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Research, School of Civil Engineering, The University of Sydney, Bld. J05, 
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Abstract

Climate change is expected to alter hourly and daily rainfall regimes and, in 
turn, the dynamics of ecosystem processes controlling greenhouse gas 
emissions that affect climate. Here, we investigate the effects of expected 
twenty-first century changes in hourly and daily rainfall on soil carbon and 
nitrogen emissions, soil organic matter (SOM) stocks, and leaching using a 
coupled mechanistic carbon and nitrogen soil biogeochemical model 
(BAMS2). The model represents various abiotic and biotic processes involving
11 SOM pools. These processes include fungal depolymerization, 
heterotrophic bacterial mineralization, nitrification, denitrification, microbial 
mortality, necromass decomposition, microbial response to water stress, 
protection, aqueous advection and diffusion, aqueous complexation, and 
gaseous dissolution. Multi-decadal modeling with varying rainfall patterns 
was conducted on nine Australian grasslands in tropical, temperate, and 
semi-arid regions. Our results show that annual CO2 emissions in the semi-
arid grasslands increase by more than 20% with a 20% increase in annual 
rainfall (with no changes in the rainfall timing), but the tropical grasslands 
have opposite trends. A 20% increase in annual rainfall also increases annual
N2O and NO emissions in the semi-arid grasslands by more than 10% but 
decreases emissions by at least 25% in the temperate grasslands. When 
subjected to low frequency and high magnitude daily rainfall events with 
unchanged annual totals, the semi-arid grasslands are the most sensitive, 
but changes in annual CO2 emissions and SOM stocks are less than 5%. 
Intensification of hourly rainfall did not significantly alter CO2 emissions and 
SOM stocks but changed annual NH3 emissions in the tropical grasslands by 
more than 300%.

Keywords: Soil organic carbon, Carbon cycle, Nitrogen cycle, SOM model, 
Precipitation

Introduction



Climate change is predicted to increase rainfall temporal variability, with a 
consensus of a shift towards a higher frequency of droughts and heavier 
rainfall events (Easterling et al. 2000; Zhang et al. 2013). Although the 
uncertainty in rainfall predictions is high and the predicted changes are 
spatially heterogeneous (Maslin and Austin 2012), trend-detection studies 
based on global and regional rainfall datasets have consistently reported an 
intensification in daily (Donat et al. 2013; Fischer and Knutti 2014) and 
hourly (Guerreiro et al. 2018) extremes. Changes in rainfall regimes can 
increase variations in soil water content, which is a key driver of ecosystem 
processes that affects vegetation growth (Porporato et al. 2003; Yu et al. 
2017; Tietjen et al. 2017), soil respiration (Curiel Yuste et al. 2007; Schimel 
2018), biogeochemical cycles (Delgado-Baquerizo et al. 2013; Nielsen and 
Ball 2015), and greenhouse gas emissions (e.g., CO2, CH4, NOx; Harper et al. 
2005; Kim et al. 2012). Hence, it is essential to analyze the extent to which 
rainfall variability can affect terrestrial carbon and nitrogen emissions.

Predicting the dynamics of soil organic matter (SOM) as a result of rainfall 
intensification is complex and has been the target of many research efforts. 
On the one hand, decreased rainfall amount can suppress SOM 
depolymerization and mineralization due to stronger microbial water stress 
(Schimel et al. 2007) and reduced nutrient mobility (Manzoni et al. 2012), 
leading to a reduction in CO2 emissions. On the other hand, rainfall extremes 
can increase the frequency of drying-rewetting cycles that result in CO2 
pulses a few orders of magnitudes higher than background emissions (known
as “the Birch effect”, Birch 1958; Li et al. 2010; Vargas et al. 2010). Studies 
based on single and multiple cycles of drying-rewetting experiments have 
arrived at very different conclusions regarding the carbon sources and 
mechanisms contributing to the observed CO2 pulses (Schimel 2018). The 
proposed mechanisms include contributions from dead microbial biomass 
(Kieft 1987), mobilization of stable carbon (Navarro-García et al. 2012), 
microbial intracellular osmolytes (Warren 2014), and microbial resuscitation 
(Placella et al. 2012). Most of these experiments, however, were conducted 
at a time-scale of days to months and, hence it is difficult to extrapolate the 
observed drying-rewetting effects to long-term emissions and carbon 
storage. In addition to microbial mediated processes, heavy rainfall pulses 
can increase SOM losses through leaching in the form of dissolved organic 
(DOC) and inorganic carbon (DIC) (Liu et al. 2018). CO2 efflux may be 
suppressed by reduced gas mobility in wet soil (Bouma and Bryla 2000); as a
consequence, DIC is more prone to leaching.

