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Abstract

The efficacy of wireless intracortical brain–computer interfaces (iBCIs) is partly limited by the 

number of recording channels, which is constrained by the power budget of the implantable 

system. Designing wireless iBCIs that provide the high-quality recordings of today’s wired neural 

interfaces may lead to inadvertent over-design at the expense of power consumption and 

scalability. Here we analysed neural signals collected from experimental iBCI measurements in 

rhesus macaques and from a clinical-trial participant with implanted 96-channel Utah multi-

electrode arrays to understand the trade-offs between signal quality and decoder performance. We 

propose an efficient hardware design for clinically viable iBCIs, and suggest that the circuit design 

parameters of current recording iBCIs can be relaxed considerably without loss of performance. 
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The proposed design may allow for an order of magnitude power savings and lead to clinically 

viable iBCIs with a higher channel count.

1 Introduction

Electrophysiological devices are widely used in basic neuroscience research to measure the 

activity of a population of neurons (e.g., electroencephalography - EEG, and 

electrocorticography - ECoG) or individual neurons (e.g., using intracortical electrodes) to 

understand the function of the nervous system. Decades of electrophysiological research 

initially aimed at understanding the brain gave rise to the field of brain-computer interfaces 

(BCIs), also referred to as brain-machine interfaces (BMIs) or neural prostheses. In this 

paper, we collectively refer to these systems as BCIs. BCIs provide a direct communication 

path between the brain and an external device. While they can be used in research to better 

understand the brain, they are increasingly intended for clinical applications [1].

BCIs can help restore lost sensory capabilities through stimulation (e.g., vision and hearing), 

or restore lost motor capabilities of people with motor impairments (e.g., due to amyotrophic 

lateral sclerosis - ALS, brainstem stroke, or spinal cord injury). In clinical motor prosthesis 

applications, BCIs estimate the user’s intention from brain activity and use this ‘decoded’ 

intention to guide the person’s own limb [2, 3] or an assistive device, such as a prosthetic 

arm [4–6] or a computer cursor [7–9] (Fig. 1). Different neural sensors (e.g., EEG, ECoG 

and intracortical electrodes) can be used as part of BCIs for clinical applications. Recent 

intracortical BCI (iBCI) studies have shown promising results in pilot clinical trials by 

enabling high-performance computer cursor control, making them prime candidates for 

contributing to an assistive technology for people with paralysis [3,5,8,10,11]. Although 

these results are encouraging, for most applications, iBCIs would benefit from further 

improvements to be suitable for widespread, standard-of-care human clinical use.

There is considerable industrial and academic interest in continuing to advance all aspects of 

iBCI design. Two major requirements for improving iBCIs are increasing the number of 

recording electrodes, and implementing wireless transcutaneous implants [12–14]. 

Increasing the number of recorded neurons and the variety of recorded cortical areas is 

predicted to lead to iBCI performance improvements (see e.g., [13, 15]) and might also 

enable control of more sophisticated prosthetic devices (e.g., with higher degrees of 

freedom) [14,16,17]. In addition, wireless links will enable the development of 

transcutaneous systems that minimize the risk of infection and improve aesthetic 

appearance, user’s mobility and independence [12, 13]. Existing chronic systems for non-

human primates (NHPs) that record from hundreds to thousands of electrodes are power-

hungry, and are usually based on wired communication which will not translate well to 

people [14, 18, 19]. While substantial progress has been made in developing fully 

implantable, wireless technologies that can support ~100 electrodes, the field (including 

future clinical use) will benefit from smaller devices with larger number of electrodes 

(channels) [20–23].

Current systems were designed for basic neuroscience research to record and transmit wide-

bandwidth signals with high resolution, thus requiring relatively high power consumption. 
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This “leave nothing behind” approach enables the extraction of a variety of signals including 

action potentials (spikes) and local field potentials (LFPs), and permits “spike sorting” to 

attribute action potentials to putative individual neurons [24].

As custom signal specifications for iBCI applications are now crystallizing and diverging 

from those needed for basic neuroscience, efforts from the neuroscience community have 

investigated the required signal characteristics for iBCI decoders [25–29]. At the same time, 

the engineering community focused on designing more efficient neural interfaces. Recent 

designs, aimed at reducing the quantity of raw data generated by conventional neural 

interfaces, use a wide range of techniques such as on-chip thresholding [30–32], on-chip 

spike sorting [33], on-chip compression [34–37] and compressive sensing [38,39]. Despite 

these engineering-led forays into compression, there is not yet consensus on the required 

specifications for iBCI oriented neural interfaces. As a result, current in-vivo systems still 

typically record the neural signal with unnecessarily high fidelity [20, 22, 23, 40–46]. Here, 

we will present a holistic analysis validating how neural interface specifications for iBCIs 

can be relaxed with respect to basic neuroscience systems. Results are obtained using data 

collected from experimental iBCI measurements in rhesus macaques and a BrainGate2 

clinical trial human participant. We suggest a considerably more power-efficient approach 

designed around the anticipated needs and constraints of clinical use. Our estimates indicate 

that this can reduce power consumption by an order of magnitude while maintaining high 

decoding performance. We focus on three main questions: 1) what type of signal should be 

recorded from the brain, 2) how reliable should this signal be, and 3) how will the resulting 

new specifications affect the iBCI neural interface design, with particular emphasis on its 

power consumption?

In the first section, we discuss which type of neural signal is needed for iBCIs and how 

robust the system must be against noise. Next, we assess which design specifications can be 

relaxed without substantially sacrificing iBCI performance. This informs a possible 

customized recording strategy for implantable clinical iBCIs. Finally, we describe how the 

new specifications affect the overall power consumption of the system and highlight the 

potential for substantial power savings.

2 Neural signal requirements for iBCI decoders

2.1 Binary threshold-crossing signals sampled at low rates

Current neural interfaces record and transmit wideband signals (e.g., 0.1-10,000 Hz) at high 

resolution (10 - 16 bits), see Fig. 1(b). The low-frequency spectrum contains the LFP, which 

reflects a spatial averaging of the neural population activity in the electrode’s surroundings 

[47–49]. The high-frequency spectrum enables capturing delicate features in the recorded 

signal, which can help in investigating spike waveforms, spike sorting, and differentiating 

between neuron classes on the basis of their spike waveform. While these properties are of 

interest for basic neuroscience research, they are not necessarily essential for estimating the 

user’s neural state or intention for iBCIs applications (e.g., arm movement direction and 

speed intention) [27, 29, 50, 51].
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Most high-performing motor iBCIs use only a simple binary signal encoding of threshold 

crossing events (’1’ if a spike is detected; ’0’ otherwise) in a short time bin (see Fig. 1(f)) to 

decode the user’s intention [8, 11, 12, 25, 52–59]. The LFPs contain less information about 

the intended movement (e.g., movement velocity) compared to spikes; they are beneficial for 

continuous iBCI control mostly when the spike signals have degraded severely [8, 12, 26, 

60, 61] or to classify between a small set of discrete states [62]. A few studies, in addition to 

threshold-crossing events, also used high-frequency band power (250 Hz to 3kHz or 5kHz) 

for iBCIs [3, 9, 63]. However, the importance of these additional signals might diminish as 

the number of electrodes in iBCI systems increases and as neural interfaces improve their 

ability to record thresholded spikes [64, 65]. Although recording and transmitting only LFPs 

can also potentially reduce power consumption and should be further investigated, here we 

focus only on spike signals as they currently achieve the highest iBCI performance.

