein to metal ratio), or Siderocalin-Trastuzumab-Fab proteins (200:1 protein to metal ratio) in a PBS matrix. These solutions were mixed thoroughly by pipetting up and down and then were allowed to incubate for 5 minutes at room temperature. The solutions were then buffer-exchanged into saline using 0.5 mL 10 kDa Amicon Ultra centrifugal filter units to remove unlabeled metal and then diluted for animal injection. A cold HOPO-Siderocalin-Trastuzumab-IgG solution was prepared as a negative control with the same procedure minus the ²²⁵Ac.

Activities of the injection solutions were determined by gamma spectroscopy via a P-Type High Purity Germanium gamma spectrometer using the 218.00 keV line of ²²¹Fr. Before counting, samples were allowed to sit at rest for more than 1 hour prior to measurements to allow ²²¹Fr to reach secular equilibrium with ²²⁵Ac, allowing the ²²¹Fr activity to be equivalent to ²²⁵Ac. The radiochemical yields were determined by measuring the activity of ²²⁵Ac that stayed at the top of the 10 kDa filter (the labeled ²²⁵Ac) and the activity of ²²⁵Ac that was in the filtrate (the unlabeled ²²⁵Ac). The radiochemical yield is then calculated by the ratio of labeled radiometal to the sum of labeled radiometal and unlabeled radiometal.

6.2.3 ⁹⁰Y radiolabeling

6 aliquots (3 for biodistribution experiments and 3 for therapy experiments) of ⁹⁰Y in a 0.04 N HCl matrix were added to pre-prepared PBS solutions containing HOPO in DMSO in a 100:1 ligand to metal ratio. The solution was mixed thoroughly by pipetting up and down, and then allowed to incubate for 5 minutes at room temperature. Afterwards, the solutions were then added to either wild-type Siderocalin proteins (200:1 protein to metal ratio), Siderocalin-Trastuzumab-IgG proteins (100:1 protein to metal molar ratio), or Siderocalin-Trastuzumab-Fab proteins (200:1 protein to metal molar ratio) in a PBS matrix. These solutions were mixed thoroughly by pipetting up and down and then were allowed to incubate for 5 minutes at room temperature. The solutions were then diluted for animal injection.

Activities of the injection solutions were measured by Liquid Scintillation Counting (Packard Tri-Carb model B4430, Perkin Elmer), using a 20 – 2000 keV window and Ultima Gold LLT. The radiochemical purities of radiolabeled antibody drug conjugate solutions were determined by radio-ITLC (Bioscan System 200 Imaging Scanner), using Supelco ITLC-SG glass plates (Sigma-Aldrich) and 20 mM EDTA at pH 5.5 as the mobile phase. Radiochemical purities were determined by drawing two regions of interest (using Bioscan System 200 Imaging Scanner software) over the gaussian peak

at the origin (which contains the labeled proteins and ⁹⁰Y-HOPO) and the region outside the origin peak (which constitutes unlabeled radiometal). Because both ⁹⁰Y-HOPO bound to protein and ⁹⁰Y-HOPO unbound to protein stayed at the origin, this radiochemical purity measurement does not distinguish between the two cases (this is discussed further in Section 6.4). The radiochemical purity is then calculated by the ratio of labeled radiometal to the total amount of radiometal on the plate. The radiochemical purities were measured immediately, 1 day, and 3 days after solution prep in order to determine if the purity degraded overtime *in vitro*.

6.2.4 ²²⁵Ac labeled fusion protein biodistribution and tumor control studies

Ex vivo biodistribution and tumor control studies were performed in SK-OV-3 tumor-bearing ($0.28 \pm 0.04 \text{ cm}^3$), adult female NOD SCID mice (13 weeks; $23.9 \pm 2.3 \text{ g}$; Charles River, CA) to evaluate the tumor targeting capability and the tumor control efficacy of the ²²⁵Ac labeled fusion proteins. The SK-OV-3 tumors were passaged in NOD SCID mice and prepared as single-cell suspensions (10^6 cells) in 50% Matrigel prior to subcutaneous transplantation in the right mammary fat pad of NOD SCID mice under isoflurane anesthesia.

For the biodistribution study, groups of 3 mice were injected intraperitoneally with a single dose of either 0.2 mL ²²⁵Ac-HOPO-Siderocalin (3784.1 ± 51.5 Bq, 39.2 pM), 0.2 mL ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG (333 ± 33.5 Bq, 3.4 pM), or 0.2 mL ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-Fab (59.2 ± 2.3 Bq, 0.6 pM). Molarities of the antibodies, ligands, and the metals in each injection dose are included in Table 6.1. At 24 hours after administration, mice were euthanized by cervical dislocation and then dissected. For each mouse, kidneys, liver, spleen, and tumor were dissected, and the abdominal remainder tissue (ART, which includes the (GI) tract, reproductive organs, urinary bladder, and abdominal fat) was removed. Feces samples were separated manually from urine-stained cellulose bedding and treated as group samples (each group had their own cage). The organ samples and the partially eviscerated carcasses were managed as individual samples. All samples were dried at 100 °C, dry-ashed at 575 °C, and dissolved in concentrated nitric acid. The ashed-soft tissue in the carcass was rinsed from the ashed-bone with HNO₃ and both soft tissue, bone, feces, and urine were diluted with water into polyethylene bottles. The dissolved organs, 2 g aliquots of the soft tissue, bone, feces, and urine, and 2 mL aliquots of standard solutions were mixed with 10 mL of Ultima Gold LLT (Perkin Elmer, Shelton) for counting by liquid scintillation counting (Packard Tri-Carb model B4430, Perkin Elmer) using a window of 50 keV-2000 keV with the results being reported in terms of percent injected activity per gram of tissue (%IA/g).

For the tumor control study, groups of 4 mice were injected intraperitoneally with a single dose of either 0.2 mL cold HOPO-Siderocalin-Trastuzumab-IgG, 0.2 mL ²²⁵Ac-HOPO-Siderocalin (3784.1 ± 51.5 Bq, 39.2 pM), 0.2 mL ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG (333.0 ± 33.5 Bq, 3.4 pM), 0.4 mL ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG (603.0 ± 22.8 Bq, 3.1 pM), or 0.2 mL ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-Fab (59.2 ± 2.3 Bq, 0.6 pM). Molarities of the proteins, ligands, and the metals in each injection dose are included in Table 6.1. Mice were checked daily for signs of distress, and weights and tumor volumes were measured twice a week. Mice were euthanized by cervical dislocation if tumor volumes were larger than 1000 mm³ for two consecutive measurements, lost more than 15% of their original body mass at the time of drug administration, or if the tumor ulcerated.

Injection Dose ^a	Protein Molarity	Ligand Molarity	Goal ²²⁵ Ac Molarity	Actual ²²⁵ Ac Molarity
HOPO-			.	
Siderocalin-	7.7 nM	7.7 nM	N/A	N/A
Trastuzumab-lgG				
²²⁵ Ac-HOPO-				
Siderocalin	15.3 nM	7.7 nM	76.6 pM	39.2 pM
²²⁵ Ac-HOPO-				
Siderocalin-	7.7 nM	7.7 nM	76.6 pM	3.45 pM
Trastuzumab-IgG			-	-
²²⁵ Ac-HOPO-				
Siderocalin-	7.7 nM	7.7 nM	76.6 pM	3.12 pM
Trastuzumab-				
lgG ^b				
²²⁵ Ac-HOPO-				
Siderocalin-	15.3 nM	7.7 nM	76.6 pM	0.6 pM
Trastuzumab-Fab			-	-

Table 6.1: Protein molarity, ligand Molarity, goal ²²⁵Ac molarity, and actual ²²⁵Ac molarity for the ²²⁵Ac labeled fusion proteins injection solutions.

^aUnless otherwise stated, the injection dose was 0.2 mL injected intraperitoneally.

^bThe injection dose was 0.4 mL injected intraperitoneally

6.2.5 ⁹⁰Y labeled fusion protein biodistribution and tumor control studies

Ex vivo biodistribution and tumor control studies were performed in SK-OV-3 tumor-bearing ($0.04 \pm 0.01 \text{ cm}^3$), adult female NOD SCID mice (10 weeks; $24.2 \pm 1.4 \text{ g}$; Charles River, CA) to evaluate the tumor targeting capability and the tumor control efficacy of the ⁹⁰Y labeled fusion proteins. The SK-OV-3 tumors were passaged in NOD SCID mice and prepared as single-cell suspensions (10^6 cells) in 50% Matrigel prior to subcutaneous transplantation in the right mammary fat pad of NOD SCID mice under isoflurane anesthesia.

For the biodistribution study, groups of 3 mice were injected Intraperitoneally with a single 0.2 mL dose of either ⁹⁰Y-HOPO-Siderocalin (76.6 \pm 0.4 kBq), ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-IgG (74.1 \pm 0.7 kBq), or ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-Fab (49.3 \pm 4.5 kBq). Molarities of the proteins, ligands, and the metals in each injection dose are included in Table 6.2. At 24 hours after administration, mice were euthanized by cervical dislocation and then dissected. For each mouse, kidneys, liver, spleen, femur, heart, and tumor were dissected, and the abdominal remainder tissue (ART, which includes the (GI) tract, reproductive organs, urinary bladder, and abdominal fat) was removed. All samples were dried at 100 °C, dry-ashed at 575 °C, and dissolved in concentrated nitric acid. The dissolved organs and 2 mL aliquots of standard solutions were mixed with 10 mL of Ultima Gold LLT (Perkin Elmer, Shelton) for counting by liquid scintillation counting (Packard Tri-Carb model B4430, Perkin Elmer) using a window of 50 keV-2000 keV with the results being reported in terms of percent injected activity per gram of tissue (%IA/g).

For the tumor control study, groups of 4 mice were injected intraperitoneally with a single 0.2 mL dose of either 90 Y-HOPO-Siderocalin (1.63 ± 0.03 MBq), 90 Y-HOPO-Siderocalin-Trastuzumab-IgG (1.65 ± 0.03 MBq), 90 Y-HOPO-Siderocalin-Trastuzumab-Fab (1.70 ± 0.03 MBq), or no treatment. Molarities of the proteins, ligands, and the metals in each injection dose are included in Table 6.2. Mice were checked daily for signs of distress, and weights and tumor volumes were measured twice a week. Mice were euthanized by cervical dislocation if tumor volumes were larger than 1000 mm³ for two consecutive measurements, lost more than 15% of their original body mass at the time of drug administration, or if the tumor ulcerated.

Injection Dose ^a	Protein Molarity	Ligand Molarity	⁹⁰ Y Molarity				
Biodistribution							
⁹⁰ Y-HOPO-	42.3 nM	21.2 nM	211.6 pM				
Siderocalin			-				
⁹⁰ Y-HOPO-							
Siderocalin-	20.5 nM	20.5 nM	204.7 pM				
Trastuzumab-IgG							
⁹⁰ Y-HOPO-							
Siderocalin-	27.2 nM	13.6 nM	136.2 pM				
Trastuzumab-Fab							
	Tumor	Control					
⁹⁰ Y-HOPO-	900.7 nM	450.4 nM	4.5 nM				
Siderocalin							
⁹⁰ Y-HOPO-							
Siderocalin-	455.9 nM	455.9 nM	4.6 nM				
Trastuzumab-IgG							
⁹⁰ Y-HOPO-							
Siderocalin-	939.4 nM	469.7 nM	4.7 nM				
Trastuzumab-Fab							

Table 6.2: Protein molarity, ligand molarity, and ⁹⁰Y molarity for the ⁹⁰Y labeled fusion proteins.

^aThe injection dose was 0.2 mL injected intraperitoneally.

