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Abstract 
Correlation judgments are at the core of belief formation. In 
previous studies of correlation judgment from 2D scatterplots, 
observers underestimate correlations, and display stronger 
underestimation biases when the scatterplot is shown in a 
landscape view than in a portrait view. Yet, it is unclear how 
these biases arise. Here, we propose that observers are 
Bayesian learners who perform “mental regression” using the 
observed data points in graph.  Accordingly, judgment errors 
can arise from biased visual information sampling. We test our 
model’s predictions with two eye-tracking experiments and 
find that the Bayesian learning model, applied to information 
obtained from visual fixation data, replicates classic behavioral 
findings. The model also predicts trial-level estimation biases 
at a high accuracy level. Our study shows how computational 
models trained on process-level data can shed light on the 
cognitive mechanisms underlying belief formation, and yield 
theory-driven practical implications for data visualization and 
statistical communication.  

Keywords: Correlation judgment; Bayesian learning; intuitive 
statistician; information sampling; computational modeling 

Introduction 
Correlation judgments are at the core of everyday belief 
formation. Individuals may use the correlation between two 
health-related variables to judge risk and make medical 
decisions (Dawes et al., 1989); investors may rely on a 
stock’s past performance to predict future performance, 
guiding financial decisions (Shefrin & Statman, 1985); 
business leaders may use historical cases to judge the 
effectiveness of a strategy and make business decisions 
(Lifchits et al. 2021); and policy makers may use perceived 
correlations to infer causal mechanisms and make important 
social, economic, and political decisions. Correlation 
perception also underlies various social psychological 
phenomena including stereotyping, conditioning and 
attribution (Trolier & Hamilton, 1986; Denrell, 2005; 
Mahrholz et al., 2018). More generally, the perceived 

                                                           
1 X.Z. and L.H. share the first authorship.  

correlation between signals allows individuals and groups to 
explain data, predict future events, and make evidence-based 
decisions. 

Despite their importance, correlation judgments are often 
inaccurate, leading to biases in beliefs and decisions. Biases 
happen either when the information is given sequentially 
(Erlick, 1966) or presented simultaneously in a scatterplot 
(Bobko & Karren, 1979; Cleveland et al., 1982).  In this 
paper, we focus on scatterplots. In such judgments, observers 
repeatedly underestimate the actual correlation shown in the 
graph (Rensink & Baldridge, 2010).  

Various visual features in the scatterplot play a role in the 
subjective perception of correlations. In a recent review, 
Yang et al. (2018) identify 29 features that can be categorized 
into eight concepts, including the length of prediction ellipse, 
side length of the bounding box and the standard deviation of 
pairwise distance. They also find that some visual features 
alone may outperform the actual magnitude of correlation in 
predicting the subjective perception of correlation from the 
graph.  As many of the features can be simply manipulated 
by the stimulus display format (e.g. by changing the axis 
range) with no change to the data points in graph, this result 
has had important implications for statistical communication.  

Why does the perceived correlation follow the 
psychophysical laws that mostly describe low-level stimuli? 
Why does display format influence perceived correlation? 
Recently, scientists have begun to investigate the cognitive 
mechanisms underlying biased correlation judgments. For 
example, Rensink (2017) finds that observers extract image 
entropy in a way that is analogous to ensemble coding 
(Alvarez, 2011; Haberman & Whitney, 2012) and make 
inferences about correlation based on this entropy. In related 
trend judgment tasks, Ciccione et al. (2021) suggest that the 
observers are able to performs “mental regression” on the 
scatter graphs, even within a short time window. These 
theoretical claims are in line with the “intuitive statistician” 
hypothesis, an influential theory that claims that our cognitive 

431
In J. Culbertson, A. Perfors, H. Rabagliati & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science
Society. ©2022 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 International License (CC BY).

mailto:hlisheng@shu.edu.cn
mailto:bhatiasu@sas.upenn.edu


system makes statistical inferences from sensory input in a 
way akin to probabilistic models (Peterson & Beach, 1967; 
Oaksford & Chater, 2007; Griffiths et al. 2010). 

