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A B S T R A C T

Paclitaxel is a common chemotherapy drug associated with the development of chronic paclitaxel-induced
peripheral neuropathy (PIPN). PIPN is associated with neuroinflammatory mechanisms in pre-clinical studies.
Here, we evaluated for differential gene expression (DGE) in peripheral blood between breast cancer survivors
with and without PIPN and for neuroinflammatory (NI) related signaling pathways and whole-transcriptome
profiles from other experiments. Pathway impact analysis identified 8 perturbed NI related pathways. Expression
profile analysis found 15 experiments having similar whole-transcriptome profiles of DGE related to neuroin-
flammation and PIPN. These findings suggest that perturbations in pathways associated with neuroinflammation
are found in cancer survivors with PIPN.

1. Introduction

Paclitaxel is an extremely effective chemotherapeutic agent for the
treatment of breast, ovarian, and lung cancer (Kudlowitz and Muggia,
2013). However, paclitaxel-induced peripheral neuropathy (PIPN), a
major dose-limiting toxicity, occurs in 59% to 87% of patients who
receive this drug (Jones et al., 2005; Sarosy et al., 1992). Paclitaxel is
an anti-tubulin drug that causes microtubule stabilization. In the per-
ipheral nervous system, administration of paclitaxel results in distal
axonal degeneration, secondary demyelination, and nerve fiber loss.
(Gornstein and Schwarz, 2014; Sahenk et al., 1994).

A growing body of evidence has implicated neuroinflammation in
the development of PIPN (Makker et al., 2017; Wang et al., 2012).
While most chemotherapy (CTX) drugs do not cross the blood-brain-
barrier, they readily penetrate the blood-nerve-barrier and bind to and
accumulate in dorsal root ganglia (DRG) and peripheral axons.
(Gornstein and Schwarz, 2014; Park et al., 2013) In addition to its di-
rect neurotoxic effects, CTX can induce neuroinflammation through
activation of immune and immune-like glial cells. In fact, a growing
body of preclinical evidence suggests that immune cells (e.g., macro-
phages, lymphocytes) and glial cells (e.g., Schwann cells) in the

peripheral nervous system (PNS) and astrocytes and microglia in the
central nervous system (CNS) play an important role in the induction
and maintenance of neuropathic pain.(Krames, 2014; Zhang et al.,
2017) This activation of the immune system results in the release of
inflammatory mediators, within the DRG and dorsal horn, (Krames,
2014) that enhances neuronal excitability and results in pain hy-
persensitivity in peripheral neurons (Makker et al., 2017).

Not all patients develop neurotoxicity, which suggests that mole-
cular factors may play a role in the development of PIPN. In fact, in our
recent report, using RNA-seq data from breast cancer patients who did
(n=25) and did not (n= 25) develop PIPN,(Kober et al., 2018b) we
identified nine perturbed pathways that were associated with various
aspects of mitochondrial dysfunction including oxidative stress, iron
homeostasis, mitochondrial fission, apoptosis, and autophagy. In this
paper, we extend these findings and describe differentially perturbed
pathways, as well as whole transcriptome profiles of differential gene
expression (DGE), associated with neuroinflammation, in the same
sample of breast cancer survivors with (n=25) and without (N=25)
chronic PIPN.
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2. Materials and methods

2.1. Study design

In this study, we used two different approaches to evaluate whole
transcriptome data for patterns of DGE in biological pathways asso-
ciated with neuroinflammation and PIPN (Fig. 1). The first approach
utilized pathway impact analysis (PIA), where well-defined signaling
pathways are evaluated for perturbations using the significance and
magnitude of gene-gene interactions from DGE tests. For the second
approach (i.e., Expression Profile Analysis (EPA)), we compared our
whole transcriptome pattern of DGE between breast cancer survivors
with and without CIPN to a database of publicly available and well
annotated gene expression experiments to identify other systems and
studies with similar patterns. For this analysis, we used demographic,
clinical, and gene expression data from our previous study (Kober et al.,
2018b).

2.2. Acquisition and processing of gene expression data

The methods for the gene expression analysis are described in detail
elsewhere.(Kober et al., 2018b) Gene expression of total RNA isolated
from peripheral blood was assayed using RNA-seq. Gene expression was
summarized as counts per gene and used as input for the PIA and EPA
analyses.

