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A B S T R A C T

The purpose of this work is to study machine-learning-based model predictive control of nonlinear systems with
time-delays. The proposed approach involves initially building a machine learning model (i.e., Long Short Term
Memory (LSTM)) to capture the process dynamics in the absence of time delays. Then, an LSTM-based model
predictive controller (MPC) is designed to stabilize the nonlinear system without time delays. Closed-loop
stability results are then presented, establishing robustness of this LSTM-based MPC towards small time-delays
in the states. To handle input delays, we design an LSTM-based MPC with an LSTM-based predictor that
compensates for the effect of input delays. The predictor is used to predict future states using the process
measurement, and then the predicted states are used to initialize the LSTM-based MPC. Stabilization of the
time-delay system with both state and input delays around the steady state is achieved through the featured
design. The approach is applied to a chemical process example, and its performance and robustness properties
are evaluated via simulations.
1. Introduction

Machine learning algorithms have generated considerable interest
in the field of control of nonlinear process systems. This is because
of their ability to capture the system’s dynamics and to model large-
scale, complex, nonlinear systems. Moreover, the existence of large
data sets, powerful computers, and the variety of machine learning
training algorithms have contributed to the recent surge of machine
learning being applied to numerous engineering applications. Although,
historically, first-principles modeling approaches have been widely
adapted in modeling chemical processes, they can be difficult and/or
time-consuming to derive when dealing with large-scale, complex,
nonlinear processes. In contrast, machine learning techniques have
made a significant impact in the field of nonlinear control systems and
have shown great success in modeling large-scale, complex, nonlinear
processes (e.g., Wu et al. (2019a,b), Chen et al. (2012, 2020), Alhajeri
et al. (2021), Wu et al. (2021a,b, 2022)). Researchers in the field have
started adapting the science of machine learning since the 90’s (Hoskins
and Himmelblau, 1992; Vepa, 1993), when they started introducing
the concept of machine learning to the field of chemical engineering,

∗ Corresponding author at: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA.
E-mail address: pdc@seas.ucla.edu (P.D. Christofides).

and many promising contributions and applications have been observed
since then (Venkatasubramanian, 2019).

A wide variety of machine learning techniques are used for mod-
eling nonlinear systems, and one of the powerful and efficient tools is
the long short-term memory (LSTM) recurrent neural networks. LSTMs
were introduced in Hochreiter and Schmidhuber (1997) and are a
type of recurrent neural network (RNN) with a unique structure that
allows it to model dynamical systems and overcome numerical issues
commonly encountered in traditional RNNs. The incorporation of LSTM
models into advanced model-based control strategies such as model
predictive control (MPC) comes with notable success. For example,
in Chen et al. (2012), a distributed MPC was designed and implemented
using an LSTM model. Moreover, LSTMs were also used to design a
decentralized MPC in Chen et al. (2020). LSTMs were proven to be
efficient when it comes to dealing with noisy data and controlling
nonlinear processes. For example, in Alhajeri et al. (2022), LSTMs were
used to model a large-scale, chemical process using noisy, industrial
data from Aspen Plus Dynamics, and its closed-loop performance under
LSTM-based MPC was studied.
vailable online 9 January 2023
772-5081/© 2023 The Author(s). Published by Elsevier Ltd on behalf of Institution
Y-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.dche.2023.100084
Received 3 December 2022; Received in revised form 4 January 2023; Accepted 5
of Chemical Engineers (IChemE). This is an open access article under the CC

January 2023

https://www.elsevier.com/locate/dche
http://www.elsevier.com/locate/dche
mailto:pdc@seas.ucla.edu
https://doi.org/10.1016/j.dche.2023.100084
https://doi.org/10.1016/j.dche.2023.100084
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dche.2023.100084&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Digital Chemical Engineering 7 (2023) 100084A. Alnajdi et al.

c
i
t
𝛥

2

d
w

𝑥
c
{
f
t
d
l
a
A
𝜙
p
e
f

The unique structure of LSTM networks enables them to model
systems that require long-time interval dependencies such as nonlin-
ear time-delay systems, which require robustness considerations with
regards to closed-loop stability and performance criteria. Time delays
are a common phenomenon that occurs naturally in chemical processes.
A common reason for state delays is transportation lag when materials
flow through a pipe. These types of delays are usually reflected as state
delays in the first-principles model of the process. Additionally, input
delays are another common type of delays in chemical processes, typ-
ically caused by control actuator dynamics. Moreover, delays can also
arise due to the approximation of complex reaction mechanisms and/or
nonlinear higher-order dynamics. Therefore, investigating the stabil-
ity, robustness, and performance properties of closed-loop time-delay
systems is an important topic in the field of control systems.

A nonlinear time-delay system is usually represented by a differen-
tial difference equation (DDE). The behavior of DDEs is different from
classical ordinary differential equations (ODEs) in several manners. One
important difference between them is that, when solving an ODE, an
initial condition is required, whereas, for a DDE, the history of states
and inputs has to be stored; in other words, an initial history function
has to be specified or computed for both states and manipulated inputs.
As a matter of fact, time-delayed systems, even if the delay is small,
constitute infinite-dimensional systems regardless of the dimension of
the state vector of the system (see Hale and Lunel (2013) for more
details on DDEs). Significant efforts have been undertaken to study
nonlinear time-delay systems (DDEs) and investigate their stability
properties. Most relevant to our present work, in Ellis and Christofides
(2015), an economic MPC for nonlinear time-delay systems was de-
signed using a first-principles model, with closed-loop stability results
being derived using input-to-state stability theorems incorporated with
Lyapunov–Razumikhin type arguments. In earlier works, Antoniades
and Christofides (1999a,b) established fundamental results on feedback
control and robustness of nonlinear time-delay systems with applica-
tions to process systems. For the case of controlling nonlinear systems
with time-varying measurement delays, several works in the literature
have discussed this case. For example, Liu et al. (2009) studied the sta-
bility of differential-functional equations with discrete and distributed
delays. Additionally, Zhang et al. (2019) provided an overview of the
stability of linear systems with time-varying delays and reviewed recent
works that have been conducted in this topic.

Several common approaches to control nonlinear time-delay sys-
tems can be found in the literature. In the case of small time-delay
values, earlier approaches include assigning the values of the time-
delays to zero and proceeding with the control design using the re-
sulting ODE systems. This control technique can be effective with
acceptable closed-loop stability and performance when the nonlinear
system suffers from small state delays. Yet, for larger values of time-
delays, and in particular when input delays are present, it is necessary
to utilize other approaches that are more involved and can compensate
for the effect of input delays. Such approaches include using a predictor
with the controller design, to predict future values of the state that
can be used in the controller. In 1957, the classical Smith predictor
was proposed, and it has become one of the most popular predictor
structures used for linear time-delay systems (Smith, 1957). The Smith
predictor has proven to be effective in many theoretical aspects and
engineering applications. Moreover, various results are found in the
literature, adapting the design of the Smith predictor to produce more
variations of predictor designs in order to address different types of
linear and nonlinear systems with input delay. For instance, Kravaris
and Wright (1989), Henson and Seborg (1994) presented designs of
predictors that can handle nonlinear systems with input delay through
the use of conceptional insights from the Smith predictor approach.

In the context of data-based modeling for feedback controller de-
sign, machine learning techniques have been incorporated in MPC
2

with resounding success due to their notable accuracy, efficiency, and 𝜉
ability to capture complex systems’ dynamics, as successfully demon-
strated via numerous chemical process applications in Ren et al. (2022).
Specifically, Wu et al. (2019a,b) provide fundamental theoretical and
practical insights of machine learning-based MPC and necessary sta-
bility analyses. The first conceptualization of MPC can be dated to
1978 (Richalet et al., 1978), and, since then, many contributions and
applications have been made in both industry and academia. MPC has
proven to be efficient in a diverse array of applications due to its
ability to handle multiple inputs, outputs, and constraints by solving an
optimization problem that minimizes a desired objective function of the
inputs and outputs (Alhajeri et al., 2021; Wu et al., 2021a) subject to
constraints while incorporating measurement feedback into the calcula-
tions. With a sufficiently accurate process model, MPC can also handle
systems where only noisy data is available (Abdullah et al., 2022).
The control actions of MPC are computed through repeatedly solving
an optimization problem in a finite time horizon, with both state and
input constraints. This guarantees the stability and boundedness of the
trajectories of the nonlinear system at all times.

In light of the above considerations, in this article, we apply ma-
chine learning to develop a model—specifically an LSTM model—using
data from the process model without the time delays and use this LSTM
model to design a model predictive controller that renders the process
model without the time delays stable. Subsequently, we established
that the LSTM-based MPC ensures stability of the closed-loop system
under sufficiently small state delays. Additionally, we design an LSTM-
based predictor to compensate for input delays. Finally, an application
of the LSTM-based MPC to a chemical reactor under both state and
input delays is presented.