Despite the key role of visual input, to our best knowledge 
there is no existing research that has directly measured 
observers’ eye fixation data while they make correlation 
judgment from scatterplots. At a given moment, the visual 
input to the observer corresponds to the attended points in the 
foveal or perifovea region, rather than all the points in the 
graph. Therefore, the visual information samples using 
techniques such as eye tracking should be essential to the 
study of correlation judgment from scatterplots. Eye-tracking 
also allows us to investigate trial-level variations due to 
differences in visual information sampling. 

In this paper, we provide a computational account for 
correlation judgments from scatterplots. Our approach is 
motivated by the “intuitive statistician” hypothesis in which 
our cognitive system is equipped with an ideal learning 
machinery (Peterson & Beach, 1967). Here, we propose that 
decision makers are Bayesian learners who perform “mental 
regressions” that take as input the attended points (i.e. pairs 
of x and y coordinates) and update the slope of the regression 
line as output. As, the sampling of evidence may be subject 
to biases due to complex attention and memory processes 
(Wei & Stocker, 2015, Yang et al. 2016; Sanborn & Chater, 
2016; Chater et al. 2020), a Bayesian learner applied to visual 
fixation data can generate biases in the eventual judgment. 
We test our theory in two eye-tracking experiments that 
gathered participants’ gaze patterns while viewing the 
scatterplots. In so doing, we make a new formal connection 
between visual information sampling and correlation 
judgment from scatterplots.  

Psychophysical Laws 
The scatterplot has been one of the greatest inventions in the 
history of statistical graphics (Friendly & Denis, 2005). It 
displays bivariate relationships in a way that readers can 
obtain with ease. Not only can people discriminate which 
graph shows stronger relatedness (Doherty et al. 2007; 
Rensink & Baldridge, 2010), but they can also estimate the 
relatedness on an absolute scale (Cleveland et al. 1982). 
Scatterplots have been widely used in academia, business and 
even legal court cases (Bobko & Karren, 1979).  

The most widely studied bivariate relatedness is the 
Pearson product-moment correlation, R. Experimental work 
has repeatedly found that observers underestimate the 
correlation from scatterplots, especially at intermediate levels 
with 0.2 ≤ 𝑅𝑅 ≤ 0.6  (Bobko & Karren, 1979). This 
underestimation bias is robust among both novices and 
statistically sophisticated observers (Strahan & Hansen 1978; 
Cleveland et al. 1982). It has been argued that this 
underestimation bias follows classic psychophysical laws and 
a number of mathematical functions have been proposed to 
describe the subjective perception of correlation from 
scatterplots (see Rensink, 2017 for a review). For example, 
through a series of psychophysics experiments, Rensink and 
Baldridge (2010) claim that the just noticeable difference 

(JND) in discriminating between scatterplots follows the 
Weber’s law and the estimation of correlation magnitude 
follows a modified Fechner’s law that the perceived 
correlation is a convex, rather than concave, function of the 
presented correlation.  

Visual Features  
The perception of correlation from scatterplot is not simply a 
function of the actual correlation, but is also influenced by a 
number of visual properties of the display (see Doherty & 
Anderson, 2009 for a review). For example, the presence of 
outliers in the scatterplot influences the precision of 
correlation judgment. Observers typically underestimate the 
effect of outliers on the actual strength of correlation (Bobko 
& Karren, 1979; Meyer et al., 1997). The perceived strength 
of covariation also increases with the number of points in the 
graph (Lauer & Post, 1989; Ciccione et al., 2021).    

Display features that have nothing to do with actual data 
points in graph also influence the perceived strength of 
correlation. For example, the perceived strength increases 
with the slope of the regression line, which can be simply 
manipulated by axis stretching or shrinkage (Meyer & Shinar, 
1992; Meyer et al., 1997). The perceived strength also 
increases with the density of the point cloud, the latter of 
which can be altered by simply manipulating the range of the 
axes (Cleveland et al., 1982; Boynton, 2000). Yang et al. 
(2018) compare 49 different visual features and evaluate how 
well each of them predicts the observers’ perceived 
correlation. In a comprehensive model comparison, they find 
that features that correspond to dispersion measures along the 
regression line (e.g. the standard deviation of distance 
between points and the line) predict the perceived strength at 
an accuracy higher than the objective correlation. 

