
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title

Robust Navigation via Measurement Integrity Monitoring and Learning Methods

Permalink

https://escholarship.org/uc/item/0zx382z6

Author

Chen, Changwei

Publication Date

2023

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0zx382z6
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA,
IRVINE

Robust Navigation via Measurement Integrity Monitoring and Learning Methods

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Mechanical and Aerospace Engineering

by

Changwei Chen

Dissertation Committee:
Professor Solmaz Kia, Chair

Professor Andrei Shkel
Professor Athanasios Sideris

2023



© 2023 Changwei Chen



TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES ix

LIST OF ALGORITHMS x

ACKNOWLEDGMENTS xi

VITA xii

ABSTRACT OF THE DISSERTATION xiv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Integrity Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Measurement modeling and bias compensation . . . . . . . . . . . . . 6

1.2.3 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.4 Sensor Coverage Enhancement . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
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ABSTRACT OF THE DISSERTATION

Robust Navigation via Measurement Integrity Monitoring and Learning Methods

By

Changwei Chen

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Irvine, 2023

Professor Solmaz Kia, Chair

This dissertation focuses on the development of robust and reliable navigation algorithms

for mobile autonomous systems. This work is applicable to inertial navigation systems (INS)

aided by external measurements from the Global Positioning System (GPS) and/or ultra-

wideband (UWB) sensors in a cooperative manner. To improve the robustness and continuity

of precise navigation systems, this work looks at various factors, such as identifying and ex-

cluding erroneous sensor measurements, effective use of machine learning tools for navigation

systems, and innovative navigation frameworks and infrastructures to enhance external signal

access. On the integrity monitoring front, we develop an information-theoretic approach for

fault detection and exclusion (FDE). This work also includes a statistical inference method

to optimally estimate the probabilistic fault detection threshold. For robust navigation

framework and infrastructure design, we propose innovative solutions based on collaborative

navigation approaches such as UWB-based foot-to-foot ranging for dual-mounted INS for

pedestrian localization, cooperative navigation for multi-agent systems, and self-localizing

on-demand portable wireless beacons for coverage enhancement of RF beacon-based in-

door localization systems. To induce robustness in these designs, we incorporate multiple

measures. In UWB-based foot-to-foot ranging, we analyze the UWB ranigng measurement

acuraccy and how proper relative placement of the UWB sensors can lead to measurement

accuracy enhancement. To improve ranging accuracy of the UWB measurements, we also
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study how to remove the bias in different measurement models, i.e., line-of-sight (LoS) and

non-line-of-sight (NLoS), using an artificial neural network (ANN) approach. Our contribu-

tions span across the architecture design of ANNs, identifying the informative features of

the UWB signal to train the ANNs, and employing an OptiTrack motion capture camera

system to collect a diverse set of training data in various relative poses between the sensors.

Our work also explores the use of ANNs to improve the computational complexity of loosely

coupled cooperative navigation solutions. Our work uses a supervised machine learning ap-

proach to learn the solution of computationally expensive optimization processes of loosely

coupled cooperative navigation solutions from off-line data. The result is a set of light-

weight ANNs that can predict the solutions online in a computationally efficient manner.

The innovation in our work is proposing ANN architectures that output feasible solutions,

i.e., solutions that are guaranteed to satisfy the constraints of the optimization processes.

Our last contribution towards robust navigation solutions is to extend the use of our loosely

cooperative navigation method to design a framework to deploy portable on-demand bea-

cons to extend the coverage/signal access of the RF beacon-based localization systems. Our

solution addresses the challenge of how to localize these deployed beacons in an on-line and

decentralized manner. The proposed solution is a robust deployment method in the sense

that if a portable beacon is moved for any reason, it can automatically re-localize itself in

the decentralized manner. Simulations and experimental studies demonstrate the results of

this thesis work.
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Chapter 1

Introduction

1.1 Motivation

Navigation has been an ancient art since the beginning of human history and has become

increasingly essential in the tasks of controlling and monitoring the movement of a target,

e.g., ground vehicle, pedestrian, aircraft, submarine, to reach the goal in both commercial

and military applications [3, 4, 5]. The core of navigation, however, has never changed

over millenniums and has been continuously enhanced, which is the location. Nowadays,

almost all navigational techniques involve locating the navigator’s position compared to

known locations, which requires measurements taken from multiple sensors, e.g., global po-

sitioning system (GPS) receivers, ultra-wideband (UWB) transceivers, inertial measurement

units (IMUs), and altimeters. In other words, the target location is inferred or decoded

from the sensor measurements. However, measurements are always contaminated by noise

or occasionally corrupted by unexpected and unjustifiable values, i.e., faults or jammings,

but only reliable and accurate measurements contribute to the estimation of precise loca-

tions. Although measurement noise and regular bias can be modeled and thus compensated
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Figure 1.1: Robustness enhancement in navigation algorithms

systematically to mitigate their effects in some cases [6, 7], using incorrect measurements

degrades the localization accuracy [8] and can even lead to catastrophic results such as air

crash. Therefore, given the fact that measurement modeling, processing and integrity mon-

itoring all play important roles in location awareness applications, it is essential and critical

to develop efficient fault-tolerant mechanisms that provide precise measurements. For ex-

ample, GPS obtains satellite pseudorange measurements with clock bias mitigation methods

to triangulate the target position and the receiver autonomous integrity monitoring (RAIM)

algorithm is implemented to detect and exclude faulty GPS measurements [9]. Thus, the

research interest of this dissertation work is to develop and improve such mechanisms to

enhance the effectiveness, efficiency and robustness of navigation.

We focus mainly on four main components for robust navigation, which are integrity mon-

itoring, measurement modeling and compensation, computational complexity, and sensor

coverage enhancement, as shown in Fig. 1.1. In what follows, we give a short overview of

these components and the desired specifications for them for our application of interest.

Integrity Monitoring: Integrity monitoring of navigation systems is the ability to provide

timely warning to users when the system should not be used for navigation [10]. To imple-
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ment integrity monitoring and ensure the navigation continuity, the navigation systems must

detect faulty measurements before resulting in unacceptable performance. Consequently, in-

tegrity monitoring of multi-sensor navigation systems has been pursued and enhanced for

decades, contributing to a rapid growth in the research on the subject of Fault Detection and

Isolation (FDI) or Fault Detection and Exclusion (FDE). In general, integrity monitoring

can be applied internally to any navigation system that provides redundant measurements

or externally by comparing the outputs of multiple navigation systems [11]. And the key

challenge has been developing a mechanism with adaptive criteria functions to increase the

fault detection rate while decrease the miss detection rate.

Measurement Modeling and Compensation: Given that measurement is essential to

navigation systems, a correct mathematical model for measurement is of necessity. Besides

the fault which can be removed via integrity monitoring methods, the bias is another error

resource that degrades the quality of sensor measurements. For example, for radio frequency

(RF) signals, such as GPS signals, measurement bias is mainly due to multipath [9]. The

main effort has been put into modeling and inference the bias and ensure the accuracy in

navigation solutions.