Sorting spikes by individual neurons detected on a given electrode (Fig. 1(e)) can be of 

interest when investigating single neuron modulation. In some cases, it can potentially 

improve iBCI performance by distinguishing spikes from neural population that are tuned 

differently (e.g., have different preferred directions) or by separating neurons from high-

amplitude noise or high-frequency LFP. However, this might be unnecessary for decoding 

purposes when the activity of the entire neuron population is summarized to evaluate the 

desired user intention (e.g., by linear combination). Accumulating evidence in NHPs 

suggests that the benefit of spike sorting on iBCI performance is minimal compared to 

simple threshold crossing (~5% performance difference) [25–29]. Taken together, these 

developments suggest that iBCIs may benefit most from larger electrode counts, and can 

compromise on signal fidelity by transmitting only binary threshold-crossing events. In 

addition, sorting spikes on the device will increase the complexity of the circuit design as it 

might need to adaptively track moving signals due to slight array movement and other non-

stationary properties of the signal. Even efficient spike sorting techniques [33,66] increase 

power consumption significantly when compared to threshold-crossing architectures. 

Because of the minimal benefits in terms of decoding performance and the high costs of 

integrating spike sorting into the device, we have decided to focus on neural interface 

designs that record, transmit, and decode threshold crossing events.

One can imagine transmitting even more abstract signal representations such as binned spike 

counts (the number of spikes in a defined time window, e.g. 20 ms window), dimensionality-

reduced signals (i.e., compressed signals with fewer channels. e.g., [67]), or just the output 

control signals for the prosthesis (e.g., velocity). While it is common in the iBCI field to use 

threshold crossings for decoding [8,11,52–54,57,68], the optimal bin size, dimensionality 

reduction technique, and the decoding and control algorithms are still under active 

investigation (e.g., [52,53,67,69,70]). There is evidence that small bin sizes (e.g., 1 ms) can 

improve performance; however, the effect of bin size on performance is still unclear and 

likely depends on the decoding algorithm [8,53,71]. Additional work is required before 

determining the trade-off between bin size, dimensionality reduction technique, decoder 

algorithm and system performance. Intensive processing before transmitting the signal may 

therefore limit the compatibility of the device with future algorithms. Given all this, we have 

chosen to follow a conservative approach and recommend requirements that are commonly 

used practice in the iBCI field. Thus, at the present time, we believe that transmitting the 
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presence or absence of unsorted spikes in 1 ms bins is a well-balanced level of simplification 

that fits current iBCI best practices, while still leaving the door open to future research and 

development.

2.2 Tolerance to high recording and transmission error rates

Wired iBCIs being used in clinical research, like many other medical and research devices, 

are currently designed to have minimal recording and transmission errors. This guarantees 

minimal spike misdetection. However, this high reliability of the recorded and transmitted 

brain activity comes with a high cost in terms of integrated circuit power consumption. The 

empirical observation that there is a high degree of redundancy in the neural population 

spiking activity suggests that high signal fidelity might not be required for iBCIs. The aim in 

motor iBCI applications is to estimate the user’s intention from the ensemble of all recorded 

neurons. Correlations across electrodes and the temporal smoothness of the underlying 

intention (e.g., hand velocity) mitigate the effect of noise on each electrode. Therefore, it 

may be possible to reduce the recording and transmission reliability of each electrode as 

long as the final decoding accuracy does not degrade. To demonstrate this, we investigated 

the tolerance of iBCI decoders to noise and quantified how much we could distort the 

spiking activity while keeping comparable decoding quality.

Specifically, we tested an iBCI system’s robustness to spike errors. Digital communication 

fidelity is traditionally described by the bit error rate (BER), which is the rate of flipped bits 

from 0 to 1 and vice versa. For our purpose, to measure the accuracy of the recording and 

transmission of spikes, which are binary threshold crossing events, we introduce the notion 

of spike error rate (SER). SER is the rate at which a spike event was falsely transmitted or 

missed, i.e. a bit in the binary spike train was flipped. The iBCI decoder is agnostic to the 

source of the error. Spike errors (i.e., spike error rate, SER) can result from the noise added 

to the analog signal or digital signal processing throughout the recording and transmitting 

system. For example, electrode or amplifier noise can be incorrectly detected as a spike. 

Also, the low resolution of the analog-to-digital converter can lead to erroneously detected 

spikes. Moreover, bit errors in the transmission system (BER) can also translate to spike 

errors, depending on the communication protocol (as will be discussed later). Hence, we 

distinguish between BER and SER because SER represents the error rate of the entire neural 

interface system, both in recording and in transmission.

To evaluate the robustness of the iBCI decoder to SER, we post hoc measured NHP and 

human movement behavior predictability using an intentionally distorted neural signal, i.e. 

we randomly flipped bits in the binary threshold spikes (Fig. 1(f)) and then tried to decode 

this distorted signal. We note that this noise injection is different from the common practice 

in the field as we flip spikes in 1 ms resolution and we do not add Gaussian noise to the 

spike rate in a longer time window (e.g., 20-100 ms [63,69,72]). The original neural signals 

were recorded with Blackrock Microsystems recording systems [73] from able-bodied 

monkeys and a person with paralysis while they performed a computer cursor movement 

task. The monkeys moved the cursor to cued targets using their hand, whereas BrainGate2 

clinical trial participant ’T5’ controlled it with an iBCI system (see Methods: Neural and 

hand position recording for more details). As a decoding performance metric, we use the 
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coefficient of determination (R2), which describes how much of the variability of the cursor 

velocity can be predicted from the neural activity. First, we generated synthetically distorted 

neural signals by injecting errors in the recorded data at different SERs (10−6 to 10−0.5). This 

was done by flipping the binary spiking signal bits with an independent Bernoulli 

distribution with the probability of the SER (see Methods from more information). Then, we 

estimated how well the distorted neural signal could predict the cursor velocity using a 

Kalman filter (KF), a widely used decoder for iBCIs [8, 11, 57] (Fig. 2(a), see Methods from 

more information).

Surprisingly, across the three monkeys and the human participant, SER only had a 

statistically significant effect on performance at a rate higher than 10−3 (see horizontal bars 

Fig. 2(b) in the right top corner, two-sided Wilcoxon rank-sum test, p<0.05), when compared 

to an undistorted signal (Rorg
2 ). In other words, the neural interface recording and 

transmission system can tolerate a SER of up to 10−3 while maintaining comparable 

decoding performance. Intuitively, if the SER is much smaller than the rate of spikes, it 

should not have a significant effect on the decoder; but if the SER is of the order of 

magnitude of the action potential emission rate (firing rate), then the movement intention 

information will become highly corrupted. Indeed, our results on SER robustness correspond 

to the recorded firing rate (~10 spikes/sec, see Sup. Fig. S5) at the sample rate of 1,000 

samples/sec (1 kSps). We extended the same analysis to three additional methods: a linear 

regression decoder to predict cursor velocity (as done with KF) and two types of discrete 

iBCI classifiers using a naive Bayes method and a support vector machine (SVM) to predict 

the location of the cued target. Similar to the findings for the KF, the performance of these 

decoders started to degrade when the SER approached 10−3 (see Sup. Methods - Offline 

decoders, and Sup. Fig. S3). For the rest of the manuscript, we will focus our analysis on the 

KF decoder, given its ubiquity in iBCI systems and the comparable results obtained by the 

other methods.

The proposed metric for spike distortion (i.e., SER) and the upper limit for the allowed error 

can be a guiding tool for iBCI neural interface designs, both in terms of recording and 

transmitting architecture, as well as specifications for the individual blocks in the system. 