Statistical Learning with Visual Sampling 
Although the above papers document important biases at play 
in correlation judgment, they do not explain the cognitive 
mechanisms responsible for the biases. Pearson correlation is 
an abstract mathematical concept, rather than a type of low-
level stimuli (e.g. length, weight, luminance). It is unclear 
how such an abstract concept is directly linked to any of the 
visual features shown in the graph, and why the evaluation of 
such an abstract concept should be sensitive to 
psychophysical properties of low-level stimuli.  

Here we propose that our cognitive system makes 
statistical inferences based on the visual input from the point 
cloud in a scatterplot. We assume that the observer is an ideal 
Bayesian learner who fits a linear trend line using the 
observed sets of points (i.e., their x and y coordinates), as 
Bayesian linear regression does. The perceived strength of 
covariation can be decoded from the Bayesian linear 
regression. Further, the visual input, which we capture using 
eye-tracking, may not be an unbiased sample of the point 
cloud. Some points can be attended to more often than others. 
Even if the observer detects all the points, they may have 
differential weights in the “mental regression”, depending on 
their distances to the central vision. The points in foveal 
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vision have the highest weights, followed by those in the 
perifovea and peripheral vision. If people have biases in 
visual information sampling, then they may also develop 
biases in correlation judgment (even if they are able to extract 
statistical inferences from visual observations accurately).  

Our statistical learning theory is built upon the influential 
intuitive statistician hypothesis (Peterson & Beach, 1967), 
which posits that humans perceive variables and probabilistic 
relations in the environment as in the probability theory and 
statistics framework. This approach has had enormous 
success in various cognitive domains such as categorization, 
language comprehension, learning and decision making 
(Oaksford & Chater, 2007; Griffiths et al., 2010). In a similar 
vein, a few recent studies have claimed that observers are able 
to extract statistical information from scatterplots to form 
subjective perception of correlation (Rensink, 2017; Ciccione 
et al., 2021). We also draw upon contemporary advances in 
information sampling in visual and cognitive sciences (Wei 
& Stocker, 2015, Yang et al. 2016; Sanborn & Chater, 2016; 
Chater et al. 2020). We integrate those diverse strands of 
research by combining computational modeling with eye-
tracking. 

Experiments 
We ran two eye-tracking experiments to test our Bayesian 
learning model of correlation judgments. In Experiment 1, 
participants made correlation judgments from scatterplots in 
a square display. Experiment 2 involved two within-
participant conditions, Landscape condition and Portrait 
condition, that displayed the scatterplots in landscape or 
portrait views respectively. In both experiments, participants’ 
eye fixations while viewing the scatterplots were recorded by 
the eye-tracker. 

Methods and Materials  
Participants. A total of 109 undergraduate or graduate 

students (58 female; aged 22.22 ± 2.57) participated in 
Experiment 1 and 103 (62 female; aged 20.57 ± 1.76) 
participated in Experiment 2. All participants had normal or 
corrected to normal vision and 51% of them had attended at 
least one statistics-related course and 82% knew what 
correlation entailed. We excluded six additional participants 
from the experiments either because they failed the 9-point 
calibration in the eye-tracker or that their key-press data were 
missing in at least 25% trials. 

Stimuli. The scatterplots for both experiments were 
generated using mvrnorm in R (Venables & Ripley, 2002). 
Each scatterplot contained 100 bivariate normally distributed 
data points, with different levels of correlation between x- 
and y-coordinates. The distributions of the x- and y- 
coordinates were both set at the standard normal distribution. 
Therefore, the Pearson correlation is equal to the slope of the 
regression line. No numeric information was on display (see 
Figure 1a). Therefore, from the participants’ perspective, the 
variance of the generated data points did not matter.  