Computational Complexity: Algorithm robustness calls for less computational complex-

ity in the sense that the longer the execution time, the more likely errors will occur in the

systems. Also, for robust navigation algorithms in real-life applications, we need to consider

rigorously the computational complexity to make the algorithm run in real-time. Fast and

accurate response with respect to the user’s request is in high demand nowadays. Meanwhile,

given that the learning methods are adopted as well, it is crucial to have the safety-critical

guarantee to execute the navigation algorithms to enhance the robustness.

Sensor Coverage Enhancement: Lastly, to ensure robust navigation, sufficient connec-

tions to the sensor network are critical. Deploying additional sensors as beacons enhances

the robustness of the navigation system. On the contrary, localization using fewer beacons
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requires more robust navigation algorithms. If the hard requirements or assumptions of

the navigation algorithms can be relaxed or even removed, they become more general and

more widely applicable. In other words, the navigation algorithms are more robust against

different scenarios than they used to be.

In the remainder of this chapter, an overview and literature review of integrity monitoring,

measurement modeling and compensation and bias mitigation methods, computational com-

plexity, and sensor coverage enhancement are presented. Then, the objective of this research

is presented in more details given the context provided by our reviews.

1.2 Literature survey

In this section, we review the state-of-the-art integrity monitoring techniques in the litera-

ture. Then we move to the review of measurement bias modeling and compensation methods.

We finalized the section with a review of approaches to reduce computational complexity

and sensor beacon localization.

1.2.1 Integrity Monitoring

There are generally two main categories of the integrity monitoring methods in the literature,

model-based and model-free. Considering there is also a massive quantity of work on integrity

monitoring in the data science and computer science field, in this dissertation work, we only

focus on that in the navigation domain, specifically GPS and inertial navigation system

(INS) applications.

The leading workhorse of model-based FDE in the literature has been residual-based detec-

tors, where the residual is the difference between the actual output (measurement) acquired
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by the sensors and the estimated output. The theoretical structure for residual-based de-

tectors is statistical detection theory. These techniques calculate certain statistics of the

residual and compare the statistics with a predefined threshold based on false alarm prob-

ability as an indicator to determine which hypothesis is true given current observations,

i.e., non-faulty or faulty. In the GPS applications, the measurements from the satellites

(pseudorange, Doppler) can be obscured or degraded due to different phenomena such as the

multipath and ionosphere interference. The conventional residual-based methods for GPS

integrity monitoring such as RAIM [9], Pseudorange Comparison Methods [12], are widely

adopted. However, these methods have limits; for example, to perform fault detection, at

least 5 satellites should be in view, and to perform FDE, the number increases to 6. Further-

more, they can only deal with single-fault cases, i.e., the detection of one fault at one time

since given only the information that the pre-designed threshold is exceeded, one cannot

distinguish between the single-fault case and the multiple-fault case. Also, these methods

are batch processing methods that have strong dependency on history, so they have lim-

ited capability to deal with incipient faults, i.e., faults with small magnitude and increasing

slowly.

The performance of the traditional FDE methods has been enhanced by combining mul-

tiple navigation systems which are not limited in the same category. Advanced RAIM

(ARAIM) [13] is proposed to use redundant pseudorange measurements obtained from multi-

constellation and multi-frequency global navigation satellite system (GNSS). [14] investigates

combining filtering with dynamical models to enhance the performance of a chi-square detec-

tor and leverage the frequency content of the residual signal to make the detection problem

easier with noise. [15, 16, 17] focus on the FDI for distributed systems using the communi-

cations between the agents preserving local navigation. In such cooperative settings, [18] de-

veloped a cooperative integrity monitoring (CIM) algorithm using a decomposition method

to isolate the fault. Besides, information techniques have been applied and improved for

FDE, which is a quite success. [19] minimizes integrity risk for RAIM detector. Further-
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more, a more systematic analysis of information theoretic approach to detection problem

can be found in [20]. [21, 22, 23] carry out the FDE scheme for GNSS/INS tightly coupled

systems with the use of information entropy and divergence such as mutual information,

Kullback-Leibler divergence (KLD) and Rényi Divergence (RD) for the synthesis of detec-

tion residuals. The scheme is based on the local test (LT) and global test (GT) with optimal

thresholding which can isolate multiple faults and exclude them recursively. One main ad-

vantage of the GNSS/INS tightly coupled systems is that they reduce the minimum number

of observable satellites to 1.

1.2.2 Measurement modeling and bias compensation

The measurements acquired by multiple sensors contain noise and bias besides faults. In

most of the cases, measurement noises are modeled as Gaussian random variables. The

sources of bias, however, vary between sensors. For example, [24] models and compensates

for the bias in vibrating gyroscopes. [25] focuses on the systematic bias of GPS due to

atmospheric properties. In addition, the UWB range suffers from significant bias due to the

none-line-of-sight (NLoS) scenarios [26]. It is important to correct for these bias in order

to carry out data fusion in multi-sensor navigation systems. In this dissertation work, we

focus on the UWB measurement bias modeling and compensation, whereas it can be easily

generalized to any RF signal based ranging technologies.

Among various RF signals for ranging, the UWB signal has received considerable attention

for indoor localization applications [27, 28]. UWB signals, because of their short impulse,

are less susceptible to interference with each other or with other coexisting radio signals

such as WiFi and Bluetooth [29]. UWB signals are also energy efficient due to their low

power consumption [29]. Compared to radar-based techniques, UWB has a better accuracy

ratio and a higher signal-to-noise ratio [30, 31, 32]. Other favorable attributes of UWB
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include low cost, high time-resolution, and obstacle-penetrating NLoS ranging [30, 33, 34, 35].

However, NLoS and multipath radio propagation can lead to biased measurements due to

the time increment for the signals to penetrate through obstructions or travel a longer non-

direct path [36], [37]. It is also observed that even the line-of-sight (LoS) UWB range

measurements exhibit spatially varying bias due to the relative pose and orientation among

UWB sensors [38] and their antenna radiation patterns [39]. Therefore, to ensure UWB

localization accuracy, it is critical to account for bias in the UWB range measurements

before using them. Bias correction/compensation in the UWB ranging is not fully resolved

and is an active area of research.

NLoS UWB ranging bias is often significant. To deal with UWB NLoS bias, some localization

approaches rely on identifying NLoS signals and avoid using them for ranging [40, 41, 42, 43].

However, excluding NLoS range measurements and employing a LoS-only UWB ranging sys-

tem means that in complex and cluttered indoor environments where most of the measure-

ments are obtained in the NLoS cases, we should deploy a large number of beacon transceivers

to increase the probability of taking LoS measurements. Still, NLoS scenarios may not be

fully avoidable because of mobile obstacles in the environment, such as pedestrians.

