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Abstract

Humans learn from other knowledgeable informants who
choose data to foster learning. Mathematical models of teach-
ing and learning have formalized this process of learning from
helpful others. While these approaches have been successful in
capturing teaching and learning in a variety of contexts, they
have been limited to relatively simple domains. One of the
open questions regarding Bayesian teaching is whether it can
scale to teach from naturalistic domains with more interesting
datasets. In this work, we show how to apply Bayesian teach-
ing to teach human participants categories learned by a super-
vised machine learning model. The effectiveness of teaching is
measured by how well the participants can predict the behavior
of the target machine learning model. Our results demonstrate
that Bayesian teaching can be applied to naturalistic domains,
show that the best sets of examples according to the model
yield better learning, and suggest avenues for improving our
ability to automate teaching of image categories.

Keywords: Bayesian teaching; category learning; pedagogy;
prototype model

Introduction
Teaching is a common method of knowledge transmission,
which occurs in both formal and informal contexts (Csibra
& Gergely, 2009). In such pedagogical situations, a knowl-
edgeable and helpful informant—a teacher—provides data or
examples that best communicate concepts to a learner, who in
turn assumes that the data presented is intended to be helpful,
allowing them to learn more efficiently than other methods.
This mutual cooperation toward the goal of learning has been
formalized in probabilistic models of Cooperative Inference,
which involves recursive reasoning by the teacher and learner
(Shafto & Goodman, 2008; Shafto, Goodman, & Griffiths,
2014; Yang et al., 2018), and is a generalization of Bayesian
learning and Bayesian teaching.†

These models of teaching have been successful in captur-
ing teaching behavior, including the implications for learn-
ing, in a variety of laboratory studies. For example, Shafto
and Goodman (2008) showed that in a simple concept learn-
ing game (the “rectangle game”), participants both selected
examples in line with Bayesian teaching and rapidly identi-
fied the target hypothesis when presented with those peda-
gogical examples. Similarly, work by Bonawitz, Shafto et
al. (2011) showed that when pre-schoolers were shown vari-
ous functions of a toy, those provided pedagogically caused

∗Both authors contributed equally to this paper.
†Cooperative inference does not require that one necessarily be

more knowledgeable, only that there be a target hypothesis.

them to explore less. Further, Eaves, Fledman, Griffiths, and
Shafto (2016) showed that infant-directed speech is consis-
tent with the sounds Bayesian teaching would produce to
teach phonetic categories of adult speech. Rafferty, Brun-
skill, Griffiths, and Shafto (2016) used Bayesian teaching in
a planning problem to improve human performance in simple
concept-learning tasks. Finally, Ho, Littman, MacGlashan,
Cushman, and Austerweil (2016) explored Bayesian teaching
for reinforcement learners, showing that examples provided
by teaching differ from following the policy that maximizes
an agent’s utility.

One desideratum for computational models of teaching is
the automatic selection of examples to teach relevant, real-
world concepts. However, due to computational constraints,
successes have been limited to small, schematic domains
characteristic of concept learning in the lab. Thus, one of
the open questions regarding this framework is whether it can
scale to teach realistic domains with large, complex, natu-
ralistic data sets. Extracting information from such domains
can be made efficient with machine learning models, which
can process vast datasets much faster than humans do. In
this view, teaching a domain becomes a matter of teaching
the machine learning models that are trained on the relevant
datasets.

In this paper, we explore this problem by investigat-
ing Bayesian teaching with image categories. We adapt a
prototype-based machine learning model (Probabilistic Lin-
ear Discriminant Analysis; Ioffe, 2006), formalize teaching
for this model, and run a classification experiment to test the
effectiveness on teaching image categories. The effectiveness
of teaching is measured by how well humans can predict the
machine learning model’s predictions. Our results indicate
that Bayesian teaching is helpful for learning what the model
learns about natural image categories.