We set 10 different Pearson’s correlation coefficients, 
ranging from 0 to 0.9 (in an increment of 0.1). The same code 

was repeated four times to generate four distinct scatterplots 
with the same correlation coefficients, resulting in a total of 
40 scatterplots. In Experiment 1, all 40 scatterplots were 
presented in the same 1000×1000px format. In Experiment 2, 
half of the scatterplots were displayed in a Landscape format 
(1200×800px) while the other half were displayed in a 
Portrait format (800×1200px). Therefore, the x-axis was 
longer than the y-axis in the Landscape condition, whereas 
the y-axis was longer than the x-axis in the Portrait condition 
(see Figure 3 for examples). 

Procedures. Both experiments were run on a Tobii Pro 
Spectrum Eye-tracker, equipped with a 1920×1080px 
monitor (capturing gaze data at the speed of 1200 Hz). Upon 
arrival, participants were seated in front of the eye-tracking 
monitor, with approximately 55~65cm between their eyes 
and the screen. They were asked to adjust the seat height to 
make themselves conformable while looking at the screen, 
though we asked them to keep their bodies and heads as still 
as possible throughout the experiment.  

In both experiments, we showed our participants 40 
scatterplots and asked them to judge the correlation 
coefficient from the scatterplots (Figure 1a). Each trial began 
with a fixation + at the screen center (2 seconds), followed by 
a scatterplot that was displayed for 3 seconds. After the 
scatterplot disappeared, participants indicated their 
correlation judgment on a 10-point scale, ranging from 0 to 
9, using a number-keyboard. Participants were allowed a 
maximum of 20 seconds to make the response. Before the 
formal experiment, participants were present three practice 
trials to familiarize themselves with the task. To ensure eye-
tracking data quality participants performed a 9-point 
calibration and validation procedure twice, before the 
exercise session and before the formal experiment. Written 
consent from all participants was obtained.  
 

 
Figure 1: Experimental and modeling setups. (a) Trial 

procedures; (b) Bayesian learning model takes the observed 
data points from the graph (fixations on the left) and updates 
the slope of the regression line (the dotted line on the right) 

like a Bayesian linear regression. 
 

Eye gaze data were collected during the 3-second 
scatterplot viewing phase. Each eye fixation was projected to 
the coordinates in the scatterplot. Therefore, we were able to 
identify, at each moment, which data points in the scatterplot 
were focused on and conversely which data points were out 
of the participants’ central vision. Accordingly, the points at 
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or closer to central vision should receive more weight in the 
mental regression, while the points far from the central vision 
received less weight. To automate this process, we used a 
squared exponential kernel to compute a point’s weight based 
on its onscreen distance to the fixation point: 𝑤𝑤 = 𝛼𝛼 ∙ e−𝛽𝛽∙𝑑𝑑2 , 
where 𝛼𝛼  ( 0 < 𝛼𝛼 ≤ 1 ) and 𝛽𝛽  ( 0 < 𝛽𝛽 ≤ 10 ) are two free 
parameters and 𝑑𝑑  represents the data points’ onscreen 
distance to the fixation point (Ting et al., 2016). This weight, 
along with the data points, was applied to train the Bayesian 
learning model for correlation judgment predictions. 

Bayesian learning model. We assume that the subjects are 
ideal Bayesian learners who fit a linear regression line using 
the observed sets of data points (i.e., their x and y coordinates), 
as well as their weights, as in a (Bayesian) linear regression 
(Figure 1b). Although it is possible that the observer can 
detect all the points in some cases, the points in foveal and 
peripheral vision should have differential weights in the 
mental regression. Thus, we operationalized learning in this 
setting as Bayesian regression with weighted inputs. The 
posterior belief of 𝜽𝜽 = [𝜃𝜃0,𝜃𝜃1] (𝜃𝜃0: intercept; 𝜃𝜃1: slope) can 
be written as 𝑝𝑝𝑡𝑡(𝜽𝜽|𝒙𝒙,𝒚𝒚,𝒘𝒘) = 𝑝𝑝(𝜽𝜽)𝑝𝑝(𝒚𝒚|𝒙𝒙,𝒘𝒘,𝜽𝜽)