6.3 Results

6.3.1 Fusion proteins labeled with ²²⁵Ac

The radiochemical yield was determined to be 17.7% for ²²⁵Ac-HOPO-Siderocalin, 2.2% for ²²⁵Ac-HOPO-Siderocalin-Trastuzumab, and 0.4% for ²²⁵Ac-HOPO-Siderocalin-Fab. Because of the low yield, the goal doses for therapy (200 nCi for 0.2 mL injections and 400 nCi for 0.4 mL injections) were not able to be met. In addition, there was not enough activity to determine radiochemical purity using radio-ITLC.

Figure 6.3(A) and Figure 6.3(B) show the results of the *ex vivo* biodistribution 24 hours after administration of the constructs in terms of %IA/g and %IA respectively. Minimal tumor uptake is apparent in all three groups with 0.82 \pm 0.36 %IA/g for ²²⁵Ac-HOPO-Siderocalin (negative control), 2.97 \pm 3.98 %IA/g for ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG, and 0.97 \pm 0.57 %IA/g for ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-

Fab indicated minimal tumor uptake. Furthermore, elevated uptake is apparent in the liver, spleen, and skeletal system for all three constructs which is indicative of the natural biodistribution of free ²²⁵Ac. Interestingly, ²²⁵Ac-HOPO-SCN-Fab has elevated uptake in the feces at 26.15 ± 0.32 %IA which could be due to the elimination pathway ²²⁵Ac-HOPO not bound to the protein.

Figure 6.3: *Ex vivo* ²²⁵Ac-HOPO-Siderocalin, ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG, and ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-Fab biodistribution in SK-OV-3 tumor bearing NOD SCID mice in terms of (A) %IA/g and (B) %IA at 1 day after administration measured by liquid scintillation counting. Each data point is the average value of the 3 mice in each group, and the error bars represent the 1-sigma standard deviation. Only the upper error bar is displayed for ease of visualization. IgG is Trastuzumab-IgG, Fab is Trastuzumab-Fab, and SCN is Siderocalin. ART is abdominal remaining tissue. Skel is the entire skeletal system. Soft is the remaining soft tissue that was not already harvested.

The individual tumor growth curves are shown for all 5 treatment groups in Figure 6.4. The ²²⁵Ac radiolabeled groups (3784.1 Bq of ²²⁵Ac-HOPO-Siderocalin (Fig. 6.4(B)), 333.0 Bq of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG (Fig. 6.4(C)), 603 Bq of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG (Fig. 6.4(D)), and 59.2 Bq of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-Fab (Fig. 6.4(E)) all follow a similar growth trend to the negative control HOPO-Siderocalin-Trastuzumab group in Figure 6.4(A). This similarity is also apparent in Figure 6.5(A) which shows the average tumor volume growth for each group is not statistically significantly different from one and other (notice the 1 standard deviation error bars all overlap). The mice seemed to tolerate the constructs well and did not lose more than %15 of their body mass on administration day. All the mice were euthanized early due to ulcerations in their tumors as shown in the survival curve in Figure 6.5(B).

Figure 6.4: Individual tumor growth curves of SK-OV-3 tumor bearing NOD SCID mice administered with (A) cold HOPO-Siderocalin-Trastuzumab-IgG, (B) 3784.1 Bq of ²²⁵Ac-HOPO-Siderocalin, (C) 333.0 Bq of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG, and (E) 59.2 Bq of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG, and (E) 59.2 Bq of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-Fab. Each data point is the tumor volume for a single mouse, and the error bars represent the experimental error of manually measuring tumors with calipers. Only the upper error bar is displayed for ease of visualization. IgG is Trastuzumab-IgG, Fab is Trastuzumab-Fab, and SCN is Siderocalin. LD is the low dose of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG at 333.0 Bq while HD is the high dose of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG at 603 Bq.

Figure 6.5: (A) Average tumor growth curves and (B) survival curves of SK-OV-3 tumor bearing NOD SCID mice administered with cold HOPO-Siderocalin-Trastuzumab-IgG, 3784.1 Bq of ²²⁵Ac-HOPO-Siderocalin, 333 Bq of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG, 603.0 Bq of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG, and 59.2 Bq of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-Fab. Each data point is the average value of the 4 mice in each group, and the error bars represent the 1-sigma standard deviation. Only the upper error bar is displayed for ease of visualization. IgG is Trastuzumab-IgG, Fab is Trastuzumab-Fab, and SCN is Siderocalin. LD is the low dose of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG at 333.0 Bq while HD is the high dose of ²²⁵Ac-HOPO-Siderocalin-Trastuzumab-IgG at 603.0 Bq. For the survival curve, the cold HOPO-Siderocalin-IgG curve is overlapping with the ²²⁵Ac-HOPO-Siderocalin-Fab curve and the ²²⁵Ac-HOPO-Siderocalin curve is overlapping with the HD ²²⁵Ac-HOPO-Siderocalin-Fab curve and the ²²⁵Ac-HOPO-Siderocalin curve is overlapping with the HD ²²⁵Ac-HOPO-Siderocalin-Fab curve and the ²²⁵Ac-HOPO-Siderocalin curve is overlapping with the HD ²²⁵Ac-HOPO-Siderocalin-Fab curve and the ²²⁵Ac-HOPO-Siderocalin curve is overlapping with the HD ²²⁵Ac-HOPO-Siderocalin-Fab curve and the ²²⁵Ac-HOPO-Siderocalin curve is overlapping with the HD ²²⁵Ac-HOPO-Siderocalin-Fab curve and the ²²⁵Ac-HOPO-Siderocalin curve is overlapping with the HD ²²⁵Ac-HOPO-Siderocalin-Fab curve and the ²²⁵Ac-HOPO-Siderocalin curve is overlapping with the HD ²²⁵Ac-HOPO-Siderocalin-Fab curve and the ²²⁵Ac-HOPO-Siderocalin curve is overlapping with the HD ²²⁵Ac-HOPO-Siderocalin-Fab curve and the ²²⁵Ac-HOPO-Siderocalin curve is overlapping with the HD ²²⁵Ac-HOPO-Siderocalin-Fab curve and the ²²⁵Ac-HOPO-Siderocalin curve is overlapping with the HD ²²⁵Ac-HOPO-Siderocalin-Fab curve and the ²²⁵Ac-HOPO-Siderocalin curve is overlapping with the HD ²²⁵Ac-HOPO-Siderocalin-Fab curve and ²²⁵Ac-HOPO-Siderocal

6.3.2 Fusion proteins labeled with ⁹⁰Y

Radiochemical yield was not measured for labeling these fusion proteins with ⁹⁰Y as spin filtration was not done for purification purposes like with the ²²⁵Ac labeled fusion proteins and the antibody drug conjugates in Chapter 4 and 5. Radiochemical purity was determined by radio-ITLC where it was determined that labeled proteins and HOPO (Figure 6.6(B)) stayed at the origin and the free metal moved up the plate with the solvent front (Fig. 6.6(A)). ⁹⁰Y-HOPO had a radiochemical purity of 81.0% (Fig.6.6(B)). The ⁹⁰Y-HOPO-Siderocalin radiochemical purity was rather consistent over 3 days where it was 85.9% at day 0 (Fig.6.7(A)), 84.3% at day 1 (Fig.6.7(B)), and 86.7% at day 3 (Fig. 6.7(C)). The ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-IgG radiochemical purity was also consistent over 3 days where it was 86.3% at day 0 (Fig. 6.8(A)), 82.6% at day 1 (Fig. 6.8(B)), and 84.9% at day 3 (Fig.6.8(C)). The ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-

Fab radiochemical purity also displayed the latter's consistency where it was 87.2% at day 0 (Fig. 6.9(A), 86.7% at day 1 (Fig. 6.9(B)), and 84.9% at day 3 (Fig. 6.9(C)). All of these radiochemical purity results are tabulated in Table 6.3 for ease of comparison. Table 6.4 tabulates the location and the full width at half maximum (FWHM) of the prominent peak for the ⁹⁰Y-HOPO-Siderocalin, ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-IgG, and ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-Fab TLC traces. Based on the location and FWHM of the peaks, there seems to be no difference in retention times for all three constructs.

Figure 6.6: Radio-ITLC traces of (A) free ⁹⁰Y and (B) ⁹⁰Y-HOPO.

Figure 6.7: Radio-ITLC traces of ⁹⁰Y-HOPO-Siderocalin (A) immediately after radiolabeling, (B) a day after radiolabeling, and (C) 3 days after radiolabeling. SCN is Siderocalin.

Figure 6.8: Radio-ITLC traces of ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-IgG (A) immediately after radiolabeling, (B) a day after radiolabeling, and (C) 3 days after radiolabeling. SCN is Siderocalin and IgG is Trastuzumab-IgG.

Figure 6.9: Radio-ITLC traces of ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-Fab (A) immediately after radiolabeling, (B) a day after radiolabeling, and (C) 3 days after radiolabeling. SCN is Siderocalin and Fab is Trastuzumab-Fab.

Day	⁹⁰ Y-HOPO-SCN	⁹⁰ Y-HOPO-SCN- IgG	⁹⁰ Y-HOPO-SCN-Fab
0	85.9%	86.3%	87.2%
1	84.3%	82.6%	86.7%
3	86.7%	84.9%	84.9%

Table 6.3: Radiopurity for ⁹⁰Y-HOPO-Siderocalin, ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-IgG, and ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-Fab.

Table 6.4: Location of the peak and the full width at half maximum (FWHM) of the prominent peak for the ⁹⁰Y-HOPO-Siderocalin, ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-IgG, and ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-Fab TLC traces.

	⁹⁰ Y-HOPO-SCN ⁹⁰ Y-HOPO-SCN-lg(-SCN-lgG	⁹⁰ Y-HOPO-SCN-Fab		
Day	Peak (mm)	FWHM	Peak (mm)	FWHM	Peak (mm)	FWHM
		(mm)		(mm)		(mm)
0	18.6	14.0	17.1	12.4	17.1	10.9
1	17.1	10.9	15.5	12.4	15.5	10.9
3	15.5	10.9	15.5	10.9	15.5	10.9
Avg ± SD	17.1 ± 1.6	11.9 ± 1.8	16.0 ± 0.9	11.9 ± 0.9	16.0 ± 0.9	10.9 ± 0.0

Figure 6.10 shows the *ex vivo* biodistribution for the 3 constructs at 5 hours, 25 hours, and 50 hours. The ⁹⁰Y-HOPO-Siderocalin negative control group shows surprisingly consistent but stagnant elevated tumor uptake at all three timepoints (5.91 ± 4.66 %IA/g at 5 hours, 5.53 ± 5.33 %IA/g at 25 hours, and 6.03 ± 1.86 %IA/g at 50 hours) (Fig. 6.10(A, D)). ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-IgG showed similar results as well through all three timepoints (4.71 ± 2.14 %IA/g at 5 hours, 7.24 ± 3.39 %IA/g at 25 hours, and 4.35 ± 2.71 %IA/g at 50 hours) (Fig. 6.10(B, D)). ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-IgG showed similar results as well through all three timepoints (4.71 ± 2.14 %IA/g at 5 hours, 7.24 ± 3.39 %IA/g at 25 hours, and 4.35 ± 2.71 %IA/g at 50 hours) (Fig. 6.10(B, D)). ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-Fab showed rapid elevated tumor uptake at 5 hours and then decreased and plateaued at the later timepoints (12.73 ± 3.72 %IA/g at 5 hours, 5.09 ± 7.86 %IA/g at 25 hours, 6.30 ± 2.06 %IA/g at 50 hours) (Fig. 6.10(C, D)). Minimal ⁹⁰Y uptake is located femur through all three constructs indicating high *in vivo* stability.