Bayesian Teaching

The goal of Bayesian teaching is to select small subsets of
data that induce a target model in the learner (Shafto & Good-
man, 2008; Shafto, Goodman, & Griffiths, 2014; cf. Griffiths
& Tenenbaum, 2001) . In this paper, given a set of train-
ing data D = {d1,d2, . . . ,dN} and a teaching set size n < N,
Bayesian teaching conveys a target model Θ∗ to a learner by
sampling a teaching set D ⊆ D from the space of possible
candidate teaching sets, D =

{
D
∣∣D ∈ P (D)∧ |D|= n

}
, ac-
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cording to Bayes’ rule

PT (D |Θ∗) =
pL(Θ

∗ |D)pT (D)

∑D ′∈D pL(Θ∗ |D ′)pT (D ′)

=
pL(Θ

∗ |D)

∑D ′∈D pL(Θ∗ |D ′)
, (1)

where P (D) is the power set of D, pT (D) is the prior over
teaching sets, pL(Θ

∗ |D) is the learner’s posterior and PT (D |
Θ∗) is the teacher’s posterior. Since the prior over teaching
sets pT (D) is assumed to be uniform, the effect of this prior
cancels out, yielding the second equality. Therefore, the pos-
terior probability of selecting a particular teaching set to teach
a target model is proportional to the learner’s posterior prob-
ability of the target model after observing the same teaching
set.

Probabilistic Linear Discriminant Analysis (PLDA)
PLDA is a supervised learning model, taking in training data
with class labels and can be used for classification of new,
unlabeled data (Ioffe, 2006). We use PLDA as the basis
for Bayesian teaching of image categories for two reasons:
(1) PLDA has previously been applied to supervised classi-
fication of image categories with good performance (Ioffe,
2006) and (2) PLDA is a probabilistic model which makes it
amenable to Bayesian teaching. The model assumes that both
the means of the categories and examples from each category
are samples from multivariate Gaussian distributions, and its
objective is to maximize the distance between the category
means while also minimizing the distance between examples
within each category.

Formally, the generative model is

vvvk ∼ N(000, ΨΨΨ),

uuuk
i ∼ N(vvvk, III),

dddk
i = mmm+AAAuuuk

i .

The category means vvvk are sampled from a multivariate Gaus-
sian distribution with mean 000 and diagonal covariance ΨΨΨ.
Then, for each category k, a sample uuuk

i is drawn from a multi-
variate Gaussian with mean vvvk and identity covariance. Fi-
nally, samples from all categories are linearly transformed
from latent space to the data space with shift mmm and rotation
AAA. Under this model, ΨΨΨ, mmm, and AAA are free parameters and
fitted via maximum likelihood of the data.

Given the fitted parameters and a set of data dddk
1,ddd

k
2, ...,ddd

k
Nk

for category k, we transform the data to uuuk
1,uuu

k
2, ...,uuu

k
Nk in latent

space, and the posterior on vvvk is

pL(Θ
∗ |D) = pL(vvvk | uuuk

1,uuu
k
2, ...,uuu

k
Nk) (2)

=
N(vvvk|000,ΨΨΨ)∏

Nk

i N(uuuk
i |vvvk, III)∫

vvv N(vvv|000,ΨΨΨ)∏
Nk
i N(uuuk

i |vvv, III)dvvv

= N(vvvk|Nk
ΛΛΛkūuuk,ΛΛΛk), (3)

where ΛΛΛk =
ΨΨΨ

NkΨΨΨ+III and ūuuk = 1
Nk ∑

Nk

i uuuk
i .

The posterior predictive probability for a datum uuu∗ is given
by

pL(uuu∗ | uuuk
1,uuu

k
2, . . . ,uuu

k
Nk) =

∫
vvv

pL(uuu∗ | vvv)pL(vvv | uuuk
1,uuu

k
2, . . . ,uuu

k
Nk)dvvv

= N(uuu∗|Nk
ΛΛΛkūuuk,ΛΛΛk + III). (4)

which is used for classification of new, unlabeled data by
computing this for each category k and selecting the category
with the highest posterior predictive probability.

Generating teaching sets requires three steps: (1) train a
PLDA model on labeled data to obtain a target model, (2) use
the target model’s predicted labels (not the training labels) for
teaching because the target model is what we wish to convey,
and (3) generate teaching sets by using Equation (5) below.

Training the target model. The training of the PLDA tar-
get model is described in the previous section and is done on
a preprocessed dataset containing images of faces with emo-
tion labels (see the Dataset and Preprocessing sections). To
obtain the target model’s predictions for each image, we first
compute the posterior predictive probabilities with respect to
each category using Equation (4), and then select the category
with the highest probability to be the predicted label.

Generating teaching sets. The representation leading to
the target model’s predictions is defined by the parameters
ΨΨΨ, mmm, and AAA and the posterior distributions over the mean
of each category. Each of these distributions for category k
is characterized by its mean vvv∗ = NkΛΛΛkūuuk, and the teacher’s
objective is to convey these category means to a learner by
generating teaching sets.