Mineralization and organic carbon inputs to soil through root exudation and 
plant litter are tightly linked to the availability of other nutrients, in 
particular, nitrogen (Bengtson et al. 2012; Henriksen and Breland 1999; 



Manzoni and Porporato 2009). Variations in soil water content can alter the 
microbial activity of the nitrogen cycle, and its overall effect on nitrogen 
losses may be different from that of carbon (Gu and Riley 2010; Schimel 
2018). The available inorganic nitrogen produced by increased SOM 
mineralization after a rainfall pulse may be immobilized into microbial 
biomass (Dijkstra et al. 2012), taken up by plants (LLü et al. 2014), leached 
(Neilen et al. 2017), nitrified (Bateman and Baggs 2005; Stark and Firestone 
1995), or lost as nitrogen gases through denitrification (Li et al. 1992; 
Sexstone et al. 1985; Riley and Matson 2000). Microbial activity and plant 
nitrogen uptake may also have different responses to increased drying-
rewetting cycles (Collins 2008; Schwinning and Sala 2004) and the size of 
water pulses (Dijkstra et al. 2012). It is therefore difficult to predict the 
interactions and competitions between these processes, and estimating their
feedback on the carbon cycle can be even more challenging.

Owing to experimental studies that showed rapid microbial response to soil 
moisture (Lundquist et al. 1999; Lee et al. 2004) and that soil microbes can 
resuscitate and become active within hours after a rewetting event (Placella 
et al. 2012; Barnard et al. 2015), we question if the intensification in hourly 
rainfall extremes can have a more significant impact on SOM dynamics than 
daily variations. To this end, we aim to quantify the long-term impacts of 
hourly and daily rainfall variations on carbon and nitrogen emissions, 
leaching, and storage in grasslands with different seasonal rainfall regimes 
using a mechanistic model. We coupled the BAMS1 model developed in Riley
et al. (2014) to the nitrogen cycle model developed in Maggi et al. (2008) by 
accounting for C and N stoichiometric compositions of various SOM pools. 
The C–N coupled model (called BAMS2; Biotic and Abiotic Model of SOM 
version 2) includes 11 SOM pools (four polymer pools and seven monomer 
pools), five microbial functional groups (heterotrophic fungi and bacteria, 
ammonia oxidisers, nitrite oxidisers, and denitrifiers), plant nitrogen uptake, 
microbial growth, mortality and decomposition, protection, aqueous 
advection and diffusion, gaseous diffusion, aqueous complexation, and 
gaseous dissolution. BAMS2 was first benchmarked against field-observed 
heterotrophic soil respiration; N2O and NO emissions; organic carbon inputs; 
and plant nitrogen uptake reported in the literature, and was then used to 
conduct a suite of numerical experiments on different hourly and daily 
rainfall variations in nine Australian grasslands located in tropical, 
temperate, and semi-arid regions.

Methods

BAMS2 reaction network



To account for the control of nitrogen availability on SOM dynamics, the 
BAMS1 carbon model described in Riley et al. (2014) was coupled to the 
nitrogen cycle model developed in Maggi et al. (2008). The C–N coupled 
reaction network (BAMS2, Fig. 1) consists of four SOM polymer pools (lignin, 
cellulose, hemicellulose, peptidoglycan); seven SOM monomer pools 
(monosaccharide, fatty acids, organic acids, phenols, nucleotides, amino 

acids, amino sugars); seven inorganic nitrogen molecules (NH3, , ,

, NO, N2O, N2); and five microbial functional groups including 
heterotrophic fungi (FDEP), heterotrophic bacteria (BHET), ammonia-oxidizing 
bacteria (BAOB), nitrite-oxidizing bacteria (BNOB), and denitrifying bacteria 
(BDEN).

In BAMS2,  is a substrate in SOM decomposition reactions (R1–R8 in Fig.
1). All microbial functional groups assimilate both carbon and nitrogen for 
growth, with fungi and bacteria having a C:N ratio of 8 and 5, respectively 
(Mouginot et al. 2014). In the mineralization of N-containing monomers (R9–
R11), a fraction of mineralized nitrogen is assimilated into microbial biomass 

and the other fraction is released to the environment as free , which 

can be used by FDEP and BHET to decompose SOM, oxidized by BAOB to , 
and taken up by plants. The original stoichiometric parameters of SOM 
decomposition reactions in BAMS1 (Riley et al. 2014) were recalculated to 
account for the nitrogen immobilization into microbial biomass 
(Supplementary Information Table S.1).

Similarly, the stoichiometric parameters of nitrification (R12–R13) and 
denitrification (R14–R17) reactions reported in Maggi et al. (2008) were 
recalculated to account for both carbon and nitrogen assimilation into 
microbial biomass (Supplementary Table S.1). In addition to nitrification and 

denitrification, BAMS2 includes N2 fixation to  (R19). Although R19 
represents biological fixation, the N2 fixing microbial functional group is not 
explicitly accounted for because N2 fixing microbes have a wide range of 
metabolic requirements; for example, they can be either aerobic or 
anaerobic and can be either heterotrophic, autotrophic, chemolithotrophic, or
methanogenic (Reed et al. 2011).

Plants uptake both  and  (R20–R21) and produce aboveground 
(R28–R29, leaf and wood litter with C:N ratio of 35, Moretto et al. 2001; 
Thomas and Asakawa 1993) and belowground (R27, root exudates with C:N 



ratio of 12, Grayston et al. 1997; Mench and Martin 1991) SOM inputs. Litter 
decomposes into simpler organic polymers and monomers through implicit 
exoenzyme activity (Riley et al. 2014), while root exudates contain only 
organic monomers such as monosaccharide, fatty acids, organic acids, and 
amino acids (Grayston et al. 1997). The carbon and nitrogen assimilated into 
microbial biomass are returned to the SOM pools through microbial mortality 
(R22–R26). Here, microbial mortality and necromass decomposition are 
modeled as one lumped process.

