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Abstract

Objective: Mitochondrial impairments have been implicated in the pathogene-

sis of Fragile X-associated tremor/ataxia syndrome (FXTAS) based on analysis

of mitochondria in peripheral tissues and cultured cells. We sought to assess

whether mitochondrial abnormalities present in postmortem brain tissues of

patients with FXTAS are also present in plasma neuron-derived extracellular

vesicles (NDEVs) from living carriers of fragile X messenger ribonucleoprotein1

(FMR1) gene premutations at an early asymptomatic stage of the disease con-

tinuum. Methods: We utilized postmortem frozen cerebellar and frontal cortex

samples from a cohort of eight patients with FXTAS and nine controls and

measured the quantity and activity of the mitochondrial proteins complex IV

and complex V. In addition, we evaluated the same measures in isolated plasma

NDEVs by selective immunoaffinity capture targeting L1CAM from a separate

cohort of eight FMR1 premutation carriers and four age-matched controls.

Results: Lower complex IV and V quantity and activity were observed in the

cerebellum of FXTAS patients compared to controls, without any differences in

total mitochondrial content. No patient-control differences were observed in

the frontal cortex. In NDEVs, FMR1 premutation carriers compared to controls

had lower activity of Complex IV and Complex V, but higher Complex V

quantity. Interpretation: Quantitative and functional abnormalities in mito-

chondrial electron transport chain complexes IV and V seen in the cerebellum

of patients with FXTAS are also manifest in plasma NDEVs of FMR1 premuta-

tion carriers. Plasma NDEVs may provide further insights into mitochondrial

pathologies in this syndrome and could potentially lead to the development of

biomarkers for predicting symptomatic FXTAS among premutation carriers and

disease monitoring.

Introduction

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a

late-onset neurodegenerative disorder characterized by a

range of clinical manifestations including intention

tremor, cerebellar ataxia, parkinsonism, and cognitive

deficits.1–4 FXTAS results from the presence of a CGG

expanded allele in the premutation (PM) range (55–200
repeats) of the fragile X messenger ribonucleoprotein 1

(FMR1) gene5,6; by contrast, Fragile X syndrome (FXS) is

associated with greater than 200 CGG repeats.

Neuropathologically, one distinctive feature of FXTAS

is the accumulation of eosinophilic ubiquitin-positive

intranuclear inclusions in neurons and astrocytes,
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particularly, of the cerebellar nuclei, frontal cortex, and

hippocampus.7–9 In addition, a decrease in some mito-

chondrial proteins in FXTAS brain samples has been

reported, which appeared to precede the accumulation of

intranuclear inclusions,10 thus, implying that mitochon-

drial defects may be an early event in the course of the

disease. Subsequent studies using various sample types,

from postmortem brains to blood cells or skin-derived

fibroblasts, have further indicated that defective mito-

chondria, specifically impaired mitochondrial oxidative

phosphorylation system, may contribute to FXTAS patho-

genesis. Blood and fibroblast samples have been useful

because changes in mitochondria can be examined in liv-

ing FMR1 PM carriers at different disease stages, even

before progressing to FXTAS.11–15 These studies have sub-

stantiated the link between mitochondrial defects and

FXTAS pathogenesis; however, analysis of mitochondria

in peripheral tissues may not directly reflect the brain’s

mitochondrial status.

Extracellular vesicles (EVs) are nanosized membranous

particles that are released by all cell types. Their cargo

comprises nucleic acids, lipids, and proteins, including

mitochondrial components, that reflect the parental cell

identity and homeostatic status.16 EVs secreted by brain

cells can cross the blood–brain barrier and be detected in

blood, thereby providing a window into the brain.17 We

and others have isolated neuron-derived EVs (NDEVs)

from patients’ plasma18–21 and have shown that NDEVs

can be used as potential sources of biomarkers for various

neurological disorders.21–23

The aim of this study was to investigate if mitochon-

drial dysfunction in FXTAS can be reflected in NDEVs.