Figure 6.10: *Ex vivo* (A) ⁹⁰Y-HOPO-Siderocalin, (B) ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-IgG, and (C) ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-Fab biodistribution in SK-OV-3 tumor bearing NOD SCID mice in terms of %IA/g at 5 hours, 25 hours, and 50 hours after administration measured by liquid scintillation counting. Each data point is the average value of the 3 mice in each group, and the error bars represent the 1-sigma standard deviation. Only the upper error bar is displayed for ease of visualization. IgG is Trastuzumab-IgG, Fab is Trastuzumab-Fab, and SCN is Siderocalin. ART is abdominal remaining tissue. The tumor uptake (D) is displayed in a separate graph for ease of comparison). The individual tumor growth curves are shown for all 4 treatment groups in Figure 6.11. The ⁹⁰Y radiolabeled groups (⁹⁰Y-HOPO-Siderocalin (Fig. 6.11(A)), ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-IgG (Fig. 6.11(B)), and ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-IgG (Fig. 6.11(C))) all follow a similar growth trend to the negative control no treatment group in Figure 6.11(D). This similarity is also apparent in Figure 6.12(A) which shows the average tumor volume growth for each group is not statistically significantly different from one and other (notice the 1 standard deviation error bars all overlap). The mice seemed to tolerate the constructs well and did not lose more than %15 of their body mass on administration day. All the mice were euthanized due to ulcerations in their tumors as shown in the survival curve in Figure 6.12(B).

Figure 6.11: Individual tumor growth curves of SK-OV-3 tumor bearing NOD SCID mice administered with (A) 1.63 MBq of ⁹⁰Y-HOPO-Siderocalin, (B) 1.65 MBq of ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-IgG, (C) 1.70 MBq of ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-Fab, and (D) no treatment. Each data point is the tumor volume for a single mouse, and the error bars represent the experimental error of manually measuring tumors with calipers. Only the upper error bar is displayed for ease of visualization. IgG is Trastuzumab-IgG, Fab is Trastuzumab-Fab, and SCN is Siderocalin.

Figure 6.12: (A) Average tumor growth curves and (B) survival curves of SK-OV-3 tumor bearing NOD SCID mice administered with 1.63 MBq of ⁹⁰Y-HOPO-Siderocalin, 1.65 MBq of ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-IgG, 1.70 MBq of ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-Fab, and no treatment. Each data point is the average value of the 4 mice in each group, and the error bars represent the 1-sigma standard deviation. Only the upper error bar is displayed for ease of visualization. IgG is Trastuzumab-IgG, Fab is Trastuzumab-Fab, and SCN is Siderocalin. For the survival curve, the ⁹⁰Y-HOPO-Siderocalin curve is overlapping with the no treatment curve.

6.4 Discussion

One of the benefits of using Siderocalin's ability to non-covalently bind to negatively charged HOPO complexes is the binding process is fast and can be performed at room temperature unlike the more traditional covalent binding approach using isothiocyanatobenzyl-based bifunctional chelators which require elevated heating for 1 hour and then require more time and potentially more heating for radiolabeling^{42,155}. Siderocalin and HOPO could pave the door way for antibody labeling "cold-kits" which could facilitate the use of targeted radiopharmaceuticals in the clinical setting¹⁶². Unfortunately one of the downsides of this study is that the radio-ITLC conditions that were used could not distinguish between ⁹⁰Y-HOPO-Siderocalin and ⁹⁰Y-HOPO since both of these species stayed at the origin. In Chapter 3, the radio-ITLC conditions used for the ¹³⁴Ce-HOPO complex were pH shifted to 10.5 which caused HOPO to follow the solvent front⁸⁵. Unfortunately, these conditions are not commonly used for radiolabeled antibodies where the pH is not adjusted and stays around 5-5.5, and previous studies investigating HOPO complexes with radio-ITLC used these same conditions^{36,106}. In the future, liquid chromatography with mass spectrometry will be used to quality control these fusion proteins as the technique could easily separate free ⁹⁰Y, ⁹⁰Y-HOPO, and ⁹⁰Y-HOPO-Siderocalin¹⁴⁷.

One of the failures of this study was that it is not clear that either the ²²⁵Ac was bound to HOPO or that the ²²⁵Ac-HOPO complex was bound to the fusion protein based on the low radiochemical yield and the biodistribution results. This failure of HOPO to coordinate ²²⁵Ac with the given conditions isn't necessarily surprising because the chemical properties of actinium are generally unknown compared to other *f*-elements due to its limited availability⁶⁹. In fact, no crystal structure has ever been solved for actinium since its discovery in 1899¹³⁶. Unfortunately, because the ²²⁵Ac-based experiment occurred before the ⁹⁰Y experiment, purification of the ⁹⁰Y fusion proteins through 0.5 mL 10 kDa Amicon Ultra centrifugal filter units was not performed as it was thought to be potentially one of the causes of the low radiochemical yield for the ²²⁵Ac study. Future work will rigorously test ²²⁵Ac-HOPO labeling conditions with High Performance Liquid Chromatography and develop a more robust purification methodology for these Siderocalin fusion proteins using size exclusion chromatography using PD-10 columns¹⁶³.

The ⁹⁰Y fusion protein study highlights the stability of ⁹⁰Y-HOPO complexes. Over 3 days, the radiochemical purity stayed approximately constant. In addition, limited bone and kidney uptake were apparent in the biodistribution with the exception of elevated kidney uptake for ⁹⁰Y-HOPO-Siderocalin and ⁹⁰Y-HOPO-Siderocalin-Trastuzumab-Fab. This elevated kidney uptake is due to renal elimination of the Siderocalin protein which is not surprising based on previous Siderocalin biodistribution studies¹⁶¹. Unlike Trastuzumab-lgG which circulates in the body for a long period of time, Trastuzumab-Fab is more rapidly cleared through renal elimination which explains the consistently elevated kidney uptake in the ⁹⁰Y biodistribution study^{39,164,165}. Furthermore, Trastuzumab-Fab expresses elevated uptake in tumors more rapidly than Trastuzumab-IgG explaining the more elevated levels in the tumor. It is anticipated that at longer timepoints the uptake of the Trastuzumab-IgG fusion protein will increase dramatically which is what has been observed with ⁸⁹Zr-HOPO-Trastuzumab³⁶. While imaging ⁸⁶Y labeled fusion proteins will be done in the future in order to corroborate the ⁹⁰Y biodistribution results, a longer-lived PET isotope such as ¹³⁴Ce or ⁸⁹Zr is required to confirm long term tumor targeting with the Trastuzumab-IgG fusion proteins.

While the ²²⁵Ac fusion protein tumor control experiment failed due to a poor radiochemical yield, the ⁹⁰Y fusion protein tumor control experiment could have failed due to the administration of too little activity. In other preclinical yttrium theranostic experiments using antibodies, the administered ⁹⁰Y dose was between 4.4 and 5.5 MBq while the administered dose for this experiment was around 1.7 MBq^{115,117}. This lower dose was due to material limitations and also an attempt to take into account the radiosensitivity of NOD SCID mice¹⁶⁶. Higher activity and potentially another mouse model (athymic nude mice) are warranted in order to see tumor control.

The down side of using HOPO for Siderocalin fusion proteins is that it prevents the use of tetravalent metal cations such as the ²²⁷Th^{IV} and ⁸⁹Zr^{IV} since they would form neutrally charged complexes. In addition, labeling HOPO with ¹³⁴Ce would stabilize ¹³⁴Ce to ¹³⁴Ce^{IV} causing the formation of a neutral complex which prevents the use of ²²⁵Ac-¹³⁴Ce^{III} theranostics⁸⁵. Through the use of a chelator with catecholamide (CAM) moieties on a spermine backbone or 3,4,3-LI(CAM), the use of tetravalent metal cations in these Siderocalin fusion proteins since these complexes will form a [M^{IV}-3,4,3-LI(CAM)]⁻⁴ complex and bind strongly to Siderocalin¹⁶¹. Unfortunately, it is unknown
whether 3,4,3-LI(CAM) will stabilize ¹³⁴Ce to ¹³⁴Ce^{IV} which could limit this system's potential for ²²⁷Th-¹³⁴Ce^{IV} theranostics.

6.5 Conclusions

Herein, it was demonstrated that Siderocalin fusion proteins allow for tumor targeting with high *in vivo* stability with ⁹⁰Y-HOPO complexes. In addition, the rapid non-covalent binding of Siderocalin to negative charged HOPO complexes allows could facilitate the labeling of trivalent radiometals to antibodies by completely removing the conjugation step and greatly reducing the time needed to label the radiometal the targeted radiopharmaceutical. Future work will investigate a more robust quality control and purification method for Siderocalin fusion proteins and investigate the system with other strategic radiometals.

CHAPTER 7: Conclusion

In this dissertation, new strategies were discussed with the purpose of advancing targeting radiopharmaceuticals for theranostic applications. These strategies ranged from a new diagnostic radiometal (¹³⁴Ce) to serve as theranostic matched pairs for ²²⁵Ac and ²²⁷Th, a novel chelator, 3,4,3-LI(1,2-HOPO) (HOPO), that can enable rapid, room-temperature radiolabeling that form complexes with high kinetic inertness with a variety of radiometals, a new elution strategy for a generator produced radiometal, ²¹²Pb, which can facilitate radiolabeling of said radiometal, and Siderocalin fusion proteins which could open the doorway for antibody-based "cold-kits".

Through the investigations of the ¹³⁴Ce/¹³⁴La *in vivo* generator system, the biodistribution of ¹³⁴Ce complexes was assayed through microPET imaging. These studies demonstrated the surrogacy of ¹³⁴Ce to both ²²⁵Ac and ²²⁷Th (with appropriate chelator selection) because of the unique Ce^{III}/Ce^{IV} redox couple. Moreover, ¹³⁴Ce long half-life allowed for the long term (9 days after administration) tumor imaging of ¹³⁴Ce-DOTA-Trastuzumab in a SK-OV-3 murine model. This proof of concept experiment demonstrates ¹³⁴Ce ability to act as a theranostic matched pair for ²²⁵Ac in antibody-based targeted radiopharmaceuticals.

Through the investigations of the *in vivo* stability and biodistribution of ⁸⁶Y-HOPO, HOPO was demonstrated to be a superior chelator for ⁸⁶Y compared to DTPA or DOTA due to HOPO allowing for rapid room temperature labeling and high *in vivo* stability. This further demonstrates HOPO's potential as a theranostic chelator that can bind a myriad of trivalent and tetravalent radiometals. Moreover, the negatively charged ⁹⁰Y-HOPO complex allowed for the non-covalent binding to Siderocalin fusion proteins which demonstrated tumor targeting. With further work and optimization, this system can be used as the blueprint for antibody-based "cold-kits".

Through the benchmarking of a novel 1.0 M sodium acetate elution strategy of a ²²⁴Ra/²¹²Pb generator, radiolabeling TCMC-conjugated Trastuzumab yielded a higher radiochemical yield through 2 weeks than the traditional 2.0 M hydrochloric acid elution strategy. In addition, because the 1.0 M sodium acetate elution strategy does not require a matrix exchange, this approach minimizes the time needs to prep targeted radiopharmaceuticals which can facilitate the use of ²¹²Pb/²⁰³Pb in the clinic.

7.1 Future Work

While this dissertation introduces the use of ¹³⁴Ce as a theranostic matched pair for both ²²⁵Ac and ²²⁷Th, most of the work that has been done focused on ¹³⁴Ce as a surrogate for ²²⁵Ac. Although impeded by the low availability of both ¹³⁴Ce and the chelator Me-3,2-HOPO (which is the most commonly used chelator for Targeted Thorium Conjugates), *in vitro* and *in vivo* experiments are required to determine the surrogacy of Me-3,2-HOPO complexes incorporating either ¹³⁴Ce or ²²⁷Th²⁵. This coupled with a bifunctional variant of 3,4,3-LI(1,2-HOPO) could become cornerstones in ²²⁷Th/¹³⁴Ce theranostics.