There are mainly two approaches in the literature to handle the bias in UWB range measure-

ments. The first is the model-based bias correction, where the bias is either modeled with a

known analytical expression [44, 45, 46] or considered as a parameter in the state vector to

be jointly estimated with other state parameters [47, 48, 49, 6, 50]. In practice, however, the

prior information about the bias may not be available accurately in advance. The second

approach is the model-free bias correction using ML techniques. The main idea is using ML

methods, e.g., support vector machine (SVM) [51, 52], k-nearest neighbor (k-NN) [53], deep

neural network (DNN) [54, 55], convolutional neural network (CNN) [56], long short-term

memory (LSTM) network [57] for LoS and NLoS classification and to learn the bias in NLoS

scenarios. The corresponding features for classification and learning the bias include the
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channel impulse responses, the energy of the received signal, the maximum amplitude of the

received signal, and the mean excess delay. However, the channel impulse response features

are not readily available in low-cost UWB devices [58]. Moreover, complex learning models

with a large number of features also come with high computational complexity, which may

limit the use of these models in embedded systems. A lightweight learning method to esti-

mate the UWB ranging bias in NLoS was proposed in [59]. But this method uses the relative

pose as a learning feature, which may not easily be available in every localization application.

The method in [59] in fact is proposed for UWB time-difference-of-arrival (TDOA)-based

localization which involves three UWB radios instead of two, which is used in the ToF-based

localization applications.

In most existing supervised learning-based bias compensation/correction work such as [60,

61], the acquisition of ranging bias values is often assumed trivial and is usually obtained

by measuring the ground truth distance between UWB sensors with the tape ruler or the

laser tracker and computing the difference between the measured true range and the UWB

range measurement. The accuracy of the measured true range directly affects the learning

performance whereas measuring the true range (ground truth) between UWB sensors by

a human can introduce extra errors. The training data for the ML algorithms are often

also obtained from stationary sensors. However, in real localization applications, the UWB

sensors attached to moving targets are maneuvering, which induces potential data mismatch

issues due to the additional bias caused by the relative pose of UWB sensors. The relative

pose and the antenna radiation patterns of UWB sensors are not often considered in the

literature only until some recent work [62, 59]. Even so, the existing methods require bias

modeling with respect to the relative pose of the UWB sensors or the access to the relative

pose when learning and predicting the bias. And they can only deal with pose-dependent

bias due to the limited feature selection. The NLoS scenarios are also not included. The use

of a motion capture camera in UWB ranging is reported in [59] for UWB bias estimation in

LoS and in [63] to generate aiding measurements to improve the localization of an integrated
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UWB/IMU system.

1.2.3 Computational Complexity

Reducing the computational complexity and enhancing the robustness of algorithms are

critical and essential in real-time navigation systems. In this dissertation work, we focus on

light-weighting the cooperative localization (CL) algorithm and generalizing it to relax the

connectivity requirement for the absolute navigation solution.

In the multi-agent sensing systems, to reduce communication cost and distribute compu-

tation, agents compute and maintain their own local estimates whose accuracies are then

improved by fusing the estimates of neighboring agents (in the case of data fusion) or using

relative measurement feedback between neighboring agents (in the case of, e.g., CL). Such

acts, however, create strong correlations among the state estimates of the agents. Neglecting

the correlations often leads to excessively optimistic estimates and even the inconsistency of

the estimator [64]. In sensor networks, accounting for correlations among the state estimates

of the estimation nodes continues to be a challenging task. The approaches to solving this

problem can be classified into explicit and implicit methods. Explicitly accounting for the

correlations requires a higher computational complexity and demands frequent communica-

tion among correlated agents or a server [65, 66, 67, 68]. In contrast, implicit treatments,

either via the use of conservative uncorrelated estimate upper bounds to guarantee estima-

tion consistency or by estimating the unknown correlations, eliminate persistent inter-agent

communications but come with higher communication costs.

The prime example of the implicit fusion algorithms that use conservative uncorrelated

estimates is the Covariance Intersection (CI) method [69], see Fig. 1.2. CI has been used in

various sensor network fusion problems [70, 71, 72] and also CL problems [73, 74, 75, 76].

Alternatively, for CL, [48] proposes the discorrelated minimum variance (DMV) relative
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Figure 1.2: CI produces the fused estimate (x̂+,P+(ω⋆)) from two individual estimates (x̂−
l ,P

−
l ),

l ∈ {1, 2} whose cross covariance P−
12 is unknown.

measurement processing method, which does not directly use the CI but is reminiscent of

the CI’s approach in using uncorrelated upper bounds on the joint uncertainty matrix of any

two estimation nodes. To reduce the conservatism of the CI method, alternative approaches

such as Ellipsoidal Intersection (EI) [77] and Inverse Covariance Intersection (ICI) [78] have

been proposed in the literature. CI, as well as its alternative approaches, EI and ICI,

and also the DMV method, have a scalar parameter which is chosen using an optimization

process that minimizes the total uncertainty of the fused states so that the best among the

conservative estimates is chosen, see Fig. 1.2 for the graphical presentation of the CI fusion

method. The second class of implicit methods to deal with state estimation in the absence

of correlation information trades in extra computation for a better fusion performance by

constructing the unknown cross-covariance matrix instead of conservatively over-bounding

the joint covariance matrix of the estimates. The results in this class include the Maximum

Allocated Covariance (MAC) of [79] and game-theoretic method of [80] for track-to-track

fusion and the practical estimated cross-covariance minimum variance (PECMV) of [48] for

CL. All three methods estimate the unknown cross-covariance matrix of any two nodes using

a matrix optimization framework. They deliver a less conservative estimate than CI and its

variants but computationally are expensive, to the point that they may not be solved online,
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especially on an embedded computing system.

To reduce the computational cost of the consistent implicit track-to-track fusion and CL

methods, we propose using machine learning (ML) based solvers to solve the optimization

problems used in these methods. ML-based solutions for optimization problems have been

successfully used in applications such as combinatorial optimization [81], wireless network

optimization [82], and supply chain management [83]. ML-based approaches have also been

used in CL problems but for different purposes. For example, [84] uses a DNN to assist

a CL for vehicular networks, where the DNN is designed to solve the chronic nonlinear

approximation problem. Or, [85] uses an ML-based surrogate model as a measurement

scheduling merit function.

1.2.4 Sensor Coverage Enhancement

In a typical scenario, the infrastructure beacon installment and the survey of their position

coordinates are performed manually via specialized equipment (e.g., motion capture cameras

and laser distance measurers) after the installation [86, 87], which is human error-prone

and effort-demanding, especially for large scale networks. Furthermore, in a large scale

deployment, measurement station must be moved frequently in the target area to ensure the

line-of-sight towards all beacons, which requires multiple re-calibration of the ground truth

along with converting all measured positions to a common global coordinate frame [88]. Such

a method cannot be applied for portable beacons.

The demand for automatic computing of the beacon positions via senor measurements and

providing flexibility in beacon deployment has led to the development of an alternative

approach, self-localization, which can be formulated as a parameter or state estimation

problem. In the literature, most of the work focus on trilateration method to localize beacons

using at least two linear measurements or three non-linear measurements from the pre-
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installed beacons with accurate known positions nearby [89, 90, 91, 92], which is the strict

requirement of the trilateration method even though the workload of manually positioning

has been significantly reduced. If the beacon to be deployed has been placed in the area

lacking sufficient connections to known beacons, the trilateration method fails. To relax the

connectivity, mobile beacons are adopted to provide extended coverage of sensor networks [93,

94, 95]. The mobile beacons can be any portable mobile robot or vehicle carrying the wireless

sensors. Then the mobile beacons can be controlled and assigned to the area with enough

measurements for self-localization. However, there still exist the scenarios that the areas of

interest are not covered yet by the sensor networks. As depicted in Fig. 6.1, the beacons are

deployed at some target locations but only beacon 2 has three connections to known beacons,

which constrains the self-localization process. Moreover, recent works conduct beacon self-

localization in a centralized manner, where the correlation between the deployed beacons are

completely ignored or mishandled [88], [96, 97, 95]. And due to the mobility of the deployed

beacons, centralized self-localization cannot suitably capture the dynamical changes of the

network.