Our results suggest that a neural interface (from electrode to transmitter in Fig. 2(a,c)) can 

distort the transmitted spike signal by a rate of up to 10−3, which is several orders of 

magnitude higher than the BER traditionally targeted by telecommunication systems [74, 

75]. Here, we propose a neural interface that transmits a binary threshold-crossing spike 

signal at 1 kSps with an error rate of up to 10−3. This allows new trade-offs that could lower 

the device power requirements, and could give rise to novel neural interface designs that are 

custom-optimized for iBCIs.

3 Custom neural interfaces for iBCIs

Recording and transmitting binary threshold-crossing signals while tolerating high spike 

error rates opens an avenue for new recording system architectures that are customized for 

the needs of clinical iBCIs. These devices can be more efficient in power compared to 

current neural interfaces (Fig. 1(c)). To estimate the potential power savings of this 

approach, we investigated the benefits of using conventional architectures with distinct 
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parameter choices informed by anticipated clinical iBCI needs. We intend for these 

conventional architecture estimates to be a starting point and an upper bound for more 

drastically different future designs and architectures. In this section, we describe the key 

parameters of conventional systems, and perform analyses similar to the previous section to 

examine how these parameters can be relaxed while still maintaining sufficient decoding 

accuracy.

3.1 Neural interface circuit design parameters

Figure 1(c) shows a conventional wireless implantable neural interface system similar to 

what is currently used in animal studies [14,20] and is being developed for human use 

[22,76]. The system consists of a sensor (such as a penetrating electrode array) connected to 

multiple recording units and a wireless transmitter (TX). Each recording unit contains a 

neural amplifier (A), an analog-to-digital converter (ADC), and digital signal processing 

(DSP, e.g., spike detector). The amplifier amplifies the neural signal in the frequency band of 

interest (f0, f1 - e.g. 0.3-7.5 kHz for action potentials). The noise introduced by this stage is 

defined as the input-referred noise level vin2  of the neural amplifier (see Sup. Methods - 

Neural interface parameter simulation). The output signal is then converted into a digital 

signal by the ADC. The ADC is defined by the sampling frequency (fs) and the resolution 

(B, number of bits). Due to circuit nonidealities (thermal noise and nonlinearities), the 

achieved effective resolution is usually 0.5-1.5 less than the number of bits, and it is defined 

by the signal-to-noise-ratio-based number of bits (SNR-bits) when nonlinearities are not 

taken into account [77]. Threshold crossing detection is implemented in post-processing and 

adds negligible power consumption as discussed in [78]. Hence, it will not be part of our 

analysis here. The transmitter data rate is usually defined as R=f=fsBN, where N is the 

number of channels, if no DSP is applied and raw data is transmitted directly. The main 

factors that guarantee fidelity of this process are a wide filter frequency band, low noise, 

high quantizer sampling frequency, high quantizer resolution, and low data link bit error rate 

(BER). Unfortunately, these capabilities contribute to the power budget and total size of the 

system. In the next subsection, we focus on the recording unit’s design parameters, which 

also affect the transmitter power consumption. The transmitter-specific design parameters 

will be discussed later.

3.2 Custom circuit parameters for a movement iBCI

To investigate the range of circuit parameters that do not compromise performance in the 

iBCI application domain, we estimated the velocity prediction quality from a neural signal 

degraded by relaxing the specifications of several specific circuit components (see Fig. 3(a–

c) and Method: Neural interface parameter simulation section for more details).

First, we varied the observation frequency band, f0 and f1, by sweeping the lower and upper 

cut-off frequencies of a second-order Butterworth bandpass filter used to filter the raw signal 

(see Methods). To relax the filter roll-off requirements and avoid aliasing issues, the 

sampling rate was set to fs = 3f1, allocating a slight oversampling above the Nyquist limit. 

Fig. 3(d) shows that decoding performance is kept consistent in a wide range of frequency 

bands, and that competitive decoding accuracy is also achieved at lower and narrower 
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frequency bands, e.g. 0.5 kHz - 3 kHz. These results are consistent with previous studies 

examining finger position decoding [31].

Second, we investigated the effect of the quantizer resolution on performance. Fig. 3(e) 

shows that the decoder performance is fairly independent of ADC resolution for SNR-bits ≥ 

7 (see horizontal bars in the top left corner). This minimum resolution is limited by the 

precision requirements on the threshold values used for spike detection, rather than by the 

signal resolution. Here, a threshold was set proportionally to each electrode’s (el) root mean 

square signal Tℎel = n × RMSel , where n was optimized for each set of parameters (e.g., 

number of bits) by sweeping the range of −6≤n≤−1 (see Methods section for more details). 

Thresholding in the analog domain would allow for 1-bit quantization; however, Gibson and 

colleagues [78, 79] showed that low-resolution digital spike detection is more efficient than 

the analog counterpart.

Third, we investigated the effect of raw signal noise on decoding performance. In a neural 

interface, there are four main sources of noise: tissue thermal noise; electrode impedance 

thermal noise; noise from the interface electronics; and neuronal background electrical 

activity that might carry information from the surrounding neurons, but which for the 

purpose of spike detection we also consider as noise (Fig. 1(a)). Very low-noise interfaces 

(e.g., υin2 = 1 − 5μVrms [20, 23, 31]) are usually designed to avoid being the main source of 

noise and to provide measurements limited only by the biological system [80]. However, 

Fig. 3(f) shows that decoder performance is robust (across all users) to a larger added 

Gaussian noise with a power spectral density (PSD=υin2 /Δf) of up to ~3.5×10−15V2/Hz. The 

PSD of an amplifier scales inversely with its power consumption. Hence, the extra noise 

budget can be utilized to reduce the power consumption of the amplifier. Alternatively, 

larger noise contributions from variations in the electrode impedance in chronic implants can 

be accommodated. Other noise sources, like motion artifacts and electromagnetic 

interference (EMI), usually appear to the recording system as common-mode signals. Hence, 

the differential structure of the system is able to reject them quite efficiently.

These results suggest that neural interface designs can be relaxed substantially and that there 

is a wide space of parameters (e.g., f0, f1, B, and υin2 ) that can achieve comparable iBCI 

performance. Design decisions should be based on the neural interface architecture and the 

trade-offs between power consumption and complexity. For example, as we will present in 

the next section, in a conventional design, the ADC power consumption is negligible 

compared to that of the amplifier. Thus, the amplifier parameters should be optimized first 

(e.g., f = 0.5-3 kHz and PSD = 3.3×10−15V2/Hz) and the minimal number of bits that 

maintain performance with such an amplifier (e.g., SNR-bits = 7) should then be 

determined. An ongoing research effort to reduce power consumption already exists, with 

groups trying to create custom neural interfaces (academic prototype systems) [20, 22, 23, 

40–46, 81, 82] for a wide range of applications. Table 1 summarizes the system 

specifications for a conventional system (commercialized [73]), selected academic 

prototypes [20, 22, 23, 41–45], and a minimalistic iBCI-focused design based on our results. 

Here we compare against systems designed for in-vivo (fully implanted) neural interfaces 
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like the one we characterized in this study, [20, 22, 23, 41–45, 73]. It can be noted from 

Table 1 how neural interfaces have been evolving towards more efficient designs with 

respect to commercially available systems (i.e. amplification and quantization are optimized 

for maximizing signal-to-noise ratio at the output of the interface without compromising 

power efficiency). However, if specifications were derived based on iBCI decoding 

performance, further optimization could be achieved. This presents an opportunity to design 

custom neural interfaces for iBCI applications based on existing architectures that are power 

efficient and still support high channel count and wireless communication. Next, we will 

give an intuition as to the power savings that could be achieved by such specification 

relaxation as compared to designs intended for neuroscientific measurements.