One remaining question about the use of ¹³⁴Ce is whether ¹³⁴La is released from its chelator after the decay of ¹³⁴Ce. This release could potentially degrade the spatial resolution ¹³⁴Ce PET images which could be problematic for imaging smaller structures. While this can be mitigated through the use of internalizing target vectors,

characterizing this release would be necessary to facilitate the use of non-internalizing target vectors. The use of liquid chromatography and mass spectrometry could determine this *in vitro*. For *in vivo* situations, imaging the targeted radiopharmaceutical through PET/SPECT system would allow the PET scanner to determine the biodistribution of ¹³⁴La while the SPECT scanner can determine the biodistribution of the ¹³⁹Ce impurity.

While the ⁹⁰Y-labeled Siderocalin fusion proteins showed tumor targeting, both the tumor control experiments and the labeling of ²²⁵Ac to the fusion proteins failed. There are a few avenues that can be pursued from here. The first is more rigorous in vitro experiments of ²²⁵Ac complexes are required in order to determine if chelation is feasible. If this is the case, the determination of adequate radiolabeling conditions is also required. The second avenue that can be pursued is developing more robust purification and quality control strategies. While the experiments that were performed in this dissertation utilized Amicon Centrifugal Filter Units, these have only led to radiochemical purities of less than 90%. Other studies in the literature have used size exclusion columns (PD-10 columns) or a combination of size exclusion columns and centrifugal filters and have obtained radiochemical purities of greater than 99%¹⁶³. In addition, as discussed in Chapter 6, Thin layer chromatography has a hard time separating labeled Siderocalin fusion protein from free HOPO. Utilizing liquid chromatography and mass spectrometry could separate the two allowing for the determination of the proportion of HOPO complexes bound to the fusion protein. A third and final avenue would be to investigate other strategic *f*-elements including terbium radioisotopes (¹⁴⁹Tb, ¹⁵²Tb, ¹⁵⁵Tb, and ¹⁶¹Tb) and ²²⁷Th in these Siderocalin fusion proteins. The terbium radioisotopes are a promising theranostic guadruplet that allow for α therapy, β - therapy, auger electron therapy, SPECT imaging, and PET imaging²⁴. While ²²⁷Th would require the use of 3,4,3-LI(CAM) in order to be incorporated into Siderocalin fusion proteins, it is unclear whether the terbium radiometals would be stabilized to 4+ when complexed to 3,4,3-LI(1,2-HOPO). Either way, due to HOPO's affinity for trivalent and tetravalent rare earth metals, the development of terbium radiometals in HOPO-based targeted vectors could greatly advance targeted radionuclide therapy.

7.2 Outlook

While this dissertation has focused on the advancement of targeted radiopharmaceuticals through *in vivo* studies and developing new radiochemical strategies, facilitating the use of theranostics is a multidisciplinary effort. One of the main hurdles in targeted radiopharmaceuticals is the actual production of the radionuclides. The lack of availability of certain radionuclides, such as ²²⁵Ac, has limited their use in clinical trials which has slowed their pathway to FDA approval and commercialization. While accelerator-produced ²²⁵Ac has increased its availability in recent years, it is unclear if ²²⁷Ac impurity leads to long term toxic effects^{69,71}. In addition, the technological development of molecular imaging modalities is also warranted. While theranostic matched pairs allow for "unimageable" therapeutic radionuclides to be traced via conventional PET or SPECT imaging, determining accurate dosimetry of ²²⁵Ac and ²²⁷Th is still rather difficult due to their recoiling daughters. Advancements in sensitivity and energy resolution of SPECT systems could

potentially allow for imaging the individual daughters of both of these radionuclides. While great strides have been made in the past couple decades for targeted radionuclide therapy, there is still a long way to go.

Bibliography

- Goldsmith SJ. Targeted Radionuclide Therapy: A Historical and Personal Review. Seminars in Nuclear Medicine. 2020;50(1):87-97. doi:10.1053/j.semnuclmed.2019.07.006
- 2. Strebhardt K, Ullrich A. Paul Ehrlich's magic bullet concept: 100 years of progress. *Nat Rev Cancer*. 2008;8(6):473-480. doi:10.1038/nrc2394
- 3. Parker CC, Coleman RE, Sartor O, et al. Three-year Safety of Radium-223 Dichloride in Patients with Castration-resistant Prostate Cancer and Symptomatic Bone Metastases from Phase 3 Randomized Alpharadin in Symptomatic Prostate Cancer Trial. *Eur Urol*. 2018;73(3):427-435. doi:10.1016/j.eururo.2017.06.021
- 4. Noto RB, Pryma DA, Jensen J, et al. Phase 1 Study of High-Specific-Activity I-131 MIBG for Metastatic and/or Recurrent Pheochromocytoma or Paraganglioma. *The Journal of Clinical Endocrinology & Metabolism*. 2018;103(1):213-220. doi:10.1210/jc.2017-02030
- 5. Larson SM, Carrasquillo JA, Cheung NKV, Press O. Radioimmunotherapy of human tumours. *Nat Rev Cancer*. 2015;15(6):347-360. doi:10.1038/nrc3925
- Mondello P, Cuzzocrea S, Navarra M, Mian M. 90 Y-ibritumomab tiuxetan: a nearly forgotten opportunity. *Oncotarget*. 2015;7(7):7597-7609. doi:10.18632/oncotarget.6531
- Hennrich U, Kopka K. Lutathera®: The First FDA- and EMA-Approved Radiopharmaceutical for Peptide Receptor Radionuclide Therapy. *Pharmaceuticals*. 2019;12(3):114. doi:10.3390/ph12030114
- Aghevlian S, Boyle AJ, Reilly RM. Radioimmunotherapy of cancer with high linear energy transfer (LET) radiation delivered by radionuclides emitting α-particles or Auger electrons. *Adv Drug Deliv Rev*. 2017;109:102-118. doi:10.1016/j.addr.2015.12.003
- Graf F, Fahrer J, Maus S, et al. DNA double strand breaks as predictor of efficacy of the alpha-particle emitter Ac-225 and the electron emitter Lu-177 for somatostatin receptor targeted radiotherapy. *PLoS One*. 2014;9(2):e88239. doi:10.1371/journal.pone.0088239
- Wulbrand C, Seidl C, Gaertner FC, et al. Alpha-Particle Emitting 213Bi-Anti-EGFR Immunoconjugates Eradicate Tumor Cells Independent of Oxygenation. *PLoS One*. 2013;8(5):e64730. doi:10.1371/journal.pone.0064730
- Kratochwil C, Bruchertseifer F, Giesel FL, et al. 225Ac-PSMA-617 for PSMA-Targeted α-Radiation Therapy of Metastatic Castration-Resistant Prostate Cancer. J Nucl Med. 2016;57(12):1941-1944. doi:10.2967/jnumed.116.178673

- Friesen C, Glatting G, Koop B, et al. Breaking Chemoresistance and Radioresistance with [²¹³ Bi]anti-CD45 Antibodies in Leukemia Cells. *Cancer Res.* 2007;67(5):1950-1958. doi:10.1158/0008-5472.CAN-06-3569
- Wilbur DS. The Radiopharmaceutical Chemistry of Alpha-Emitting Radionuclides. In: Lewis JS, Windhorst AD, Zeglis BM, eds. *Radiopharmaceutical Chemistry*. Springer International Publishing; 2019:409-424. doi:10.1007/978-3-319-98947-1_23
- 14. Kokov KV, Egorova BV, German MN, et al. 212Pb: Production Approaches and Targeted Therapy Applications. *Pharmaceutics*. 2022;14(1):189. doi:10.3390/pharmaceutics14010189
- Gott M, Steinbach J, Mamat C. The Radiochemical and Radiopharmaceutical Applications of Radium. *Open Chemistry*. 2016;14(1):118-129. doi:10.1515/chem-2016-0011
- Ku A, Facca VJ, Cai Z, Reilly RM. Auger electrons for cancer therapy a review. *EJNMMI Radiopharmacy and Chemistry*. 2019;4(1):27. doi:10.1186/s41181-019-0075-2
- 17. Paillas S, Ladjohounlou R, Lozza C, et al. Localized Irradiation of Cell Membrane by Auger Electrons Is Cytotoxic Through Oxidative Stress-Mediated Nontargeted Effects. *Antioxid Redox Signal*. 2016;25(8):467-484. doi:10.1089/ars.2015.6309
- Pouget JP, Georgakilas AG, Ravanat JL. Targeted and Off-Target (Bystander and Abscopal) Effects of Radiation Therapy: Redox Mechanisms and Risk/Benefit Analysis. *Antioxid Redox Signal*. 2018;29(15):1447-1487. doi:10.1089/ars.2017.7267
- Santoro L, Boutaleb S, Garambois V, et al. Noninternalizing monoclonal antibodies are suitable candidates for 125I radioimmunotherapy of small-volume peritoneal carcinomatosis. *J Nucl Med*. 2009;50(12):2033-2041. doi:10.2967/jnumed.109.066993
- 20. Yordanova A, Eppard E, Kürpig S, et al. Theranostics in nuclear medicine practice. *Onco Targets Ther*. 2017;10:4821-4828. doi:10.2147/OTT.S140671
- 21. Müller C, Vermeulen C, Köster U, et al. Alpha-PET with terbium-149: evidence and perspectives for radiotheragnostics. *EJNMMI Radiopharmacy and Chemistry*. 2016;1(1):5. doi:10.1186/s41181-016-0008-2
- 22. Rösch F, Herzog H, Qaim SM. The Beginning and Development of the Theranostic Approach in Nuclear Medicine, as Exemplified by the Radionuclide Pair 86Y and 90Y. *Pharmaceuticals (Basel)*. 2017;10(2):E56. doi:10.3390/ph10020056

- 23. Máthé D, Szigeti K, Hegedűs N, et al. Production and in vivo imaging of (203)Pb as a surrogate isotope for in vivo (212)Pb internal absorbed dose studies. *Appl Radiat Isot*. 2016;114:1-6. doi:10.1016/j.apradiso.2016.04.015
- 24. Müller C, Domnanich KA, Umbricht CA, van der Meulen NP. Scandium and terbium radionuclides for radiotheranostics: current state of development towards clinical application. *BJR*. 2018;91(1091):20180074. doi:10.1259/bjr.20180074
- 25. Hagemann UB, Wickstroem K, Hammer S, et al. Advances in Precision Oncology: Targeted Thorium-227 Conjugates As a New Modality in Targeted Alpha Therapy. *Cancer Biother Radiopharm*. 2020;35(7):497-510. doi:10.1089/cbr.2020.3568
- Pelletier K, Côté G, Fallah-Rad N, John R, Kitchlu A. CKD After 225Ac-PSMA617 Therapy in Patients With Metastatic Prostate Cancer. *Kidney Int Rep.* 2020;6(3):853-856. doi:10.1016/j.ekir.2020.12.006
- Le Fur M, Rotile NJ, Correcher C, et al. Yttrium-86 is a Positron Emitting Surrogate of Gadolinium for Noninvasive Quantification of Whole-Body Distribution of Gadolinium-Based Contrast Agents. *Angew Chem Int Ed Engl*. 2020;59(4):1474-1478. doi:10.1002/anie.201911858
- Khozeimeh Sarbisheh E, Price EW. The Radiopharmaceutical Chemistry of the Radioisotopes of Lutetium and Yttrium. In: Lewis JS, Windhorst AD, Zeglis BM, eds. *Radiopharmaceutical Chemistry*. Springer International Publishing; 2019:359-370. doi:10.1007/978-3-319-98947-1_20
- 29. Abergel RJ, Kozimor SA. Innovative f-Element Chelating Strategies. *Inorg Chem*. 2020;59(1):4-7. doi:10.1021/acs.inorgchem.9b03583
- Deblonde GJP, Sturzbecher-Hoehne M, Abergel RJ. Solution Thermodynamic Stability of Complexes Formed with the Octadentate Hydroxypyridinonate Ligand 3,4,3-LI(1,2-HOPO): A Critical Feature for Efficient Chelation of Lanthanide(IV) and Actinide(IV) Ions. *Inorg Chem.* 2013;52(15):8805-8811. doi:10.1021/ic4010246
- 31. Gorden AEV, Xu J, Raymond KN, Durbin P. Rational Design of Sequestering Agents for Plutonium and Other Actinides. *Chem Rev.* 2003;103(11):4207-4282. doi:10.1021/cr990114x
- 32. Deblonde GJP, Lohrey TD, An DD, Abergel RJ. Toxic heavy metal Pb, Cd, Sn complexation by the octadentate hydroxypyridinonate ligand archetype 3,4,3-LI(1,2-HOPO). *New J Chem*. 2018;42(10):7649-7658. doi:10.1039/C7NJ04559J
- Sturzbecher-Hoehne M, Deblonde GJP, Abergel RJ. Solution thermodynamic evaluation of hydroxypyridinonate chelators 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO) for UO2(VI) and Th(IV) decorporation. *Radiochimica Acta*. 2013;101(6):359-366. doi:10.1524/ract.2013.2047