Studies of FMR1 PM carriers and FXTAS patients have

long hinted at abnormal mitochondrial oxidative phos-

phorylation that may contribute to the disease

pathologies.10,13,24 We measured the activity and quantity

of mitochondrial respiratory complexes IV and V in post-

mortem frozen brain tissues from patients with FXTAS,

and also quantified the same measures in NDEVs isolated

from the plasma of living FMR1 PM carriers, similar to

NDEV studies in other cohorts.19,20,25,26

Methods

Experimental design and study cohorts

We utilized a cohort of eight end-stage (Stage 4–5)
patients with FXTAS and nine matched male controls,

who had donated their brains to the University of Cali-

fornia, Davis, School of Medicine, Sacramento, CA and

were stored at the UC Davis FXTAS/FXS brain repository

(Table 1).27 Tissues of frontal cortex and cerebellum were

chemically fixated and stored at �80°C.

For the study of NDEVs, a separate cohort of eight

FMR1 PM carriers, who had donated blood, was identi-

fied retrospectively at the University of California, Davis,

School of Medicine, Sacramento, CA. Each individual had

undergone a detailed clinical and genetic assessment and

was given a diagnosis of early-stage (Stage 1–3) FXTAS

according to diagnostic criteria.28,29 Four additional male

subjects, matched for demographic characteristics, who

had also donated blood, were chosen as controls (Table 2).

Blood samples were collected in EDTA tubes and, after

centrifugation, 0.5 mL of plasma was stored at �80°C
and used for NDEV isolation and analysis.

The study and all protocols were carried out in accor-

dance with the Institutional Review Board at the Univer-

sity of California, Davis. All participants gave written

informed consent before participating in the study in line

with the Declaration of Helsinki.

Table 1. Cohort characteristics for study of brain tissues.

Characteristic

Patients with

FXTAS (N = 8)

Controls

(N = 9)

Sex – no. (%)

Female 0 (0.0) 0 (0.0)

Male 8 (100.0) 9 (100.0)

Age – years, mean (SD) 74.9 (5.9) 65.3 (8.5)

Tissue sample – no. (%)

Frontal cortex 8 (100.0) 7 (77.8)

Cerebellum 8 (100.0) 9 (100.0)

FXTAS Stage – no. (%)

1 0 (0.0)

2 0 (0.0)

3 0 (0.0)

4–5 8 (100.0)

6 0 (0.0)

FXTAS, Fragile X-associated tremor/ataxia syndrome; SD, standard

deviation.

Table 2. Cohort characteristics for study of NDEVs.

Characteristic

FMR1 PM

carriers (N = 8)

Controls

(N = 4)

Sex – no. (%)

Female 1 (12.5) 0 (0.0)

Male 7 (87.5) 4 (100.0)

FXTAS Stage – no. (%)

1 1 (8.0)

2 3 (25.0)

3 3 (25.0)

4 1 (8.0)

5 0 (0.0)

6 0 (0.0)

FMR1 PM, fragile X messenger ribonucleoprotein 1 premutation; FXTAS,

Fragile X-associated tremor/ataxia syndrome; NDEVs, neuron-derived

extracellular vesicles.
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NDEV isolation

EDTA plasma aliquots were received and processed

blindly by investigators at the National Institute on Aging,

Baltimore, MD. NDEVs were isolated by immunoaffinity

capture targeting L1 cell adhesion molecule (L1CAM), a

transmembrane neuronal protein sorted to EVs, as previ-

ously described.18,21 Briefly, 250 lL of plasma was defi-

brinated with 100 lL of thrombin followed by addition

of 150 lL of Dulbecco’s PBS-1X (DPBS), supplemented

with protease/phosphatase inhibitors, and sedimented at

3000g for 15 min at room temperature (RT). The super-

natant was transferred to a sterile 1.5 mL microtube, and

particles were sedimented by incubation with 126 lL of

ExoQuickTM followed by centrifugation at 1500g for

30 min at RT. Pelleted crude total EVs were resuspended

by overnight gentle rotation mixing at 4°C in 350 lL of

ultra-pure distilled water supplemented with protease/

phosphatase inhibitors. Resuspended crude total EVs

were, then, incubated for 30 min at RT with 4 lg of bio-

tinylated anti-human L1CAM antibody. EV–antibody
complexes were incubated with 25 lL of washed PierceTM

Streptavidin Plus UltraLinkTM Resin for 30 min at RT.