4 Neural interface power consumption

The previous results present a wide range of acceptable neural interface designs for use as 

part of an iBCI. In this section, we analyze how much power could be saved in each system 

component by allowing more noise over a reduced bandwidth of interest. The following 

analysis is based on theoretical limits and/or extrapolations from published work. An 

important next step for future work is to build a hardware proof of concept of the proposed 

system.

4.1 Neural amplifier

To estimate the amplifier power consumption we used the power efficiency factor (PEF) 

metric (Muller [83] extension to Steyaert [84] noise efficiency factor NEF):

PEF = NEF2V DD = υin2

Δf
Itot

2πUTkT V DD (1)

where VDD is the supply voltage, υin2  is the total integrated noise contributed by the recording 

electronics (referred to the input of the amplifier), Δf= f1 − f0  is the bandpass filter 

bandwidth, Itot is the total bias current, UT = kT
q  is the thermal voltage, k is the Boltzmann 

constant, T is the temperature and q is the charge of an electron. The NEF describes how 

many times the noise of an amplifier is higher compared to the ideal case of a bipolar 

junction transistor, operating with the same bias current, and the PEF is used to compare 

solutions working at different supply voltages. State-of-the-art neural amplifiers [30, 81, 85–

87] usually result in a power budget (PA = ItotV DD) in the 0.5-10 μW range per channel, and 

a PEF in the 1-30 V range. For more details on the amplifier power consumption, see 

Methods.

Fig. 4(a) shows the power consumption of an amplifier as a function of the input-referred 

power spectral density. PEF = 1.12 V from [30] was used here to calculate the power 

consumption. Given a required PSD, circuit topologies and supply voltage are the only 

degrees of freedom to reduce power consumption, as the bias current is set by the noise 

requirements.
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4.2 Analog-to-digital converter

The conversion power for ADCs scales linearly with the sampling rate in designs that are not 

limited by the transit frequency of the technology. Estimating the conversion energy as a 

function of SNR-bits, however, is a more complex task. A model for the conversion energy 

is used here and described in the Methods section. This model considers the minimum 

power consumption of a proxy successive approximation register ADC [88], and it provides 

a realistic estimate of the power savings as a function of SNR-bits. The model does not take 

nonlinearities into account, as they do not noticeably affect the performance of the spike 

detector.

Fig. 4(b) shows the power consumption of an ADC as a function of the SNR-bits, for 

different sampling frequencies, fs. Reducing the number of SNR-bits gives a large benefit in 

power consumption for medium to high resolutions (SNR-bits > 8). However, for low-

resolution ADCs, this benefit becomes less dominant and power consumption is dominated 

by secondary effects (see Methods section).

4.3 Wireless transmitter

The design suggested here would take advantage of the reduced requirements, both in terms 

of single channel data rate and bit error rate, to allow for a larger number of channels 

transmitting simultaneously. Current systems implement simple modulation schemes such as 

On-Off Keying (OOK) or Frequency-Shift Keying (FSK) to reduce the complexity at the 

transmitter [89, 90], while still achieving BER lower than 10−4. The efficiency of the 

transmitter, Eb, is defined in terms of energy per bit and accounts for both the dynamic and 

static power consumption needed to transmit a single bit of information. At high data rates, 

the static power consumption is negligible compared to the dynamic power consumption and 

the overall efficiency ranges from a few pJ/bit to a few tens of pJ/bit [75,91]. For our 

analysis, we used the achieved 8.5 pJ/bit in [91]. Given the data rate, R, the total power 

consumption becomes

PTX = EbR (2)

Transmitting threshold-crossing spike events instead of wide-band high-resolution signals 

will reduce the power consumption of the transmitter as long as the transmission efficiency 

is kept constant. The power saved can be allocated for integrating more channels (electrodes) 

into the device and maintaining the same data rate, which would yield the same efficiency 

(given the same design parameters such as coil size, transmission protocol, receiver distance, 

output power, etc.). Compared to a conventional system for basic neuroscience (e.g., 16 bits 

at 30 kS/s per channel) or academic prototype solutions (e.g., 10 bits at 20 kS/s per channel), 

the proposed solution tailored for iBCIs transmitting only binary events (e.g., 1 kbit/s per 

channel) could enable an increase in the number of channels (electrodes) by 480x and 200x, 

respectively. Designing for a lower BER (e.g., 10−3 and higher) could further improve the 

power consumption.
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4.4 Low total power consumption for an iBCI

Fig. 5 summarizes the results presented in this section. Power consumption is plotted for 

each component (amplifier (A), analog-to-digital converter (ADC) and transmitter (TX)) of 

the systems in Table 1. The minimalistic design suggested here is analyzed for two cases: if 

raw data is transmitted (“Minimalistic Design”) and if only threshold-crossing events are 

transmitted (“Minimalistic Design with Thresholding (TH)”). The transmitter assumes an 

efficiency Eb = 8.5 pJ/b, and the amplifier assumes a power efficiency factor PEF = 1.12 V. 

The reader should note that the results presented here are obtained under the assumptions 

described above for power efficiency in each component and could vary significantly for 

different implementations and assumptions. The objective of Fig. 5 is to illustrate the 

relationship between system specifications and power consumption under reasonable 

assumptions.

Fig. 5 shows how more recent academic systems [20, 22, 23, 41–45] have lowered power 

consumption because they use more relaxed quantization strategies than commercialized 

systems [73] and optimize noise specifications for the neural amplifier [80]. Importantly, 

however, further power savings could be achieved when adopting the relaxed specifications 

we are proposing (‘Minimalistic Design’). If on-chip thresholding is performed 

(‘Minimalistic design with thresholding (TH)’) and only the presence or absence of a 

threshold crossing event is transmitted, the power consumption of the transmitter (which is 

the dominant power draw in most systems) can be drastically lowered with negligible extra 

cost in power and complexity. Such a system could reduce the total power consumption by 

two orders of magnitude compared to a commercialized system designed for basic 

neuroscience, or one order of magnitude compared to emerging research-tailored academic 

prototypes. These power savings come from loosening the parameters of all three 

components together. For example, transmitting spike events detected on chip with wide 

bandwidth (like in [32]) would have reduced the power by only about two fold. In contrast to 

the conventional system, whose power consumption would be limited by the transmitter 

(50-93%), the proposed design’s power consumption is limited by the neural amplifier 

(92%).

5 Outlook

Our results suggest that iBCIs with dedicated circuits designed for clinical use could 

consume an order of magnitude less power than an iBCI built with basic neuroscience-

motivated specifications. The suggested minimalistic specifications are significantly relaxed 

without compromising decoding accuracy. This can give rise to new high-electrode count 

wireless iBCIs by reducing power and space requirements to the point that these circuits can 

support thousands of channels. In this section we identify areas where future research efforts 

in circuit-level and system-level solutions can further push an exponential increase in the 

number of wirelessly transmitted recording channels.

5.1 Circuit-level opportunities

5.1.1 Recording unit and transmitter—Transmitting only threshold crossing events 

does more than just relax the system specifications. It also opens an avenue for new 
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recording system architectures for clinical iBCIs. For example, different spike detectors can 

be implemented, such as the nonlinear energy operator (NEO) that looks at the energy of the 

signal instead of the absolute value of the voltage trace, [92, 93]. Such detectors might 

provide more robust protection against thermal noise and could further relax the amplifier 

and ADC specifications.

In our approach, the neural amplifier is the main power consumer. It therefore should be the 

focus of future studies of new circuit topologies and tests of the robustness of iBCIs to noise. 