In addition to biological processes, SOM monomers and inorganic nitrogen 
also undergo abiotic processes such as advection and diffusion, gas 
dissolution (R41–R45), and protection (e.g., via mineral surface binding, R30–
R39). SOM polymers are considered to be non-soluble (in solid phases) 
organic carbon and do not undergo protection processes.

Biogeochemical and transport solver

The BAMS2 reaction network (Fig. 1) was solved in the general-purpose 
multi-phase and multi-component bioreactive transport simulator BRTSim-
v3.1a (Maggi 2019). BRTSim solves for the mass continuity and conservation 
laws using hybrid explicit-implicit finite volumes solvers. The water flow 
along a one-dimensional variably saturated soil column is modeled using the 
Richards equation (Richards 1931) in conjunction with the empirical relative 
permeability-potential-saturation relationship of the Brooks-Corey model 
(Brooks and Corey 1964). The transport of dissolved compounds is described
by the Darcy’s advection velocity and the Fick’s diffusion. The advection of 



gaseous compounds is excluded, but gas diffusion is explicitly accounted for 
using Fick’s law. Equations used to model the transport of fluids and 
compounds in aqueous, gaseous, and biological phases are described in 
detail in Maggi (2019).

Aqueous complexation and gas dissolution (R40–R45, Supplementary Table 
S.1) are described in BRTSim-v3.1a using the mass action law (Maggi 2019),

where K is the equilibrium constant, [XR] and [XP] are the reactant and 
product concentrations, respectively, with xR and xP their corresponding 
stoichiometric parameters. The values of K used in R40–R45 are obtained 
from Wolery (1992). Units for all variables are given in Supplementary Table 
S.2.

Chemical protection (R30–R39) is described using Langmuir kinetics to 
account for the protective capacity of soil, such that (Atkins and De Paula 
2005),

where [X(p)] and [X(aq)] are the concentrations of chemical X in protected 
(p) and aqueous (aq) phases, respectively; ka and kd are the forward 
(protection) and reverse (un-protection) rate constants, respectively; and 
Qmax is the maximum soil protective capacity. At equilibrium (d[X(p)]/dt = 0), 
KP=ka/kd is the protection equilibrium constant. Eq. 2 describes protection as 
a function of silt and clay content through the variable Qmax. For SOM 
protection, Qmax is estimated using the empirical relationship derived in Six et
al. (2002) , i.e., Qmax [g-C protected kg soil−1] =0.32×Cfine[%]+16.33, where 

Cfine is the silt and clay content. For  protection, Qmax [g- -N 
protected kg soil−1] =20.07×Cfine[%] (Alshameri et al. 2018) is used, while 

Qmax [g- / -N protected kg soil−1] =4.73×10−4×Cfine[%] (Black and 

Waring 1979) is used for the protection of  and .

Chemical and biochemical kinetic reactions are solved using the general 
framework of Michaelis–Menten–Monod kinetics described in Maggi and Riley 



(2010). A biochemical kinetic reaction involving growth of microbial 
functional group BX can be written as,

where R is the reaction rate; k is the reaction rate constant; fS is the 
biological activity-moisture response function accounting for water stress; Y 
is the biomass yield; [Xi] is the concentration of reactant Xi with KMi its 
Michaelis–Menten half saturation; and [Xm] is the concentration of inhibitor 
Xm with KIm the inhibition constant. In addition to carbon and nitrogen 
sources, O2(aq) is a reactant in all aerobic reactions, while it is an inhibitor in 
anaerobic reactions. Microbial dynamics is described using Monod kinetics 
(Monod 1949),

where δ is the microbial mortality rate constant.

Interactions between microbes and soil moisture are complex; in water-
limiting conditions, microbial activity and growth are decreased due to 
increased physiological stress, reduced substrate diffusion towards microbes,
and increased substrate adsorption to soil (Schimel et al. 2007; Manzoni et 
al. 2016; Yan et al. 2016). Although several studies have attempted to 
mechanistically describe these interactions through complex mathematical 
formulations (Davidson et al. 2012; Moyano et al. 2013; Manzoni et al. 2016),
and more recently through reduced order approaches to time-scale 
respiration coefficient (Yan et al. 2018) and scaling arguments (Tang and 
Riley 2019), the microbial response to soil moisture is dealt with in this study
using the liquid-biology feedback that defines fS in Eq. 3 as (Maggi 2019)

The function f(SB) describes the immobilization of water into microbial 
biomass that has a specific water volume fraction fL and considers water as a
resource for microbial growth. Therefore, microbes can only grow if there is 
enough water to immobilize and enough pore space to occupy. When 
microbes die and decompose, water is re-mobilized and returned to the soil. 
Following the approach in Maggi and Porporato (2007), f(SB) is defined as



where SB, SL, and SG are the saturation in biological, liquid, and gaseous 
phases, respectively; and SLr and SGr are the residual saturation in liquid and 
gaseous phases, respectively. In this study, all microbial functional groups 
were assumed to have fL=0.8. The function f(SL) in Eq. 5 describes the 
reduction of microbial activity as a result of changes in water saturation to 
account for processes not explicitly modeled, such as physiological stress 
and substrate diffusion within a soil layer; note that chemical transport 
across soil layers is explicitly modeled as described above. Finally, the 
function f(SL) in Eq. 5 is defined as

where SL,LB and SL,UB are scalar parameters. SL,LB = SL,UB =0.46, estimated from
experimental data in Wickland and Neff (2008) (Supplementary Fig. S.1a), 
are used in all microbial mediated kinetic reactions.