2.3. Pathway impact analysis

Differential gene expression was quantified using general linear
models (Kober et al., 2018b). These DGE analyses were adjusted for
demographic (i.e., age, employment status) and clinical (i.e., Alcohol
Use Disorders Identification Test (AUDIT)(Bohn et al., 1995) score,
body mass index (BMI), Karnofsky Performance Score (KPS)(Karnofsky,
1977; Karnofsky et al., 1948; Schnadig et al., 2008) score) character-
istics that differed between the PIPN groups, as well as for technical

Fig. 1. An overview of the analytic approach used to evaluate for neuroinflammation related pathways and gene expression experiments associated with paclitaxel-
induced peripheral neuropathy (PIPN). Differential gene expression (DGE) in peripheral blood was found between breast cancer survivors with (P) and without (N)
paclitaxel-induced peripheral neuropathy and evaluated for (1) perturbed neuroinflammation related signaling pathways using pathway impact analysis and (2)
experiments from the gene expression omnibus (GEO) with similar whole-transcriptome profiles of differential gene expression related to neuroinflammation and
PIPN using expression profile analysis. Taken together, our results suggest that perturbations in pro- and anti-inflammatory pathways associated with neuroin-
flammation are found in cancer survivors with PIPN.
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variability (e.g., potential batch effects). The DGE results were sum-
marized as the log fold change and p-value for each gene. Then, PIA was
used to evaluate for perturbations in well-defined signaling pathways.
PIA includes potentially important biological factors (e.g., gene-gene
interactions, flow signals in a pathway, pathway topologies), the
magnitude (i.e., log fold-change), and p-values from the differential
expression (DE) analysis (reviewed in (Mitrea et al., 2013)). The PIA
included the results of the DE analysis for all genes (i.e., cutoff free) to
determine probability of pathway perturbations (pPERT) using
Pathway Express.(Draghici et al., 2007).

A total of 208 signaling pathways were defined using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database.(Aoki-Kinoshita
and Kanehisa, 2007) Sequence loci data were annotated with Entrez
gene IDs. The gene symbols were annotated using the HUGO Gene
Nomenclature Committee resource database.(Gray et al., 2013) We
assessed for significance of the PIA using a strict false discovery rate
(FDR) of< 1 under the Benjamini-Hochberg (BH) procedure.
(Benjamini and Hochberg, 1995; Hochberg and Benjamini, 1990) Fi-
nally, we evaluated these results specifically for pathways related to
neuroinflammation.

2.4. Expression profile analysis

To evaluate the whole transcriptome pattern of DGE in relationship
to neuroinflammation and PIPN, we compared these findings with in-
dependent and well annotated publicly available data sets of gene ex-
pression. We utilized ProfileChaser(Engreitz et al., 2010) to develop a
transcriptome wide ‘profile’ of the DGE pattern between the PIPN and
no PIPN groups and compared this profile to all of the NCBI Gene Ex-
pression Omnibus (GEO) curated GEO DataSets (GDS) available. These
GDS include gene expression data from a wide variety of tissues, spe-
cies, and study designs. Each study is annotated with a number of
characteristics termed as ‘factors’ (e.g., sample ID, age, cell line, treat-
ment group).

ProfileChaser generates reference profiles from all of the pairwise
comparisons of all of the factors defined in a GDS. Then, it compares the
query dataset to identify similar reference profiles. In this way,
ProfileChaser identifies experiments with similar biological conditions
to the query experiment. By performing this evaluation of all available
GDS and their annotated factors, we limit any bias from a priori fil-
tering. Gene level summaries of RNA abundance were annotated with
ENTREZ ID and estimated as the log transformed reads per mean
thousand (i.e., log2(RPMK+1)). We assessed for significance of the EPA
using a strict FDR of 5% under the BH procedure.(Benjamini and
Hochberg, 1995; Hochberg and Benjamini, 1990) Using our previous
method,(Kober et al., 2016) we evaluated the significant findings for
interpretability based on the experimental design of the reference
profile.