∫𝑝𝑝(𝜽𝜽)𝑝𝑝(𝒚𝒚|𝒙𝒙,𝒘𝒘,𝜽𝜽)
, where 𝒙𝒙 and 𝒚𝒚 

are the set of observed points and 𝒘𝒘 is the vector of weights 
corresponding to the set of points. The model’ predicted 
Pearson’s correlation is 𝑅𝑅 =  𝜃𝜃1 ∙

𝑠𝑠𝑑𝑑(𝒙𝒙,𝒘𝒘)
𝑠𝑠𝑑𝑑(𝒚𝒚,𝒘𝒘)

, where 𝜃𝜃1  is the 
posterior mean estimation of the slope and 𝑠𝑠𝑑𝑑(𝒙𝒙,𝒘𝒘)  and 
𝑠𝑠𝑑𝑑(𝒚𝒚,𝒘𝒘)  denote the weighted standard deviations of the 
observed data points on the x- and y-axis respectively. 

By assuming a Gaussian prior distribution for 𝜽𝜽 (𝜃𝜃0 ∝
Ν(0, 1), 𝜃𝜃1 ∝ Ν(0.45, 1) ), in conjugate to the likelihood 
function 𝑝𝑝(𝒚𝒚|𝒙𝒙,𝒘𝒘,𝜽𝜽)  for linear regression, the posterior 
distribution 𝑝𝑝(𝜽𝜽|𝒙𝒙,𝒚𝒚,𝒘𝒘) is also a multivariate Gaussian 
distribution. This allows us to compute the posterior 
estimation efficiently, with no need to run time-consuming 
simulations. Note that we set the prior of 𝜃𝜃1 ∝ Ν(0.45, 1), 
because participants were told that the presented correlations 
ranged from 0 to 0.9 and the mean correlation presented in all 
stimuli was 0.45.  

Results 
Summary of Behavioral Data. The behavioral results 

were highly consistent with previous findings. Overall, 
participants significantly underestimated the correlation from 
scatterplots (Figure 2a). This underestimation bias was 
particularly strong at the intermediate levels, 0.2 ≤ 𝑅𝑅 ≤ 0.7, 
in both experiments. On the individual level, 62% of the 
participants in Experiment 1 and 66% in Experiment 2 
underestimated the correlations. On the trial level, the 
strength of correlation in 60% and 75% of the stimuli was 
underestimated for Experiments 1 and 2 respectively. When 
the actual correlation was low ( 𝑅𝑅 = 0, 0 .1 or 0 .2 ), 
participants hardly discriminated the difference between 
them in estimation, such that 0 and 0.1 correlations were 
always overestimated while 0.2 correlations were 
underestimated. Note that in our experimental design, 0 

correlations could only be overestimated, since participants 
were not allowed to report negative correlations. 

In Experiment 2, we observed that the underestimation bias 
was stronger in the Landscape condition than in the Portrait 
condition (Figure 2b, p < .001 in the mixed-effect linear 
regression). On the individual level, this asymmetry emerged 
in 65% of our participants in Experiment 2 while only 32% 
showed the reverse. On the trial level, 70% of the stimuli in 
the Portrait condition were underestimated while 80% of the 
stimuli in the Landscape condition were underestimated. 

 

 
Figure 2: Behavioral data. (a) Estimated correlations at 

different levels of actual correlations; (b) Mean estimation 
biases (i.e., estimated correlation – actual correlation) across 

all trials. Error bars denote standard errors. 
 
Summary of Eye-movement Data. The eye tracker 

gathered our participants’ eye fixations during the three-
second free viewing phase. In Experiment 1, participants 
made an average of 6.52 fixations per trial (sd = 0.27) . In 
Experiment 2, participants made 7.79 fixations (sd = 0.34) 
per trial in Landscape condition, and 7.92 fixations per trial 
(sd = 0.21) in Portrait condition respectively. We mapped the 
fixation coordinates to the that of the scatterplots and used 
the transformed coordinates to determine the weight of the 
data points for the mental regression (see the following 
section for details).  