1.3 Objective

The objective of this dissertation work is design of the robust and light-weight estimation

process that simultaneously enhance the navigation accuracy and monitor the sensor per-

formance. The main application of this work is the integrity monitoring and measurement

enhancement solution for INS aided by external measurements obtained from GNSS and/or

UWB sensors in a cooperative manner. This work is end-to-end spanning algorithm design,

theoretical modeling and analysis, and experimental demonstration/validation.

In an effort to develop practical integrity monitoring algorithms, in this dissertation, we

develop an information-theoretic based FDE method for tightly coupled GNSS/INS system
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that can deal with multiple-fault case with fast alarm ability and less iterations. We then up-

grade the method with an probabilistic threshold function to autonomously choose the FDE

threshold according to the measurements, which enhance the robustness of the algorithm

further.

Another objective of this work is the inference of the bias in UWB measurements. We also

study the UWB sensor placement for foot-to-foot ranging for pedestrian inertial navigation.

The aim is to find out the intrinsic factors that induce the bias in UWB measurements

to remove the measurement bias and provide bias-free output for the demands of robust

navigation.

The third objective of this dissertation work is to reduce the computational complexity of

navigation algorithms with an elaborate design to respect the constraints and thus enable

real-time implementation and generalization of navigation algorithms.

Lastly, we desire to propose an algorithm to localize portable wireless beacons that are

deployed to tackle the limited connectivity/coverage of the infrastructure beacons.

1.4 Outlines

In Chapter 2, a residual-based FDE algorithm is developed to enhance the performance of

the tightly coupled GNSS/INS system. Specifically, the Rényi divergence (RD) is intro-

duced as a measure to evaluate the divergence between the state estimate of propagation

and update steps to indicate whether there exists a fault in the system. The properties of

this indicator mechanism are discussed analytically in detail. The FDE algorithm is con-

structed based on this divergence measure. Appropriate methods to select the parameters

of the proposed divergence measure to increase the probability of the fault detection and

decrease the false alarm rate of the FDE algorithm are proposed. The results are demon-
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strated and validated in the Computer Aided Design of Aerospace Concepts (CADAC++)

flight simulation platform. Furthermore, the probabilistic threshold method is proposed and

validated via a set of UWB/INS navigation simulations. In Chapter 3, we study the impact

of the UWB sensor placement for a Zero-velocity-update (ZUPT)-aided pedestrian inertial

navigation solution that uses a foot-to-foot ranging feedback to improve its localization ac-

curacy. Several sensor configurations are investigated in both static and dynamic cases. The

Root Mean Square Error (RMSE) is used as the performance metric for the static measure-

ment accuracy while the Circular Error Probable (CEP) is chosen to evaluate the sensor

configurations in dynamic experiments. We also conduct research on the UWB LoS/NLoS

identification and bias compensation and propose a learning-based probabilistic identifica-

tion and compensation method in Chapter 4. Chapter 5 presents two data-driven approaches

to generate the solutions of two different constrained optimization procedures contained in

implicit CL algorithms. For the first approach, the artificial neural network (ANN) tech-

nique is used to predict the scalar solution of the problem with a single inequality constraint

while in the second method the ANN works as a matrix predictor to learn the solution of a

matrix optimization containing linear matrix inequality (LMI) constraints. We discuss the

design of the ANNs in detail to respect the constraints. The effectiveness and the generosity

of the two methods are demonstrated via CL experiments. And the experimental results

show that both approaches reduce the computational cost significantly without sacrificing

the localization accuracy and the estimation consistency. In order to generalize the CL for

beacon-based localization, in Chapter 6, we report a decentralized beacon self-localization

algorithm which relaxes the essential requirement of sufficient connections to the beacons

with known positions and avoids the labor-intensive and error-prone manual measurement

of the beacon positions. Finally, Chapter 7 gives our conclusions and future work.
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Chapter 2

A Rényi Divergence Based Approach

to Fault Detection and Exclusion for

Tightly Coupled GNSS/INS Systems

In this work, an information theoretic based FDE method for tightly coupled GNSS/INS

system is developed which can deal with multiple-fault case with fast alarm ability and less

iterations. This method uses a modified form of the so-called Rényi Divergence (referred to as

MRD) to monitor how much the propagated state estimate’s probability distribution changes

after it gets updated with the satellite pseudorange measurements. The faults are detected

when the MRD value is beyond a threshold. Also, the concept of individual MRD is proposed

to isolate the faulty channel and exclude the erroneous measurements. Furthermore, a ratio

test based on the individual MRDs is designed to improve the ability of detecting incipient

faults and at the same time separate the abnormal MRD jump caused by the abrupt change

in system dynamics and the one associated with faults, which helps with decreasing the false

alarm rate. Lastly, the selection of α, the parameter of the divergence measure for MRD is

discussed in detail. The results are demonstrated via an extensive set of simulation study
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in the 6 degree-of-freedom (6-DoF) CADAC++ environment [98], which is a high-fidelity

flight simulator used by industry and the U.S. Air Force to simulate aerospace vehicles in

all flight environments. A full Bayesian method for the threshold is adopted to improve the

algorithm further and presented in the last subsection.

2.1 Problem Formulation and Objective Statement

In our study we use the CADAC++’s GNSS/INS model, which we briefly review be-

low; for more details see [99]. Let x ∈ Rnx be the state of the vehicle, where x =

[ŝ1, ŝ2, ŝ3, v̂1, v̂2, v̂3, b̂, f̂ ]
⊤. Here, ŝ = [ŝ1, ŝ2, ŝ3] is the position error and v̂ = [v̂1, v̂2, v̂3] is

the velocity error. b̂ is the user clock bias and f̂ is the user clock frequency error. The

motion of the vehicle is described by

xk+1 = Fxk +Guk + νk, (2.1)

where uk is the user acceleration that drives the INS dynamics. νk is the process noise. The

noises are assumed to be zero-mean white Gaussian with invariant covariance matrices given

16



by E[νkνk
⊤] = Qk = Q > 0. The fundamental matrix F and control matrix G are

F =



0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 −1/Tf



, G =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

0 0 0

0 0 0



,

where Tf is the correlation time constant.