3. Results

3.1. Differences in demographic, clinical, pain, sensation, and balance
characteristics

As previously reported (Kober et al., 2018b), survivors with PIPN
were significantly older (p= .006) and were more likely to be un-
employed (p= .022) In terms of clinical characteristics, survivors with
PIPN had: a lower AUDIT score (p= .012), a higher body mass index
(BMI; p= .017), and a lower KPS score (p < .001). Of note, no be-
tween group differences were found in the total cumulative dose of
paclitaxel received or in the percentage of patients who had a dose
reduction or delay due to PIPN (see Supplementary Tables 1 and 2).

Supplementary Table 3 summarizes the self-reported pain char-
acteristics of the survivors with PIPN. Worst pain severity was reported
as 6.3 (± 2.1) out of ten and the duration of PIPN was 3.8 (± 3.9)
years.

Survivors with PIPN had a higher number of lower extremity sites
with loss of light touch, cold, and pain sensations (all, p < .05).
Vibration thresholds were significantly higher in the PIPN group
(p= .009, Supplementary Table 4).

Survivors with PIPN were more likely to report trouble with balance
(p < .001) as well as higher severity and distress (both p < .05) scores
associated with balance problems. In addition, these survivors reported
worse Timed Get Up and Go (p= .001) and worse Fullerton Advanced
Balance (p= .004) scores (Supplementary Table 4).

3.2. PIA of the whole transcriptome

Successful annotation with ENTREZ IDs was performed for 11,174
unique genes. Fold changes and p-values from the DE analysis for these
genes were included in the pathway perturbation analysis of the 208
KEGG signaling pathways. PIA identified 53 KEGG signaling pathways
that were significantly perturbed between the PIPN groups after cor-
rection for multiple hypothesis testing at a conservative FDR of 1%
(adjusted perturbation p-value< .01). Of these, 8 KEGG signaling
pathways were related to neuroinflammation (Table 1).

3.3. EPA of the whole transcriptome

Whole transcriptome profiles were evaluated for similarity in DGE
between our sample of survivors with and without PIPN and the 280
profiles across 84 unique GDS that were identified using EPA
(Supplementary File 1). After an evaluation of the study designs of
these 280 profiles, 27 profiles from 15 unique GDS and 13 published
studies were identified to be associated with neuroinflammation and
PIPN. These findings were organized into six categories based on their
similar biological characteristics (Table 2).

Table 1
Significantly perturbed neuroinflammatory related KEGG pathways between breast cancer survivors with and without paclitaxel-induced peripheral neuro-
pathy.

Pathway ID Pathway name Total perturbation Adjusted pPerta

hsa04060 Cytokine-cytokine receptor interaction 6.37 0.004
hsa04064 NF-kappa B signaling pathway 4.50 0.005
hsa04727 GABAergic synapse 4.63 0.007
hsa04920 Adipocytokine signaling pathway 9.13 0.008
hsa04657 IL-17 signaling pathway 3.15 0.010
hsa04621 NOD-like receptor signaling pathway 11.32 0.004
hsa04152 AMPK signaling pathway 15.14 0.004
hsa04350 TGF-beta signaling pathway 10.30 0.010

Abbreviations: AMPK= adenosine monophosphate-activated protein kinase, GABA=gamma amino butyric acid, IL= interleukin, KEGG=Kyoto
Encyclopedia of Genes and Genomes, NF= nuclear factor, NOD=nucleotide-binding and oligomerization domain, TGF= transforming growth factor.

a pPert: Perturbation p-value adjusted using the Benjamini-Hochberg method.
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4. Discussion

4.1. Perturbed neuroinflammation-related pathways associated with PIPN

This study is the first to provide molecular evidence that a number
of neuroinflammatory mechanisms identified in preclinical models of
neuropathic pain and/or PIPN(Flatters et al., 2017; Ma et al., 2018) are
perturbed in cancer survivors with PIPN. As noted in a review on the
role of cytokines in chemotherapy-induced peripheral neuropathy
(CIPN),(Wang et al., 2012) pro-inflammatory cytokines and chemo-
kines play a critical role in the development and maintenance of painful
peripheral neuropathy. Consistent with our findings of a differential
perturbation in the cytokine-cytokine receptor interaction pathway,
several lines of pre-clinical evidence suggest that the administration of
paclitaxel is associated with the activation of immune and immune-like
cells in both the PNS and CNS. For example, following the adminis-
tration of intravenous paclitaxel in rats, the number of activated mac-
rophages in the DRG, peripheral nerves, and Schwann cells increased
and was associated with allodynia and hyperalgesia.(Peters et al., 2007)
Macrophage infiltration results in the production and release of a
number of cytokines (e.g., tumor necrosis factor alpha (TNF-α), inter-
leukin 6 (IL6)) and chemokines. In addition, Schwann cells release TNF-
α, IL6, prostaglandin E2 (PGE2), and adenosine triphosphate (ATP).
(Ozturk et al., 2005) All of these molecules contribute to neuroin-
flammation.(Sommer and Kress, 2004; Tofaris et al., 2002).