While we found that an iBCI decoder can be robust to added Gaussian noise of up to 

3.5×10−15V2/Hz, we were not able to isolate the different noise sources and calculate the 

amplifier input referred noise. This is because noise from different sources (biology, 

electrodes, electronics) are indivisible in the recordings. Future work should aim to isolate 

these sources and better characterize the iBCI decoder robustness specifically to noise from 

the neural amplifier. Also, continuous improvement in electrode design and manufacturing is 

likely to lead to better SNR and larger signals. This trend will likely increase the robustness 

to added electronic noise in the system.

The total SER is related to the transmitter BER through the communication protocol. If the 

raw output of the threshold detector is transmitted (‘1’ for a spike, ‘0’ otherwise - 

transmitted per channel at bin rate), then the BER is equal to the SER, and an error in the 

transmitted data will result in either a false spike or a missed spike. More elaborate protocols 

that take into consideration the sparsity of the signal can reduce the transmitter data rate and 

obtain a different relationship between SER and the transmitter BER. For example, since the 

average rate at which action potentials arise is typically on the order of 10 action potentials 

per second, only 1% of the bits will be 1 at 1 kS/s (e.g., N/100, where N is the number of 

electrodes). Transmitting only the index of the electrodes that have an action potential, 

which requires log(N) bits per index, will result in an average data rate of log N × N × 1%. 

In this protocol, a bit error will create an erroneous spike at an incorrect electrode index 

number, and a missed spike at the actual electrode index number, thereby doubling the SER. 

On the other hand, error detection and correction techniques at the receiver end could help 

alleviate the requirements on the BER, at the cost of minimal increase in the data rate 

requirements.

5.1.2 Device area—Another limited resource for an implantable neural interface is the 

chip area, but quantitative estimates for this area are difficult to obtain. Area depends on 

many factors, such as technology and architecture. However, reducing the noise 

requirements of an integrated circuit usually results in a smaller footprint. Smaller 

transconductance results in smaller active devices, and smaller sampling capacitors result in 

smaller passive devices. Increasing the high-pass pole of the filter might also reduce the 

neural amplifier total area. Future work should investigate the limitations of area 

consumption and find trade-offs that balance reduced area with acceptable performance.

5.2 System-level opportunities

5.2.1 Dimensionality reduction on-chip—As we mentioned earlier, dimensionality 

reduction techniques are still under active investigation and consensus on a single reduction 
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strategy has not been reached. Nevertheless, to further reduce the system’s data rate, one 

could implement dimensionality reduction directly on-chip. A common approach is to 

implement principal component analysis (PCA) before the decoder. However, it is not 

immediately clear how on-chip PCA would help reduce the overall system power 

consumption. The data rate reduction is not massive and the power overhead of the hardware 

implementation for PCA might actually result in an increase in power consumption. For 

example, for 1000 channels the original data rate would be, after the threshold detector, fTX,1 

= 1 Mbps (assuming 1b at 1 kHz output). If 20 PCs with 8 bit resolution are transmitted after 

PCA analysis, the new data rate would be fTX,1 = 0.16 Mbps. The gains in reducing the data 

rate from 1 Mbps to 0.16 Mbps might not be enough to justify the computational cost of 

PCA and the storage cost of a projection matrix. This conclusion differs from previous work 

done on on-chip compression of neural signals, [89], since the raw data here is a binary 

threshold-crossing signal and not a high-resolution signal used for spike sorting.

Currently, PCA is computed using floating-point resolution. To properly estimate the benefit 

of on-chip PCA, future work should study the resolution requirements on the PCs for iBCI 

decoders, i.e. how many components to use and at what bit resolution to represent each 

component. This will allow a numerical analysis of the computation and storage cost of on-

chip PCA, as well as the data reduction factor.

5.2.2 Real-time iBCI—Here, we estimated the effects of system parameters on iBCI 

performance using offline decoding analyses based on real movement and iBCI data. 

However, during real-time iBCI control, the user has continuous feedback about the 

decoder’s performance (for example, by seeing how the cursor or robotic arm is moving). 

This allows the user to compensate for errors [60, 69, 94]. Thus, the robustness to SER in 

real-time is probably higher than in the offline analysis we presented here. This can be 

verified by future closed-loop studies in which various types of signal processing alterations 

(such as spike errors or different filtering or bit resolution) are made to the neural data 

during real-time iBCI control.

5.2.3 Number of required recording channels—A natural question is how many 

channels are needed for an iBCI? Until high electrode count devices exist (e.g., »1000 

channels), it will be difficult to determine how many electrodes suffice for each iBCI 

application. There have been a few attempts to extrapolate the performance of iBCIs with 

increasing numbers of electrodes (e.g. [14,15,95]). However, extrapolations are challenging 

because they do not reliably predict how neural activity will change in more complex tasks 

[96] and how more advanced decoders might make use of this data. Schwarz and colleagues 

[14] postulated that recording 5,000 to 10,000 neurons is necessary for an iBCI to restore 

limb movement, and that 100,000 neurons will be required to control whole body 

movement. Once a high electrode count device exists, it might reveal that it is advantageous 

to have more electrodes even at the expense of the reliability and accuracy of each electrode 

signal; this would provide opportunities to reduce per-channel power even more by further 

relaxing the specifications.

Even-Chen et al. Page 13

Nat Biomed Eng. Author manuscript; available in PMC 2021 July 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



5.3 Implications beyond movement iBCIs

5.3.1 Other types of BCIs—Here we evaluated circuit specifications for neural 

interfaces for decoding movement intentions. Our results – that design specifications can be 

dramatically relaxed – may well apply to other types of neural interfaces, such as those used 

in retinal prostheses, peripheral nervous system interfaces, etc. Our prediction is that neural 

interfaces that rely mainly on decoding spike activity will have similar recording system 

requirements (e.g., f0, f1 and B), though the SER might change based on the redundancy of 

the signal and the robustness of the decoders. Applications where spike sorting is required, 

e.g. artificial retinas, can also benefit from a design that uses a holistic approach to reduce 

power consumption at the interface, like the work in [34]. Similar power calculation and 

parameter analyses might also be beneficial for wireless miniature microscopes to enable 

longer recording times (e.g., [97]).

5.3.2 Implications for basic neuroscience research—While this work focuses on 

neural interface design for a clinical iBCI application, basic neuroscience research might 

also benefit from low-resolution, high channel count devices. Although research-based 

studies traditionally require accurate single neuron recording, in some scenarios they can 

benefit from trading off recording from more neurons for better per-neuron signal fidelity. 

For example, this may be the case when when looking for population-level phenomena for 

which spike sorting is not necessary [29], or in studies where wireless recording is essential 

[14, 23, 98]. In particular, this approach can enable longer duration and/or wireless 

recording from model organisms that are too small to carry the bulky electronics needed for 

high-bandwidth recording and data transmission/storage.

6 Conclusion

When developing a new device, an iterative process of design and user testing is essential. In 

multidisciplinary research, such as neuroscience, this process may take years or even 

decades since the design and the testing are sometimes done by separate entities (e.g., 

different research labs). A large body of neuroscience research gave rise to the iBCI field, 

which since its inception used similar methods and tools as neuroscience. Decades of iBCI 

research with monkeys and recent clinical trials with human participants have now brought 

the field to a new level of maturity and confidence about its neural interface requirements. 

While future iterations (e.g., further on-chip processing) are inevitable, our study can be 

viewed as central feedback on current neural interface designs and a guidance for dedicated 

designs for the next generation of iBCIs. We believe that this study, which arose from a 

collaborative effort between electrical engineers, neural engineers, clinicians, and 

neuroscientists, is a path forward towards the next generation of clinically viable iBCIs.