2. Preliminaries

2.1. Notation

A time-dependent vector is denoted by 𝑥(𝑡) ∈ R𝑛. 𝑥𝑇 denotes the
transpose of vector 𝑥. The Euclidean norm of a vector is denoted by | ⋅ |,
and the infinity norm of a function 𝜙 ∈ 𝐶 ([𝑎, 𝑏],R𝑛) is represented by
‖ ⋅‖, such that ‖𝜙‖ ∶= max𝑎≤𝑠≤𝑏 |𝜙(𝑠)|, where 𝐶 ([𝑎, 𝑏],R𝑛) is the space of
ontinuous functions mapping the interval [𝑎, 𝑏] to R𝑛. Set subtraction
s denoted by ‘∖’, such that 𝐴∖𝐵 ∶= {𝑥 ∈ 𝑅𝑛|𝑥 ∈ 𝐴, 𝑥 ∉ 𝐵}. 𝑆(𝛥) denotes
he family of piecewise constant, right-continuous functions with period
.

.2. Class of systems

The following family of differential difference equations (DDEs)
escribes the class of nonlinear time-delay systems considered in this
ork:

𝑥̇(𝑡) = 𝐹 (𝑥, 𝑢) = 𝑓
(

𝑥(𝑡), 𝑥(𝑡 − 𝑑1), 𝑢(𝑡 − 𝑑2)
)

(1)

(𝑡) is the 𝑛-dimensional state vector, and 𝑢(𝑡) is the 𝑚-dimensional
ontrol input vector bounded by 𝑢 ∈ 𝑈 . The set 𝑈 , defined as 𝑈 ∶=
|𝑢𝑖| ≤ 𝑢max,𝑖, 𝑖 = 1,… , 𝑚}. The vector 𝑓 (⋅) is a locally Lipschitz vector
unction of its arguments. Under the assumption that 𝑓 (0, 0, 0) = 0,
he origin is a steady-state of Eq. (1). 𝑑1 > 0 is the value of the state
elay and 𝑑2 > 0 is the value of the input delay. Moreover, without
oss of generality, the initial time is taken to be zero (i.e., 𝑡0 = 0),
nd the initial data is denoted as 𝜙𝑥, where 𝜙𝑥 ∈ 𝐶([−𝑑1, 0],R𝑛).
dditionally, the symbol 𝜙𝑢 represents the initial input function, where
𝑢 ∈ 𝐶([−𝑑2, 0],R𝑚). Hence, 𝜙𝑢 is bounded and is assumed to be
iecewise continuous over its domain. The system of Eq. (1) can be
xpressed as a perturbed form of the system without delays in the
ollowing form:

𝑥̇(𝑡) = 𝐹 (𝑥, 𝑢, 𝜉) = 𝑓 (𝑥(𝑡), 𝑥(𝑡) + 𝜉1(𝑡), 𝑢(𝑡) + 𝜉2(𝑡)) (2a)
1(𝑡) = 𝑥(𝑡 − 𝑑1) − 𝑥(𝑡) (2b)
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𝜉2(𝑡) = 𝑢(𝑡 − 𝑑2) − 𝑢(𝑡) (2c)

where 𝜉𝑇 ∶= [𝜉𝑇1 𝜉𝑇2 ] ∈ 𝐷 × 𝑈 ⊂ R𝑛+𝑚 is the bounded perturbation
ector, and 𝐷 is an open neighborhood around the origin.

emark 1. In this work, differential difference equations (DDEs) are
sed to describe the general class of nonlinear time-delay systems. A
umber of different methods to describe nonlinear time-delay systems
xist in the literature, such as first order plus dead time and second
rder plus dead time models, which are specific and assume certain
linear) model structures. Therefore, nonlinear differential difference
quations with constant delays were chosen as the class of systems in
his paper to make the analysis more general. However, other works
hat describe nonlinear time-delay systems with functional differential
quations can be found, and our results may be extended to such model
tructures as well. For example, describing systems with multiple state
nd input delays and systems with time-varying delays can be done
sing functional differential equations.

.3. Stabilization via control Lyapunov function

Taking into consideration the ODE system in Eq. (2), we assume
hat there exists a locally Lipschitz feedback controller 𝛷(𝑥) ∈ 𝑈 , such
hat the origin of the nominal system of Eq. (2) (i.e., with 𝜉(𝑡) ≡ 0) is
xponentially stable. Hence, the system of Eq. (2) is stabilizable, and
here exists a continuously differentiable Lyapunov function 𝑉 ∶ R𝑛 →
≥0 such that the following inequalities hold:

1|𝑥|
2 ≤ 𝑉 (𝑥) ≤ 𝑐2|𝑥|

2, (3a)

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥,𝛷(𝑥), 0) ≤ −𝑐3|𝑥|
2, (3b)

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

|

|

|

|

≤ 𝑐4|𝑥| (3c)

given that 𝑐𝑖 are positive constants, where 𝑖 = 1, 2, 3, 4, for all 𝑥 ∈
R𝑛 ⊂ 𝐷. Since the system 𝐹 (𝑥, 𝑢, 𝜉) has a Lipschitz property, together
with the bounded behavior of the input 𝑢 and the perturbation 𝜉, there
exist positive constants 𝑀 , 𝐿𝑥, 𝐿′

𝑥, 𝐿𝜉 , and 𝐿′
𝜉 such that the following

inequalities hold for all 𝑥, 𝑥′ ∈ 𝐷 and 𝑢 ∈ 𝑈 :

|𝐹 (𝑥, 𝑢, 𝜉)| ≤𝑀 (4a)

|𝐹 (𝑥, 𝑢, 𝜉) − 𝐹 (𝑥′, 𝑢, 0)| ≤ 𝐿𝑥|𝑥 − 𝑥′| + 𝐿𝜉 |𝜉| (4b)
|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥, 𝑢, 𝜉) −
𝜕𝑉 (𝑥′)
𝜕𝑥

𝐹 (𝑥′, 𝑢, 0)
|

|

|

|

≤ 𝐿′
𝑥|𝑥 − 𝑥

′
| + 𝐿′

𝜉 |𝜉| (4c)

Additionally, the closed loop stability region of the nonlinear system
of Eq. (2) is characterized by the region𝛺𝜌, where 𝛺𝜌 ∶= {𝑥 ∈ 𝐷|𝑉 (𝑥) ≤
𝜌}

2.4. Long short-term memory recurrent neural networks

An LSTM network is a special type of RNN that is composed of a
number of gates and cells, which gives it a unique structure. LSTMs
were introduced to overcome a number of limitations found in classical
RNNs, primarily the vanishing gradient problem. This phenomenon
occurs very often in classical RNNs, where the product of the gradients
in the loss function get smaller in value as we proceed through the
layers of the network, causing the loss function to have a value near
zero for older data points. Hence, training the network becomes harder,
and analyzing data over long time periods becomes a challenging
task. Additionally, LSTMs are well known for modeling systems that
require long time dependencies. The LSTM network is designed to
predict future states of the process using the past state measurements
and future control actions. Therefore, the input sequence of the LSTM
network is denoted by 𝑝 ∈ R(𝑛+𝑚)×𝑇 , while the output of the LSTM
network is denoted by 𝑥̂ ∈ R𝑛×𝑇 , where 𝑇 is the number of time steps or
3

repeating LSTM modules within one sampling period. Fig. 1 illustrates
the LSTM structure.

The LSTM unit is expressed through the following equations:

𝑔(𝑘) = 𝜎
(

𝜔𝑝𝑔𝑝(𝑘) + 𝜔
ℎ
𝑔ℎ(𝑘 − 1) + 𝑏𝑔

)

(5a)

𝑖(𝑘) = 𝜎
(

𝜔𝑝𝑖 𝑝(𝑘) + 𝜔
ℎ
𝑖 ℎ(𝑘 − 1) + 𝑏𝑖

)

(5b)

𝑐(𝑘) = 𝑖(𝑘) tanh
(

𝜔𝑝𝑐𝑝(𝑘) + 𝜔
ℎ
𝑐 ℎ(𝑘 − 1) + 𝑏𝑐

)

+ 𝑔(𝑘)𝑐(𝑘 − 1) (5c)

𝑜(𝑘) = 𝜎
(

𝜔𝑝𝑜𝑝(𝑘) + 𝜔
ℎ
𝑜ℎ(𝑘 − 1) + 𝑏𝑜

)

(5d)

𝑥̂(𝑘) = 𝜔𝑦ℎ(𝑘) + 𝑏𝑦 (5e)