Additional evidence from preclinical models of peripheral

neuropathy supports our finding of perturbations in the nuclear factor
(NF)-κβ signaling pathway. For example, building on the observation
that NF-κβ immunoreactive neurons are increased on the ipsilateral side
of a partial sciatic nerve injury,(Ma and Bisby, 1998) the effects of NF-
κβ in PIPN were evaluated in a rodent model.(Kamei et al., 2017) In this
study, paclitaxel increased the protein levels of spinal phosphorylated
NF-κβ and an NF-κβ inhibitor attenuated mechanical hyperalgesia. The
authors concluded that the activation of NF-κβ mediates paclitaxel-in-
duced hyperalgesia. In another preclinical study,(Gui et al., 2018) the
intraperitoneal administration of paclitaxel induced the activation of
NF-κβ; the upregulation of TNF-α, IL1β, and IL6; and astrocyte acti-
vation in the spinal cord.

Another perturbed pathway in our study was the IL17 signaling
pathway. The IL17 family is a subset of cytokines that play crucial roles
in both acute and chronic inflammatory responses.(Isailovic et al.,
2015) IL17 is produced by CD4+ T cells and appears to play a role in
inflammatory(Lubberts, 2008) and neuropathic(Day et al., 2014; Kim
and Moalem-Taylor, 2011) pain. In the most recent preclinical study,
(Sun et al., 2017) expression of IL17 in the spinal cord was evaluated
following spinal nerve ligation. During the maintenance phase of neu-
ropathic pain, mRNA expression levels of IL17, IL1β, and IL6 were
significantly increased in the dorsal horn of the spinal cord of animals
with the nerve injury. The authors concluded that IL17 may contribute
to neuropathic pain by promoting the proliferation of astrocytes and the
secretion of pro-inflammatory cytokines. While no studies were found
on the role of IL17 in CIPN, astrocytes appear to play a role in the

Table 2
Whole-transcriptome gene expression GEO datasets with similar profiles to breast cancer survivors with CIPN vs. without CIPN.

GEO ID Referencea Organism Primary comparison Primary factor Score q-value Tissue

Pre-clinical models of neuropathic pain
GDS2159 M.m. Sham SCI vs. naïve Protocol 0.428 0.025 SC
GDS2159 M.m. 28d vs 0 h post SCI Time 0.383 0.037 SC
GDS2159 M.m. 7d vs 0 h post SCI Time 0.379 0.037 SC
GDS2159 M.m. Moderate SCI vs. naïve Protocol 0.374 0.037 SC
GDS2439 R.n. 28d vs 50d after L5 SNL Time 0.352 0.046 DRG
GDS259 12,666,113 R.n. 3d vs 2d after SCI at T9 Time 0.352 0.056 SC
GDS339 12,666,113 R.n. 3d vs 2d after SCI at T9 Time 0.348 0.047 SC

Response to infection
GDS1028 15,655,079 H.s. SARS vs control Disease state 0.399 0.031 PBMC
GDS1499 15,897,992 H.s. Control vs. HIV-1, drug regimen not indicated Protocol 0.401 0.031 PBMC
GDS1499 15,897,992 H.s. HIV-1 seronegative vs HIV-1 seropositive Disease state 0.400 0.033 PBMC
GDS1499 15,897,992 H.s. Control vs. HIV-1, drug naïve Protocol 0.353 0.045 PBMC
GDS1971 30,638,864 H.s. Complicated malaria vs healthy Disease state 0.569 0.007 PWB
GDS1971 30,638,864 H.s. Uncomplicated malaria vs healthy Disease state 0.453 0.020 PWB
GDS2362 16,988,231 H.s. Presymptomatic vs experimentally acquired malaria Uninfected 0.469 0.017 PBMC