To do this, the teacher assumes the learner to have the same
ΨΨΨ, mmm, and AAA as the target model, but not necessarily the same
category means. Explicitly, as given by Equation (1), the
teaching equation for teaching a particular category learned
using PLDA is:

PT (D |Θ∗) =
pL(Θ

∗ |D)

∑D ′∈D pL(Θ∗ |D ′)

=
N(vvv∗|nkλλλkūuuk,λλλk)

∑ūuuk′∈UD
N(vvv∗|nk′λλλk′ ūuuk′ ,λλλk)

, (5)

where λλλk =
ΨΨΨ

nkΨΨΨ+III .‡ Here, the teacher samples a teaching set
D to teach Θ∗= vvv∗. Given a dataset size Nk and a teaching set
size nk such that Nk > nk, the number of possible teaching sets
in D is

(Nk

nk

)
. To compute the individual pL(Θ

∗ | D ′), each
data point in D ′ is first transformed into latent space. In latent
space, pL(Θ

∗ |D ′) = N(vvv∗|nkλλλkūuuk,ΛΛΛk), where ūuuk = 1
nk ∑

nk

i uuuk
i

and the uuuk
i ’s are the transformed data points. Note, UD simply

denotes the space of ūuuk that emerges from applying both the
transformation and computing the average on each teaching
set in D.

Simulating the learner. We simulate human behavior in
the 2AFC task (see Experiment section) using Equation (4).

‡In the experiment, since participants were shown three exam-
ples from each teaching set, we set nk = 3 for all k.
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We compute the posterior predictive probability of a target
image uuu∗ belonging to either category, which are illustrated
by teaching sets with three examples each. Specifically, this
is done by computing the following:

pL(k∗ = T |uuu∗;uuuT
1:3,uuu

O
1:3) =

N(uuu∗|nT λλλkūuuT ,λλλk + III)

∑k′∈{T,O}N(uuu∗|nk′λλλkūuuk′ ,λλλk + III)
,

(6)

where T is the target category, and O is the other category
(see below).

Experiment
We ran a study involving human participants recruited from
Amazon’s Mechanical Turk to determine whether it is possi-
ble to teach a trained machine learning model (PLDA) to par-
ticipants. In our approach, we presented participants with sets
of examples selected from the Bayesian teaching PLDA (BT-
PLDA) model, manipulating the helpfulness of these teaching
sets, and determining whether or not participants’ responses
matched the predictions of the target model.

Dataset
In order to teach a target model to participants, we required
a dataset of images (with category labels) to train the target
model with. Our main criteria was to use data sufficiently
challenging for the model to learn completely, while also not
being too easy for humans either.

Hence, we selected the Child Affective Facial Expressions
dataset by LoBue and Thrasher (2015), which consists of im-
ages of children expressing a variety of different emotions.
While people have ample experience with facial expressions
of emotions, categorizing faces according to their emotion is
challenging, with performance well under ceiling (LoBue &
Thrasher, 2015). Moreover, in our experiment, we do not
explicitly tell participants the images are categorized by emo-
tion, which further increases the task difficulty.

The dataset consisted of 1192 images of children 2-8 years
old, expressing six basic emotions (angry, disgust, fearful,
happy, sad and surprise), in addition to a neutral facial ex-
pression. For the purposes of our task, we used a subset of
this dataset consisting of mouth open versions of the six basic
emotions (excluding neutral faces). This resulted in a dataset
for training the model consisting of 484 images from six emo-
tion categories (84 angry, 95 disgust, 61 fearful, 95 happy, 46
sad and 103 surprise).

Preprocessing
For each of the 484 images, we pre-processed the images by
grayscaling and resizing them to be 400 × 400 pixels. We
then applied Principal Components Analysis to further re-
duce the dimensionality of the dataset, keeping the first 75
principal components from all of the images, which captured
> 84% of the variance from the original dataset. The target
model for teaching was obtained by fitting PLDA to the pre-
processed data.

Participants
105 participants (62 male, 43 female) were recruited from
Amazon Mechanical Turk and paid $1.50 for completing the
task, which took roughly 10 minutes to complete. The mean
age of participants was 35.3 years (SD = 10.0), ranging from
18 to 64 years. 13 participants were not included in the anal-
ysis for completing the experiment too quickly (less than one
second per trial).