(𝑘) = 𝑜(𝑘) tanh(𝑐(𝑘)) (5f)

here the input sequence is denoted by 𝑝(𝑘), and the vector 𝑥̂(𝑘) ∈ R𝑛×𝑇
represents the LSTM network output, with 𝑘 = 1,… , 𝑇 . The weight
matrix and bias vector for the output are 𝜔𝑦 and 𝑏𝑦, respectively. Ad-
ditionally, ℎ(𝑘) is the internal state, while 𝑔(𝑘), 𝑖(𝑘), and 𝑜(𝑘) represent
the outputs from the forget gate, the input gate, and the output gate,
respectively. 𝜔𝑝𝑔 , 𝜔ℎ𝑔 , 𝜔

𝑝
𝑖 , 𝜔

ℎ
𝑖 , 𝜔

𝑝
𝑜 , and 𝜔ℎ𝑜 are the weight matrices for the

input vector 𝑝 and the hidden state vector ℎ within the forget gate,
the input gate and the output gate, respectively. 𝑏𝑔 , 𝑏𝑖, and 𝑏𝑜 are the
bias vectors for the forget gate, the input gate, and the output gate,
respectively. Moreover, 𝑐(𝑘) represents the cell state, which is in charge
of storing and passing the essential information through successive
LSTM units. More precisely, the first term in Eq. (5c) is in charge of
storing the new, important information coming from the input gate
𝑖(𝑘) in the cell state 𝑐(𝑘) that is to be passed to the next LSTM unit.
n contrast, the second term in Eq. (5c) uses the forget gate 𝑔(𝑘) to
ompute the information that should be discarded from the previous
tate 𝑐(𝑘 − 1). Additionally, the weight matrices associated with the
ell state are represented by 𝜔𝑝𝑐 and 𝜔ℎ𝑐 , where 𝜔𝑝𝑐 indicates the weight
atrix for the input vector, and 𝜔ℎ𝑐 is the weight matrix for the hidden

tate vector. 𝑏𝑐 represents the bias vector associated with the cell state.
and 𝑡𝑎𝑛ℎ are the nonlinear sigmoid and hyperbolic tangent activation

unctions, respectively. The LSTM input sequence is 𝑝 ∈ R(𝑛+𝑚)×𝑇 , which
onsists of the past state measurements 𝑥 and the manipulated inputs
.

In this study, we develop an LSTM network model with the follow-
ng form as a continuous-time nonlinear system:

̇̂ = 𝐹𝑛𝑛(𝑥̂, 𝑢) ∶= 𝐴𝑥̂ + 𝛩𝑇 𝑧 (6)

where 𝑥̂ ∈ R𝑛 is the LSTM state vector, and 𝑢 ∈ R𝑚 is the manipulated
input. 𝐴 ∈ R𝑛×𝑛 and 𝛩 ∈ R(𝑛+𝑚+1)×𝑛 are the weight matrices, and
𝑧 = [𝑧1...𝑧𝑛+𝑚+1]𝑇 = [𝜎(𝑥̂1)...𝜎(𝑥̂𝑛) 𝑢1...𝑢𝑚 1]𝑇 ∈ R𝑛+𝑚+1 is a vector
associated with the network states 𝑥̂ and the manipulated input 𝑢.

Remark 2. Many applications in the control engineering field re-
quire machine learning models that can deal with sequential data. The
inputs and outputs of a chemical process are often considered as time-
series data. Sequential neural network models, such as recurrent neural
networks (RNNs), gated recurrent units (GRUs) and long short-term
memory networks (LSTMs), are types of machine learning models that
are well-suited to model nonlinear dynamical systems (including the
nonlinear time-delay systems considered in our work) using sequential
time-series input–output data. The LSTM network is a strong candidate
given its potential to overcome problems that occur in RNNs and
its proven ability to model systems that require long time dependen-
cies such as nonlinear time-delay systems, which require robustness
considerations with regards to closed-loop stability and performance
criteria.

2.5. Data generation and model training process

The goal is to design a stabilizing control law for the nonlinear time-
delayed system of Eq. (1) under small-time delays or, in other words,

small and bounded perturbations. In this work, we will be adapting a
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Fig. 1. LSTM structure.
𝑐

machine learning method, specifically LSTM neural networks. The first
step in the development of an LSTM model is to generate data. We
follow the data generation technique described in Wu et al. (2019a),
which is to run extensive open-loop simulations of the nonlinear system
of Eq. (2) without the time delays. The aim is to capture the dynamics
of the system for all 𝑥 ∈ 𝛺𝜌 and 𝑢 ∈ 𝑈 , sweeping over all possible
combinations of initial conditions 𝑥0 ∈ 𝛺𝜌 and inputs 𝑢 ∈ 𝑈 . Moreover,
we note that, in the data generation process as well as when simulating
the system of Eq. (2) without time delays, the input 𝑢 ∈ 𝑈 is applied
in a sample-and-hold manner, where it is fed to the system of Eq. (2)
without time delays as a piecewise constant function 𝑢(𝑡) = 𝑢(𝑡𝑘),∀𝑡 ∈
[𝑡𝑘, 𝑡𝑘+1), where 𝑡𝑘+1 ∶= 𝑡𝑘 + 𝛥 (𝛥 is the sampling period). Then, we
integrate the system of Eq. (2) without time delays using the explicit
Euler method with a sufficiently small integration time step ℎ𝑐 ≪ 𝛥.
Therefore, we are able to create a set of time-series data for the state
𝑥 within a chosen level set of the Lyapunov function, denoted as the
operating region 𝛺𝜌. This procedure yields a large data set of diverse
trajectories to be passed to the model training phase. Subsequently,
we train the LSTM network using the generated data and the neural
network library Keras. The architecture of the LSTM network of Eq. (6)
is designed to be such that, given the current state measurement and
future manipulated inputs, the LSTM is able to predict the future states
for at least one sampling period ahead, i.e., 𝑥(𝑡) ∈ [𝑡𝑘, 𝑡𝑘+𝛥). As a result,
we obtain an LSTM model that has the ability to capture the dynamics
of the system with sufficiently small modeling error. We point out that
the gathered data set is divided into three main sets—the training,
validation, and testing sets, each for its own purpose.

Remark 3. The LSTM model can be trained using data from the
delayed process. However, training on the basis of the ODE process
model without delays allows us to further evaluate the robustness of
this model with respect to applying it in an MPC that is used to control
the delayed process, despite the training data being from the system
without delays.

Remark 4. Referring to the nonlinear system of Eq. (2), the existence
of perturbation or disturbances in the system indicates that we may
be dealing with noisy data in the training phase, which can affect
the accuracy of the developed LSTM model. In some cases, the LSTM
model can fail to make the correct predictions due to the existence of
perturbation in the data set. Additionally, some studies indicate that
4

the perturbed data makes the LSTM model more robust and enhances
the performance of the model (see Bishop (1995) for more details
on this topic). It is important to highlight that, in this article, we
generated data and trained the LSTM model based on the nominal
system of Eq. (2) (i.e., with 𝜉 = 0). Using machine learning tech-
niques to control perturbed nonlinear systems is a topic that requires
further studies. However, in further sections, we will show that the
LSTM model developed based on the nominal system of Eq. (2), when
incorporated in a Lyapunov-based model predictive controller (LMPC),
is able to stabilize the perturbed nonlinear system of Eq. (2), under the
condition of bounded perturbation, and eventually under sufficiently
small state delays.

3. Robustness of LSTM-based LMPC to small time state delays

In this section, we will focus on the closed loop stability analysis
of the perturbed nonlinear system of Eq. (2), taking into consideration
sufficiently small state delays only (i.e., 𝑑2 = 0 and, hence, 𝜉2 =
0). However, the stabilization of the perturbed system of Eq. (2) in
the presence of both state and input delays will be achieved using
a predictor feedback LSTM-based LMPC methodology in Section 5.
Additionally, knowing that the state delays are represented through
the perturbation term 𝜉1(𝑡) = 𝑥(𝑡 − 𝑑1) − 𝑥(𝑡), the upper bound of the
perturbation can be written as follows:

|𝜉(𝑡)| = |𝜉1(𝑡)| = |𝑥(𝑡 − 𝑑1) − 𝑥(𝑡)| ≤ 𝑑1‖𝑥𝑑 (𝑡)‖ (7)

where ‖𝑥𝑑 (𝑡)‖ is the max-norm of 𝑥𝑑 (𝑡) ∈ 𝐶([−𝑑1, 0],R𝑛) (i.e., ‖𝑥𝑑 (𝑡)‖ =
max𝜃∈[−𝑑1 ,0] |𝑥(𝑡 − 𝜃)|).