Neurological condition
GDS1311 16,043,692 H. s. HD symptomatic vs normal Disease state 0.463 0.018 PWB
GDS1311 16,043,692 H. s. HD presymptomatic vs. normal Disease state 0.464 0.025 PWB

Exercise-induced effects
GDS2310 16,990,507 H.s. After exhaustive vs. before moderate exercise Time 0.680 0.003 WBC
GDS2310 16,990,507 H.s. After exhaustive vs. before exhaustive exercise Time 0.654 0.003 WBC
GDS2310 16,990,507 H.s. After exhaustive vs. after moderate exercise Time 0.557 0.008 WBC
GDS2310 16,990,507 H.s. After moderate vs. before moderate exercise Time 0.517 0.011 WBC
GDS2417 H.s. Post-exercise vs. pre-exercise Protocol 0.383 0.036 WBC
GDS962 15,194,674 H.s. 60min after vs before exercise Time 0.501 0.012 PBMC

Inflammatory bowel disease
GDS1615 16,436,634 H.s. Crohn's disease vs normal Disease state 0.487 0.015 PBMC
GDS1615 16,436,634 H.s. Ulcerative colitis vs. normal Disease state 0.419 0.027 PBMC

Hematopoiesis
GDS2321 18,268,278 H.s. G-CSF vs pegylated G-CSF Agent 0.412 0.028 CD34(+) cells
GDS2959 H.s. G-CSF vs untreated Agent 0.536 0.010 PWB
GDS781 H.s. G-CSF treated vs untreated Agent 0.429 0.025 PBMC

DRG=dorsal root ganglia, G-CSF=granulocyte-colony stimulating factor, GDS=Geo dataset, GEO=gene expression omnibus, H.s. = Homo sapiens,
HD=Huntington's disease, HIV=Human Immunodeficiency Virus, M.m. = Mus musculus, PBMC=peripheral blood mononuclear cells, PWB=peripheral whole
blood, R.n. = Rattus norvegicus, SARS= severe acute respiratory syndrome, SC= spinal cord, SCI= spinal cord injury, SNL= spinal nerve ligation, WBC=white
blood cells.

a PubMed ID (if known).
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development of this chronic pain condition.(Robinson and Dougherty,
2015; Robinson et al., 2014).

In terms of perturbations in the adipocytokine signaling pathway,
leptin is an important regulator of energy intake and metabolic rate. In
addition, leptin influences the normal functioning of the immune
system through the stimulation of cytokine production and chemotaxis.
In addition, leptin expression can be regulated by cytokines.(Carniglia
et al., 2017) While no studies were found on associations between
leptin and CIPN, in a rat model of chronic constriction injury, admin-
istration of a leptin antagonist prevented the development of injury-
induced mechanical allodynia and thermal hyperalgesia.(Lim et al.,
2009) In a mouse model of partial sciatic nerve ligation,(Maeda et al.,
2009) leptin production was induced in the adipocytes that were pre-
sent in the epineurium of the injured nerve and leptin was necessary for
tactile allodynia associated with the ligation. In addition, leptin en-
hanced the production of cyclo‑oxygenase (COX)-2, inducible nitric
oxide synthase (iNOS), and matrix metalloprotease-9 from macro-
phages that suggests that adipokines activate macrophages that con-
tribute to the development of neuropathic pain. However, in another
preclinical study, leptin exhibited protective effects in a model of sciatic
nerve injury.(Fernandez-Martos et al., 2012).

The various members of the nucleotide-binding and oligomerization
domain (NOD)-like receptor signaling pathway play pivotal roles in the
recognition of intracellular ligands. Of particular interest is the growing
body of evidence that suggests that one member of this pathway (i.e.,
NOD-like receptor protein 3 (NLRP3)) is involved in various types of
neuropathic pain.(Khan et al., 2018; Li et al., 2018; Pan et al., 2018; Pu
et al., 2018; Tonkin et al., 2018; Xu et al., 2019) Of note, in a recent
preclinical study of PIPN in rats,(Jia et al., 2017) paclitaxel increased
the expression of and activated fragments of caspase-1 and IL1β which
suggests activation of the NLRP3 inflammasome. The expression of
NLRP3 was located in CD68 macrophages that infiltrated the L4–5 DRG
and sciatic nerve. The authors concluded that their findings suggest that
the administration of paclitaxel induced mitochondrial damage and
reactive oxygen species production that resulted in the activation of the
NLRP3 inflammasome in peripheral nerves and contributes to PIPN (Jia
et al., 2017).