- 34. de Kruijff RM, Wolterbeek HT, Denkova AG. A Critical Review of Alpha Radionuclide Therapy-How to Deal with Recoiling Daughters? *Pharmaceuticals* (*Basel*). 2015;8(2):321-336. doi:10.3390/ph8020321
- 35. Lv Q, Meng Z, Yu Y, et al. Molecular Mechanisms and Translational Therapies for Human Epidermal Receptor 2 Positive Breast Cancer. *Int J Mol Sci.* 2016;17(12):2095. doi:10.3390/ijms17122095
- 36. Deri MA, Ponnala S, Kozlowski P, et al. p-SCN-Bn-HOPO: A Superior Bifunctional Chelator for (89)Zr ImmunoPET. *Bioconjug Chem*. 2015;26(12):2579-2591. doi:10.1021/acs.bioconjchem.5b00572
- O'Donoghue JA, Lewis JS, Pandit-Taskar N, et al. Pharmacokinetics, Biodistribution, and Radiation Dosimetry for 89Zr-Trastuzumab in Patients with Esophagogastric Cancer. *Journal of Nuclear Medicine*. 2018;59(1):161-166. doi:10.2967/jnumed.117.194555
- 38. Borchardt PE, Yuan RR, Miederer M, McDevitt MR, Scheinberg DA. Targeted Actinium-225 in Vivo Generators for Therapy of Ovarian Cancer. *Cancer Res.* 2003;63(16):5084-5090.
- Mendler CT, Gehring T, Wester HJ, Schwaiger M, Skerra A. 89Zr-Labeled Versus 124I-Labeled αHER2 Fab with Optimized Plasma Half-Life for High-Contrast Tumor Imaging In Vivo. *Journal of Nuclear Medicine*. 2015;56(7):1112-1118. doi:10.2967/jnumed.114.149690
- Cardinale J, Giammei C, Jouini N, Mindt TL. Bioconjugation Methods for Radiopharmaceutical Chemistry. In: Lewis JS, Windhorst AD, Zeglis BM, eds. *Radiopharmaceutical Chemistry*. Springer International Publishing; 2019:449-466. doi:10.1007/978-3-319-98947-1_25
- 41. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. The Neutrophil Lipocalin NGAL Is a Bacteriostatic Agent that Interferes with Siderophore-Mediated Iron Acquisition. *Molecular Cell*. 2002;10(5):1033-1043. doi:10.1016/S1097-2765(02)00708-6
- 42. Allred BE, Rupert PB, Gauny SS, et al. Siderocalin-mediated recognition, sensitization, and cellular uptake of actinides. *PNAS*. 2015;112(33):10342-10347. doi:10.1073/pnas.1508902112
- 43. Könik A, O'Donoghue JA, Wahl RL, Graham MM, Van den Abbeele AD. Theranostics: The Role of Quantitative Nuclear Medicine Imaging. *Seminars in Radiation Oncology*. 2021;31(1):28-36. doi:10.1016/j.semradonc.2020.07.003
- 44. Bailey DL, Willowson KP. An Evidence-Based Review of Quantitative SPECT Imaging and Potential Clinical Applications. *Journal of Nuclear Medicine*. 2013;54(1):83-89. doi:10.2967/jnumed.112.111476

- 45. Dewaraja YK, Frey EC, Sgouros G, et al. MIRD Pamphlet No. 23: Quantitative SPECT for Patient-Specific 3-Dimensional Dosimetry in Internal Radionuclide Therapy. *Journal of Nuclear Medicine*. 2012;53(8):1310-1325. doi:10.2967/jnumed.111.100123
- 46. Larsson E, Brolin G, Cleton A, Ohlsson T, Lindén O, Hindorf C. Feasibility of Thorium-227/Radium-223 Gamma-Camera Imaging During Radionuclide Therapy. *Cancer Biother Radiopharm*. 2020;35(7):540-548. doi:10.1089/cbr.2019.3516
- 47. Hutton BF, Erlandsson K, Thielemans K. Advances in clinical molecular imaging instrumentation. *Clin Transl Imaging*. 2018;6(1):31-45. doi:10.1007/s40336-018-0264-0
- Zheng Y, Huh Y, Su Q, et al. Collimatorless Scintigraphy for Imaging Extremely Low Activity Targeted Alpha Therapy (TAT) with Weighted Robust Least Squares (WRLS). *Med Image Comput Comput Assist Interv*. 2020;12267:803-811. doi:10.1007/978-3-030-59728-3_78
- 49. Seo Y. Quantitative Imaging of Alpha-Emitting Therapeutic Radiopharmaceuticals. *Nucl Med Mol Imaging*. 2019;53(3):182-188. doi:10.1007/s13139-019-00589-8
- Cherry SR, Jones T, Karp JS, Qi J, Moses WW, Badawi RD. Total-Body PET: Maximizing Sensitivity to Create New Opportunities for Clinical Research and Patient Care. *Journal of Nuclear Medicine*. 2018;59(1):3-12. doi:10.2967/jnumed.116.184028
- 51. Moses WW. Fundamental Limits of Spatial Resolution in PET. *Nucl Instrum Methods Phys Res A*. 2011;648 Supplement 1:S236-S240. doi:10.1016/j.nima.2010.11.092
- Zhang J, Maniawski P, Knopp MV. Performance evaluation of the next generation solid-state digital photon counting PET/CT system. *EJNMMI Research*. 2018;8(1):97. doi:10.1186/s13550-018-0448-7
- 53. Conti M, Bendriem B. The new opportunities for high time resolution clinical TOF PET. *Clin Transl Imaging*. 2019;7(2):139-147. doi:10.1007/s40336-019-00316-5
- 54. Liu G, Cao T, Hu L, et al. Validation of MR-Based Attenuation Correction of a Newly Released Whole-Body Simultaneous PET/MR System. *Biomed Res Int.* 2019;2019:8213215. doi:10.1155/2019/8213215
- 55. Rosar F, Buchholz HG, Michels S, et al. Image quality analysis of 44Sc on two preclinical PET scanners: a comparison to 68Ga. *EJNMMI Physics*. 2020;7(1):16. doi:10.1186/s40658-020-0286-3
- 56. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Crystallographica Section A*. 1976;32(5):751-767. doi:10.1107/S0567739476001551

- 57. Deal KA, Davis IA, Mirzadeh S, Kennel SJ, Brechbiel MW. Improved in vivo stability of actinium-225 macrocyclic complexes. *J Med Chem*. 1999;42(15):2988-2992. doi:10.1021/jm990141f
- 58. Durbin PW. Actinides in Animals and Man. In: Morss LR, Edelstein NM, Fuger J, eds. *The Chemistry of the Actinide and Transactinide Elements*. Springer Netherlands; 2006:3339-3440. doi:10.1007/1-4020-3598-5_31
- 59. Seidl C. Radioimmunotherapy with α-particle-emitting radionuclides. *Immunotherapy*. 2014;6(4):431-458. doi:10.2217/imt.14.16
- Chappell LL, Deal KA, Dadachova E, Brechbiel MW. Synthesis, Conjugation, and Radiolabeling of a Novel Bifunctional Chelating Agent for 225Ac Radioimmunotherapy Applications. *Bioconjugate Chem*. 2000;11(4):510-519. doi:10.1021/bc990153f
- Maguire WF, McDevitt MR, Smith-Jones PM, Scheinberg DA. Efficient 1-Step Radiolabeling of Monoclonal Antibodies to High Specific Activity with 225Ac for α-Particle Radioimmunotherapy of Cancer. *Journal of Nuclear Medicine*. 2014;55(9):1492-1498. doi:10.2967/jnumed.114.138347
- 62. Thiele NA, Brown V, Kelly JM, et al. An Eighteen-Membered Macrocyclic Ligand for Actinium-225 Targeted Alpha Therapy. *Angew Chem Int Ed Engl.* 2017;56(46):14712-14717. doi:10.1002/anie.201709532
- 63. Li L, Rousseau J, Jaraquemada-Peláez M de G, et al. 225Ac-H4py4pa for Targeted Alpha Therapy. *Bioconjug Chem*. 2021;32(7):1348-1363. doi:10.1021/acs.bioconjchem.0c00171
- 64. Comba P, Jermilova U, Orvig C, et al. Octadentate Picolinic Acid-Based Bispidine Ligand for Radiometal Ions. *Chemistry – A European Journal*. 2017;23(63):15945-15956. doi:10.1002/chem.201702284
- 65. Ramogida CF, Robertson AKH, Jermilova U, et al. Evaluation of polydentate picolinic acid chelating ligands and an α-melanocyte-stimulating hormone derivative for targeted alpha therapy using ISOL-produced 225Ac. *EJNMMI Radiopharmacy and Chemistry*. 2019;4(1):21. doi:10.1186/s41181-019-0072-5
- 66. Wharton L, Kurakina E, Radchenko V, Schaffer P, Orvig C. Chemical Promiscuity of Non-Macrocyclic Multidentate Chelating Ligands for Radiometal Ions: H4neunpa-NH2 vs H4noneunpa. *Inorg Chem.* 2021;60(6):4076-4092. doi:10.1021/acs.inorgchem.1c00152
- 67. Cilibrizzi A, Abbate V, Chen YL, Ma Y, Zhou T, Hider RC. Hydroxypyridinone Journey into Metal Chelation. *Chem Rev.* 2018;118(16):7657-7701. doi:10.1021/acs.chemrev.8b00254