The GPS measurement taken at time k is described by

zk = Hxk + ωk + fk, zk ∈ Rnz , (2.2)

where zk = [zk,1(1), · · · , zk,N(1), zk,1(2), · · · , zk,N(2)]⊤ with zk,i =
[
∆ρi,∆

d|ρi|
dt

]⊤
, i ∈

{1, · · · , N}, is the residual measurement vector of pseudorange and range-rate at GPS chan-

nel i. fk is the fault vector whose entries are non-zero if and only if the corresponding

measurement channels are faulty. The measurement noise ω is white and Gaussian with

predefined bias and invariant covariance matrix E[ωk ω
⊤
k ] = Rk = R > 0. The linearized

observation matrix, which should be computed every step, is CADAC++ simulation uses 4
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GPS channels, therefore, in our simulation study N = 4.

H =



1 0

[uSB]
I
4×3 O4×3 1 0

1 0

1 0

0 ∆τ

0 ∆τ

O4×3 ∆τ [uSB]
I
4×3 0 ∆τ

0 ∆τ



,

where each column of matrix [uSB]
I
4×3 is the unit vector pointing from the user B to the

satellite S, expressed in the inertial coordinates. ∆τ is the GPS update interval which is set

to 1 second.

By use of the conventional extended Kalman filter (EKF), the state estimation process is

expressed as follow. The propagation equation is described by

x̂k|k−1 = Hx̂k−1|k−1 +Guk, (2.3a)

Pk|k−1 = FP̂k−1|k−1F
⊤ +Qk. (2.3b)

The estimate is updated according to

x̂k|k = x̂k|k−1 +Kk (zk −Hx̂k|k−1), (2.4a)

Pk|k = (I−KkH)Pk|k−1, (2.4b)

where Kk is the Kalman gain, which can be obtained by

Kk = Pk|k−1H
⊤(HPk|k−1H

⊤ +Rk)
−1. (2.5)
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The faulty measurements corrupt the updated state estimates by corrupting the innovation

term (zk − Hx̂k|k−1) in (2.4a). If the measurements are continuous and not faulty, the

updated and propagated estimates (x̂k|k,Pk|k) and (x̂k|k−1,Pk|k−1) respectively, are expected

not to differ from one another significantly. We use the close form of RD measure (2.6) under

Gaussian assumptions to compute the difference between the updated and the propagated

estimate distributions f(x̂k|k−1|z1:k−1) and f(x̂k|kz1:k), which at each time step k instantiate

as

RD(f(x̂k|k−1|z1:k−1)||f(x̂k|kz1:k)) =
α

2
(x̂k|k− x̂k|k−1)

⊤(P∗
k|k)

−1(x̂k|k− x̂k|k−1)

− 1

2(α− 1)
ln

det(P∗
k|k)

det(Pk|k−1)1−α det(Pk|k)α

=
α

2
(zk −Hx̂k|k−1)

⊤K⊤
k (P

∗
k|k)

−1Kk(zk −Hx̂k|k−1)

− 1

2(α− 1)
ln

det(P∗
k|k)

det(Pk|k−1)1−α det(Pk|k)α
, (2.6)

where P∗
k|k = αPk|k+(1−α)Pk|k−1. The faulty measurements cause a significant deviation of

the updated state and it is expected that the RD measure (2.6) when measurements are faulty

to be a large value. Our objective is in this dissertation work is to monitor the integrity of

the tightly coupled INS/GPS to detect faulty GPS measurements by developing a RD-based

FDE algorithm. That is we apply RD as a measure of the deviation or distance between the

propagated and updated estimates. Intuitively, the distance of the two estimates should be

within certain range while the outliers of the distance are regarded as faulty according to

some statistical criteria. In what follows, we carefully construct the statistical criteria that

can be used for fast detection of the GPS faulty measurements.
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2.2 A modified Rényi Divergence Based FDE Algo-

rithm

RD(f(x̂k|k−1|z1:k−1)||f(x̂k|kz1:k)) given by (2.6) provides a measure to compare the distribu-

tion of the updated and propagated state estimate of the navigation filter for fault detection.

However, careful inspection of (2.6) reveals that the existence or lack of fault does not make

any difference in the value of the second compound, 1
2(α−1)

log
det(P∗

k|k)

det(Pk|k−1)
1−α det(Pk|k)α

, of (2.6).

This is because the only way that the update equations (2.4) are affected by the fault is due

to the innovation feedback (zk−Hx̂k|k−1) in (2.4a). Therefore, in our FDE algorithm design

below we only use the modified version of the RD measure where only the first term of (2.6)

is considered, i.e.,

MRD = (zk −Hx̂k|k−1)
⊤K⊤

k P
∗−1
k|k Kk(zk −Hx̂k|k−1), (2.7)

where P∗
k|k = αPk|k + (1− α)Pk|k−1. Figure 2.1 shows RD and MRD plots for a simulation

scenario in ROCKET6G where 10 impulsive faults are introduced every 30 seconds starting

at t = 50 seconds in one of the GPS channels when α = 0.1 is used. As we can see in the

red plot, the difference between the RD and MD stays flat and shows no effect in detection

the fault.

Given the measurement model (2.2), we observe that MRD is a quadratic term of the

fault vector fk. For healthy measurements, the fault vector fk is a zero vector so that

the innovations (zk − Hx̂k|k−1) form a zero-mean white sequence with covariance SI
k =

HPk|k−1H
⊤+Rk. Then, the hypothesis that the filter is consistent and the healthy MRD =

(zk −Hx̂k|k−1)
⊤K⊤

k P
∗−1
k|k Kk(zk −Hx̂k|k−1) has a chi-square distribution with nz degrees of

freedom.

Our objective is to design a FDE algorithm that at each time step k given a set of GPS
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Figure 2.1: RD and MRD during a simulation scenario in ROCKET6G where 10 impulsive faults

are introduced every 30 seconds starting at t = 50 seconds in one of the GPS channels.

measurements from N channels, can identify the set of non-faulty (healthy) measurements

Vh ⊂ {1, · · · , N} and use them to update the INS propagated state estimates. To preform the

FDE algorithm in a computationally efficient manner, it is preferable to use the information

filter (IF) form of the EKF to compute the updates. The IF deals with the information

vector and information matrix obtained from the state vector and the covariance matrix as

follows

Yk|k−1 = P−1
k|k−1 (2.8a)

yk|k−1 = Yk|k−1xk|k−1 (2.8b)

Yk|k = Yk|k−1 +
∑

i∈Vh

H⊤
i R

−1
i,kHi (2.8c)

yk|k = yk|k−1 +
∑

i∈Vh

H⊤
i R

−1
i,kzi,k. (2.8d)

Here, yk|k−1 and Yk|k−1 are, respectively, propagated information vector and propagated

information matrix, while yk|k and Yk|k are, respectively, updated information vector and

updated information matrix. Using IF, the updated state estimate and corresponding error
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covaraince then is to (2.3), where

Pk|k = Y−1
k|k, xk|k = Y−1

k|k yk|k. (2.9)

Without an FDE algorithm, Vh = {1, · · · , N}, where N is the number of the available GPS

channels. We let the updates due to use of individual measurement channels be

Yi
k|k = Yk|k−1 +H⊤

i R
−1
i,kHi (2.10a)

yi
k|k = yk|k−1 +H⊤

i R
−1
i,kzi,k. (2.10b)