Design
On each trial, participants were presented with a target im-
age and asked to classify it into one of two categories (A or
B), where one category matched the category of the target
image and the other was randomly selected from one of the
other five emotion categories. These categories were chosen
and matched based on the ground-truth labels at this stage.
The participants were presented with a teaching set of three
example images to represent each category. These images
were chosen not based on the ground-truth categories but
from what the target model predicted to belong to each of
the two categories respectively. These teaching sets varied
in three between-subjects conditions which participants were
randomly assigned to: HELPFUL (N = 36), RANDOM (N = 36)
and UNHELPFUL (N = 33).

To generate the teaching sets for the HELPFUL and UN-
HELPFUL conditions, we applied Equation (5) to each of the
six category means. Intuitively, this equation corresponds to
the “goodness“ of each teaching set, where a higher proba-
bility indicates the Bayesian teacher believes the learner will
more likely infer the target model given that teaching set.
Thus, for the HELPFUL condition, the teaching sets are the
sets with the highest posterior probabilities as given by BT-
PLDA, while in the UNHELPFUL condition, the teaching sets
are sets with the lowest posterior probabilities instead. For the
RANDOM condition, the teaching sets were randomly sam-
pled from all possible sets for a particular category. This pro-
cess was repeated for each category independently. Finally,
if a selected teaching set contained the target image, the next
best set not containing the target image was used instead.

According to the target model’s predictions, there were 77
images for angry, 95 for disgust, 84 for fearful, 89 for happy,
59 for sad, and 80 for surprise. The number of possible teach-
ing sets for each category is given by

(Mk

nk

)
, where Mk is the

number of images the model predicts to be in category k and
nk is set to 3 for all categories, as we select three images in
each teaching set.

Note that since the target model does not perfectly learn to
correctly classify the image categories, the examples from the
teaching sets generated in the various conditions sometimes
included images that were from other categories according to
ground-truth labels.

Procedure
Participants were randomly assigned to one of either HELP-
FUL, UNHELPFUL, or RANDOM teaching set conditions at the
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Figure 1: Example of a trial from the task. Participants
were shown a target image (left), along with a teaching set of
examples from both the target category (angry, bottom right)
and the other category (surprise, top right), and asked to pre-
dict how the model would respond based on the examples
provided. The teaching sets for the target and other categories
were sampled from the set of examples that the target model
considered to be in each category respectively.

beginning of the experiment. They were presented with in-
structions indicating that a robot had learned to categorize
faces into different categories and that this robot would pro-
vide helpful examples to help them understand what the robot
had learned. The goal for participants was to predict the
robot’s choice in categorizing the target images, using the ex-
amples provided on each trial to help them out.

On each trial, participants were presented with a target im-
age on the left of the screen and asked “Does the robot think
the following Target face on the left is a member of Category
A or Category B?”. On the right, participants were shown
a row of three examples from the target category and a row
of three examples from one of the other remaining five cate-
gories (based on the ground-truth labels). Again, the helpful-
ness of the examples as predicted by the teaching model var-
ied based on which teaching set condition participants had
been assigned to.

The position (upper or lower row, i.e., Category A or Cat-
egory B) of the target category examples and the other cat-
egory examples were randomized on each trial such that on
half of trials, examples from the target category appeared as
examples from Category A (upper row), and on the other half
as examples from Category B (lower row), and vice versa for
the other category. Participants did not receive any feedback
after each response. During the experiment, they completed
120 categorization trials in total, 20 trials for each emotion
category being the target category, while the other categories
were selected randomly based on each trial; no target image
was presented more than once.

Results
Because the target model’s predictions differed from the
ground truth labels of some of the target images, we removed
the set of trials for which the target model’s prediction of the
target image did not match either the target category or the
other category for that trial. This left 88 of 120 trials for
analysis, 78 of which were cases where the prediction of the
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Figure 2: How well do simulated learner’s responses
match human responses? As human responses become
more consistent with the target model’s predictions, the sim-
ulated learner’s certainty about the same predictions also in-
creases.

PLDA target model matched the target category, and 10 trials
where the prediction matched the other category. The anal-
ysis presented here shows the extent to which participants’
responses match the predictions of the target model on these
88 trials, and whether varying the “goodness" of teaching sets
influenced whether participants responses matched the pre-
dictions of the target model.

First, did participant’s judgments actually match the behav-
ior of the simulated learner? If so, then the Bayesian teaching
approach holds promise in generating teaching sets that influ-
ence human responses. To verify this, for each trial we exam-
ined the probability that the simulated learner would choose
the correct category (correct is w.r.t. the target model’s pre-
diction of the target image) given the two sets of examples
using Equation 6, and compared this to how well human be-
havior matched the target model, which is illustrated in Fig-
ure 2. The results indicate that the simulated learner matched
how humans responded in the task (r(262) = 0.49, p < .001).