 

 
Figure 3: Heatmap of eye fixations on the scatterplots using 
the data of all participants. We used three scatterplots with 
actual correlation = 0.5 for illustration.  (a) Experiment 1; 

(b) The Landscape condition of Experiment 2; (c) The 
Portrait condition of Experiment 2. 

 
Figure 3 displays the density of eye fixations spanning the 

scatterplots, using the eye-movement data from all 
participants. Overall, participants’ fixations were mostly 
focused on the central regions of the scatterplots. Peripheral 
regions of the point cloud attracted much less attention. This 
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tendency was robust across all experimental conditions. In 
other words, the visual sampling of the data points in graph 
was susceptible to a bias toward central regions. In contrast, 
the data points on periphery were underrepresented. 

Aggregate Model Predictions. In this paper, we assumed 
that the participants are Bayesian learners who took as input 
the attended data points in the graph and updated the 
regression line as output. The eye-tracker allowed us to 
monitor the data points in graph that were attended to in each 
fixation. Thus, we trained the Bayesian learning model (i.e. 
Bayesian linear regression) on the attended (weighted) data 
points.   

As mentioned earlier, we used a squared exponential 
kernel to determine the weights for different data points: 𝑤𝑤 =
𝛼𝛼 ∙ e−𝛽𝛽∙𝑑𝑑2 , where 𝛼𝛼  (0 < 𝛼𝛼 ≤ 1) and 𝛽𝛽  (0 < 𝛽𝛽 ≤ 10). We 
ran a grid search to show to how model predictions varied 
with the two free parameters. Figure 3 shows that our model’s 
key predictions were very robust with different values for 𝛼𝛼 
and 𝛽𝛽. In Figures 3a-c, we show that our model consistently 
predicted underestimation of correlations from scatterplots. 
The model also predicted a stronger underestimation bias in 
the Landscape condition (Figure 3b) than in the Portrait 
condition (Figure 3c) (all p’s < .001 with the 100 different 
parameter values). 

Unsurprisingly, the magnitude of underestimation varied 
with the parameters, especially the decay parameter 𝛽𝛽 . 
Overall, the predicted underestimation bias became stronger 
as 𝛽𝛽 increased. Consider 𝛽𝛽 = 0. In this setting, all data points 
in the graph are given equal weights in the Bayesian learning 
model, regardless of their distances to the fixation point. The 
Bayesian learning model would thus predict no overall 
underestimation or overestimation. On the other hand, when 
𝛽𝛽 = 10, the data points far from the fixation are given small 
weights.  

Overall, our Bayesian learning model precisely predicted 
the key behavioral findings in correlation judgment from 
scatterplots by simply using the participants’ eye-fixation 
data while viewing the graph. 

Trial-level Prediction Accuracy. The Bayesian learning 
model also predicted estimation biases accurately on the trial 
level. We show such trial-level predictions in Figure 5, 
setting 𝛼𝛼 = 0.1 and 𝛽𝛽 = 10. Figure 5a shows that there was 
little underestimation when the presented correlation was 
below 0.2, but the underestimation was rather strong when 
the presented correlation was between 0.2 and 0.8. The 
predicted underestimation attenuated when the presented 
correlation was 0.9. This pattern was again consistent with 
previous research and our behavioral findings that 
underestimation mostly occurred at intermediate correlation 
levels. Unlike human participants, the simulated Bayesian 
learners were able to discriminate between small correlations 
from scatterplots and predicted rather accurately at low 
correlation levels (with presented R≤0.2).  