After centrifugation at 600g for 10 min at 4°C and

removal of unbound EVs and soluble proteins in the

supernatant, NDEVs were eluted with 100 lL of 0.1 M

glycine, followed promptly by pH normalization. Beads

were sedimented by centrifugation at 4000g for 10 min at

4°C, and supernatant containing immunoprecipitated

NDEVs was collected. 10 lL of intact NDEVs were stored

at �80°C and used for determination of their diameter

and concentration with nanoparticle tracking analysis

(NTA) (Nanosight NS500 equipped with a 532 nm laser

module; Malvern, Amesbury, UK), based on the Brow-

nian motion of particles detected by light scattering. The

remaining volume of NDEV preparations was used for

downstream mitochondrial assays.

Mitochondrial complex IV measurement

We measured mitochondrial complex IV in postmortem

frontal cortex and cerebellum tissues and NDEVs using a

human complex IV microplate (ab109910, Abcam plc,

Cambridge, UK). In this assay, Complex IV was immuno-

captured in the wells of an assay plate; its catalytic activity

was determined colorimetrically based on the oxidation of

reduced cytochrome c, and its quantity was then measured

by ELISA in the same sample wells. The ratio of the activity

and quantity represents the specific activity of Complex IV.

For simplification, the term “activity” is used and refers to

specific activity throughout the manuscript.

We carried out the assay following the manufacturer’s

instructions. For brain tissues, we homogenized the

samples in the assay buffer, added the detergent (provided

in the assay kit, 10% final concentration), centrifuged the

samples, collected the supernatants, and measured the

protein concentration using the bicinchoninic acid (BCA)

assay. The tissue samples containing 20 lg of total pro-

tein were added to the wells of the assay plate. For NDEV

samples, we lysed intact NDEVs in the assay buffer con-

taining 10% detergent on ice for 30 min before loading

the samples on the assay plate. The plate containing either

brain tissue or NDEV samples was incubated overnight

with gentle rocking at 4°C followed by measurement of

Complex IV activity, quantity, and specific activity. All

samples were run in duplicate.

Mitochondrial complex V measurement

We measured Complex V in postmortem frontal cortex

and cerebellum tissues and NDEVs using a human complex

V microplate assay (ab109716, Abcam plc, Cambridge,

UK). In this assay, Complex V is immunocaptured in the

wells of an assay plate; its catalytic activity is determined

colorimetrically based on the conversion of NADH to

NAD+, and its quantity in the same sample wells is then

measured by ELISA. The ratio of the activity and quantity

represents the specific activity of complex V. Similarly to

complex IV, the term “activity” was used to describe this

ratio throughout the manuscript.

We carried out the assay following the manufacturer’s

instructions with minor modifications. For brain tissues,

we homogenized the samples in the assay buffer, added

the detergent (provided in the assay kit, 10% final con-

centration), and incubated on ice for 10 min. We then

centrifuged the samples, collected the supernatants, and

measured the protein concentration using the BCA assay.

The tissue samples containing 20 lg of total protein were

added to the wells of the assay plate. For NDEV samples,

we lysed intact NDEVs in the assay buffer containing

10% detergent on ice for 15 min before loading the sam-

ples on the assay plate. The plate containing either brain

tissue or NDEV samples was incubated overnight with

gentle rocking at 4°C followed by measurement of Com-

plex V activity, quantity, and specific activity. All samples

were run in duplicate.

Mitochondrial content measurement

We used two methods to determine mitochondrial contents

in the brain tissue homogenates: a mitochondrial membrane-

specific dye MitoTracker Deep Red (MTDR)30,31 and immu-

noblotting of mitochondrial citrate synthase, a mitochondrial

matrix protein.