Second, did the various teaching set conditions lead to
differences in how well participants’ responses matched the
model predictions? Mean performance across the three
teaching set conditions are shown in Figure 3 on the left. Per-
formance was highest for participants in the HELPFUL con-
dition (M = 72.5%, SD = 2.1%), followed by the RANDOM
condition (M = 69.3%, SD = 2.0%) and finally the UNHELP-
FUL condition (M = 66.6%, SD = 2.4%). We conducted a
planned contrast across the different teaching set conditions
(with HELPFUL = 1, RANDOM = 0 and UNHELPFUL = -1) and
found a significant effect of teaching set condition on accu-
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Figure 3: Performance (percent of responses consistent with the target model’s prediction) across different TEACHING
SET conditions. Mean performance of participants in the UNHELPFUL, RANDOM and HELPFUL conditions. Error bars depict
95% confidence intervals. Overall, results show that performance is best in the HELPFUL condition, followed by the RANDOM
condition and then the UNHELPFUL condition. The same pattern of results holds when breaking down performance by each
emotion category (as predicted by the target model), with performance varying depending on the category.

racy to the target model predictions (F(1, 102) = 6.29, p =
.013).

Furthermore, we explored how well participants’ responses
matched the model’s predictions for each emotion separately,
as shown on the right in Figure 3. A two-way ANOVA
revealed significant main effects for teaching set condition
(F(2, 612) = 8.87, p < .001) and model emotion (F(5, 612)
= 32.48, p < .001). There was a marginal, but not significant
interaction between the two variables (F(10, 612) = 1.84, p
= .051), suggesting that the effect of teaching set condition
was consistent across emotion categories.

Discussion
This work asked two main questions: First, is it possible
to scale the Bayesian teaching approach to more difficult
learning problems such as image categorization? And sec-
ond, can we use this approach to teach participants what a
trained machine learning model has learned? We augmented
a prototype-based model of categorization to generate teach-
ing sets that varied in quality as predicted by the Bayesian
teaching model and ran an experiment to compare how differ-
ent teaching sets could teach participants the target model’s
knowledge about different image categories.

Overall, our results provide support to both of these ideas.
The Bayesian teaching PLDA model allowed us to generate
teaching sets of varying quality and the experimental results
show that teaching sets with higher teaching probability in the

BT-PLDA model produced a higher proportion of responses
that matched the predictions of the PLDA target model.

However, the effects of different teaching sets was rela-
tively small. How can we improve their effectiveness? One
possibility is that the BT-PLDA model selected examples to
teach from the target and other categories independently, ig-
noring both the target image and examples from the other
category provided when generating its teaching sets. Alterna-
tively, taking this information into account when generating
teaching sets could potentially lead to generating more teach-
ing sets that are actually helpful. For example, in Figure 2
many points in the top right are from the UNHELPFUL con-
dition under the current BT-PLDA model but in fact helped
both the simulated learner and human to perform well. Given
the correlation between the human and simulated learner, one
interesting research direction would be to design teaching sets
that are based on the performance of the simulated learner for
a particular task in a particular trial.

A second possibility is that participants may have relied on
existing prior knowledge for this particular set of emotion im-
age categories, and that the set of examples provided by the
teaching model (regardless of the teaching set condition) may
have been insufficient to shift humans from their prior. Fur-
ther work exploring other image datasets, particularly for do-
mains where people have less prior knowledge may be more
fruitful in determining the effects of teaching sets in learning
image categories.
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This work provides a foundation for further exploration of
using Bayesian teaching for teaching image categories. Fur-
ther work could include extending the PLDA model to try
and teach not only the category mean, but also the covariance
of each category, or to optimize all of the presented stimuli
simultaneously. This would allow for the testing and com-
parison of different kinds of teaching models to help deter-
mine what kinds of knowledge is most important to convey
for effective learning. Another possibility would be to ex-
plore combining teaching examples with feedback. In the ex-
periment presented in this work, participants were only given
information about the model’s knowledge implicitly through
the examples provided, whereas presenting participants with
feedback would allow one to measure learning over time and
whether participants’ knowledge begins to match the trained
model based on which the examples are being generated.
This research presents a first step toward programmatic ap-
proaches to scaleable methods of automating teaching of re-
alistic domains of image categories.
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