Then, the updated estimates after implementing the FDE algorithm and identifying the

healthy measurement set Vh is

Yk|k = (N − |Vh|)Yk|k−1 +
∑

i∈Vh

Yi
k|k (2.11a)

yk|k = (N − |Vh|)yk|k−1 +
∑

i∈Vh

yi
k|k, (2.11b)

where the final updated estimate is given by (2.9). Note that MRD (2.7) can also be compute

equivalently as

MRD = (zk −Hx̂k|k−1)
⊤K⊤

k P
∗−1
k|k Kk(zk −Hx̂k|k−1)

=
(∑

i∈Vh

H⊤
i R

−1
i,kzi,k

)⊤
P∗−1

k|k

(∑
i∈Vh

H⊤
i R

−1
i,kzi,k

)
, (2.12)

where P∗
k|k = αY−1

k|k + (1− α)Pk|k−1.
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2.2.1 Selection of parameter α

The value of the RMD measure depends on the choice of parameter α. To ensure that P∗
k|k

is positive definite, we choose α ∈ (0, 1). Use of 0 < α < 0.5 puts more weight on the

propagated uncertainty level whereas 0.5 < α < 1 puts more weight on the uncertainty level

of the updated estimates. In a recent work [23] where Rényi Divergence divergence is used

for design of an FDE algorithm, α = 0.5 is used so there is no particular emphasise on either

of propagated or updated uncertainty level. Here, we employ a different approach. As we

can see in Fig. 2.1 the faults result in spike in the divergence measure. However, healthy

measurements also can lead to spikes when there is drastic changes in the system dynamics.

For example in case of ROCKET6G model, at 371 seconds there is a spike in the divergence

measure value due to the drastic change in dynamical model. Our proposed method to choose

α is to select a value for which the average ratio of the MRD caused by faulty measurements

and the largest ”healthy” MRD is at its largest value so that the distinction between the

faulty and non-faulty case is pronounced, i.e., the larger the ratio is, the more separable the

faulty MRD is. Figure 2.2 shows MRD measure for different values of α in a simulation

scenario in ROCKET6G where 10 impulsive faults of magnitude 10m are introduced every

30 seconds starting at t = 50 seconds in one of the GPS channels. Table 2.1 shows the

average value of the divergence spike value due to faulty measurements to the natural spike

of the system when measurements are healthy at t = 371 seconds. Table 2.1 shows also this

ratio for when KLD measure is used. As Table 2.1 shows, the best value for α, where we

have the most distinction is α = 0.1. Interestingly the worse result is obtained for the KLD

measure. Fig. 2.3 shows a statistical study that is conducted to investigate the separability

of faulty and non-fault cases when KLD, MRD with α = 0.5 and MRD with α = 0.1 are

used as divergence measure. As we can see in this figure, the best separation is achieved

when MRD with α = 0.1 is used as divergence measure.
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Figure 2.2: MRD of different α values for a simulation scenario in ROCKET6G where 10 impulsive

faults of magnitude 10m are introduced every 30 seconds starting at t = 50 seconds in one of the

GPS channels.

Table 2.1: The average ratio between the two spike values given different measures.

α average spike ratio (non-healthy to healthy)

0.1 1.4051

0.3 1.2875

0.5 1.1480

0.7 0.9742

0.9 0.7393

KLD 0.6617

2.2.2 Fault detection threshold design

To design our fault detection threshold value, we use a standard hypothesis testing approach,

following [100]. Let H0 denotes the hypothesis that there is no fault in the measurements

and H1 otherwise. According to Neyman-Pearson Lemma, the likelihood ratio is

Λ(H1, H0) =
p(MRD|H1)

p(MRD|H0)
,
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(a) (b)

(c)

Figure 2.3: Test statistics distributions in the faulty and non-faulty cases when KLD, MRD

with α = 0.5 and MRD with α = 0.1 are used as divergence measure.: the histogram in grey

represents the probability distribution of the non-faulty divergence measure values, and the one in

blue represents that of the faulty divergence measure values. For the faulty cases, impulsive faults,

selected uniformly randomly from 5−15 meters are added to one of the GPS channel measurements.

where the distributions of p(MRD|H0) is obtain by Monte Carlo runs. This expression is

equivalent to

MRD
H1

≷
H0

λ. (2.13)

The threshold λ for false alarm probability β follows from

P{MRD ∈ [0, λ]|H0} = 1− β, (2.14)
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where the interval [0, λ] is the one-sided 1−β probability concentration region or confidence

interval for MRD and β is also called the tail probability. If MRD > λ, then H0 is rejected

while H1 is accepted and vise versa. And the threshold λ is obtained by solve for the

chi-square cumulative probability function given β in (2.14).

2.2.3 Ratio test to increase the detection accuracy

Faulty measurement is not the only reason that causes spikes in MRD. Rapid change in

system dynamics also has the same effect on MRD in terms of the deviation in propagated

estimate, which consequently results in false alarms in the detection of fault if only total

MRD is considered. Therefore, to reduce false alarms and improve the accuracy of fault

detection, we propose a ratio test to utilize the individual MRD computed according to

MRDj = (H⊤
i zk,j −Hjx̂k|k−1)

⊤K⊤
k,jP

j∗−1
k|k Kk,j(zk,j −Hjx̂k|k−1)

= (H⊤
j R

−1
k,jzk,j)

⊤Pj∗−1
k|k (H⊤

j R
−1
k,jzk,j), (2.15)

j ∈ {1, · · · , N}, where Pj∗
k|k = αYj−1

k|k + (1 − α)Pk|k−1.The idea of the ratio test is consid-

ering the case that not all the measurements are faulty simultaneously, after obtaining the

individual MRDs, a fault is detected in a particular measurement channel j if and only if

the ratio between the corresponding individual MRDj and the smallest individual MRD in

this update step is greater than a predefined threshold γ, i.e.,

MRDj

min{MRDi}i=nz
i=1

> γ, j ∈ {1, · · · , N}. (2.16)

In healthy measurement scenarios (fault free measurements), all the individual MRDs should

be relatively within the same scale despite the possible maneuver of the vehicle. In other

words, the measurement channel j is said to fail the ratio test if its corresponding individual
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Figure 2.4: Ratio test statistics distribution histogram for 10 Monte Carlo runs with MRD with

α = 0.1 and fault magnitudes from 5− 15 meters.

MRDj is significantly greater than the remaining ones in the sense that it is γ times larger

than others. γ is selected statistically via Monte Carlo runs with introduced faults to make

it as the lower bound so that no miss detection exists. We conducted a simulation study in

ROCKET6G to determine distribution of the ratio test statistics for impulsive faults with

magnitude from 5− 15 meters. The result is shown in Fig. 2.4. The low bound of the ratio

test statistics, which is 3.2434, is chosen for the value of γ to minimize miss detection rate

in the simulation of MRD based FDE algorithm in Section 2.3.

2.2.4 The proposed FDE algorithm

Our proposed MRD-based FDE algorithm is shown in Algorithm 1. In our algorithm, when

N satellites are detected, the measurements are all used to obtain the updated state. Then,

the MRD measure is calculated for this updated estimate. If the value is above the threshold

value λ, the existence of a fault in GPS measurements is declared. Then, for the fault

isolation stage, where the INS propagated estimate is updated in n parallel IF filters, which

each corresponds to one of the GPS channels (IFj, j ∈ {1, · · · , N}). Next, the MRD is

computed for each update (MRDj, j ∈ {1, · · · , N}). A ratio test is conducted for these

individual MRDs which is explained in the later section. The GPS channels corresponding
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Algorithm 1 MRD based FDE Algorithm.