Active plant uptake of  and  is described by Michaelis–Menten 
kinetics as

where RNplant is the plant nitrogen uptake rate;  and  are rate 

constants; and  and  are Michaelis–Menten constants for  and

 uptake, respectively. The total amount of nitrogen taken up by plants 
(Nplant) is used to regulate SOM inputs (see R27–R29, Supplementary Table 
S.1) in such a way that the total amount of organic N input to soil is always 
smaller than or equal to Nplant. Hence, in instances when plant nitrogen 
uptake is low, the inputs of SOM will also be low. Because plants also 



experience water stress in dry conditions (Manzoni and Porporato 2007; 
Porporato et al. 2003), a reduction factor of fS=f(SL)/max{f(SL)} 
(Supplementary Fig. S.1b) is used in Eq. 8.

A summary of model parameters is reported in Table S.1, and a list of 
inhibitions applied to each kinetic reaction is reported in Supplementary 
Table S.3. Descriptions of mathematical equations, numerical methods, and 
solution convergence criteria used in BRTSim-v3.1a are detailed in Maggi 
(2019). An example of the input files for BAMS2 model is provided along with
the Supplementary Information and the BRTSim solver can be downloaded 
from the links provided in the Acknowledgments.

Site descriptions

The BAMS2 reaction network was applied in nine Australian grasslands in 
tropical, temperate, and semi-arid regions that have distinct seasonal rainfall
regimes. Site locations were determined based on the Dynamic Land Cover 
Dataset (Lymburner et al. 2011) and the modified KOppen climate 
classification of the Bureau of Meteorology, Australia (Stern and Dahni 2013) 
(Table 1). The tropical region is characterized by a pronounced dry season 
starting from May to September and is followed by a period of heavy rainfall 
between October and April with an average annual rainfall of 1289 mm y−1 
(Supplementary Fig. S.2). In contrast, the wet season in the temperate 
region starts from May to September with lower annual rainfall but a higher 
number of wet days than the tropical region. The semi-arid region generally 
has low annual rainfall with a small number of wet days (Table 1).

Soil characteristics at each site were obtained from the SoilGrids database 
(Hengl T et al. 2017) and were used to estimate the hydraulic parameters 
(Supplementary Table S.4). The reactive transport model described in 
“BAMS2 reaction network” and “Biogeochemical and transport solver” 
sections was solved over a 2 m soil column with constant saturation as the 
lower boundary condition. Water boundary fluxes entering and leaving the 
soil column were defined by rainfall and plant evapotranspiration 
(Supplementary Fig. S.2). Historical daily rainfall and temperature data (from
1979 to 2017) at each site were obtained from the CPC US Unified 
Precipitation data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, 
USA (Xie et al. 2010), and the Global Historical Climatology Network-Daily 
dataset (Menne et al. 2012), respectively. The Richardson-type weather 
generator developed by Chen et al. (2010) was then used to produce 2000-
year daily rainfall and temperature time series with statistical properties 
similar to those of historical data. Plant actual evapotranspiration (ET) is 
calculated as ET=kc×ET0 with the plant coefficient kc=0.8 (Allen et al. 2005) 
and the potential evapotranspiration ET0 estimated using the FAO ETO 



calculator (Allen et al. 1998). The root density along the soil profile is 
assumed here to be a negative exponential distribution function with 50% of 
root density located at 0.1 m (Christie 1978; Greenwood and Hutchinson 
1998). Plant water uptake (evapotranspiration), plant nitrogen uptake (R20–
R21), and root exudation (R27) were allocated over the soil depth according 
to the root distribution.

Rainfall scenarios

Numerical experiments were conducted with three rainfall scenarios. The 
weather generator in Chen et al. (2010) was modified to generate rainfall 
time series with varying statistical properties specific for each scenario, 
whereas no modification was applied to the evapotranspiration time series. 
We discuss the possible implication of this simplification below.

Scenario 1: change in annual cumulative rainfall amount. Rainfall time series 
were modified so that the annual cumulative rainfall amount (Pcum) ranged 
within +/- 20% of the historical value, while the annual number of wet days 
(Dwet) remained constant. In this scenario, the rainfall magnitude P in each 

quantile and the annual maximum daily rainfall ( ) changed linearly with 
changes in Pcum, i.e., a 20% increase in Pcum led to 20% increases in P in all 

quantiles and  (Supplementary Fig. S.3, first row).