3.1. Stabilization of LSTM models via control Lyapunov function

Taking into consideration the LSTM model developed in Eq. (6), we
assume that there exists a locally Lipschitz feedback controller 𝛷𝑛𝑛(𝑥) ∈
𝑈 such that exponential stability of the LSTM model is attained at
the origin. This implies that there exists a continuously differentiable
Lyapunov function 𝑉 ∶ R𝑛 → R≥0 such that the following inequalities
hold:

̂1|𝑥|
2 ≤ 𝑉 (𝑥) ≤ 𝑐2|𝑥|

2 (8a)

𝜕𝑉 (𝑥)
𝐹 (𝑥,𝛷 (𝑥)) ≤ −𝑐 |𝑥|2 (8b)
𝜕𝑥 𝑛𝑛 𝑛𝑛 3
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𝜕𝑉 (𝑥)
𝜕𝑥

|

|

|

|
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≤ 𝑐4|𝑥| (8c)

given that 𝑐𝑖 are positive constants, for all 𝑥 ∈ R𝑛 ⊂ 𝐷̂ where, 𝑖 =
1, 2, 3, 4, and 𝐷̂ is an open neighborhood around the origin. The LSTM
model of Eq. (6) has a stability region denoted as 𝛺𝜌̂, characterized as
a compact set embedded in 𝐷̂ as follows: 𝛺𝜌̂ ∶= {𝑥 ∈ 𝐷̂ ∣ 𝑉 (𝑥) ≤ 𝜌̂},
where 𝜌̂ > 0. In addition, there exist positive constants 𝑀𝑛𝑛 and 𝐿𝑛𝑛
uch that the following inequalities hold for all 𝑥, 𝑥′ ∈ 𝛺𝜌̂ and 𝑢 ∈ 𝑈 :

𝐹𝑛𝑛(𝑥, 𝑢)| ≤𝑀𝑛𝑛 (9a)

|

|

|

|

|

𝜕𝑉 (𝑥)
𝜕𝑥

𝐹𝑛𝑛(𝑥, 𝑢) −
𝜕𝑉 (𝑥′)
𝜕𝑥

𝐹𝑛𝑛(𝑥′, 𝑢)
|

|

|

|

|

≤ 𝐿𝑛𝑛|𝑥 − 𝑥′| (9b)

The proposition shown below illustrates that the feedback control input
𝑢 = 𝛷𝑛𝑛(𝑥) ∈ 𝑈 can stabilize the nominal system of Eq. (2), under a
sufficiently small modeling error.

Proposition 1 (c.f Proposition 2 in (Wu et al., 2019a)). Consider the
LSTM model of Eq. (6) that satisfies the stabilizability criteria of Eq. (8)
and is exponentially stable around the origin under the control law 𝑢 =
𝛷𝑛𝑛(𝑥) ∈ 𝑈 for all 𝑥 ∈ 𝛺𝜌̂. Then, the origin of the perturbed nonlinear
system of Eq. (2) is exponentially stable around the origin for all 𝑥 ∈ 𝛺𝜌̂
nder the condition that there exists a positive real number 𝛾, where 𝛾 <
̂3∕𝑐4. Additionally, 𝛾 is the upper bound of the modeling error between
he nominal system of Eq. (2) with 𝜉 = 0 and the LSTM model (i.e., 𝜈 =
𝐹 (𝑥, 𝑢, 0) − 𝐹𝑛𝑛(𝑥, 𝑢)| ≤ 𝛾|𝑥| for all 𝑥 ∈ 𝛺𝜌̂).

Proof. We proceed by following the proof of Proposition 2 in Wu
et al. (2019a). The goal is to prove that the nominal system of Eq. (2)
is exponentially stable around the origin for all 𝑥 ∈ 𝛺𝜌̂. This can
be achieved by showing that ̇̂𝑉 (𝑥) is negative for the nominal system
of Eq. (2) under the stabilizing control law 𝑢 = 𝛷𝑛𝑛(𝑥) ∈ 𝑈 for all
𝑥 ∈ 𝛺𝜌̂. Using the inequalities in Eqs. (8b) and (8c), ̇̂𝑉 (𝑥) can be
computed as follows:

̇̂𝑉 =
𝜕𝑉 (𝑥)
𝜕𝑥

𝐹 (𝑥,𝛷𝑛𝑛(𝑥), 0)

= 𝜕𝑉
𝜕𝑥

𝐹𝑛𝑛(𝑥,𝛷𝑛𝑛(𝑥)) + 𝐹 (𝑥,𝛷𝑛𝑛(𝑥), 0) − 𝐹𝑛𝑛(𝑥,𝛷𝑛𝑛(𝑥))

≤ −𝑐3|𝑥|
2 + 𝑐4|𝑥|(𝐹 (𝑥,𝛷𝑛𝑛(𝑥), 0) − 𝐹𝑛𝑛(𝑥,𝛷𝑛𝑛(𝑥)))

= −𝑐3|𝑥|
2 + 𝛾𝑐4|𝑥|

2

(10)

By letting 𝛾 < 𝑐3
𝑐4

, we achieve ̇̂𝑉 (𝑥) ≤ −𝑐3|𝑥|
2 ≤ 0 where 𝑐3 = −𝑐3 +

𝛾𝑐4 ≥ 0 and, consequently, closed-loop stability of the nominal system
of Eq. (2) around the origin under the control law 𝛷𝑛𝑛(𝑥) ∈ 𝑈 for all
𝑥 ∈ 𝛺𝜌̂. □

3.2. Sample-and-hold implementation of Lyapunov-based controller

It is important to highlight that the LSTM-based LMPC is designed
using the LSTM model generated in Eq. (6), where the control actions
are executed in sample-and-hold fashion. In order to study the robust-
ness of the LSTM-based LMPC to small time-delays in the states, we
note that, in the next two propositions, we will consider state delays
only (i.e., 𝜉2 = 0). Given that the state delays are sufficiently small, this
implies that the perturbation 𝜉1 is bounded. The following proposition
shows that the error between the state of the perturbed nonlinear
system of Eq. (2) with 𝜉2 = 0 and the predicted state by the LSTM
model Eq. (6) is bounded.

Proposition 2 (c.f Proposition 3 in (Wu et al., 2019a)). Consider the
perturbed nonlinear system of Eq. (2) with 𝜉2 = 0 in the presence
of bounded disturbances (i.e., |𝜉(𝑡)| = |𝜉1(𝑡)| ≤ 𝑑1‖𝑥𝑑 (𝑡)‖, ‖𝑥𝑑 (𝑡)‖ =
max |𝑥(𝑡 − 𝜃)|) and the LSTM model of Eq. (6) with the same initial
5

𝜃∈[−𝑑1 ,0]
condition 𝑥0 = 𝑥̂0 ∈ 𝛺𝜌̂. There exists a class  function 𝑓𝜉 (⋅) and a positive
constant 𝜅 such that the following inequalities hold for all 𝑥, 𝑥̂ ∈ 𝛺𝜌̂ and
|𝜉(𝑡)| = |𝜉1(𝑡)| ∈ 𝐷 ⊂ R𝑛:

|𝑥(𝑡) − 𝑥̂(𝑡)| ≤ 𝑓𝜉 (𝑡) ∶=
𝐿𝜉 𝑑1‖𝑥𝑑 (𝑡)‖ + 𝜈𝑚

𝐿𝑥

(

𝑒𝐿𝑥𝑡 − 1
)

(11a)

𝑉 (𝑥) ≤ 𝑉 (𝑥̂) +
𝑐4
√

𝜌̂
√

𝑐1
|𝑥 − 𝑥̂| + 𝜅|𝑥 − 𝑥̂|2 (11b)

Proof. Let 𝑒(𝑡) = 𝑥(𝑡)− 𝑥̂(𝑡) represent the error vector between the state
of the perturbed nonlinear system of Eq. (2) with 𝜉2 = 0 and the state
of the LSTM model of Eq. (6). The following bound can be found for
the time-derivative of 𝑒(𝑡):

𝑒̇(𝑡)| = |𝐹 (𝑥, 𝑢, 𝜉) − 𝐹𝑛𝑛(𝑥̂, 𝑢)|

≤ |𝐹 (𝑥, 𝑢, 𝜉) − 𝐹 (𝑥̂, 𝑢, 0)| + |𝐹 (𝑥̂, 𝑢, 0) − 𝐹𝑛𝑛(𝑥̂, 𝑢)|
(12)

sing Eq. (4b), for all 𝑥, 𝑥̂ ∈ 𝛺𝜌̂ and |𝜉(𝑡)| = |𝜉1(𝑡)| ∈ 𝐷 ⊂ R𝑛, we can
ound the first term in Eq. (12) as follows:

𝐹 (𝑥, 𝑢, 𝜉) − 𝐹 (𝑥̂, 𝑢, 0)| ≤ 𝐿𝑥|𝑥(𝑡) − 𝑥̂(𝑡)| + 𝐿𝜉 |𝜉|

≤ 𝐿𝑥|𝑥(𝑡) − 𝑥̂(𝑡)| + 𝐿𝜉𝑑1‖𝑥𝑑 (𝑡)‖
(13)

e observe that the second term of Eq. (13) is equivalent to the
odeling error, which is upper bounded by 𝜈𝑚 for all 𝑥̂ ∈ 𝛺𝜌̂. Therefore,

he bound of the modeling error and the bound of Eq. (13) can be used
o further bound 𝑒̇(𝑡) as follows:

𝑒̇(𝑡)| ≤ 𝐿𝑥|𝑥(𝑡) − 𝑥̂(𝑡)| + 𝐿𝜉 |𝑑1|‖𝑥𝑑 (𝑡)‖ + 𝜈𝑚
≤ 𝐿𝑥|𝑒(𝑡)| + 𝐿𝜉𝑑1‖𝑥𝑑 (𝑡)‖ + 𝜈𝑚

(14)

ntegrating the inequality of Eq. (14) from zero initial conditions
i.e., 𝑒(0) = 0), the following upper bound for the error vector can be
btained for all 𝑥, 𝑥̂ ∈ 𝛺𝜌̂ and |𝜉(𝑡)| = |𝜉1(𝑡)| ∈ 𝐷 ⊂ R𝑛:

𝑒(𝑡)| = |𝑥(𝑡) − 𝑥̂(𝑡)| ≤
𝐿𝜉1𝑑1‖𝑥𝑑 (𝑡)‖ + 𝜈𝑚

𝐿𝑥

(

𝑒𝐿𝑥𝑡 − 1
)

(15)

Using the Taylor series expansion of 𝑉 (𝑥) around 𝑥̂, we derive Eq. (11b)
as follows, for all 𝑥, 𝑥̂ ∈ 𝛺𝜌̂:

𝑉 (𝑥) ≤ 𝑉 (𝑥̂) +
𝜕𝑉 (𝑥̂)
𝜕𝑥

|𝑥 − 𝑥̂| + 𝜅|𝑥 − 𝑥̂|2 (16)

where 𝜅 is a positive real number. Additionally, we use Eqs. (8a) and
(8b) to further upper bound 𝑉 (𝑥) as follows:

̂ (𝑥) ≤ 𝑉 (𝑥̂) +
𝑐4
√

𝜌̂
√

𝑐1
|𝑥 − 𝑥̂| + 𝜅|𝑥 − 𝑥̂|2 □ (17)

The following proposition shows that the closed-loop state trajec-
tory 𝑥(𝑡) of the perturbed system of Eq. (2) with 𝜉2 = 0 is bounded in 𝛺𝜌̂
for all times and can be driven to a small neighborhood around the ori-
gin, 𝛺𝜌min

, under the controller 𝛷𝑛𝑛(𝑥) ∈ 𝑈 executed in sample-and-hold
fashion.

Proposition 3 (c.f Proposition 4 in (Wu et al., 2019a)). Consider the
nonlinear system of Eq. (2) with 𝜉2 = 0 under the controller 𝛷𝑛𝑛(𝑥̂) ∈ 𝑈 that
meets the conditions of Eq. (8) and stabilizes the LSTM model of Eq. (6). The
controller is executed in sample-and-hold, i.e., 𝛷𝑛𝑛(𝑥̂(𝑡𝑘)),∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1),
where 𝑡𝑘+1 ∶= 𝑡𝑘 + 𝛥. Then, there exist 𝜖𝑤 > 0, 𝛥 > 0 and 𝜌̂ > 𝜌min > 𝜌𝑛𝑛 >
𝜌𝑠 that satisfy

−
𝑐3
𝑐2
𝜌𝑠 + 𝐿𝑛𝑛𝑀𝑛𝑛𝛥 ≤ −𝜖𝑠 (18a)

−
𝑐3
𝑐2
𝜌𝑠 + 𝐿′

𝑥𝑀𝐹𝛥 ≤ −𝜖𝑤 (18b)

and

𝜌𝑛𝑛 ∶= max{𝑉
(

𝑥̂(𝑡 + 𝛥)
)

∣ 𝑥̂(𝑡) ∈ 𝛺𝜌𝑠 , 𝑢 ∈ 𝑈} (19a)

𝜌min ≥ 𝜌𝑛𝑛 +
𝑐4
√

𝜌̂
√

𝑓𝜉 (𝛥) + 𝜅
(

𝑓𝜉 (𝛥)
)2 (19b)
𝑐1
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such that for any 𝑥(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑠 , the following inequality holds:

𝑉 (𝑥(𝑡)) ≤ 𝑉 (𝑥(𝑡𝑘)), ∀𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) (20)

and the state 𝑥(𝑡) of the perturbed nonlinear system of Eq. (2) is bounded
in 𝛺𝜌̂ for all times and ultimately bounded in 𝛺𝜌min

.

Proof. First, we need to show that 𝑉 (𝑥) is decreasing under the
controller 𝑢(𝑡) = 𝛷𝑛𝑛(𝑥(𝑡𝑘)) for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1). Consider 𝑥(𝑡𝑘) = 𝑥̂(𝑡𝑘) ∈
𝛺𝜌̂∖𝛺𝜌𝑠 , where 𝑥(𝑡𝑘) is the state of the perturbed nonlinear system
of Eq. (2) with 𝜉2 = 0, and 𝑥̂(𝑡𝑘) is the state of the LSTM model in Eq. (6).
The time-derivative of 𝑉 (𝑥) for all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) is computed as follows:

̇̂𝑉 (𝑥̂(𝑡)) =
𝜕𝑉 (𝑥̂(𝑡))
𝜕𝑥̂

𝐹𝑛𝑛
(

𝑥̂(𝑡), 𝛷𝑛𝑛(𝑥̂(𝑡𝑘))
)

=
𝜕𝑉 (𝑥̂(𝑡𝑘))

𝜕𝑥̂
𝐹𝑛𝑛

(

𝑥̂(𝑡𝑘), 𝛷𝑛𝑛(𝑥̂(𝑡𝑘))
)

+
𝜕𝑉 (𝑥̂(𝑡))
𝜕𝑥̂

𝐹𝑛𝑛
(

𝑥̂(𝑡), 𝛷𝑛𝑛(𝑥̂(𝑡𝑘))
)

−
𝜕𝑉 (𝑥̂(𝑡𝑘))

𝜕𝑥̂
𝐹𝑛𝑛

(

𝑥̂(𝑡𝑘), 𝛷𝑛𝑛(𝑥̂(𝑡𝑘))
)

(21)

Using the inequalities in Eqs. (8a) and (8b), we obtain the following:

̇̂𝑉 (𝑥̂(𝑡)) ≤ −
𝑐3
𝑐2
𝜌𝑠 +

𝜕𝑉 (𝑥̂(𝑡))
𝜕𝑥̂

𝐹𝑛𝑛(𝑥̂(𝑡), 𝛷𝑛𝑛(𝑥̂(𝑡𝑘)))

−
𝜕𝑉 (𝑥̂(𝑡𝑘))

𝜕𝑥̂
𝐹𝑛𝑛(𝑥̂(𝑡𝑘), 𝛷𝑛𝑛(𝑥̂(𝑡𝑘)))

(22)

Using the Lipschitz inequalities in Eq. (9), we can further bound ̇̂𝑉 (𝑥̂(𝑡))
by the following:

̇̂𝑉 (𝑥̂(𝑡)) ≤ −
𝑐3
𝑐2
𝜌𝑠 + 𝐿𝑛𝑛|𝑥̂(𝑡) − 𝑥̂(𝑡𝑘)|

≤ −
𝑐3
𝑐2
𝜌𝑠 + 𝐿𝑛𝑛𝑀𝑛𝑛𝛥

(23)

Hence, if Eq. (18a) is satisfied, the following inequality holds for all
̂(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑠 and 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1):

̇̂𝑉 (𝑥(𝑡)) ≤ −𝜖𝑠 (24)

Integrating the above inequality over 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) yields the desired re-
sult, 𝑉 (𝑥̂(𝑡𝑘+1)) ≤ 𝑉 (𝑥̂(𝑡𝑘))−𝜖𝑠𝛥. Hence, we have shown that, if Eq. (18a)
holds, then ̇̂𝑉 (𝑥(𝑡)) is negative for any 𝑥̂(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑠 . This implies that
the closed-loop state of the LSTM model of Eq. (6) under the sample-
and-hold implementation of the controller 𝑢 = 𝛷𝑛𝑛(𝑥̂) is bounded within
the region 𝛺𝜌̂ and moves toward the origin. Additionally, the region
𝛺𝜌𝑛𝑛 in Eq. (19a) is introduced for the case where 𝑥(𝑡𝑘) = 𝑥̂(𝑡𝑘) ∈ 𝛺𝜌𝑠 .
In this case, Eq. (24) may not hold, and the state 𝑥̂(𝑡𝑘) may leave the
region 𝛺𝜌𝑠 within one sampling period. Therefore, 𝛺𝜌𝑛𝑛 is designed
to guarantee that the closed-loop state 𝑥̂(𝑡𝑘) of the LSTM model will
be bounded in the region 𝛺𝜌𝑛𝑛 within one sampling period, for all
𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), 𝑢 ∈ 𝑈 and 𝑥̂(𝑡𝑘) ∈ 𝛺𝜌𝑠 , because, if 𝑥̂(𝑡𝑘+1) leaves 𝛺𝜌𝑠 ,
the controller 𝑢 = 𝛷𝑛𝑛

(

𝑥(𝑡𝑘+1)
)

reactivates, such that Eq. (24) will be
satisfied again at 𝑡 = 𝑡𝑘+1, and the state will be driven back toward
𝛺𝜌𝑠 over the next sampling period. Thus far, we can conclude that the
state of the LSTM system of Eq. (6) is ultimately bounded in 𝛺𝜌𝑛𝑛 for
all 𝑥0 ∈ 𝛺𝜌̂.