7 Methods

7.1 Monkeys hand movement data

All monkeys’ procedures and experiments were approved by the Stanford University 

Institutional Animal Care and Use Committee. Three male rhesus macaques (monkeys J, R 

and L) were trained to perform point-to-point movements of a 6 mm radius virtual cursor in 
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a 2D plane, while their other arm was gently restrained. The monkey performed center-out-

and-back task to 8 targets uniformly distributed on a 8 cm radius circle (Sup. Fig. S1). Two 

mirrors, setup as a Wheatstone stereo-graph, visually fused the monitors into a single 3-D 

percept for the monkeys, although all task relevant motion was limited to two dimensions 

[99]. In this work, about 100 continuous successful trials (about 2 min) from 10 experiment 

session days (about 1000 total trials) were recorded from each monkey and analyzed.

Monkeys were implanted with two (monkeys ’J’ and ’R’) or one (monkey ’L’) 96-electrode 

Utah arrays (Blackrock Microsystems, Inc.), using standard neurosurgical techniques 95 (J), 

75 (R) and 91 (L) months prior to the recorded sessions. The arrays contained a 10 × 10 grid 

of 1 mm microelectrodes with 400 μm center-to-center spacing between adjacent electrodes. 

J’s and R’s arrays were implanted into the left cortical hemisphere; one array went into the 

primary motor cortex (M1) and the other into the dorsal premotor cortex (PMd). In this 

study we used only the PMd array of monkey R, since his M1 array was severely degraded 

and recorded almost no large waveform action potentials. L’s single array was implanted 

into the right hemisphere boundary between M1 and PMd.

7.2 Human participant iBCI cursor movement data

Permission for these studies was granted by the US Food and Drug Administration 

(Investigational Device Exemption) and Institutional Review Boards of Stanford University 

(protocol #20804), Partners Healthcare / Massachusetts General Hospital (2011P001036), 

Providence VA Medical Center (2011-009), and Brown University (0809992560). The 

participant in this study, ’T5’, was enrolled in a pilot clinical trial of the BrainGate2 Neural 

Interface System (http://www.clinicaltrials.gov/ct2/show/NCT00912041). Informed consent, 

including consent to publish, was obtained from the participant prior to his enrollment in the 

study.

Participant T5 is a right-handed man, 63 years old at the time of the study, whose iBCI 

cursor control research sessions were previously described in [8,62]. T5 was diagnosed with 

a C4 AIS-C spinal cord injury approximately nine years prior to study enrollment. In August 

2016, participant T5 had two 96-channel intracortical silicon microelectrode arrays (1.5 mm 

electrode length, Blackrock Microsystems, Salt Lake City, UT) implanted in the arm-hand 

area of dominant (left) motor cortex.

T5 also performed 10 research sessions from which we analyzed 2 min durations of a cursor 

movement task. In his task, a grid spanning 1000 × 1000 pixels on the computer monitor 

was divided into a 6 × 6 or 9 × 9 grid of equally-sized gray squares. Each square was a 

selectable target, and on each trial, one square would randomly be prompted as the correct 

target by changing its color to green. The participant had to select the correct target (which 

resulted in a trial success) while avoiding selecting any of the other (incorrect) targets, which 

resulted in a trial failure.

T5 controlled the computer cursor using an iBCI. In his sessions, neural control and task 

cuing were controlled by custom software running on the Simulink/xPC real-time platform 

(The Math-works, Natick, MA), enabling millisecond-timing precision for all computations. 
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Neural data were collected by the NeuroPort System (Blackrock Microsystems, Salt Lake 

City, UT) and available to the real-time system with 5 ms latency.

Two-dimensional continuous control of the cursor was enabled by the ReFIT Kalman Filter 

detailed in [8, 11]. T5 could select a target by dwelling on it for 1 s or by a discrete “click” 

signal. Discrete selection (“click”) was achieved using a Hidden Markov Model (HMM)-

based state classifier. The user commanded a “click” by attempting to squeeze his left hand 

(i.e., the hand ipsilateral to the array(s)). For both the continuous cursor-positioning ReFIT-

KF decoder and the discrete click-state HMM decoder, spiking activity was binned every 15 

ms and sent through the decoders. Since the executed kinematics were an output of a 

Kalman filter based decoder, they were more temporally structured compared to the 

monkeys’ hand kinematics.

7.3 Neural and hand position recording

We used Blackrock Microsystems neural acquisition systems during both monkey (Cerebus 

system) and human (NeuroPort system) research sessions. Both data acquisition systems 

achieve 3 μVrms of input-referred noise over a bandwidth of [0.3 - 7500] Hz, and sample 

each electrode with 16 bits at 30 kSps. We refer to the system output signal as our raw 
signal. Nonactive electrodes with zero firing rates were removed from the analysis. During 

the session, the monkey’s contralateral hand position was measured for decoder training and 

hand kinematics were analyzed using an infrared reflective bead tracking system (Polaris, 

Northern Digital) polling at 60 Hz. Hand velocity was computed from the recorded position 

of the bead, which was taped to the monkey’s reaching hand.

7.4 Offline decoders

We used a Kalman filter to estimate the 2D hand velocity υt ∈ R2  from the spike events 

(yt ∈ 0, 1 N, N is number of electrodes), υt = f yt . In all analyses, decoders were 10-fold 

cross validated on each day (total of 100 decoders per user) and their quality was measured 

with R2 (r-squared) compared to the true hand (monkeys) or cursor (human) velocity. With 

the monkey datasets, we estimated the velocity of their native hand while they conducted a 

center-out reaching task. As T5 could not move his hands, we offline estimated the cursor 

velocity. During T5’s sessions, the cursor was controlled by the iBCI system, which used a 

ReFIT-KF algorithm to decode his intention in real-time. We note that for both the monkey 

and human movements, the key question was the same: did decoding these same neural data, 

subject to varying additional spike errors, output similar decoded kinematics?

The same analysis performed for the KF decoder was extended here to a linear regression 

decoder to estimate cursor velocity, and its performance was similarly measured using R2. 

Also, two different discrete iBCI decoders were analyzed using a naive Bayes and a support 

vector machine (SVM) classifier. Each iBCI discrete decoder’s task was to detect the 

intended target the user was aiming to based on the neural activity at the beginning of each 

trial. Similar to the optimal parameters found in [100], we used 64 ms of neural activity 

starting from 160 ms after target-onset. We used classification accuracy to measure the 

classifiers’ performance. For all decoders and classifiers, we used 10-fold cross validation 

for each day, as described above. Sup. Fig. S3 summarizes the results for different decoders. 
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Conclusions based on discrete decoding regarding SER robustness are consistent with those 

drawn for the KF decoder.

7.5 Spike error rate (SER) simulation

To extract neural spiking activity using the Blackrock system, a 250 Hz high-pass filter was 

applied to the raw signal. Then, a spike was detected whenever the voltage crossed below a 

threshold set at −4.5 × rms voltage. This threshold value was updated every session. The 

spike detector used a window of 1 millisecond, and multiple spikes were accumulated in 

non-overlapping 60 Hz bins in order to align to hand velocity recordings. Spike errors were 

simulated by independently, randomly flipping the binary signal samples yt (yt ∈ 0, 1N, 

where y is the spike events, t is time and N is the number of electrodes) with a Bernoulli 

distribution with probability equal to the tested SER (Fig. 2(a)). For example, if the error 

rate was 10−2, each sample (bits) of the signal was independently, randomly flipped with a 

Bernoulli distribution with a probability of p = 10−2.