Scenario 2: change in daily rainfall amount and frequency. Rainfall time 
series were modified for Dwet to range within +/- 50% of the historical value 
while keeping Pcum unchanged. A decrease in Dwet caused a reduction in P at 
low quantiles and an increase in P at high quantiles, implying fewer and 



heavier rainfalls. Percent change in  increased non-linearly with 
decreasing Dwet; for example, a 50% decrease in Dwet resulted in a 70% 

increase in  (Supplementary Fig. S.3, second row).

Scenario 3: change in hourly rainfall. Hourly rainfall time series were 
constructed by exponentially distributing the observed daily rainfall to a 
given number of wet hours Hwet in that day. Here, we used Hwet=24 hours as 
the reference and we generated hourly rainfall time series with decreasing 
Hwet by assuming the probability to rain in a given hour is independent of the 
hour before. Hourly rainfall intensified with decreasing Hwet (Supplementary 
Fig. S.3, third row).

Analyses and benchmarking

Prior to the numerical experiments, baseline simulations (using historical 
rainfalls) were initialized with SOM concentrations close to the organic 
carbon content reported in the SoilGrids database (Hengl T et al. 2017) and 
the microbial biomass close to zero. The simulations were run for 2000 years
for biochemical reactions in the root zone to reach a steady state and to 
develop a steady microbial biomass profile. For reporting our results, we 
considered the top 30 cm of the soil as the root zone (RZ). The outputs of the
2000-year simulations were then used as initial conditions in the numerical 
experiments. In all numerical experiments, simulations were run for 1000 
years and outputs from the last 50 years of simulation were averaged for 
analysis.

Baseline simulations were benchmarked against field observations collected 
from the literature with benchmark values reported in Table 2. Because 
BAMS2 includes only microbial heterotrophic respiration, CO2 emissions in 
the baseline simulations were compared against heterotrophic soil 
respiration flux (RH) of 353 natural and unmanaged grasslands reported in 
the Soil Respiration Database Version 4.0 (SRDB-V4 Bond-Lamberty and 
Thomson 2018). In instances where the values of RH were not reported, we 
assumed that the ratio between heterotrophic and autotrophic respiration is 
1:1, i.e., RH=0.5Rs, with Rs as the total carbon flux from soil respiration. N2O 
emissions were benchmarked against measurements in 40 grasslands 
reported in the database of Aronson and Allison (2012), while NO emissions 
were compared against the dataset reported in Davidson and Kingerlee 
(1997). The annual carbon inputs were compared against observations in 46 
grasslands recorded in the Global Database of Litterfall Mass and Litter Pool 
Carbon and Nutrients (Holland et al. 2015), whereas the annual plant 
nitrogen uptake was benchmarked against field experiments of 16 grass 
species reported in Bessler et al. (2012).



The correlation between two quantities x and y is calculated as R(x,y)= 
cov(x,y)/σxσy, where σx and σy are the standard deviations of x and y, 
respectively. The lag time between two time series was quantified using 
cross-correlation analysis (function xcorr in Matlab2017a).

Results

Benchmarking of baseline simulations

The modeled CO2, N2O, and NO emissions; SOM input rates; and plant 
nitrogen uptake rates were within the range of field measurements reported 
in various databases (Table 2). In baseline simulations, the semi-arid 
grasslands, which received the lowest amount and least frequent rainfall, 
had the lowest CO2 emissions and SOM inputs (Fig. 2). Although the tropical 
grasslands had the highest depolymerization and SOM input rates, CO2 
emissions in these sites were slightly lower than those in the temperate 
grasslands. This pattern may be explained by the high denitrification rates in
the temperate grasslands that contributed to CO2 emissions and the slightly 
lower mineralization rates in the tropical grasslands. In all grasslands, the 
depolymerization rates were substantially lower than the mineralization of 
SOM monomers, suggesting that depolymerization is the rate-limiting 
process that controls CO2 emissions.

NO and N2O emissions were highest in the temperate and semi-arid 
grasslands, respectively (Fig. 2a). In the tropical grasslands, NO and N2O 
emissions were either negative (i.e., a sink) or close to zero. Although some 
studies have observed negative N2O fluxes (da Silva Cardoso et al. 2017) and
low denitrification capacity (Xu et al. 2013) in tropical soils, other studies 
argued that a wetter soil would have higher anaerobicity, and therefore 
should have higher N2O emissions (Skiba and Smith 2000). However, the 
process that limited N2O and NO emissions in our tropical grassland 
simulations is nitrification rather than denitrification (Fig. 2b). In BAMS2,

 is the only source of inorganic nitrogen to the soil, mainly coming from 
N2 fixation (R19) and mineralization of N-containing monomers (R9–R11).

 has to be first nitrified to  or  before BDEN can further convert 
the nitrogen into NO and N2O. In tropical grasslands, the soil water content 

was relatively high (i.e., soil saturation S≈0.6−0.8), and therefore the  

concentration in the root zone was low. At low , BAOB, which has a high 

KM value for , was out-competed by BHET and FDEP. Because the 



transformation of  to  by BAOB was suppressed, denitrification could 
not occur and led to negligible N2O and NO emissions in the tropical 

grasslands. We note however that, in wet soils that have low  
concentrations, the nitrifiers may have adapted to a KM value lower than that
applied in BAMS2, which was calibrated against temperate soils (Maggi et al. 
2008).