We carried out the MTDR method following the pro-

tocol described by Osto et al.32 We homogenized the
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brain tissues in cold MAS assay buffer and measured pro-

tein concentration with the BCA protein assay. Our pilot

analysis revealed a linear correlation between MTDR fluo-

rescence and protein amounts in the range of 2–20 lg
from the tissue homogenates. Therefore, we loaded the

homogenates containing 20 lg protein to each well of a

clear flat-bottom black 96-well plate and added MTDR at

1 lM final concentration. The plate was incubated at

37°C for 10 min and was centrifuged at 2000g for 5 min

at 4°C. After removing unbound MTDR dye, 100 lL
MAS buffer was added and then removed gently from the

assay wells. After adding another 100 lL of MAS buffer,

fluorescence was measured using a plate reader. All sam-

ples were run in quadruplicate.

Immunoblots of citrate synthase were carried out using

the standard protocol for electrophoresis and immuno-

blotting. Briefly, equal protein amounts (20 lg) from the

cerebellum tissues of seven patients with FXTAS and

seven controls were separated by electrophoresis and

immunoblotted with antibodies against citrate synthase

(1:1000) (#14309, Cell Signaling Technology Inc., Dan-

vers, MA) or actin (1:2500) (#A5441, MilliporeSigma,

Burlington, MA). The proteins were visualized using a

chemiluminescence kit (Pierce Biotechnology Inc., Wal-

tham, MA). The intensity of protein bands was analyzed

using ImageJ software.

Oxygen consumption rate (OCR)
measurement

To better understand the mitochondrial oxidative phos-

phorylation machinery in the brains of patients with

FXTAS, we examined mitochondrial respiration using a

protocol designed specifically for analyzing electron trans-

port chain activity in frozen tissues.31–33 In this protocol,

providing chemicals (as electron donors) directly to the

electron transport chain circumvents the components that

are lost due to freezing and thawing, thereby enabling

assessments of electron transport chain activity in the

form of oxygen consumption rate (OCR). In this study,

we focused on Complex I- and Complex II-mediated

OCR by providing NADH (Fig. 2A) and succinate

(Fig. 2C), respectively, to the tested tissue homogenates.

After rapidly thawing on ice, brain tissues were homog-

enized in cold MAS assay buffer, centrifuged at 1000g for

5 min at 4°C, and protein concentration of the superna-

tants was determined using the BCA protein assay. The

samples containing 20 lg of total protein in 20 lL of the

MAS buffer were loaded to each well of a Seahorse XF24

cell plate (Agilent Technologies, Inc., Santa Clara, CA).

After centrifuging at 2000g for 5 min at 4°C, 130 lL of

MAS buffer containing cytochrome c (10 lg/mL) and ala-

methicin (10 lg/mL) was added to each well. The sensor

cartridge plate (Agilent Technologies, Inc., Santa Clara,

CA) was loaded with substrates and inhibitors (50 lL per

port) as follows: port A, NADH (1 mM) or succinate +
rotenone (5 mM + 2 lM); port B, antimycin A (4 lM);

port C, tetramethyl-p-phenylenediamine dihydrochloride

(TMPD) + ascorbic acid (0.5 mM + 1 mM); port D,

sodium azide (50 mM). All samples were run in

duplicate.

Statistical analysis

To compare mitochondrial content in brain tissues

between patients with FXTAS and controls and NDEV

characteristics (concentration and average size) derived by

NTA between PM carriers and controls we used Mann–
Whitney U tests. For brain tissues, we normalized mito-

chondrial measures by the mitochondrial content of each

sample. To assess differences between the two groups

(FXTAS patients and controls), we fitted linear mixed

models with tissue type (frontal cortex or cerebellum),

group, and tissue type-by-group interaction as fixed

effects, participant as a random effect, and age as a covar-

iate. To assess differences of mitochondrial measures in

NDEVs between the two groups (PM carriers and con-

trols), a general linear model was used with NDEV con-

centration as a covariate and group as a fixed effect

factor. The inclusion of NDEV concentration (determined

by NTA) as a covariate enabled normalization for differ-

ential NDEV yield across samples. p value < 0.05 was

Figure 1. Analysis of postmortem brain tissues of patients with FXTAS. (A, B) Comparison of the mean quantity and activity of mitochondrial

complex IV in the frontal cortex (A) and cerebellum (B) of patients with FXTAS and controls. (C, D) Comparison of the mean quantity and activity

of mitochondrial complex V in the frontal cortex (C) and cerebellum (D) of patients with FXTAS and controls. (E) Total mitochondrial contents in

tissue lysates (20 lg of total protein) of patients with FXTAS and controls were determined using a mitochondrial membrane-specific dye MTDR.