- Deblonde GJP, Lohrey TD, Booth CH, et al. Solution Thermodynamics and Kinetics of Metal Complexation with a Hydroxypyridinone Chelator Designed for Thorium-227 Targeted Alpha Therapy. *Inorg Chem*. 2018;57(22):14337-14346. doi:10.1021/acs.inorgchem.8b02430
- 69. Robertson AKH, Ramogida CF, Schaffer P, Radchenko V. Development of 225Ac Radiopharmaceuticals: TRIUMF Perspectives and Experiences. *Curr Radiopharm*. 2018;11(3):156-172. doi:10.2174/1874471011666180416161908
- Griswold JR, Medvedev DG, Engle JW, et al. Large scale accelerator production of 225Ac: Effective cross sections for 78–192MeV protons incident on 232Th targets. *Applied Radiation and Isotopes*. 2016;118:366-374. doi:10.1016/j.apradiso.2016.09.026
- 71. Abergel R, An D, Lakes A, Rees J, Gauny S. Actinium Biokinetics and Dosimetry: What is the Impact of Ac-227 in Accelerator-Produced Ac-225? *Journal of Medical Imaging and Radiation Sciences*. 2019;50(1):S23. doi:10.1016/j.jmir.2019.03.073
- 72. Kamaleshwaran KK, Suneelkumar M, Madhusairam R, Radhakrishnan EK, Arunpandiyan S, Arnold VJ. Whole-body and Single-Photon Emission Computed Tomography/Computed Tomography Postpeptide Receptor Alpha Radionuclide Therapy Images of Actinium 225-Tetraazacyclododecanetetraacetic Acid-Octreotide as a Primary Modality of Treatment in a Patient with Advanced Rectal Neuroendocrine Tumor with Metastases. *Indian J Nucl Med*. 2020;35(3):226-228. doi:10.4103/ijnm.IJNM_58_20
- 73. Ocak M, Toklu T, Demirci E, Selçuk N, Kabasakal L. Post-therapy imaging of 225Ac-DOTATATE treatment in a patient with recurrent neuroendocrine tumor. *Eur J Nucl Med Mol Imaging*. 2020;47(11):2711-2712. doi:10.1007/s00259-020-04725-x
- 74. Cheal SM, McDevitt MR, Santich BH, et al. Alpha radioimmunotherapy using 225Acproteus-DOTA for solid tumors - safety at curative doses. *Theranostics*. 2020;10(25):11359-11375. doi:10.7150/thno.48810
- 75. Kelly VJ, Wu ST, Gottumukkala V, et al. Preclinical evaluation of an 111In/225Ac theranostic targeting transformed MUC1 for triple negative breast cancer. *Theranostics*. 2020;10(15):6946-6958. doi:10.7150/thno.38236
- 76. Qin Y, Imobersteg S, Blanc A, et al. Evaluation of Actinium-225 Labeled Minigastrin Analogue [225Ac]Ac-DOTA-PP-F11N for Targeted Alpha Particle Therapy. *Pharmaceutics*. 2020;12(11):E1088. doi:10.3390/pharmaceutics12111088
- 77. Solomon VR, Alizadeh E, Bernhard W, et al. 111In- and 225Ac-Labeled Cixutumumab for Imaging and α-Particle Radiotherapy of IGF-1R Positive Triple-Negative Breast Cancer. *Mol Pharm*. 2019;16(12):4807-4816. doi:10.1021/acs.molpharmaceut.9b00542

- 78. Aluicio-Sarduy E, Barnhart TE, Weichert J, Hernandez R, Engle JW. Cyclotron-Produced 132La as a PET Imaging Surrogate for Therapeutic 225Ac. *Journal of Nuclear Medicine*. 2021;62(7):1012-1015. doi:10.2967/jnumed.120.255794
- 79. Kostelnik TI, Orvig C. Radioactive Main Group and Rare Earth Metals for Imaging and Therapy. *Chem Rev.* 2019;119(2):902-956. doi:10.1021/acs.chemrev.8b00294
- Prata MIM, André JP, Kovács Z, et al. Gallium(III) chelates of mixed phosphonatecarboxylate triazamacrocyclic ligands relevant to nuclear medicine: Structural, stability and in vivo studies. *J Inorg Biochem*. 2017;177:8-16. doi:10.1016/j.jinorgbio.2017.08.015
- Li D, Minnix M, Allen R, et al. Preclinical PET Imaging of NTSR-1-Positive Tumors with 64Cu- and 68Ga-DOTA-Neurotensin Analogs and Therapy with an 225Ac-DOTA-Neurotensin Analog. *Cancer Biotherapy and Radiopharmaceuticals*. 2021;36(8):651-661. doi:10.1089/cbr.2020.3926
- Tsionou MI, Knapp CE, Foley CA, et al. Comparison of macrocyclic and acyclic chelators for gallium-68 radiolabelling. *RSC Adv*. 2017;7(78):49586-49599. doi:10.1039/C7RA09076E
- 83. Aluicio-Sarduy E, Thiele NA, Martin KE, et al. Establishing Radiolanthanum Chemistry for Targeted Nuclear Medicine Applications. *Chemistry – A European Journal*. 2020;26(6):1238-1242. doi:10.1002/chem.201905202
- 84. Nelson B, Ferguson S, Wuest M, et al. First in vivo and phantom imaging of cyclotron produced 133La as a theranostic radionuclide for 225Ac and 135La. *Journal of Nuclear Medicine*. Published online August 1, 2021. doi:10.2967/jnumed.121.262459
- Bailey TA, Mocko V, Shield KM, et al. Developing the 134Ce and 134La pair as companion positron emission tomography diagnostic isotopes for 225Ac and 227Th radiotherapeutics. *Nat Chem.* 2021;13(3):284-289. doi:10.1038/s41557-020-00598-7
- 86. Velikyan I. Prospective of ⁶⁸ Ga-Radiopharmaceutical Development. *Theranostics*. 2014;4(1):47-80. doi:10.7150/thno.7447
- Petrik M, Vlckova A, Novy Z, Urbanek L, Haas H, Decristoforo C. Selected 68Gasiderophores versus 68Ga-colloid and 68Ga-citrate: biodistribution and small animal imaging in mice. *Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub*. 2015;159(1):60-66. doi:10.5507/bp.2014.052
- Prata MI, Santos AC, Geraldes CF, de Lima JJ. Characterisation of 67Ga3+ complexes of triaza macrocyclic ligands: biodistribution and clearance studies. *Nucl Med Biol*. 1999;26(6):707-710. doi:10.1016/s0969-8051(99)00041-4

- 89. Harris WR, Chen Y, Wein K. Equilibrium Constants for the Binding of Indium(III) to Human Serum Transferrin. *Inorg Chem*. 1994;33(22):4991-4998. doi:10.1021/ic00100a024
- 90. Aluicio-Sarduy E, Hernandez R, Olson AP, et al. Production and in vivo PET/CT imaging of the theranostic pair 132/135La. *Sci Rep*. 2019;9(1):10658. doi:10.1038/s41598-019-47137-0
- 91. Nelson BJB, Wilson J, Andersson JD, Wuest F. High yield cyclotron production of a novel 133/135La theranostic pair for nuclear medicine. *Sci Rep*. 2020;10:22203. doi:10.1038/s41598-020-79198-x
- 92. Opacic T, Paefgen V, Lammers T, Kiessling F. Status and trends in the development of clinical diagnostic agents. *Wiley Interdiscip Rev Nanomed Nanobiotechnol*. 2017;9(4). doi:10.1002/wnan.1441
- 93. Thakur ML. Gallium-67 and indium-111 radiopharmaceuticals. *Int J Appl Radiat Isot*. 1977;28(1-2):183-201. doi:10.1016/0020-708x(77)90172-7
- 94. Lubberink M, Lundqvist H, Tolmachev V. Production, PET performance and dosimetric considerations of134Ce/134La, an Auger electron and positron-emitting generator for radionuclide therapy. *Phys Med Biol*. 2002;47(4):615-629. doi:10.1088/0031-9155/47/4/305
- 95. Abou DS, Ulmert D, Doucet M, Hobbs RF, Riddle RC, Thorek DLJ. Whole-Body and Microenvironmental Localization of Radium-223 in Naïve and Mouse Models of Prostate Cancer Metastasis. *J Natl Cancer Inst.* 2015;108(5):djv380. doi:10.1093/jnci/djv380
- 96. Carrasquillo JA, O'Donoghue JA, Pandit-Taskar N, et al. Phase I pharmacokinetic and biodistribution study with escalating doses of ²²³Ra-dichloride in men with castration-resistant metastatic prostate cancer. *Eur J Nucl Med Mol Imaging*. 2013;40(9):1384-1393. doi:10.1007/s00259-013-2427-6
- 97. Suominen MI, Fagerlund KM, Rissanen JP, et al. Radium-223 Inhibits Osseous Prostate Cancer Growth by Dual Targeting of Cancer Cells and Bone Microenvironment in Mouse Models. *Clin Cancer Res*. 2017;23(15):4335-4346. doi:10.1158/1078-0432.CCR-16-2955
- 98. Le Du A, Sabatié-Gogova A, Morgenstern A, Montavon G. Is DTPA a good competing chelating agent for Th(IV) in human serum and suitable in targeted alpha therapy? *J Inorg Biochem*. 2012;109:82-89. doi:10.1016/j.jinorgbio.2011.12.011
- 99. Larsen RH, Borrebaek J, Dahle J, et al. Preparation of TH227-labeled radioimmunoconjugates, assessment of serum stability and antigen binding ability. *Cancer Biother Radiopharm*. 2007;22(3):431-437. doi:10.1089/cbr.2006.321

- 100. Heyerdahl H, Abbas N, Brevik EM, Mollatt C, Dahle J. Fractionated therapy of HER2-expressing breast and ovarian cancer xenografts in mice with targeted alpha emitting 227Th-DOTA-p-benzyl-trastuzumab. *PLoS One*. 2012;7(8):e42345. doi:10.1371/journal.pone.0042345
- 101. Ramdahl T, Bonge-Hansen HT, Ryan OB, et al. An efficient chelator for complexation of thorium-227. *Bioorg Med Chem Lett*. 2016;26(17):4318-4321. doi:10.1016/j.bmcl.2016.07.034
- 102. Abbas N, Heyerdahl H, Bruland ØS, Borrebæk J, Nesland J, Dahle J. Experimental α-particle radioimmunotherapy of breast cancer using 227Th-labeled p-benzyl-DOTA-trastuzumab. *EJNMMI Res.* 2011;1:18. doi:10.1186/2191-219X-1-18
- 103. Murray I, Rojas B, Gear J, Callister R, Cleton A, Flux GD. Quantitative Dual-Isotope Planar Imaging of Thorium-227 and Radium-223 Using Defined Energy Windows. *Cancer Biother Radiopharm*. 2020;35(7):530-539. doi:10.1089/cbr.2019.3554
- 104. Benjamin RO, Cuthbertson A, Karlsson J, et al. In-vivo Comparison of Thorium-227 and Zirconium-89 Labeled 3,2-HOPO Mesothelin Antibody-chelator Conjugate. *Journal of Medical Imaging and Radiation Sciences*. 2019;50(1):S26. doi:10.1016/j.jmir.2019.03.081
- 105. Deri MA, Zeglis BM, Francesconi LC, Lewis JS. PET Imaging with 89Zr: From Radiochemistry to the Clinic. *Nucl Med Biol*. 2013;40(1):3-14. doi:10.1016/j.nucmedbio.2012.08.004
- 106. Deri MA, Ponnala S, Zeglis BM, et al. Alternative Chelator for 89Zr Radiopharmaceuticals: Radiolabeling and Evaluation of 3,4,3-(LI-1,2-HOPO). *J Med Chem*. 2014;57(11):4849-4860. doi:10.1021/jm500389b
- 107. Abou DS, Ku T, Smith-Jones PM. In vivo biodistribution and accumulation of 89Zr in mice. *Nucl Med Biol*. 2011;38(5):675-681. doi:10.1016/j.nucmedbio.2010.12.011
- 108. Beyer GJ, Bergmann R, Kampf G, Mäding P, Rösch F. Simultaneous study of the biodistribution of radio-yttrium complexed with EDTMP and citrate ligands in tumourbearing rats. *International Journal of Radiation Applications and Instrumentation Part B Nuclear Medicine and Biology*. 1992;19(2):201-203. doi:10.1016/0883-2897(92)90008-M
- 109. Witzig TE. Yttrium-90-ibritumomab tiuxetan radioimmunotherapy: a new treatment approach for B-cell non-Hodgkin's lymphoma. *Drugs Today (Barc)*. 2004;40(2):111-119. doi:10.1358/dot.2004.40.2.799423
- 110. Kylstra JW, Witzig TE, Huang M, Emmanouilides CE, Hagenbeek A, Tidmarsh GF. Discriminatory power of the 111-indium scan (111-In) in the prediction of altered biodistribution of radio-immunoconjugate in the 90-yttrium ibritumomab tiuxetan therapeutic regimen: Meta-analysis of five clinical trials and 9 years of post-approval

safety data. *JCO*. 2011;29(15_suppl):8048-8048. doi:10.1200/jco.2011.29.15_suppl.8048