Controls of soil moisture dynamics on C and N emissions

To better understand how soil moisture dynamics and daily rainfall impact 
carbon and nitrogen emissions, we analyzed the correlations (R) between 
time-series of soil saturation S; daily rainfall amount P; and CO2, N2O, NO, 
and NH3 emissions (Fig. 3). In all grasslands, the correlation R(S, P) was 
relatively weak with slightly higher values observed in the tropical grasslands
in the wet season. In general, S had a better correlation with C and N 
emissions as compared to P.



Simulations with BAMS2 were able to capture relatively well the Birch effect 
resulting from drying-rewetting cycles in the semi-arid and temperate 
grasslands, with a peak in CO2 emission observed after rainfall events 
(Supplementary Fig. S.5). Except for SA1 that has a wet season between 
October to April (Supplementary Fig. S.2), SA2 and SA3 are relatively dry 
throughout the year and are considered to have only a dry season. CO2, N2O, 
and NO emissions in the semi-arid and temperate grasslands had relatively 
high positive correlations with S (R > 0.63, Fig. 3) during the dry season. The
peaks in CO2 came approximately five to six days after the peak in S, and 
N2O and NO emissions came less than one day after the peak in S 
(Supplementary Fig. S.4). In the wet season, the correlations were slightly 
lower in the temperate grasslands and were substantially lower in the semi-
arid grasslands.

In contrast to temperate and semi-arid grasslands, CO2 emissions in the 
tropical grasslands were negatively correlated with S regardless of the 
season (Fig. 3, first row). In all grasslands, NH3 emissions generally had high 
negative correlations with S during the dry season.

These correlation analyses suggest that soil moisture has an important 
control on greenhouse gas emissions in both high and low annual rainfall 
grasslands.



Scenario 1: impacts of annual rainfall amount

Contrary to the general expectation that increasing annual rainfall (Pcum) 
would have a larger impact on drier lands, our simulations suggested that 
both dry and wet grasslands are very sensitive to changes in Pcum, and they 
have distinctive responses (Fig. 4).

In the semi-arid grasslands, all carbon and nitrogen emissions increased by 
10% to 30% when Pcum was increased by 20% (Fig. 4a–d). An increase in 
water availability in the semi-arid grasslands increased all biological 
processes, including plant nitrogen uptake (Supplementary Fig. S.7f), SOM 
inputs to soil (Fig. 4h), heterotrophic respiration (Fig. 4f, g), nitrification 
(Supplementary Fig. S.7d), and denitrification (Supplementary Fig. S.7e). The
increased biological activity, however, increased only slightly the SOM stocks
(<5%<5%, Fig. 4e). Together with increased water advection at high Pcum, 
the increased biological activity also led to a substantial increase in DOC and
DIC leaching to soils below the root zone (Supplementary Fig. S.7a, b).

CO2 emissions in the temperate grasslands increased by less than 3% with 
increasing Pcum (Fig. 4a). Depolymerization and mineralization rates 
increased only slightly with increased water availability, but this was 
associated with a higher increase in SOM inputs, hence, resulting in SOM 
stocks approximately 10% greater than those in the baseline simulations 
(Fig. 4). Although heterotrophic respiration was enhanced with increasing soil
water, nitrification and denitrification rates in the temperate grasslands 
decreased substantially with increasing Pcum, leading to the reduction in N2O 
and NO emissions (Fig. 4b, c). The increased water content may have diluted

the concentration of  in the root zone, causing the nitrifiers and 
denitrifiers to be out-competed by heterotrophic bacteria and fungi. 
Increased water content also decreased the volatilization of ammonia (Fig. 
4d).

In contrast to the semi-arid and temperate grasslands, the wet tropical 
grasslands generally featured a decrease in biological activity with 
increasing Pcum. CO2 emissions decreased with increasing soil water content 
(Fig. 4a) because high water content reduced oxygen availability and 

decreased SOM and  concentrations, leading to decreasing 
heterotrophic respiration. In particular, the mineralization rates decreased 
two times more than the depolymerization (Fig. 4f, g) because the soluble 
SOM monomers tended to be advected out of the root zone at high Pcum. An 
increasing Pcum also reduced plant nitrogen uptake (Supplementary Fig. S.7f) 
and SOM inputs (Fig. 4h), but the overall balance between inputs and 



decomposition resulted in a net SOM storage (Fig. 4e). Although DOC 
leaching increased with increasing soil water content, the decreased 
biological activity had substantially reduced the DIC leaching 
(Supplementary Fig. S.7a, b).

Scenario 2: impacts of daily rainfall amount and frequency

We investigated the response of C and N dynamics to variations in daily 
rainfall amount and frequency by changing the number of wet days Dwet in a 
year while keeping the total annual rainfall constant; that is, a time-series 
with a smaller Dwet value has fewer but larger rainfall events.