(F) (top) Immunoblots of mitochondrial citrate synthase and Actin in cerebellum tissues; (bottom) Histogram of citrate synthase levels (normalized

to Actin of the same sample) in the cerebellum of seven patients with FXTAS (f1-7) and seven controls (c1-7). Values in (A–D) were normalized by

mitochondrial content of each tissue sample. Shown in each bar is mean � SEM. Each diamond represents data from one subject (frontal cortex,

n = 8 for patients with FXTAS, n = 7 for controls; cerebellum, n = 8 for patients with FXTAS, n = 9 for controls). p values were calculated using

Mann–Whitney U tests for mitochondrial contents and linear mixed models for mitochondrial measures. AU, arbitrary units; CS, citrate synthase;

FXTAS, Fragile X-associated tremor/ataxia syndrome; MTDR, MitoTracker Deep Red; RFU, relative fluorescence units; *p < 0.05; **p < 0.01.

ª 2024 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.
This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

1423

P. J. Yao et al. Extracellular Vesicle Biomarkers for FXTAS



1424 ª 2024 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

Extracellular Vesicle Biomarkers for FXTAS P. J. Yao et al.



considered statistically significant. All analyses were per-

formed using SPSS statistical software, version 21.0 (IBM

Corp) and GraphPad Prism, version 9.0.

Results

Mitochondrial complex IV and complex V in
brain tissues of patients with FXTAS

For Complex IV quantity and activity, the frontal cortex

did not show any significant differences between patients

with FXTAS and controls (Fig. 1A). In contrast, the cere-

bellum showed significantly reduced quantity of Complex

IV in patients with FXTAS, to a level approximately 25%

of controls (Fig. 1B; 2.99 � 0.79 vs. 12.4 � 4.25 AU,

p = 0.005). Moreover, the activity of complex IV in

patients with FXTAS was also reduced to a level approxi-

mately 40% of controls (Fig. 1B; 0.296 � 0.054 vs.

0.71 � 0.269 AU, p = 0.013).

Similarly, Complex V quantity and activity in the fron-

tal cortex did not exhibit any statistically significant dif-

ferences between the two groups (Fig. 1C); however, in

the cerebellum, its quantity in patients with FXTAS was

approximately 44% and its activity 58% lower compared

to controls (Fig. 1D; 10.9 � 1.92 vs. 24.5 � 7.47 AU,

p = 0.037 and 0.0189 � 0.0039 vs. 0.0324 � 0.0171 AU,

p = 0.046, respectively).

The assessment of total mitochondrial content in the

brain tissue homogenates of patients with FXTAS and

controls using the MTDR method showed similar relative

fluorescence intensity units between the two groups for

both frontal cortex and cerebellum (Fig. 1E). Given that

reductions of Complex IV and Complex V were observed

solely in the cerebellum, we measured in cerebellar tissues

the level of citrate synthase as an additional indicator of

total mitochondrial content. Immunoblotting of citrate

synthase did not show significant differences between the

cerebellum of patients with FXTAS and controls (Fig. 1F).

Therefore, the reduction of Complex IV and Complex V

in the cerebellum of patients with FXTAS is not merely a

reflection of mitochondrial loss. Collectively, our results

indicate that in advanced FXTAS stages mitochondrial

Complex IV and Complex V are clearly impaired in cere-

bellum, but not in frontal cortex, and that at least in

these two brain areas, total mitochondrial content does

not change significantly.