The next step is to show that the controller 𝑢 = 𝛷𝑛𝑛(𝑥) ∈ 𝑈 , applied
in sample-and-hold fashion, is able to bound the states of the perturbed
nonlinear system of Eq. (2) with sufficiently small state delays and with
𝜉2 = 0, in some neighborhood around the origin. Therefore, we need to
show that 𝑉 (𝑥) for the perturbed nonlinear system of Eq. (2) with 𝜉2 = 0
6

is decreasing under the controller 𝑢(𝑡) = 𝛷𝑛𝑛(𝑥(𝑡𝑘)) for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1) and
𝑥(𝑡𝑘) = 𝑥̂(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑠 . The time-derivative of 𝑉 (𝑥(𝑡)) is calculated as:

̇̂𝑉 (𝑥(𝑡)) =
𝜕𝑉 (𝑥(𝑡))
𝜕𝑥

𝐹 (𝑥(𝑡), 𝛷𝑛𝑛(𝑥(𝑡𝑘)), 𝜉)

=
𝜕𝑉 (𝑥(𝑡𝑘))

𝜕𝑥
𝐹 (𝑥(𝑡𝑘), 𝛷𝑛𝑛(𝑥(𝑡𝑘)), 0)

+
𝜕𝑉 (𝑥(𝑡))
𝜕𝑥

𝐹 (𝑥(𝑡), 𝛷𝑛𝑛(𝑥(𝑡𝑘)), 𝜉)

−
𝜕𝑉 (𝑥(𝑡𝑘))

𝜕𝑥
𝐹 (𝑥(𝑡𝑘), 𝛷𝑛𝑛(𝑥(𝑡𝑘)), 0)

(25)

where the first term can be further bounded using the inequality
in Eq. (10) as follows:

̇̂ (𝑥(𝑡)) ≤ −
𝑐3
𝑐2
𝜌𝑠 +

𝜕𝑉 (𝑥(𝑡))
𝜕𝑥

𝐹 (𝑥(𝑡), 𝛷𝑛𝑛(𝑥(𝑡𝑘)), 𝜉)

−
𝜕𝑉 (𝑥(𝑡𝑘))

𝜕𝑥
𝐹 (𝑥(𝑡𝑘), 𝛷𝑛𝑛(𝑥(𝑡𝑘)), 0)

(26)

Since 𝑓 and 𝛷𝑛𝑛 in the perturbed nonlinear system, 𝐹 (𝑥(𝑡), 𝛷𝑛𝑛(𝑥(𝑡𝑘)), 𝜉),
re locally Lipschitz vector functions, there exists a 𝛾∗1 ∈  such that:

𝜉(𝑡)| = |𝜉1(𝑡)| =
|

|

|

|

|

∫

𝑡

𝑡−𝑑1
𝑓
(

𝑥(𝑠), 𝑥(𝑡 − 𝑠), 𝛷𝑛𝑛(𝑥(𝑠))
)

d𝑠
|

|

|

|

|

≤ 𝑑1𝛾
∗
1 (‖𝑥𝑑 (𝑡)‖)

(27)

here ‖𝑥𝑑 (𝑡)‖ = max𝑠∈[−2𝑑1 ,0] |𝑥(𝑡 + 𝑠)|. Applying the inequality of
q. (27) and the Lipschitz condition of Eq. (4), we obtain the following
ound for ̇̂𝑉 (𝑥(𝑡)):

̇̂ (𝑥(𝑡)) ≤ −
𝑐3
𝑐2
𝜌𝑠 + 𝐿′

𝑥|𝑥(𝑡) − 𝑥(𝑡𝑘)| + 𝐿
′
𝜉 |𝜉|

≤ −
𝑐3
𝑐2
𝜌𝑠 + 𝐿′

𝑥𝑀𝐹𝛥 + 𝐿′
𝜉𝑑1𝛾

∗
1 (‖𝑥𝑑 (𝑡)‖)

(28)

ence, if Eq. (18b) is satisfied, the following inequality holds for all
(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑠 and for all 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1):

̇̂ (𝑥(𝑡)) ≤ −𝜖𝑤 (29)

y integrating the above inequality over 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), it is shown
hat Eq. (20) holds, and ̇̂𝑉 (𝑥(𝑡)) is negative for all 𝑥(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑠 .
ence, the state of the closed-loop perturbed nonlinear system of Eq. (2)
ith 𝜉2 = 0 is bounded within the region 𝛺𝜌̂ for all times and can be
riven towards the origin in every sampling period under the control
aw 𝑢 = 𝛷𝑛𝑛(𝑥). For the case where 𝑥(𝑡𝑘) ∈ 𝛺𝜌𝑠 , we recall Eq. (11a),
here the error between the state of the perturbed nonlinear system
f Eq. (2) with 𝜉2 = 0 and the state of the LSTM model of Eq. (6)
s bounded by the term 𝑓𝜉 . We introduce a compact set 𝛺𝜌min

⊃ 𝛺𝜌𝑛𝑛
atisfying Eq. (19b). This ensures that, if the state of the LSTM model
f Eq. (6) is bounded in 𝛺𝜌𝑛𝑛 , then the state of the perturbed nonlinear
ystem of Eq. (2) with 𝜉2 = 0 will be bounded within 𝛺𝜌min

during
ne sampling period. If the state 𝑥(𝑡) enters 𝛺𝜌min

∖𝛺𝜌𝑠 , it is shown
hat Eq. (29) is satisfied, which implies that the state will be driven
owards the origin.

Finally, we conclude that the closed loop state of the perturbed
onlinear system of Eq. (2) with 𝜉2 = 0 is always bounded in 𝛺𝜌̂ and
ltimately bounded within a small region around the neighborhood
i.e., 𝛺𝜌min

) under the control law 𝑢 = 𝛷𝑛𝑛(𝑥) ∈ 𝑈 , provided that the
ssumptions in Proposition 3 are satisfied. □

. LSTM-based model predictive control

The trained LSTM model is then incorporated into a Lyapunov-based
PC (LMPC), where it will be used to evaluate future states in the
PC algorithm. The resulting LSTM-based LMPC computes the optimal

ontrol actions by solving the following optimization problem (Wu
t al., 2019a,b):

 = min
𝑡𝑘+𝑁

𝐿𝑀𝑃𝐶 (𝑥̃(𝑡), 𝑢(𝑡))𝑑𝑡 (30a)

𝑢∈𝑆(𝛥)∫𝑡𝑘
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s.t. ̇̃𝑥(𝑡) = 𝐹𝑛𝑛(𝑥̃(𝑡), 𝑢(𝑡)) (30b)

𝑢(𝑡) ∈ 𝑈, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) (30c)

𝑥̃(𝑡𝑘) = 𝑥(𝑡𝑘) (30d)

̇̂𝑉 (𝑥(𝑡𝑘), 𝑢) ≤
̇̂𝑉 (𝑥(𝑡𝑘), 𝛷𝑛𝑛(𝑥(𝑡𝑘))),

if 𝑥(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑛𝑛 (30e)

𝑉 (𝑥̃(𝑡)) ≤ 𝜌𝑛𝑛, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ), if 𝑥(𝑡𝑘) ∈ 𝛺𝜌𝑛𝑛 (30f)