- 111. Breeman WAP, De Jong M, Visser TJ, Erion JL, Krenning EP. Optimising conditions for radiolabelling of DOTA-peptides with 90Y, 111In and 177Lu at high specific activities. *Eur J Nucl Med Mol Imaging*. 2003;30(6):917-920. doi:10.1007/s00259-003-1142-0
- 112. Chakravarty R, Chakraborty S, Dash A. A systematic comparative evaluation of 90Y-labeled bifunctional chelators for their use in targeted therapy. *J Labelled Comp Radiopharm*. 2014;57(2):65-74. doi:10.1002/jlcr.3140
- 113. Palm S, Enmon RM, Matei C, et al. Pharmacokinetics and Biodistribution of 86Y-Trastuzumab for 90Y Dosimetry in an Ovarian Carcinoma Model: Correlative MicroPET and MRI. *Journal of Nuclear Medicine*. 2003;44(7):1148-1155.
- 114. Ehlerding E, Ferreira C, Aluicio-Sarduy E, Jiang D, Engle J, Cai W. 86/90Y-based theranostics of breast cancer in a preclinical model. *Journal of Nuclear Medicine*. 2018;59(supplement 1):539-539.
- 115. Ehlerding EB, Ferreira CA, Aluicio-Sarduy E, et al. 86/90Y-Based Theranostics Targeting Angiogenesis in a Murine Breast Cancer Model. *Mol Pharm*. 2018;15(7):2606-2613. doi:10.1021/acs.molpharmaceut.8b00133
- 116. Ferreira C, Goel S, Jiang D, et al. 86/90Y-Labeled Ultrasmall Mesoporous Silica Nanoparticles for Cancer Theranostics. *Journal of Nuclear Medicine*. 2018;59(supplement 1):468-468.
- 117. Ferreira CA, Ehlerding EB, Rosenkrans ZT, et al. 86/90Y-Labeled Monoclonal Antibody Targeting Tissue Factor for Pancreatic Cancer Theranostics. *Mol Pharmaceutics*. 2020;17(5):1697-1705. doi:10.1021/acs.molpharmaceut.0c00127
- 118. Price EW, Cawthray JF, Adam MJ, Orvig C. Modular syntheses of H4octapa and H2dedpa, and yttrium coordination chemistry relevant to 86Y/90Y radiopharmaceuticals. *Dalton Trans*. 2014;43(19):7176-7190. doi:10.1039/C4DT00239C
- 119. Price EW, Edwards KJ, Carnazza KE, et al. A comparative evaluation of the chelators H4octapa and CHX-A"-DTPA with the therapeutic radiometal (90)Y. *Nucl Med Biol*. 2016;43(9):566-576. doi:10.1016/j.nucmedbio.2016.06.004
- 120. Carter KP, Deblonde GJP, Lohrey TD, et al. Developing scandium and yttrium coordination chemistry to advance theranostic radiopharmaceuticals. *Commun Chem*. 2020;3(1):1-7. doi:10.1038/s42004-020-0307-0
- 121. Walrand S, Flux GD, Konijnenberg MW, et al. Dosimetry of yttrium-labelled radiopharmaceuticals for internal therapy: 86Y or 90Y imaging? *Eur J Nucl Med Mol Imaging*. 2011;38 Suppl 1:S57-68. doi:10.1007/s00259-011-1771-7

- 122. Banerjee SR, Minn I, Kumar V, et al. Preclinical Evaluation of 203/212Pb-Labeled Low-Molecular-Weight Compounds for Targeted Radiopharmaceutical Therapy of Prostate Cancer. *J Nucl Med*. 2020;61(1):80-88. doi:10.2967/jnumed.119.229393
- 123. Chappell LL, Dadachova E, Milenic DE, Garmestani K, Wu C, Brechbiel MW. Synthesis, characterization, and evaluation of a novel bifunctional chelating agent for the lead isotopes 203Pb and 212Pb. *Nuclear Medicine and Biology*. 2000;27(1):93-100. doi:10.1016/S0969-8051(99)00086-4
- 124. Li M, Zhang X, Quinn TP, et al. Automated cassette-based production of high specific activity [203/212Pb]peptide-based theranostic radiopharmaceuticals for image-guided radionuclide therapy for cancer. *Appl Radiat Isot*. 2017;127:52-60. doi:10.1016/j.apradiso.2017.05.006
- 125. McNeil BL, Robertson AKH, Fu W, et al. Production, purification, and radiolabeling of the 203Pb/212Pb theranostic pair. *EJNMMI Radiopharmacy and Chemistry*. 2021;6(1):6. doi:10.1186/s41181-021-00121-4
- 126. Su FM, Beaumier P, Axworthy D, Atcher R, Fritzberg A. Pretargeted radioimmunotherapy in tumored mice using an in vivo 212Pb/212Bi generator. *Nuclear Medicine and Biology*. 2005;32(7):741-747. doi:10.1016/j.nucmedbio.2005.06.009
- 127. Yang J, Xu J, Hu L, Miao Y. A Novel Pb-203-Labeled DOTA-Conjugated Lactam Bridge-Cyclized Alpha-MSH Peptide for Melanoma Imaging. *Journal of Nuclear Medicine*. 2017;58(supplement 1):897-897.
- 128. Baidoo KE, Milenic DE, Brechbiel MW. Methodology for labeling proteins and peptides with lead-212 (212Pb). *Nucl Med Biol*. 2013;40(5):592-599. doi:10.1016/j.nucmedbio.2013.01.010
- 129. Dos Santos JC, Schäfer M, Bauder-Wüst U, et al. Development and dosimetry of 203Pb/212Pb-labelled PSMA ligands: bringing "the lead" into PSMA-targeted alpha therapy? *Eur J Nucl Med Mol Imaging*. 2019;46(5):1081-1091. doi:10.1007/s00259-018-4220-z
- 130. Kratochwil C, Santos J dos, Lehnert W, et al. Development and dosimetry of Pb-203/Pb-212 labeled PSMA ligands – Bringing "the Lead" into PSMA-Targeting Alpha Therapy? In: *Nuklearmedizin - NuclearMedicine*. Vol 58. Georg Thieme Verlag KG; 2019:V100. doi:10.1055/s-0039-1683594
- 131. Keller CA, Doherty RA. Distribution and excretion of lead in young and adult female mice. *Environ Res.* 1980;21(1):217-228. doi:10.1016/0013-9351(80)90024-9
- 132. He B, Frey E, Sgouros G, Ghaly M, Tworowska I, Delpassand E. Development and Validation of Methods for Quantitative In Vivo SPECT of Pb-212 ☆ ☆☆. Journal of Medical Imaging and Radiation Sciences. 2019;50(4):S104. doi:10.1016/j.jmir.2019.11.105

- 133. Atcher RW, Friedman AM, Hines JJ. An improved generator for the production of 212Pb and 212Bi from 224Ra. *Int J Rad Appl Instrum A*. 1988;39(4):283-286. doi:10.1016/0883-2889(88)90016-0
- 134. Tan Z, Chen P, Schneider N, et al. Significant systemic therapeutic effects of high-LET immunoradiation by 212Pb-trastuzumab against prostatic tumors of androgenindependent human prostate cancer in mice. *International Journal of Oncology*. 2012;40(6):1881-1888. doi:10.3892/ijo.2012.1357
- 135. Meredith RF, Torgue JJ, Rozgaja TA, et al. Safety and Outcome Measures of Firstin-Human Intraperitoneal α Radioimmunotherapy With 212Pb-TCMC-Trastuzumab. *Am J Clin Oncol*. 2018;41(7):716-721. doi:10.1097/COC.00000000000353
- 136. Deblonde GJP, Zavarin M, Kersting AB. The coordination properties and ionic radius of actinium: A 120-year-old enigma. *Coordination Chemistry Reviews*. 2021;446:214130. doi:10.1016/j.ccr.2021.214130
- 137. Medicine NRC (US) and I of M (US) C on S of the S of N. *Targeted Radionuclide Therapy*. National Academies Press (US); 2007. Accessed February 22, 2022. https://www.ncbi.nlm.nih.gov/books/NBK11464/
- 138. Yong K, Brechbiel MW. Towards translation of 212Pb as a clinical therapeutic; getting the lead in! *Dalton Trans*. 2011;40(23):6068-6076. doi:10.1039/C0DT01387K
- 139. Sturzbecher-Hoehne M, Leung CNP, D'Aléo A, et al. 3,4,3-LI(1,2-HOPO): In vitro formation of highly stable lanthanide complexes translates into efficacious in vivoeuropium decorporation. *Dalton Trans*. 2011;40(33):8340-8346. doi:10.1039/C1DT10840A
- 140. Sturzbecher-Hoehne M, Choi TA, Abergel RJ. Hydroxypyridinonate Complex Stability of Group (IV) Metals and Tetravalent f-Block Elements: The Key to the Next Generation of Chelating Agents for Radiopharmaceuticals. *Inorg Chem*. 2015;54(7):3462-3468. doi:10.1021/acs.inorgchem.5b00033
- 141. Kelley MP, Deblonde GJP, Su J, et al. Bond Covalency and Oxidation State of Actinide Ions Complexed with Therapeutic Chelating Agent 3,4,3-LI(1,2-HOPO). *Inorg Chem.* 2018;57(9):5352-5363. doi:10.1021/acs.inorgchem.8b00345
- 142. Deblonde GJP, Sturzbecher-Hoehne M, Rupert PB, et al. Chelation and stabilization of berkelium in oxidation state +IV. *Nature Chem*. 2017;9(9):843-849. doi:10.1038/nchem.2759
- 143. Loening AM, Gambhir SS. AMIDE: a free software tool for multimodality medical image analysis. *Mol Imaging*. 2003;2(3):131-137. doi:10.1162/153535003322556877
- 144. Richmond CR, London JE. Long-term in vivo Retention of Cerium-144 by Beagles. *Nature*. 1966;211(5054):1179-1179. doi:10.1038/2111179a0