While no preclinical studies were identified that implicate the
transforming growth factor (TGF)-β signaling pathway in the develop-
ment of PIPN, this pathway includes a number of structurally related
cytokines that have a wide spectrum of cellular functions. Within the
nervous system, TGF-β1 controls the proliferation of neurons and reg-
ulates neuronal survival.(Krieglstein et al., 1998) In astroglia, TGF-β1
exerts anti-inflammatory and immunosuppressive effects.(Bottner et al.,
2000) In preclinical studies, TGF-β1 prevented the development of
neuropathic pain associated with traumatic nerve injury and reversed
previously established neuropathic pain.(Chen et al., 2016; Chen et al.,
2013; Echeverry et al., 2009).

Gamma amino butyric acid (GABA) is the most abundant inhibitory
neurotransmitter within the CNS. In various models of neuropathic
pain, decreases in GABA receptor-mediated inhibitory synaptic trans-
mission in dorsal horn neurons occurs following nerve injury.(Gwak
and Hulsebosch, 2011; Yin et al., 2018) In addition, in a mouse model
of PIPN,(Braz et al., 2015) the intraspinal transplantation of cortical
precursors of GABAergic interneurons from the embryonic medial
ganglionic eminence reversed both the mechanical allodynia and heat
hyperalgesia associated with the administration of paclitaxel.

As noted in a recent review,(Asiedu et al., 2016) the adenosine
monophosphate-activated protein kinase (AMPK) signaling pathway is
a novel target for the alleviation of neuropathic pain. AMPK activators
inhibit signaling pathways that are known to promote changes per-
ipheral nociceptors that result in chronic pain. In the only study that
evaluated the role of AMPK in CIPN,(Mao-Ying et al., 2014) the co-
administration of platinum with metformin, a drug that activates
AMPK, prevented the increased latency associated with detection of an
adhesive patch, as well as the decrease in the density of intra-dermal

nerve fibers following the administration of CTX in a mouse model.

4.2. Whole-transcriptome profiles of DGE

Using EPA, we identified similar profiles in experimental systems of
inflammatory responses, exercise-induced effects, and pre-clinical
models of pain (see Table 2). In terms of inflammatory responses, si-
milar profiles of DGE were found between our survivors with and
without PIPN and patients with SARS,(Reghunathan et al., 2005) HIV-
1,(Ockenhouse et al., 2005) and malaria(Boldt et al., 2019; Ockenhouse
et al., 2006) who were compared to healthy or pre-symptomatic in-
dividuals. As noted above, neuroinflammation is thought to play a
major role in the development and maintenance of PIPN (Makker,
Duffy, 2017, Wang et al., 2012). The similarities between our chronic
PIPN profile and these pathogen-mediated inflammatory profiles sug-
gests that systemic inflammatory processes may play a role in the de-
velopment and maintenance of PIPN.

In terms of the findings related to exercise-mediated effects, limited
evidence exists that exercise benefits some patients with various types
of neuropathic pain,(Dobson et al., 2014) including CIPN.(Kleckner
et al., 2018) In our study, compared to survivors without PIPN (87.5%),
only 60.0% of the survivors with PIPN reported that they exercised on a
regular basis (p= .051). In the EPA, the DGE profiles in the blood from
healthy volunteers that was taken before and after increasing levels of
exercise (Buttner et al., 2007; Connolly et al., 2004) were similar to the
profile in our survivors with and without PIPN. Additional research is
warranted on this association because in our two previous analyses of
CIPN(Miaskowski et al., 2017) and PIPN(Kober et al., 2018a) in larger
samples of survivors who were heterogenous in terms of their cancer
diagnoses and/or CTX regimens, no associations were found between
the use of regular exercise and the occurrence of neuropathic pain.