1: Input: {H⊤
i R

−1
i,kHi,H

⊤
i R

−1
i,kzi,k}Ni=1, Pk|k−1, x̂k|k−1, λ, γ

2: Init:Vh = {1, · · · , N}, Vh = { },
3: Compute total MRD from (2.12)
4: Compute {MRDj}Nj=1, from (2.15)
5: Compute min{MRDj}Nj=1

6: if MRD ≤ λ then
7: No fault detected
8: else
9: for j ∈ Vh do
10: if

MRDj

min{MRDj}Nj=1
> γ then

11: Vf ← {j}
12: end if
13: end for
14: Vh ← Vh\Vf
15: end if
16: Output: Vh

to the MRDj that fails the ratio test are declared faulty. These GPS channels are removed

from the batch before the fusion step and the remaining GPS measurement are used to

check whether the corrected total MRD value is reduced below the predefined threshold

value, whose selection procedure is explained later. With the help of ratio test, the isolation

and exclusion of the fault can be done in one step instead of being a recurrent process which

might potentially have computational issues when the number of faulty channels increases.

2.3 Demonstration Study

In what follows we conduct several simulations study in ROCKET6G in CADAC++ to

demonstrate the performance of our proposed FDE Algorithm 1. For these simulations, we

use the following parameters for our RMDmeasure: α = 0.1, β = 0.05 with the corresponding

λ = 0.2289 and γ = 3.2434. In the first simulation, a total number of 36 impulsive faults with

magnitudes randomly selected from 5−15 meters are added to the pseudorange measurement

of GPS channel 2 every 10 seconds starting from t = 10 second. The simulation results are

28



Figure 2.5: MRD plot for the FDE simulation of impulsive faults.

Figure 2.6: Performance of MRD based FDE method for impulsive faults without ratio test aided.

The blue circles represent the successful detection of fault while the red crosses represent the false

alarm

Figure 2.7: Performance of MRD based FDE method for impulsive faults with ratio test aided.

The blue circles represent the successful detection of fault while the red crosses represent the false

alarm.

shown in Fig. 2.5, Fig. 2.6 and Fig. 2.7. As shown in the figures, without the ratio test,

there exist 18 false alarms. The implementation of the ratio test reduces the false alarm

significantly according to Fig. 2.6 and Fig. 2.7. The spikes due to dynamics change exceeding

threshold γ in Fig. 2.5 are not declared as faulty with the aid of ratio test while the faulty

ones are detected.

In the second simulation, three step faults (with duration of 10 seconds each) are added to

the pseudorange measurement of GPS channel 2 at t = 200 second, t = 230 second and
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Figure 2.8: MRD plot for the FDE simulation of step faults.

Figure 2.9: Performance of MRD based FDE method for step faults without ratio test aided. The

blue circles represent the successful detection of fault while the red crosses represent the false alarm.

Figure 2.10: Performance of MRD based FDE method for step faults. The blue circles represent

the successful detection of fault while the red crosses represent the false alarm.

t = 260 second. Fig. 2.8 - Fig. 2.10 demonstrate how the MRD based algorithm behaves in

this case. Note that the gray areas in the figures represent the time period when the faults

are introduced. As shown, all three step faults are detected and excluded by monitoring

MRD with reduced false alarm in Fig. 2.10 and without miss detection after applying ratio

test. The fault detection alert is triggered every consecutive step during the fault period

because the previous fault is excluded while the upcoming measurements still contain faulty

components which make the MRD exceed threshold.

The last simulation demonstrates the performance of our proposed algorithm in detecting
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Figure 2.11: A real fault model based on the observations from satellite PRN 23 in Jan. 1st

2004 [1].

Figure 2.12: MRD plot for the FDE simulation of incipient faults.

incipient faults, which are also called slowly-varying faults. This fault is “deceptive” to

many FDE algorithms because if it increases slowly enough, it contaminates the entire state

estimate without being detected. An incipient fault model from [1] shown in Fig. 2.11 is used

for testing the MRD based FDE algorithm. This incipient fault is added at t = 190 second.

The behavior of the algorithm is demonstrated in Fig. 2.12 and Fig. 2.13. The incipient fault

is detected immediately after it appears, which prevents the state estimate from diverging

due to the accumulation of faults in measurements.
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Figure 2.13: Performance of MRD based FDE method for incipient faults. The blue circles

represent the successful detection of fault.

2.4 Probabilistic Threshold Estimation

In order to perform the proposed FDE algorithm, after obtaining the prior information (data

collection) of the faulty and non-faulty the detection threshold needs to be predetermined and

the detection result with respect to the threshold is deterministic and does not fully utilize

the information of all the prior information, which makes the FDE algorithm less flexible

and less robust. Also, the criteria of determining the threshold varies among the navigation

applications, which also limits the performance of the FDE algorithms. Therefore, to enhance

our proposed FDE framework in the previous sections, we propose the probabilistic threshold

concept with full use of the statistic information via a full Bayesian approach.

2.4.1 Problem Formulation

In the context of robust navigation, we want to eliminate the faulty measurements received by

the sensors and thus increase the localization accuracy. In such scenario, the two hypotheses

H0 and H1 represent “Non-faulty” and “Faulty” measurements respectively. The observation

Z is the modified Rényi divergence, MRD, between the propagated and updated estimates

of the navigation filter as we introduced in the previous sections. The overall goal is to

determine the true hypothesis H between H0 and H1. In previous section, we use the

standard likelihood ratio test to design the threshold λ. In this section, we propose to

handle the FDE threshold λ(θ) as a threshold function of the random variable parameter θ
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and then use Bayesian inference to estimate θ. Later we will show this is a special parametric

case of the Gaussian process classification with linear decision boundary.

2.4.2 Bayesian Inference of FDE Threshold

Assume θ follows a multivariate Gaussian distribution, i.e., p(θ) = N (µ,Σ) with unknown

mean µ and covariance Σ, then the threshold is also probabilistic and has a distribution

λ ∼ p(λ). The objective is to estimate the θ conditioned on all given observation Z, aiming

to obtain the posterior distribution p(θ|Z), where Z represent the stack of all non-faulty

and faulty MRDs. As such, we first choose intuitively a linear decision boundary function

fDB = θ⊤Z as our threshold function with λ to be the solution of fDB = 0. Then the

corresponding probability of H1 hypothesis is true given the MRD observation Z is

p(H = H1|θ,Z) = σ(−θ⊤Z) =
1

1 + exp(−θ⊤Z)
, (2.17)

where σ is the standard sigmoid function. Consider the likelihood model for MRD observa-

tion as

p(H|Z,θ) =
∏
i

(
Hip(H = H1|θ, Zi) + (1−Hi)p(H = H0|θ, Zi)

)
, (2.18)

where Hi = 1 if H = H1 and Hi = 0 if H = H0. According to the Bayes rule, the posterior

distribution of parameter θ is obtained as

p(θ|H,Z) =
p(H|Z,θ)p(θ)

p(H|Z)
. (2.19)

Since the likelihood function p(H|Z,θ) is non-Gaussian, the posterior is also non-Gaussian.