Among all grasslands, the semi-arid grasslands were the most sensitive to 
variations in Dwet. CO2 emissions in the semi-arid grasslands increased by 
approximately 7% with a 50% decrease in Dwet (Fig. 5a). Fewer and larger 
rainfall events increased the plant nitrogen uptake (Supplementary Fig. S.8f),
and therefore increased the SOM inputs to soil (Fig. 5h). Upon the 
assumption that plant nitrogen uptake is proportional to plant biomass 
growth, similar experimental observations were reported in Heisler-White 
(2008) that showed an increase in aboveground net primary productivity 
when semi-arid ecosystems were subjected to rainfall events that were 
larger in size but fewer in number. The balance between increased SOM 
inputs and decomposition caused a slight increase in SOM stocks (<2%, Fig. 
5e) and a substantial increase in DOC and DIC leaching to below the root 
zone (Supplementary Fig. S.8a, b). In contrast to SOM depolymerization and 
mineralization, the nitrification and denitrification rates in the semi-arid 



grasslands were reduced with decreasing Dwet, leading to a reduction in N2O 
emissions (Fig. 5b). Although biological denitrification was reduced, 
chemodenitrification increased with decreasing Dwet and contributed to the 
increasing NO emissions (Fig. 5c). The effects of increased rainfall intensity 
and reduced frequency on nitrogen emissions in the semi-arid grasslands 
matched relatively well with the numerical-experiments tested in Gu and 
Riley (2010). Gu and Riley (2010) also found that, when applied with a low 
total rainfall amount, high intensity and low frequency rainfall events 
reduced N2O emissions in sandy loams soils, but increased NO emissions.

Less frequent and more intense events did not alter CO2 emissions in the 
temperate grasslands but substantially reduced N2O and NO emissions (Fig. 
5a–c). Big pulses of water diluted and transported inorganic nitrogen out of 
the root zones, and hence decreased the nitrification and denitrification 
rates.

In the tropical grasslands, CO2, N2O, and NO emissions were not sensitive to 
the decrease in Dwet, but the NH3 volatilization was greatly reduced (Fig. 5a–
d). CO2 emissions, however, increased slightly with increasing Dwet, 
suggesting that more frequent and less intense rainfall events can increase 
heterotrophic respiration in grasslands with tropical rainfall regimes.

Scenario 3: impacts of hourly rainfall intensification

CO2 emissions, SOM decomposition rates, and SOM stocks were relatively 
insensitive to hourly rainfall amounts in all grasslands with CO2 emissions 



increased only slightly in the tropical and semi-arid grasslands (<2%, Fig. 6a,
e–g). DOC and DIC leaching to below the root zone, however, increased with 
a decreasing number of wet hours Hwet in the semi-arid grasslands 
(Supplementary Fig. S.9a, b).

Although SOM decomposition was not significantly affected, fewer and larger
hourly rainfall events (i.e., decreasing Hwet) altered substantially the 
emissions of nitrogen gases. In the tropical grasslands, the NH3 volatilization 
was largely reduced (i.e., >300% reduction, Fig. 6d) with decreased Hwet. In 
the temperate grasslands, denitrification rates slightly decreased with 
decreasing Hwet and caused a decline in N2O and NO emissions (Fig. 6b, c). 
Although the denitrification rates were not substantially altered, the variation
in hourly rainfall amounts changed the ratio of N2O:NO production in the 
semi-arid grasslands (Fig. 6b, c), with N2O:NO ratio increased as Hwet 
decreased.

Discussion

The BAMS2 model represents the highly complex interplay between many 
biotic and abiotic mechanisms hypothesized to be important for carbon and 
nitrogen cycles, including depolymerization, SOM mineralization, microbial 
mortality, necromass decomposition, N2 fixation, nitrification, denitrification, 
protection, advection, and diffusion. These mechanisms have different 
responses to soil water content, and therefore a detailed description of their 
interactions is pivotal to this study that explicitly aims at assessing the 
impact of rainfall variability on soil carbon and nitrogen dynamics. We note 



however that the determination of model parameter values can be difficult 
for a model with high complexity, and this can introduce additional 
uncertainties. In this work, we used the validation by construct approach 
(McCarl and Apland 1986) to design and test our model. The model 
parameters relative to the carbon cycle were estimated against 618 SOM 
profiles of grasslands located across Nebraska and Colorado (detailed in 
Riley et al. 2014); those corresponding to the nitrification and denitrification 
processes were estimated against field measurements of CO2, N2O, and NO 
fluxes (detailed in Maggi et al. 2008); and the other parameters were 
estimated against field and laboratory experiments reported in the literature 
(detailed in Supplementary Table S.1). We then benchmarked the model 
outputs against field observed CO2, N2O and NO emissions; SOM inputs; and 
plant nitrogen uptake rates compiled in various databases (detailed in Table 
2). Although the sensitivity analysis of model parameters had been 
conducted separately for carbon (Riley et al. 2014) and nitrogen (Maggi et al.
2008) cycles, we note that the parameter sensitivity may change after 
coupling the two models, and therefore a global sensitivity analysis of BAMS2
is needed, and it is the target of our next work.