7.6 Neural interface parameter simulation

To simulate a neural interface with a set of new parameters, we degraded the raw signals 

(recording system output signal - 16 bits at 30kSps) with a series of manipulations, as 

described in the main text and elaborated below. Then, we detected the spikes from this 

manipulated raw signal and estimated the hand velocity using the decoders as described 

earlier (Sup. Fig. S2). We note that the spikes were detected with a threshold (as described 

below - Threshold crossing detection section) and no spike sorting was performed. Future 

work could explore the effect of spike sorting on what region of the parameter space would 

still result in comparable performance. Here, the raw signal emulates a continuous time (CT) 

signal to be processed by our recording system. This is equivalent to a real CT analysis, 

since the sampling rate of our recording system is well below the sampling rate of the raw 

signal.

Input-referred noise: the input-referred noise represents the total noise introduced by the 

circuit via a fictitious input source that captures all circuit-internal noise sources. Noise is 

usually referred (scaled) to the input so it can be readily compared to the input signal level. 

To simulate higher input-referred noise υin, rms , we added Gaussian noise with variance of 

σnoise2  to the raw signal.

Bandpass: to simulate the amplifier filtering function, we filtered the signal between f0 

and f1 (the cutoff frequencies of the filter) with a 2nd order Butterworth filter.

Sampling: the output of the bandpass filter was sampled at fs = 3f1, for allocating some 

oversampling above the Nyquist limit and relaxing the bandpass filter performances. This 

choice is commonly adopted to relax the filter roll-off requirements and avoid aliasing 

issues. Optimizing the ratio 
fs
f1

 can be investigated in future work.

Quantization: the sampled signal was re-quantized at B bits.
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Threshold crossing detection: threshold detection was applied every millisecond (in a 

causal 30 samples window) to detect the presence of a putative neural spike. The threshold 

was set to be proportional to the estimated raw signal rms (root mean square) for each 

electrode

V tℎresℎold
e = n × V rmse

where e is the electrode’s number. The number of rms (n) was optimized by sweeping the 

range of −6 to −1 using increments of 0.5 for all of the electrodes, for each set of 

parameters; see Sup. Fig. S7 for best nRMS distribution across parameters sets. The 

Blackrock system’s built-in function was used for calculating the rms voltage of the noise, 

which is slightly different than the standard rms calculation [27]. Specifically, the 

BlackRock algorithm calculates a biased estimate of the rms with an aim to exclude spikes 

and artifacts that inflate the rms. First, the algorithm computes mean squares of each of 100 

non-overlapping bins (xj) of 600 continuous samples (20 ms) of the raw data (si), with total 

of 60,000 samples (2 sec):

xj = 1
600 ∑

i = 1

600
si2, 1 ≤ j ≤ 100

Then, the rms is calculated by averaging the 6th until the 25th lowest xj values (20 out 100 

values):

rms = 1
20 ∑

i = 6

25
minix

minix is the ith minimum value of x.

Spike binning: the resulted binary signal was binned in 60 Hz non-overlapping bins 

aligned to velocity recordings.

7.7 Statistical Testing

When comparing two different distributions of R2, we used a two-sided Wilcoxon rank-sum 

test with a confidence level of p = 0.05 unless stated otherwise.

7.8 Neural amplifier noise and power

In order to gain insight into the amplifier power consumption and its lower limits, let us 

consider the input-referred thermal noise contribution of a single MOS transistor

υin2 = 4kTγ
gm

(3)

where γ is a technology dependent noise factor here approximated to 0.8, [101, 102], and gm 

is the device transconductance. gm can be linked to the power consumption through the 
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device transconductance efficiency, gm/ID, where ID is the transistor bias current. For a 

device working 1 in the sub-threshold region, gm/ID can be as large as 30 S
A  (upper limit is 

q/kT ∼ 38S/A for bipolar transistors). In these conditions, the power consumed (PD) to obtain 

an input referred noise of 5 μVrms over a bandwidth ∆f = 10 kHz (assuming a supply voltage 

of 1 V) is

PD = 1
5μV rms

2
4kTγ
gm/ID

ΔfV DD = 177nW (4)

Although this result might look promising, this refers to a lower limit for biasing a single 

device that ensures enough thermal noise margin for a complete system. In reality, a 

differential readout s is usually implemented to deal with common-mode noise injections, 

chopping or correlated double sampling is used to attenuate flicker noise, and multiple gain 

stages are used for better conditioning of the signal before the ADC. As a result, practical 

implementations will consume more power than) that described in Eq. (4).

Steyaert et al. [84] proposed a metric for comparing the noise performance of amplifiers 

called 1 the Noise Efficiency Factor (NEF).

NEF = υin, rms
2Itot

ΔfπUT4kT (5)

where Itot is the total bias current, UT = kT
q  is the thermal voltage, k is the Boltzmann 

constant, T is the temperature and q is the charge of an electron. The NEF describes how 

many times the noise of an amplifier is higher compared to the ideal case of a bipolar 

junction transistor, operating with the same bias current1. However, the NEF lacks the 

ability to compare solutions operating at different supply voltages. To overcome this 

problem, Muller [83] introduced the power efficiency factor (PEF=NEF2VDD), which takes 

into account both the operating current and the supply voltage.

PEF = υin2
2PA

ΔfπUT4kT (6)

where PA is the total power consumption of the amplifier. State-of-the-art neural amplifiers 

[81, 85–87] usually result in a power budget (PA = ItotVDD) in the 0.5-10 μW range, and 

PEF in the 1-30 V range.

7.9 ADC Power Model

To study the effect of resolution on the ADC energy, we considered a model of a successive 

approximation register (SAR) ADC, [88], shown in Sup. Fig. S4. The model assumes that 

the three main sources of power consumption are the capacitive DAC, the comparator and 

the logic. Also, it assumes that the comparator, the sampling capacitor and the quantization 

1The NEF is defined for a first order filter with an effective noise bandwidth ENBW=Δf π
2 , hence the scaling factor of 

π
2  in Eq. (5).
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process, each contribute a third of the total noise. From these assumptions, we can derive the 

minimum energy required to resepect the SNR specifications for each component.

Capacitive DAC: the input is sampled by the capacitive DAC, hence the minimum 

capacitance must satisfy:

SNR =

1
2

V inpp2

2

3 kT
CDAC

(7)

where Vinpp is the peak-to-peak input voltage, k is the Boltzmann constant, T is the 

temperature, CDAC = 2BCU is the total DAC capacitance, and CU is the unit capacitance. As 

a result, the minimum unit capacitance becomes:

CU = − 24kTSNR
2BV inpp

2 + CU, min (8)

where CU,min is the minimum realizable capacitance allowed by the technology (usually [0.1 

- 1] fF). The total energy depends on the switching activity of the DAC. The solution in 

[103] grants:

EDAC = ∑
i = 1

B − 1
2B − 3 − 2i 2i − 1 CUV REF

2
(9)

where B is the number of bits of the ADC, and VREF is the reference voltage.

Comparator: here, a simple latch model is used for the comparator and the noise is 

simplified to kT
CC

, where CC is the load capacitance of the latch. For a more complete 

analysis, the reader can refer to [104]. Similar to the capacitive DAC, the minimum load 

capacitance for the latch can be derived as:

CC = 24kTSNR
V inpp

2 + CC, min (10)

where CC,min is the minimum load capacitance available (usually [1 - 10] fF). The total 

energy then becomes

Ecomp = CCV DD
2 B (11)

where VDD is the supply voltage of the comparator.

Logic: for simplicity, we assume that the logic complexity depends linearly on the number 

of bits. The total energy then becomes:
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Elogic = NBEGB (12)

where NB is the number of gates required per bit, and EG is the energy per gate.