Finally, we evaluated how accurately the Bayesian 
learning model predicted the actual estimation biases. 
Consider 𝛼𝛼 = 0.1  and 𝛽𝛽 = 10  for example. Figures 5b-c 
show that the model can predict trial-level variation in actual 
estimation biases accurately in both Experiments 1 and 2. 
Notably, the model not only successfully predicted 
underestimation at the intermediate levels (with presented R 
between 0.2 and 0.7), but also predicted overestimation at the 
low levels (with presented R below 0.2). That was interesting 
because the simulated Bayesian learners’ estimation was not 
bounded between 0 and 0.9, though our human participants’ 
estimation was. Other parameter values for 𝛼𝛼  and 𝛽𝛽 
produced similar patterns. Figures 3d-f shows similar 
correlation coefficients using different 𝛼𝛼 and 𝛽𝛽 values. 

 

 
Figure 4: Model predictions using different squared exponential kernel parameters. (a)-(c) show the predicted 

underestimation biases in Experiment 1, Experiment 2 (Landscape), Experiment 2 (Portrait) respectively. All cells predicted 
an underestimation bias and the cell values denote the magnitude of underestimation. (d)-(f) show the Pearson’s correlation 
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coefficients between the predicted biases and actual biases on the trial level in Experiment 1, Experiment 2 (Landscape), 
Experiment 2 (Portrait) respectively.  

 
 

 
Figure 5: Predicted trial-level correlation estimation, setting 𝛼𝛼 = 0.1 and 𝛽𝛽 = 10. (a) Predicted correlations at different levels 
of actual correlations; (b) Trial-level actual and predicted biases in Experiment 1; (c) Trial-level actual and predicted biases 

in Experiment 2. Error bars denote standard errors. 
 

Discussion 
This paper studies correlation judgment from scatterplots. 
We propose that decision makers perform statistical learning 
from the observed points via visual input. In two eye-tracking 
experiments, we first replicated two classic behavioral 
findings in correlation judgment from scatterplots: Subjects 
underestimated the correlation, especially at the intermediate 
levels, and the underestimation bias was stronger in the 
Landscape condition than in the Portrait condition. Critically, 
we obtained participants’ visual sampling data using eye 
tracking and our Bayesian learning model using simply the 
visual information sampling data as input replicated these 
behavioral regularities. Further, our model was able to 
account for trial-level variations in judgment biases at high 
accuracy. Our results suggest that the behavioral biases in 
correlation judgment from scatterplots may arise from visual 
information sampling biases. 

Future research can investigate the factors that guide these 
information sampling patterns. An immediate interesting 
question is how participants’ search patterns interact with the 
visual features in the graph. For example, as we show in 
Experiment 2, the landscape/portrait manipulation changes 
gazing strategies. But the cognitive or biological mechanisms 
remain unknown. Further, it has been argued that humans are 
able search in a way that maximizes information gain in 
motion detection, object perception, recognition, and 
decision making (Wei & Stocker, 2015; Yang et al. 2016; 
Callaway et al. 2021). It is possible that similar processes are 
also at play in high-level cognition such as correlation 
judgment. If so, subsequent research need explain why 
optimal visual information search processes give rise to 
biased correlation judgments.   

Our study also has important implications for data 
visualization and statistical communication. Our work is in 
line with the recent call of using visualization as stimuli for 
studying cognitive system (Rensink, 2021).  While previous 
research stresses the visual features in the graph (Meyer & 
Shinar, 1992; Ma et al., 2018), our study highlights the 
important role of the visual system, particularly the 
interaction between visual information sampling and 
geometric features in the graph. It sets out to provide 
theoretically grounded guidelines for data visualization that 
facilitates information communication (Harold et al., 2016; 
Franconeri et al., 2021) and reduces perceptual biases 
(Ciccione et al., 2021).  This line of work may be further 
applied to investigate how different people interact with 
different visual features, identifying individuals with high 
visualization literacy (Boy et al., 2014; Ludewig et al., 2020). 

In conclusion, our study paves a new way to test the 
Bayesian models for judgment and decision making. We did 
so by integrating computational modeling with eye-tracking 
data. We use the process-level data to constrain the 
potentially overly flexible cognitive models, leveraging the 
explanatory power of formal computational and algorithmic 
models in understanding human cognition. 
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