Of note, seven profiles from two pre-clinical models of neuropathic
pain (i.e., spinal cord injury (SCI)(Shiao and Lee-Kubli, 2018) and L5
spinal nerve ligation (SNL)(Chung et al., 2004; Kim and Chung, 1992))
share a similar whole transcriptome profile of DGE with our cohort. It is
important to note that while our survivors' DGE profile was derived
using blood samples, the preclinical findings came from a different
species (i.e., rodents) and different tissues (i.e., spinal cord, DRG). Gene
expression differences across tissues are mainly driven by a small
number of genes,(Mele et al., 2015) suggesting that gene expression
changes in one tissue may provide insights into gene expression pat-
terns in another tissue. Changes in gene expression in whole blood have
been used as a marker for neuronal injury.(Tang et al., 2003) In addi-
tion, gene expression patterns in blood, hippocampus, and pre-frontal
cortex show broad levels of co-expression.(Witt et al., 2013) Given the
recent interest in evaluating for concordance and discordance in the
expression of genes that represent known biomarkers and therapies
across tissues(Kosti et al., 2016), the controversy about whether
changes in GE in peripheral blood reflects changes within the PNS and
CNS (Colleoni and Sacerdote, 2010; Seok et al., 2013; Jaggi et al.,
2011), and our findings of similarities between human whole blood and
pre-clinical models of neuropathic pain in neuronal tissue (i.e., rat DRG
(GDS2439) and mouse SC (GDS2159)), future research should evaluate
for genes that are similar and unique to these tissue types in relation to
PIPN. Another point worth noting is that in some of the preclinical
studies that were identified using EPA, differences in GE were evaluated
days to months after the nerve injury. This evaluation time frame is
consistent with a more chronic pain phenotype and perhaps is more
relevant to our cohort of survivors who had PIPN for 3.8 (± 3.9) years.
The EPA analysis did not evaluate for any specific preclinical or human
studies of CIPN or PIPN.

4.3. Conclusions

Taken together, these findings suggest that in addition to perturbed
pathways associated with mitochondrial dysfunction (Kober et al.,
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2018b), perturbations in pro- and anti-inflammatory pathways asso-
ciated with neuroinflammation are found in cancer survivors with
PIPN. Furthermore, whole transcriptome profiles of DGE patterns in
preclinical and clinical studies provide additional support for our
findings.

4.4. Limitations

Several limitations need to be considered. While our sample size
was relatively small, we had an extremely well characterized sample of
breast cancer survivors with and without PIPN. Of note, no differences
were found in the total cumulative dose of paclitaxel that these survi-
vors received. Although not significantly different between groups in
this study, exercise regularity may contribute to differences in differ-
ential gene expression between breast cancer survivors with and
without PIPN. Given that an evaluation of differences in gene expres-
sion from DRG neurons cannot be done in living individuals, like others,
(Langjahr et al., 2018; Uceyler et al., 2007) we evaluated for differences
in RNA expression using peripheral blood. Some limitations of using
whole blood to evaluate for patterns of expression in other tissues in-
clude: blood shows the largest number of uniquely expressed genes
(Mele et al., 2015); blood has the smallest number of expressed tran-
scripts across tissues;(Consortium, 2015) and baseline blood does not
share similar whole-transcriptome pattern with DRG, as well as other
CNS or PNS tissue.(Ray et al., 2018).

4.5. Future research

This study is the first to provide molecular evidence that neuroin-
flammatory mechanisms identified in preclinical models of various
types of neuropathic pain including CIPN (Makker, Duffy, 2017; Wang
et al., 2012), are found in peripheral blood leukocytes of cancer sur-
vivors with persistent PIPN. Despite the limitations of the analyses of
RNA from blood, we did observe profiles of DGE and perturbations in
these processes, which suggest persistent damage and/or changes in the
PNS. Given that these survivors had PIPN for approximately four years,
our findings suggest that chronic neuroinflammation is involved in the
maintenance of this neuropathic pain condition. Future studies need to
evaluate for differences in epigenetic changes (i.e., methylation, mi-
croRNA) between survivors with and without PIPN, which may reflect
changes in regulation patterns.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.jneuroim.2019.577019.
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