- 145. Leggett R, Ansoborlo E, Bailey M, Gregoratto D, Paquet F, Taylor D. Biokinetic data and models for occupational intake of lanthanoids. *Int J Radiat Biol.* 2014;90(11):996-1010. doi:10.3109/09553002.2014.887868
- 146. Ewaldsson B, Magnusson G. DISTRIBUTION OF RADIOCERIUM AND RADIOPROMETHIUM IN MICE. AN AUTORADIOGRAPHIC STUDY. *Acta Radiol Ther Phys Biol*. 1964;2:65-72. doi:10.3109/02841866409134131
- 147. Covey TR, Lee ED, Bruins AP, Henion JD. Liquid chromatography/mass spectrometry. ACS Publications. doi:10.1021/ac00127a001
- 148. Bandaranayake AD, Correnti C, Ryu BY, Brault M, Strong RK, Rawlings DJ. Daedalus: a robust, turnkey platform for rapid production of decigram quantities of active recombinant proteins in human cell lines using novel lentiviral vectors. *Nucleic Acids Res.* 2011;39(21):e143. doi:10.1093/nar/gkr706
- 149. Finton KAK, Larimore K, Larman HB, et al. Autoreactivity and Exceptional CDR Plasticity (but Not Unusual Polyspecificity) Hinder Elicitation of the Anti-HIV Antibody 4E10. *PLOS Pathogens*. 2013;9(9):e1003639. doi:10.1371/journal.ppat.1003639
- 150. Kim YS, Brechbiel MW. An overview of targeted alpha therapy. *Tumour Biol*. 2012;33(3):573-590. doi:10.1007/s13277-011-0286-y
- 151. Hammer S, Hagemann UB, Zitzmann-Kolbe S, et al. Preclinical Efficacy of a PSMA-Targeted Thorium-227 Conjugate (PSMA-TTC), a Targeted Alpha Therapy for Prostate Cancer. *Clin Cancer Res.* 2020;26(8):1985-1996. doi:10.1158/1078-0432.CCR-19-2268
- 152. Hagemann UB, Wickstroem K, Wang E, et al. In Vitro and In Vivo Efficacy of a Novel CD33-Targeted Thorium-227 Conjugate for the Treatment of Acute Myeloid Leukemia. *Mol Cancer Ther*. 2016;15(10):2422-2431. doi:10.1158/1535-7163.MCT-16-0251
- 153. Hagemann UB, Ellingsen C, Schuhmacher J, et al. Mesothelin-Targeted Thorium-227 Conjugate (MSLN-TTC): Preclinical Evaluation of a New Targeted Alpha Therapy for Mesothelin-Positive Cancers. *Clin Cancer Res*. 2019;25(15):4723-4734. doi:10.1158/1078-0432.CCR-18-3476
- 154. Roy J, Jagoda EM, Basuli F, et al. In Vitro and In Vivo Comparison of 3,2-HOPO Versus Deferoxamine-Based Chelation of Zirconium-89 to the Antimesothelin Antibody Anetumab. *Cancer Biotherapy and Radiopharmaceuticals*. 2021;36(4):316-325. doi:10.1089/cbr.2020.4492
- 155. Thakral P, Singla S, Yadav MP, et al. An approach for conjugation of 177Lu-DOTA-SCN- Rituximab (BioSim) & its evaluation for radioimmunotherapy of relapsed & refractory B-cell non Hodgkins lymphoma patients. *Indian J Med Res*. 2014;139(4):544-554.

- 156. Pichler BJ, Judenhofer MS, Wehrl HF. PET/MRI hybrid imaging: devices and initial results. *Eur Radiol*. 2008;18(6):1077-1086. doi:10.1007/s00330-008-0857-5
- 157. Severin GW, Kristensen LK, Nielsen CH, et al. Neodymium-140 DOTA-LM3: Evaluation of an In Vivo Generator for PET with a Non-Internalizing Vector. *Frontiers in Medicine*. 2017;4. Accessed January 13, 2022. https://www.frontiersin.org/article/10.3389/fmed.2017.00098
- 158. P. Baum R, Singh A, Benešová M, et al. Clinical evaluation of the radiolanthanide terbium-152: first-in-human PET/CT with 152 Tb-DOTATOC. *Dalton Transactions*. 2017;46(42):14638-14646. doi:10.1039/C7DT01936J
- 159. Hofman MS, Emmett L, Violet J, et al. TheraP: a randomized phase 2 trial of Lu-177-PSMA-617 theranostic treatment vs cabazitaxel in progressive metastatic castration-resistant prostate cancer (Clinical Trial Protocol ANZUP 1603). Published online October 22, 2019. doi:10.1111/bju.14876
- 160. Naskar N, Lahiri S. Theranostic Terbium Radioisotopes: Challenges in Production for Clinical Application. *Front Med (Lausanne)*. 2021;8:675014. doi:10.3389/fmed.2021.675014
- 161. Captain I, Deblonde GJP, Rupert PB, et al. Engineered Recognition of Tetravalent Zirconium and Thorium by Chelator-Protein Systems: Toward Flexible Radiotherapy and Imaging Platforms. *Inorg Chem*. 2016;55(22):11930-11936. doi:10.1021/acs.inorgchem.6b02041
- 162. Satpati D. Recent Breakthrough in 68Ga-Radiopharmaceuticals Cold Kits for Convenient PET Radiopharmacy. *Bioconjugate Chem*. 2021;32(3):430-447. doi:10.1021/acs.bioconjchem.1c00010
- 163. Zeglis BM, Lewis JS. The Bioconjugation and Radiosynthesis of 89Zr-DFO-labeled Antibodies. *JoVE (Journal of Visualized Experiments)*. 2015;(96):e52521. doi:10.3791/52521
- 164. Tang Y, Scollard D, Chen P, Wang J, Holloway C, Reilly RM. Imaging of HER2/neu expression in BT-474 human breast cancer xenografts in athymic mice using [99mTc]-HYNIC-trastuzumab (Herceptin) Fab fragments. *Nuclear Medicine Communications*. 2005;26(5):427-432.
- 165. Rathore Y, Shukla J, Laroiya I, et al. Development 68Ga trastuzumab Fab and bioevaluation by PET imaging in HER2/neu expressing breast cancer patients. *Nucl Med Commun*. Published online February 1, 2022. doi:10.1097/mnm.00000000001521
- 166. Biedermann KA, Sun JR, Giaccia AJ, Tosto LM, Brown JM. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. *Proc Natl Acad Sci U S A*. 1991;88(4):1394-1397. doi:10.1073/pnas.88.4.1394

- 167. Knoess C, Siegel S, Smith A, et al. Performance evaluation of the microPET R4 PET scanner for rodents. *Eur J Nucl Med Mol Imaging*. 2003;30(5):737-747. doi:10.1007/s00259-002-1052-6
- 168. Coenen HH, Gee AD, Adam M, et al. Open letter to journal editors on: International Consensus Radiochemistry Nomenclature Guidelines. *Ann Nucl Med*. 2018;32(3):236-238. doi:10.1007/s12149-018-1238-z
- 169. Maioli C, Lucignani G, Strinchini A, Tagliabue L, Del Sole A. Quality control on radiochemical purity in Technetium-99m radiopharmaceuticals labelling: three years of experience on 2280 procedures. *Acta Biomed*. 2017;88(1):49-56. doi:10.23750/abm.v88i1.5285

APPENDIX A: Concorde MicroPET R4 spatial resolution

The microPET scanner that was used for the preclinical studies in this dissertation was the Concorde MicroPET R4 (Fig. A.1), nicknamed *Sarah*, has previously been specified to support a transaxial spatial resolution of 1.66 mm full width half maximum (FWHM) for Flourine-18¹⁶⁷. This measurement was verified by a Derenzo phantom designed for microPET scanners (Fig. A.2). The diameters of the holes in the Derenzo Phantom are grouped by size. From largest to smallest the hole diameters are 4.8 mm, 4.0 mm, 3.2 mm, 2.4 mm, 1.6 mm, and 1.2 mm. Based on a coronal maximum intensity projection image of the phantom, the smallest resolvable holes on the Derenzo phantom are the 1.6 mm holes which corroborates with the beforementioned transaxial spatial resolution measurement (Fig. A.3).

Figure A.1: *Sarah,* the Concorde MicroPET R4 used for the preclinical studies in this dissertation.

Figure A.2: The Derenzo phantom filled with ¹⁸F. The green color is from food dye. From largest (4 o'clock position) to smallest (6 o'clock position), the hole diameter sizes are 4.8 mm, 4.0 mm, 3.2 mm, 2.4 mm, 1.6 mm, and 1.2 mm.

Figure A.3: A coronal maximum intensity projection image of the Derenzo phantom filled with ¹⁸F. The smallest resolvable holes are the 1.6 mm holes (8 o'clock).

The total spatial resolution of *Sarah* is based on several factors including individual detector size, positron range, the acolinearity effect, decoding (when there are more scintillation crystals than photodetectors), the penetration of the 511 keV photons between interaction in the crystals, and sampling error⁵¹. These effects all add in quadrature with the exception of the sampling error which acts as a multiplicative factor that degrades all the other components. In terms of investigating different positron-emitters, the only variable that changes when swapping the positron emitter is the positron range term. The formula for the total spatial resolution with all components except the positron range is aggregated into a single term, is given by:

$$\Gamma = 1.25\sqrt{s^2 + \Delta} \tag{A.1}$$

where the factor of 1.25 is the multiplicative factor from the sampling error, *s* is the positron range, and Δ is the aggregation of the other components. This allows for an estimation of the total system resolution for any positron emitter if the component for the positron range is known. The positron ranges for the positron emitters discussed in this dissertation are shown in Table A.1 in units of mm FWHM where these values were linearly interpolated from Table 1 in Moses⁵¹. Figure A.4 shows a plot of the total system resolution for Sarah versus the mean positron energy.

Isotope	Mean Positron Energy	Positron Range
	(keV)	(mm FWHM)
¹⁸ F ^a	250	0.54
¹¹ C ^a	386	0.92
⁸⁹ Zr	396	0.98
¹³³ La	460	1.32
¹³ N ^a	492	1.49
⁴⁴ Sc	632	2.06
⁸⁶ Y	660	2.17
¹⁴⁹ Tb	730	2.46
¹⁵ O ^a	735	2.48
⁶⁸ Ga ^a	830	2.83
¹⁵² Tb	1140	4.41
¹³⁴ La	1217	4.80
¹³² La	1290	5.17
⁸² Rb ^a	1481	6.14

Table A.1: Mean positron energy and positron range for positron emitters discussed in this dissertation.

^aThe positron ranges for these isotopes were taken from Moses⁵¹.

Figure A.4: Total spatial resolution versus mean positron energy for Sarah.

APPENDIX B: Radiochemical Yield and Radiochemical Purity

Two metrics that pertain to radiolabeling molecules that are discussed frequently in this dissertation are radiochemical yield and radiochemical purity. The definitions and distinctions are discussed here.

Radiochemical yield is the proportion of activity in the product after going through a process where activity may have been loss¹⁶⁸. As an example, in this dissertation radiochemical yield is often talked about in reference to purifying antibody drug conjugates using 0.5 mL 30 kDa Amicon Ultra centrifugal filter units. The activity in the product is the activity that stays in the filter (or the retentate) and the activity that is lost is the activity that goes through the filter (or the filtrate).

Radiochemical purity is the proportion of activity in the sample that is in the desired radiolabeled species¹⁶⁹. As an example, if discussing a radiolabeled antibody, this is the proportion of activity that is labeled to the antibody. This value can be measured by radio-Instant Thin Layer Chromatography. For the conditions used in this dissertation, an activity that is labeled to the antibody stays at the origin while free radioactivity follows the solvent front. An example of a TLC trace of ²¹²Pb-TCMC-Trastuzumab is shown in Figure B.1.

While for antibody labeling the radiochemical purity is distinct from the radiochemical yield, for small molecule studies (such as the metal-chelator complexes) the distinction between the two metrics overlaps. For complexes, by definition the radiochemical purity is the proportion of activity actually labeled to the molecule (as measured by TLC in this dissertation). However, in previous studies this metric (measured by radio-ITLC) has been reported as the radiochemical yield⁶³. In order to keep the notation consistent with the literature, complex measurements done by radio-ITLC will be reported as radiochemical yield. An example of a TLC trace of ¹³⁴Ce-DOTA is shown in Figure B.2.

Figure B.2: TLC trace of ¹³⁴Ce-DOTA. Activity that is labeled to the chelator is located at the prominent gaussian peak while free activity lies outside the prominent gaussian peak.