In the LMPC formulation, 𝑥̃(𝑡) is the predicted state trajectory, and the
number of sampling periods in the prediction horizon is denoted by
𝑁 . The LSTM-based LMPC computes the optimal control action, 𝑢∗(𝑡),
over the whole prediction horizon 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ). The controller sends
the optimal control action 𝑢∗(𝑡𝑘) computed for the first sampling period
within the prediction horizon to be applied to the process, after which
the resultant real-time state from the process 𝑥(𝑡𝑘) is sent back to the
LSTM-based LMPC to resolve the optimal input trajectory at the next
sampling time. The cost function of the optimization problem is shown
in Eq. (30a), and it minimizes the time-integral of 𝐿𝑀𝑃𝐶 (𝑥̃(𝑡), 𝑢(𝑡))
over the prediction horizon. The first constraint of the optimization
problem is that of Eq. (30b), which uses the LSTM model to predict
the states. The second constraint is Eq. (30c), which limits the inputs
that may be applied, over the whole prediction horizon. Eq. (30d)
is the state measurement at 𝑡 = 𝑡𝑘, which is the initial condition
to integrate 𝑥̃(𝑡) from when integrating Eq. (30b). The closed loop
trajectory converges towards the steady state value if 𝑥(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑛𝑛
due to the constraint of Eq. (30e). Otherwise, if 𝑥(𝑡𝑘) enters the region
𝛺𝜌𝑛𝑛 , the constraint in Eq. (30f) ensures that the states predicted by
the LSTM model remain trapped inside the region 𝛺𝜌𝑛𝑛 for the whole
prediction horizon. Additionally, if the assumptions in Propositions 2
and 3 are satisfied with small time-delays in the states of the system,
stability results derived in Wu et al. (2019a) show that using the LSTM-
based LMPC of Eq. (30) guarantees that the closed-loop state of the
perturbed nonlinear system of Eq. (2) with 𝜉2 = 0, under the control law
𝑢 = 𝛷𝑛𝑛 ∈ 𝑈 , is bounded within the stability region 𝛺𝜌̂ and ultimately
bounded within a small region around the origin, 𝛺𝜌min

, for all 𝑡 ≥ 0
and any initial state 𝑥0 ∈ 𝛺𝜌̂.

5. Predictor feedback LSTM-based LMPC methodology

The LSTM-based LMPC is proven to be robust for systems that
have sufficiently small state delays. Robustness can be enhanced by
tuning some parameters in the LSTM-based LMPC controller (Ellis and
Christofides, 2015), such as the weights in the cost function of Eq. (30a)
or the parameter 𝜌𝑛𝑛. Hence, the parameters can be chosen to ensure
a margin of robustness of the closed-loop system in the presence of
state delays. On the other hand, input delays are more challenging, and
require further modifications in the controller structure.

In this section, we will present a predictor feedback LSTM-based
LMPC methodology, and how the predictor is incorporated within the
closed-loop system to compensate for the effect of input delays. As the
name indicates, it is an LSTM-based predictor, in the sense that it uses
an LSTM model to predict the evolution of the future states of the
process up to a future time equal to the input delay. Specifically, at
sampling time 𝑡𝑘, the predictor is used to predict the future state at
time 𝑡𝑘+𝑑2, utilizing past state values and the input trajectory that has
been calculated previously over 𝑡𝑘 to 𝑡𝑘 + 𝑑2. Additionally, an LMPC
formulation with the shifted timescale, 𝑡𝑘 = 𝑘𝛥+𝑑2, is used to calculate
the future input trajectory from 𝑡𝑘 to 𝑡𝑘+𝑁 :

 = min
𝑢∈𝑆(𝛥)∫

𝑡𝑘+𝑁

𝑡𝑘
𝐿𝑀𝑃𝐶 (𝑥̃(𝑡), 𝑢(𝑡)) 𝑑𝑡 (31a)

s.t. ̇̃𝑥(𝑡) = 𝐹𝑛𝑛(𝑥̃(𝑡), 𝑢(𝑡)) (31b)
̄ ̄
7

𝑢(𝑡) ∈ 𝑈, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ) (31c)
𝑥̃(𝑡𝑘) = 𝑥̄(𝑡𝑘) (31d)
̇̂𝑉 (𝑥(𝑡𝑘), 𝑢) ≤

̇̂𝑉 (𝑥(𝑡𝑘), 𝛷𝑛𝑛(𝑥(𝑡𝑘))),

if 𝑥(𝑡𝑘) ∈ 𝛺𝜌̂∖𝛺𝜌𝑛𝑛 (31e)

𝑉 (𝑥̃(𝑡)) ≤ 𝜌𝑛𝑛, ∀ 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+𝑁 ), if 𝑥(𝑡𝑘) ∈ 𝛺𝜌𝑛𝑛 (31f)

With respect to the LSTM-based predictor initialization, it is impor-
tant to clarify the following: specifically, we need to assume initial data
for both the states and inputs. For states, we assume the initial state
data, from time −𝑑1 to 0, to be equal to the value of the states at time
𝑡𝑘 = 0. The inputs are assumed to be at their steady state values from
time 0 to 𝑑2.

Subsequently, at sampling time 𝑡𝑘 or, in other words, 𝑡𝑘 − 𝑑2, the
predictor receives the state measurement 𝑥(𝑡𝑘−𝑑2)

(

or 𝑥(𝑡𝑘)
)

along with
past input measurements from time 𝑡𝑘−𝑑2 to 𝑡𝑘 as its inputs. The LSTM-
based predictor is then used to predict the future state value 𝑥̄(𝑡𝑘).
Subsequently, the output of the predictor is sent to the LSTM-based
LMPC to initialize it and compute the optimal input trajectory along
the whole prediction horizon. The computed control action 𝑢∗(𝑡𝑘|𝑡𝑘−𝑑2)
is then sent to the process to be applied from time 𝑡𝑘 to 𝑡𝑘+1, which
yields the output, i.e., the process state 𝑥(𝑡𝑘+1 − 𝑑2)

(

or 𝑥(𝑡𝑘+1)
)

. Fig. 2
illustrates the proposed LSTM-based LMPC framework. Additionally,
the LSTM-predictor used in this study is a closed-loop predictor (i.e., at
each sampling time, a new measurement 𝑥(𝑡𝑘) is sent to it from the
process). Hence, unlike open-loop predictors, closed-loop ones play an
effective role when trying to control processes with open-loop unstable
equilibrium points (Ellis and Christofides, 2015). Fig. 3 shows the
LSTM-based predictor block in the feedback loop of the closed-loop
system.

We summarize the implementation of the LSTM based predictor in
the following algorithm:

Algorithm 1. LSTM-based predictor, MPC feedback implementation.

1. At sampling time 𝑡𝑘 (i.e., 𝑡𝑘−𝑑2), the predictor receives 𝑥(𝑡𝑘−𝑑2)
and past input measurements from time 𝑡𝑘 − 𝑑2 to 𝑡𝑘.

2. The predictor predicts the future state 𝑥̄(𝑡𝑘).
3. The LSTM-based LMPC is then initialized with the predicted state

𝑥̄(𝑡𝑘), and the optimal control input trajectory is computed.
4. The computed control action, 𝑢∗(𝑡𝑘|𝑡𝑘−𝑑2), is then applied to the

process from 𝑡𝑘 to 𝑡𝑘+1.
5. Set 𝑘⟵ 𝑘 + 1 and go to step 1.

6. Application to a chemical process example

To illustrate the use of the LSTM-based LMPC and the LSTM-based
predictor for stabilizing a nonlinear system in the presence of small
time-delays, we consider the chemical reactor in Ellis and Christofides
(2015). In a well-mixed, non-isothermal continuous stirred tank reactor
(CSTR), the irreversible, exothermic, and elementary second order
reaction transforming a reactant 𝐴 to a desired product 𝐵 (𝐴 → 𝐵)
takes place. Fig. 4 shows the process flow diagram of the CSTR.

The inlet stream enters the reactor with a flow rate 𝜆𝜓 , feed
concentration 𝐶𝐴0, and a feed temperature 𝑇𝑓 . The outlet stream of
the reactor is split into two streams. The first stream is the product
of the reactor, with a volumetric flow rate 𝜆𝜓 , concentration 𝐶𝐴, and
temperature 𝑇 . The second stream is a recycle stream with flow rate
(1−𝜆)𝜓 that is carried back to the reactor. Specifically, the unprocessed
portion of chemical 𝐴 is reused through the recycle steam, where it
carries a splitting fraction (1−𝜆) of the outlet stream back to the reactor.
This recycle stream causes a transportation lag. Hence, a time-delay
of value 𝑑1 appears in the dynamics of the process. 𝐶𝐴0 and 𝑄 are
the feed concentration and the heat rate, respectively, which are the
manipulated inputs of the CSTR. The control actuators’ dynamics and
their operation with dead-times cause an input delay of value 𝑑2, which

appear in the process dynamics.
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Fig. 2. Time phases of the states and the control action of the predictor-based control system.
Fig. 3. Flow diagram of the closed-loop system with the predictor block.
Fig. 4. Process flow diagram of the CSTR with the recycle stream.