Mitochondrial complex I and complex II
respiration in brain tissues of FXTAS

For Complex I-mediated OCR (Fig. 2A), neither frontal

cortex nor cerebellum of patients with FXTAS showed

any differences compared to controls (Fig. 2B). Similarly,

for Complex II-mediated OCR (Fig. 2C), no differences

were detected between the two groups in either brain

region (Fig. 2D). Therefore, unlike the observed decreased

activity of Complexes IV and V in the cerebellum of

patients with FXTAS, electron transport chain activity via

Complexes I and II did not appear to be severely affected.

Mitochondrial complex IV and complex V in
NDEVs of PM carriers

For NDEV-associated Complex IV quantity, we did not

observe any differences between PM carriers and controls

(Fig. 3A, left; mean � standard error (SEM) 4.52 � 0.54

vs. 3.65 � 0.37 AU, p = 0.46). On the other hand, the

NDEV-associated Complex IV activity was approximately

60% lower in PM carriers compared to controls (Fig. 3A,

right; 26.5 � 4.16 vs. 45.9 � 3.43 AU, p = 0.02).

For NDEV-associated Complex V, we found that its

quantity was increased in PM carriers compared to con-

trols (Fig. 3B, left; 2.44 � 0.18 vs. 1.59 � 0.19 AU,

p = 0.03). Despite the noticeably greater quantity, the

activity of NDEV-associated Complex V in PM carriers

was lower compared to controls (Fig. 3B, right;

36.7 � 4.67 vs. 61.8 � 13.4 AU, p = 0.046).

To determine whether the changes in NDEV-associated

Complex IV and Complex V in PM carriers were due to

differences in the concentration of recovered NDEVs,

NTA was performed, as previously done in NDEV bio-

marker studies.34 NTA showed that NDEV diameter ran-

ged from 85 to 180 nm, consistent with a mixed

population of small and large EVs.35 Comparing the

NDEVs of PM carriers to those of controls, we did not

observe any differences in either the number or the aver-

age diameter of the NDEVs (Fig. 3C). We conclude that

the NDEVs of PM carriers contain abnormal mitochon-

drial Complex IV and Complex V, potentially reflecting

similar abnormalities in brain neurons that generated

these NDEVs.

Discussion

Previous studies of blood samples and skin-derived fibro-

blasts of FMR1 PM carriers with and without FXTAS

have shown abnormal mitochondria, implying a defective

machinery for oxidative phosphorylation and possibly

ATP production in examined tissues and cells that osten-

sibly also pertain to the brain.11–15 However, different

organs and cells have distinctively different capacities for

mitochondrial ATP production because the demands for

ATP are tissue- and cell-specific.36–39 Therefore, the ques-

tion remaining to be answered is to what extent the mito-

chondrial functional status of the periphery echoes that of

the brain—especially, in brain areas affected by FXTAS.
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In this study, we investigated the mitochondrial oxida-

tive phosphorylation proteins in postmortem brain tissues

of patients with FXTAS. We found severely impaired

mitochondrial Complex IV and Complex V in the cere-

bellum of patients with FXTAS, but not in the frontal

cortex (Fig. 1B,D), consistent with the predominantly

cerebellar manifestations of the syndrome. However, not

all mitochondrial parameters showed detectable alter-

ations. For example, in both the cerebellum and the fron-

tal cortex, total mitochondrial contents (Fig. 1E,F) and

mitochondrial integrated respiration capacity driven by

Complexes I and II (Fig. 2B,D) did not differ between

Figure 2. Analysis of mitochondrial complex I- and complex II-mediated respiration in brain tissues of patients with FXTAS. (A) Example traces of

NADH-induced respiration representing Complex I-mediated OCR of frozen frontal cortex and cerebellum homogenates from control subjects. (B)

Comparison of Complex I-mediated OCR in the frontal cortex and cerebellar tissues from patients with FXTAS and controls. (C) Example traces of

succinate-induced respiration representing Complex II-mediated OCR of frozen frontal cortex and cerebellum homogenates from control subjects.