Although the reaction network in BAMS2 is comparably or more complex 
than many other SOM models, there are still some other mechanisms that 
are currently not accounted for here. In BAMS2, we considered a simplified 
nitrogen cycle that includes only N2 fixation, nitrification, and denitrification. 
However, the nitrogen cycle in soil is much more complicated than that, and 
many new metabolic capabilities of N-transforming microorganisms are 
continuously being discovered (Kuypers et al. 2018; Schreiber et al. 2012). 
Biotic N-transformation pathways not considered in BAMS2 include 

dissimilatory nitrate reduction to ammonium (DNRA, , 
Tiedje et al. 1983), anaerobic ammonium oxidation (anammox,

, Mulder et al. 1995), complete ammonia 

oxidation (comammox, , Daims et al. 2015), hydroxylamine 

oxidation to nitric oxide ( , Caranto and Lancaster 2017), and 
nitric oxide dismutation to dinitrogen (NO →N2, Ettwig et al. 2010). We note 

that BAOB and BNOB can also reduce  to NO and N2O (Schreiber et al. 
2012); however, this capability was not included in BAMS2. Even though 
complex, accounting for a more detailed description of the nitrogen cycle 
may improve the estimation of greenhouse gas emissions and SOM stocks as
our simulation analysis shows that the interactions between soil carbon and 
nitrogen cycles have non-linear responses to rainfall variability.



By having fixed C:N ratios of litter and root exudates, we used a simplified 
approach to regulate the above- and belowground SOM inputs through plant 
nitrogen uptake in such a way that the total organic nitrogen inputs to the 

soil cannot exceed the total inorganic nitrogen (  and ) taken up by 
plants. This approach assumes that all nitrogen taken up by plants is 
assimilated into plant biomass and eventually returned to the soil. The 
assimilation of carbon into plant biomass was not explicitly modeled, and 
hence we did not consider a dynamic litter C:N ratio. Improvements to the 
description of plant-soil interactions in BAMS2 may be implemented in future 
work to account for plant carbon assimilation, flexible C:N ratios for litter and
root exudates, and the effects of nutrient limitation on photosynthesis 
capacity following suggestions in Achat et al. (2016).

We observed in our simulations that, when switching to a new rainfall 
pattern, the microbial population took a few decades to reach a steady 
profile and a steady bacterial to fungal ratio. This observation aligns with 
experimental studies that showed the dependency of soil respiration on 
historical rainfall, which can be explained by the shift in microbial community
composition and activity (Lau and Lennon 2012; Hawkes et al. 2017). Hence,
field studies that spanned across time-scales of months may capture only 
the transient effects. Although limited by the need to simplify an ecosystem, 
long-term simulations with models such as BAMS2 allow assessment of 
cumulative impacts of rainfall variability on soil C and N dynamics and 
identification of interactions between C and N cycles, which are difficult to 
capture in field studies. In particular, our simulations featured a tight link 
between soil respiration and nitrogen availability. Aligned with field data 
analysis in Wang and Fang (2009), we observed a reduction in CO2 emissions
with increasing annual rainfall in wet tropical grasslands, and we can explain 
this observation as a consequence of N limitation. Although increased rainfall
amount releases plants and soil microbes from water stress, high soil water 
content also reduces the concentrations of inorganic N, putting soil microbes 
in an N-limiting condition and causing decreased soil respiration. In dry semi-
arid grasslands, the observed increase in soil respiration with increasing 
rainfall amount can be attributed to the direct moisture effect on soil 
microbes that increases microbial activity and the indirect effect through 
increased plant litter (Lau and Lennon 2012). While the short-term impacts 
of drying and rewetting cycles on soil activity has been studied in many field 
experiments (e.g., Kieft 1987; Harper et al. 2005; Xiang et al. 2008), our 
simulations confirmed that, with no change in annual rainfall, prolonged 
droughts and increased high rainfall pulses can increase cumulative CO2 
emissions in dry grasslands in the long-term, which we attribute to increased



substrate availability as a result of accumulation (resulting from plant 
residuals and microbial lysis) during the droughts.

Conclusions

We present a C–N coupled mechanistic SOM model (BAMS2) to investigate 
the effects of hourly and daily rainfall variations on soil carbon and nitrogen 
emissions, stocks, and leaching in grasslands with different seasonal rainfall 
regimes. BAMS2 captured relatively well the Birch effect and the carbon and 
nitrogen dynamics observed in grasslands, with model outputs falling within 
the range of field observations compiled in various published databases. Dry 
and wet grasslands responded differently to variations in rainfall patterns 
and rainfall variability had a different impact on carbon and nitrogen 
emissions. An increasing annual rainfall generally increased both microbial 
and plant activities in the semi-arid grasslands, leading to increases in CO2, 
N2O, NO, and NH3 emissions; yet, it reduced inorganic N availability in the 
tropical grasslands, decreased biological activities, and caused a reduction in
CO2 emissions. The balance between SOM inputs and decomposition, 
however, always resulted in increasing SOM stocks with increasing annual 

rainfall in all grasslands. High rainfall amounts can dilute  
concentrations to below optimal values for nitrification, thus reducing N2O 
and NO emissions in the temperate grasslands. Fewer and larger daily 
rainfall events slightly increased CO2 emissions and SOM stocks in the semi-
arid grasslands, but caused a substantial increase in NO emissions as a 
result of increased chemodenitrification. Changes in hourly rainfall amounts 
and frequency did not significantly alter soil carbon emissions and stocks in 
all grasslands. Although the biotic processes in the tropical grasslands are 
relatively insensitive to hourly rainfall variability, the high magnitude hourly 
rainfall events can substantially reduce NH3 volatilization.
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