The first-principles model of the second-order CSTR with a recycle
stream is described by the following material and energy balance
equations:

𝐶̇𝐴(𝑡) =
(1 − 𝜆)𝜓
𝑉𝑅

𝐶𝐴(𝑡 − 𝑑1) +
𝜆𝜓
𝑉𝑅

𝐶𝐴0(𝑡 − 𝑑2)

−
𝜓
𝑉𝑅

𝐶𝐴(𝑡) − 𝑘0 exp
(

−𝐸
𝑅𝑇 (𝑡)

)

𝐶2
𝐴(𝑡) (32a)

𝑇̇ (𝑡) =
(1 − 𝜆)𝜓
𝑉𝑅

𝑇 (𝑡 − 𝑑1) +
𝜆𝜓
𝑉𝑅

𝑇𝑓 −
𝜓
𝑉𝑅

𝑇 (𝑡)

−
𝛥𝐻𝑘0
𝜌𝐿𝐶𝑝

exp
(

−𝐸
𝑅𝑇 (𝑡)

)

𝐶2
𝐴(𝑡) +

𝑄(𝑡 − 𝑑2)
𝑉𝑅𝜌𝐿𝐶𝑝

(32b)

The vector 𝑥𝑇 = [𝐶𝐴 𝑇 ] represents the state vector, where 𝐶𝐴 is the
concentration of reactant 𝐴, and 𝑇 is the temperature of the reactor.
The notations and the parameter values are illustrated in Table 1. The
inputs of the reactor are bounded as follows: 𝐶𝐴0 ∈ [0.5, 7.5] kmol∕m3

and 𝑄 ∈
[

−8 × 104, 8 × 104
]

kJ∕h. Additionally, the LSTM-based MPC
is designed to drive the system to the steady state, 𝑥𝑠 = (𝐶𝐴𝑠, 𝑇𝑠) =
(

2.96 kmol∕m3, 320K
)

, which is open-loop asymptotically stable. This
8

is achieved under the input values 𝐶𝐴0𝑠 = 4 kmol∕m3 and 𝑄𝑠 = 12.2 ×
103 kJh−1. By converting both the state and input variables to deviation
variables, the steady state of the system is shifted to the origin. For the
development of the LSTM model, we follow the technique illustrated
in Section 2.5, where 105 data points are generated through extensive
open-loop simulations of the nonlinear system of Eq. (32) (without the
delays) using the explicit Euler method with a sufficiently small time
step of ℎ𝑐 = 10−4 h and sampling period 𝛥 = 0.01 h. The data set is then
split into 80,000 points for training and 20,000 points for validation.
Then, using the machine learning library Keras, we construct the LSTM
model of Eq. (6), consisting of 600 LSTM units. The loss function
was chosen to be the mean squared error (MSE). Additionally, during
each epoch of the training, both the training and the validation loss
were calculated simultaneously. Moreover, early stopping was used, in
which the stopping criterion was defined on the basis of the validation
data loss and chosen as 2 × 10−6, i.e., training would terminate once
the validation loss was below 2 × 10−6. Once the early stopping
criterion was satisfied, the training was stopped and the final values
of the training and validation loss were reported to be 5.4 × 10−5 and
1.4 × 10−6, respectively; both considered to be sufficiently small. The
trained LSTM model is then incorporated into a Lyapunov-based MPC
(LMPC). The model’s performance is then evaluated not using a test
set but rather with respect to its ability to lead to an LMPC that gives
satisfactory closed-loop performance and is capable of handling the
delays in states and inputs, as this is the fundamental criterion when
designing an MPC. The LSTM-based LMPC predicts optimal control laws
for a prediction horizon of 𝑁 = 3. Moreover, the Lyapunov function of
the CSTR system is defined as

𝑉 (𝑥) = (𝑥 − 𝑥𝑠)𝑇 𝑃 (𝑥 − 𝑥𝑠) (33)

where the matrix 𝑃 is given by

𝑃 =
[

500 20
]

20 1
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Fig. 5. Closed-loop state and input trajectories under LSTM-based LMPC with time delays: 𝑑1 = 0.01 h and 𝑑2 = 0.01 h.
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Table 1
Notation and parameter values of the CSTR with recycle stream.
Concentration of chemical 𝐴 𝐶𝐴
Reactor temperature 𝑇
Feed concentration 𝐶𝐴0
Heat removal rate from the reactor 𝑄
Splitting fraction 𝜆 = 0.7
Reaction rate constant 𝑘0 = 1 × 109 m3 kmol−1 h−1

Feed temperature 𝑇𝑓 = 300 K
Density 𝜌𝐿 = 1 × 103

Heat Capacity 𝐶𝑝 = 4.18 kJ kg−1 K−1

Reactor volume 𝑉𝑅 = 1 m3

Flow rate 𝜓 = 6 m3 h−1

Heat of reaction 𝛥𝐻 = −7.8 × 104 kJ kmol−1
Activation Energy 𝐸∕𝑅 = 5.7 × 104∕8.314 K

In the following subsections, we will show the results of the designed
LSTM-based LMPC and its ability to stabilize the system. Moreover,
we will show simulation results to demonstrate the predictor feedback
LSTM-based LMPC methodology and its ability to compensate for the
effect of input time-delays.

6.1. LSTM-based LMPC closed-loop simulation results

We first conduct closed-loop simulations for the CSTR under the
LSTM-based LMPC with different values of input time delays as they
are known to have a significant impact on the state trajectories and
stability. Hence, in these simulations, the value of the state delay was
fixed at 𝑑1 = 0.01 h for all simulations results. Fig. 5 shows the closed-
oop trajectories of the CSTR under the LSTM-based LMPC with time
elays of 𝑑1 = 0.01 h and 𝑑2 = 0.01 h. We observe that the trajectories

converge to the steady-state values and are stabilized by the controller.
This shows that the designed controller is robust to small time-delays,
and that closed-loop stability is achieved. In this particular application,
when the value of the input delay, 𝑑 , is higher than 0.01 h, stability
9

2 (
is lost, and we notice oscillations and fluctuations in the closed-loop
trajectories as seen in Figs. 6 and 7, which correspond to input time-
delays of 𝑑2 = 0.02 h, and 𝑑2 = 0.03 h, respectively. Moreover, from
he trajectories of Figs. 6 and 7, we observe that increasing the value
f the input delay 𝑑2 increases the amplitude of the oscillations around
he steady state as well. Hence, the closed-loop trajectories oscillate
round the steady state, causing the system to become unstable.

.2. Predictor feedback LSTM-based LMPC closed-loop simulation results

In this section, we will demonstrate the results of closed-loop sim-
lations using the predictor feedback LSTM-based LMPC design. This
ethod was proposed to overcome the performance deterioration that

rises due to larger time delays, particularly to compensate for the
ffect of larger input time-delays (i.e., 𝑑2 > 0.01 h). The scheme was
pplied for the cases in Section 6.1 where we found oscillations in
he closed loop stability under the LSTM-based LMPC. Figs. 8 and

show the closed-loop trajectories of the CSTR under the predictor
eedback LSTM-based LMPC with input time delays of 𝑑2 = 0.02 h
nd 𝑑2 = 0.03 h, respectively, while maintaining 𝑑1 = 0.01 h in all
imulations. From the results, we observe, under larger values of input
ime-delays, significant improvement in the closed-loop performance
nder the proposed control system. This is achieved through the use of
n LSTM-based predictor together with the LSTM-based LMPC in the
eedback loop. As the trajectories converge to their steady state values
ithout oscillations, the process is considered to be stabilized.

. Conclusion

In this work, we considered a nonlinear time-delay system expressed
sing nonlinear differential difference equations, and we approximated
t with a perturbed nonlinear system with bounded perturbations. First,
e introduced Long Short Term Memory Recurrent Neural Networks

LSTMs) to model the system dynamics in the absence of time delays
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Fig. 6. Closed-loop state and input trajectories under LSTM-based LMPC with time delays 𝑑1 = 0.01 h and 𝑑2 = 0.02 h.
Fig. 7. The closed-loop trajectories of the CSTR under LSTM-based LMPC with time delays: 𝑑1 = 0.01 h and 𝑑2 = 0.03 h.
and used this LSTM model to construct an LSTM-based MPC. In the
presence of small state delays, we established closed-loop stability
10
under the LSTM-based MPC. Subsequently, the LSTM network was
used to develop a closed-loop LSTM-based predictor, that compensated
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f
c

Fig. 8. Closed-loop state and input trajectories under the predictor feedback LSTM-based LMPC, where the time delays: 𝑑1 = 0.01 h and 𝑑2 = 0.02 h.
Fig. 9. Closed-loop state and input trajectories under the predictor feedback LSTM-based LMPC, where the time delays: 𝑑1 = 0.01 h and 𝑑2 = 0.03 h.
d
or the effect of input time-delays. Finally, we applied the proposed
ontrol schemes to a chemical reactor example with time-delays and
11

s

emonstrated their ability to stabilize the closed-loop system under
mall and large state and input time-delays.
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