(D) Comparison of Complex II-mediated OCR in the frontal cortex and cerebellar tissues from patients with FXTAS and controls. In (B) and (D),

shown in each bar is mean � SEM. Each diamond represents data from one subject (frontal cortex, n = 8 for patients with FXTAS, n = 7 for

controls; cerebellum, n = 8 for patients with FXTAS, n = 9 for controls). Analysis was performed by fitting linear mixed models. AA, antimycin A;

Asc, ascorbic acid; Cb, cerebellum; Fc, frontal cortex; FXTAS, Fragile X-associated tremor/ataxia syndrome; NADH, nicotinamide adenine

dinucleotide hydrogen; OCR, oxygen consumption rate; TMPD, tetramethyl-p-phenylenediamine dihydrochloride.

1426 ª 2024 The Authors. Annals of Clinical and Translational Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association.

This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.

Extracellular Vesicle Biomarkers for FXTAS P. J. Yao et al.



patients with FXTAS and controls. These findings suggest

that the mitochondrial defects might be specific to the

Complexes IV and V of the oxidative phosphorylation

machinery. Therefore, the subsequent study in NDEVs

focused on mitochondrial Complexes IV and V, which

were both found impaired in PM carriers, with their

activity levels being approximately 60% lower than those

of controls (Fig. 3A,B).

Based on these findings, our study highlights an impor-

tant pathogenic mechanism in FXTAS, and specifically

implicates Complexes IV and V, whose combined defects

may lead to decreased ATP production (creating an

energy crisis for neurons) and a situation where electrons

are not propagated all the way across the electron trans-

port chain to create molecules of water, but instead may

become available for the formation of reactive oxygen

species. Additionally, our results suggest that the quantita-

tive and functional abnormalities observed in plasma

NDEVs may be an early reflection of defects in the mito-

chondrial function of cerebellar neurons that are already

established at the PM carrier stage before symptoms

appear. Finally, our study provides potential targets for

treatment with therapeutic agents that would restore the

mitochondrial oxidative phosphorylation abnormalities.

For example, sulforaphane, a natural phytochemical acti-

vating the nuclear factor erythroid 2-related factor (Nrf-

2) that upregulates antioxidant response elements to

counteract oxidative stress damage due to mitochondrial

dysfunction,40 has shown beneficial effects in patients

with FXTAS and is under investigation.41

Nevertheless, limitations of our study need to be recog-

nized. Despite the overall congruency of results between

cerebellar tissues and NDEVs, the quantity of Complex V

was found decreased in the former and increased in the lat-

ter compared to controls. A possible explanation for this

discrepancy may be that, as NDEVs are derived from neu-

rons in multiple brain regions, their protein cargo can be

expected to reflect the average of neuronal homeostatic sta-

tus, and not the cerebellar neuronal specific status. Addi-

tionally, although we jointly discuss results from brain

tissues and NDEVs to draw conclusions, these were derived

from different cohorts at different stages of the pathologic

continuum (preclinical vs. advanced disease), while also

the sample size was small. Finally, due to the limited vol-

umes of plasma samples and the finite amounts of proteins

in EVs, we were only able to conduct a limited number of

mitochondrial assays. Further validation of our results is

warranted with large longitudinal cohorts including FMR1

Figure 3. Analysis of plasma NDEVs of premutation (PM) carriers. (A)

Comparison of the mean quantity and activity of mitochondrial

respiratory chain complex IV in NDEVs of PM carriers and control

subjects. (B) Comparison of the mean quantity and activity of

mitochondrial respiratory chain complex V in NDEVs of PM carriers

and control subjects. (C) Comparison of the concentration (particles/

lL) and average diameter of NDEVs between PM carriers and control

subjects. Shown in each bar is mean � SEM. Each diamond

represents data from one subject (n = 8 for PM carriers, n = 4 for

control subjects). p values were calculated using Mann–Whitney U

tests for NDEV characteristics and a general linear model for

mitochondrial measures. AU, arbitrary units; PM, premutation;

*p < 0.05.
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PM carriers before and after the development of FXTAS,

but also with mechanistic studies that would investigate

in-depth the defects in mitochondrial oxidative phosphor-

ylation proteins and their consequences.
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