The total energy, and contributions from each block are plotted in Sup. Fig. S4 as a function 

of SNR. Reference points from literature are also plotted in figure, [20,82,105,106]. For low 

SNR, the conversion energy is dominated by the logic. For high SNR, the conversion energy 

is dominated by the comparator and increases 4x per bit, [107].

Here, we assume that power is a linear function of the sampling frequency, fs, which is a 

realistic assumption for sampling frequencies well below the transit frequency of the 

technology. Hence,

PADC = fs EDAC + Ecomp + Elogic (13)

7.10 Reporting summary

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
iBCI schematic signal flow. Neural activity is recorded using an electrode array (e.g., (a) 

Utah array), with each electrode measuring the neural activity in its vicinity. (b) The raw 

analog signal (c) is amplified in the frequency band of interest (by a neural amplifier - A), 

digitized (by an analog-to-digital converter - ADC), and then transmitted (by a transmitter - 

TX) to a computer for further processing. In some cases, some preprocessing (e.g., spike 

detection) happens before the transmitter by digital signal processing (DSP). Most iBCI 

neuroprosthetic studies process the signal by applying a further band-pass filter (in addition 

to that implemented in the neural amplifier) and (d) a simple threshold crossing for spike 

detection (red line). The threshold crossings are evaluated for each electrode, although an 

electrode might record from multiple neurons simultaneously (e.g., cyan and magenta dots 

marks in (d) spikes of different neurons), (e) which can mix correlations with behavior (e.g., 

movement preferred direction). Lastly, a decoder (e.g., Kalman filter) estimates the user’s 

intention (e.g., robotic arm velocity) from the binary threshold-crossing signal (f), and sends 

the control signals (g) to the prosthetic controller.
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Figure 2: 
iBCI robustness to spike error. Data recorded during centre-out-and-back cursor trials of the 

three monkeys (J, L, and R) and the human participant (T5). (a) SER (spike errors/sec) 

simulation process. First, binary threshold neural signal bits (’1’ - spike , ’0’ - otherwise) 

were flipped at different rates (10−6 to 10−0.5). Second, cursor velocity was predicted from 

the noisy signal. (b) Decoder performance (velocity coefficient of determination, R2) as a 

function of added SER (ranges from 0 to 1). Values are normalized to performance when 

decoding an undistorted signal (i.e., 
RSER

Roriginal
). Vertical bars along the lines represent the 

standard error of 10-fold cross validation across 10 days (total of 100 R2 estimates). 

Horizontal bars in the right top corner indicate significant change in performance compared 

to the undistorted signal (two-sided Wilcoxon rank-sum test, p<0.05). Vertical dashed line 

indicates the SER in which performance starts to degrade. Bar colors correspond to the user.
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Figure 3: 
Study of iBCI performance as a function of the neural interface parameters (monkey J, for 

the other monkeys and the human participant see Sup. Fig. S6). (a-c) parameter simulation 

pipeline and examples for the simulation done in (d-f). (a) raw data was (b) filtered, re-

quantized (with SNR-bits, signal-to-noise-ratio-based number of bits) or corrupted with 

noise, and then thresholded. The simulation pipeline corresponds to the raw signal pipeline 

of a conventional system, where filtering occurs only in the analog domain: Amplifier → 
analog-to-digital converter → digital signal processing (for spike detection). For more 

details see Methods: Neural interface parameter simulation. The threshold was set 

proportionally to each electrode’s root mean square voltage 

Tℎresℎoldelectrode = n × RMSelectrode , where n was optimized for each set of parameters 

(e.g., number of bits). Orange and blue dots are the corresponding binary spike signals after 

thresholding for distorted and undistorted signals, respectively. (c) Hand velocity was then 

predicted with a Kalman filter (10-fold cross validated across 10 days with 100 trials in each 

day) from the preprocessed spike signal. Decoding performance was evaluated with velocity 

coefficient of determination (n=100 R2 estimates, see insert). Significance was tested with 

two-sided Wilcoxon rank-sum test (p<0.05) (d) R2 as a function of f0 and f1 (the cut-off 

frequencies for the bandpass filter). The threshold was optimized for each frequency band 

separately. The ’o’ marks the frequency band with maximum performance, and ’x’s mark 

frequency bands that resulted in significantly lower performance than the best frequency 

band. (e-f) R2 (mean ± s.e.) as a function of (e) SNR-bits, and (f) power spectral density of 

added noise. Horizontal bars above the plots show significant differences compared to best 

R2 (two-sided Wilcoxon rank-sum test, p<0.05) - bar colors correspond to the respective 
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frequency bands (see legend). Vertical dashed lines indicate the minimum SNR-bits and 

maximum PSD values in which performance starts to degrade.
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Figure 4: 
Power consumption trends in neural amplifiers and analog-to-digital converters. (a) Power 

consumption as a function of input-referred noise power spectral density (PSD) for a neural 

amplifier - equation (1) and PEF = 1.12 V used for this plot [30]. (b) Power consumption as 

a function of SNR-bits for an analog-to-digital converter for different sampling frequency 

(fs)- see Methods for the model used for this plot.
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Figure 5: 
Power consumption estimates per channel (log-scale) for systems described in Table 1 

[20,22,23,41–45,73]. A minimalistic design implementing on-chip thresholding (TH) could 

reduce the total power consumption by at least one order of magnitude.
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Table 1:

Neural interface specifications for a conventional system (commercialized [73]), academic prototypes 

[20,22,23,41–45] and the suggested minimalistic design. The parameters are the total integrated noise power 

υin2 , the power spectral density (PSD), the lower and upper frequency corners of the bandpass analog filter (f0 

and f1), the sampling frequency (fs), the number of bits of the analog-to-digital converter (B), the data-rate of 

the ADC (RADC), and the data-rate of the transmitter (RTX). We propose in the column Minimalistic Design 

that parameters can be relaxed up to 2-4 times with respect to the state-of-the-art (RTX can be further reduced 

thanks to on-chip thresholding).

Parameters
Blackrock 

[73]

Yin 
et 
al. 

[23]
NeuroPixel 

[41]

Borton 
et al. 
[22]

HermesE 
[20]

Lopez 
et al. 
[42]

SiNAPS 
[45]

De 
Dorigo 
et al. 
[43]

WINeRS-8 
[44]

Minimalistic 
Design

υin2
a

(10−12V2)

PSD
b

9.0 7.8 25.0 74.0 4.8 41.0 56.3 110.3 9.0 –

(10−15V2/

Hz) 0.8
c

0.6
c

1.6
c

6.0
c

0.3
c

2.7
c

5.0
c

7.2
c

0.4
c

4.0
d

f0 [Hz] 0.3 1 300 0.1 280 300 300 300 400 250

f1 [kHz] 7.5 7.8 10 7.8 10 10 7.5 10 15 3

fs [kS/s] 30 20 30 20 31.25 30 25 20 50 9

B [bits] 16 12 10 12 10 10 12 10 10 8
e

RADC
f

[kbit/s] 
f

480 240 300 240 312.5 300 300 200 500 72

RTX
f

[kbit/s]
480 240 300 240 312.5 300 300 200 500 1

g

a
Reported total integrated noise referred to the input of the interface.

b
Thermal power spectral density referred to the input of the interface.

c
PSD was calculated from the reported total integrated noise, assuming a first-order filter roll-off and a thermal spectrum. PSD = υin2 / Δfπ/2 , 

where Δf = f1 − f0.

d
Total PSD is the original PSD in our recording system [73] plus the added PSD in our analysis.

e
SNR-bits = 7

f
Data-rate is calculated per channel.

g
Transmitter data-rate assumes on-chip thresholding for the minimalistic design.
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