Thus there is no close-form solution to calculate the posterior p(θ|H,Z). However, we can

approximate the posterior using various methods such as Metropolis–Hastings algorithm
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of Markov chain Monte Carlo (MCMC methods [101] and variational inference (VI) [102]

methods. Once the posterior is well captured, given a new observation of MRD Z∗ the

probability of the new measurement is faulty, i.e., H = H1 is predicted by the following

formula

p(H = H1|Z∗) =

∫
p(H = H1|θ, Z∗)p(θ|H,Z)dθ. (2.20)

Practically, the integral can be calculated using the sampled mean as

p(H = H1|Z∗) = Eθ∼p(θ|H,Z)[p(H = H1|θ, Z∗)] ≈ 1

N

N∑
i

p(H = H1|Z∗,θi). (2.21)

After making the threshold a Gaussian random variable, detection based on the single deter-

ministic threshold is replaced by considering a distribution of the threshold for comparison

and the prediction result is an average of all possibility of the threshold values, which in

general makes full use of the data information. The graphical interpretation of the Bayesian

estimation of the threshold (parameterized linear decision boundary) is shown in Fig 2.14.

In fact, the technique we applied is a special case of the Gaussian process classification,

where we choose a parameterized linear decision boundary fDB with parameter θ. And

this parameter has a geometric interpretation in the likelihood ratio test. To generalize the

probabilistic threshold method, we can discard the parameter and linear assumption. In

other words, the decision boundary of faulty and non-faulty can be any arbitrary functions

f and even non-parameterized ones whereas we can no longer interpret their geometric

meaning. The general inference steps are quite similar to (2.17)∼(2.20).

Prior of f :

p(f) = N(0,K), (2.22)
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Figure 2.14: The graphical interpretation of the probabilistic threshold derived from the conven-

tional likelihood ration test.

where K is the kernel.

Probability model of H = H1:

p(H = H1|Z, f) = σ(f). (2.23)

Likelihood model:

p(H|Z, f) =
∏
i

(
Hip(H = H1|f, Zi) + (1−Hi)p(H = H0|f, Zi)

)
. (2.24)

Posterior distribution:

p(f |H,Z) =
p(H|Z, f)p(f)

p(H|Z)
. (2.25)
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Prediction:

p(f ∗|Z, H, Z∗) =

∫
p(f ∗|f,Z, Z∗)p(f |H,Z)df (2.26)

p(H = H1|Z∗) =

∫
σ(f ∗)p(f ∗|Z, H, Z∗)df ∗. (2.27)

Note that the posterior also needs to be approximated using Laplace Approximation or VI.

For more information, see [103].

2.4.3 Validation Study

We conducted a particle filter (PF) based target localization simulation using Python to

validate the feasibility of our method. The target dynamical model was obtained from the

simulated INS while the range measurements were provided by the four beacons at known

positions. The designed trajectory was a 3/4 circle. Random fault with magnitudes between

3− 15 m were manually added to the range measurements. And the FDE simulation result

is shown in Fig 2.15.

As it can be seen in the figure, the probabilistic threshold method effectively discriminated

the faulty measurements from the non-faulty ones so that the location accuracy is enhanced.

Note that this is a full Bayesian method, comparing to the conventional deterministic meth-

ods, the detection uncertainty (confidence) in terms of the prediction variance is generated

additionally, which provides more information and enables the evaluation of the detection

results. Most importantly, this method utilizes full data and can be used for general FDE

applications to generate optimal thresholds (optimal in the sense of minimum mean square

error).
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(a) w/o FDE

(b) w/ FDE

Figure 2.15: The implementation of the probabilistic threshold method in the simulation of a PF

based localization scenario. The dashed circles highlight the impact of the faulty measurements.

2.5 Conclusion

We propose a modified Rényi divergence-based FDE approach for a tightly coupled GNSS/INS

system. The main contribution is to analyze the components of the close-form of the Rényi

divergence under Gaussian assumption and to propose a modified Rényi divergence as the

new test statistics that has a lower computational complexity but delivers the same result.

Further, we present a statistical procedure to select the order α of the Rényi divergence
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measure for FDE to increase the detection accuracy. Additionally, we introduce a ratio test

among the Rényi divergence measure between the propagated and updated estimates due

to individual GNSS measurement channels to detect multiple faults in one single check. We

demonstrate our results via a simulated flight platform in CADAC++. The simulation re-

sults show the desirable performance for FDE in reducing false alarm cases and eliminating

miss detection cases. Lastly, we upgrade our FDE approach with a probabilistic threshold

method which utilizes full data to generate optimal thresholds autonomously and enables

the confidence analysis of the detection, which can be generalized to any FDE applications.
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Chapter 3

UWB Sensor Placement for

Foot-to-foot Ranging in Dual-foot

Mounted ZUPT-aided INS

For the indoor pedestrian navigation, where the Global Navigation Satellite System (GNSS)

is usually challenged, the pedestrian dead-reckoning (PDR) or pedestrian inertial navigation

system (INS) works as an infrastructure-free self-contained navigation system that does not

rely on external signals or pre-installed beacons and landmarks [104]. But, the navigation

solution merely based on the INS suffers from high drifts in the position estimation due to

a relatively high noise level and unknown time-varying biases in the inertial measurement

unit (IMU) measurements. To reduce the growth rate of errors in foot-mounted INS, the

zero velocity update (ZUPT) approach is frequently used [105]. ZUPT uses human-legged

locomotion and detects the phases of the gate to re-calibrate inertial sensors during the rest

phases of the foot. Nonetheless, the ZUPT’s performance depends on the pre-determined

ZUPT threshold, and it has a systematic error, which becomes significant for long-term

navigation. To bound the INS localization error further, in the case of dual foot-mount INS
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systems, foot-to-foot relative range measurement feedback has been proposed to aid the INS

system [106, 107]. In our work, we propose to use foot-mounted ultra-wideband (UWB)

sensors to measure the foot-to-foot range. And we investigate the impact of UWB sensor

placement as well as other factors on the navigation accuracy.

3.1 Problem Formulation and Objective Statement

UWB is a radio frequency (RF) signal whose performance can be affected by the transceivers’

height from the ground. The relative orientation of the UWB transceivers can also affect the

ranging performance. Therefore, to obtain high accuracy UWB range measurements with a

low bias for foot-to-foot ranging, in this letter, we investigate the dual-foot mounted UWB

sensor placement. Our investigation method includes first exploring the effect of the UWB

placement, height, and relative orientation on the foot-to-foot ranging performance when

the feet are stationary. Next, we investigate how different placements affect the performance

of the ZUPT-aided pedestrian inertial navigation. The Root Mean Square Error (RMSE)

is used as the performance metric for the static measurement accuracy. The Circular Error

Probable (CEP) is chosen to evaluate the sensor configurations in dynamic experiments. In

our experimental study, we used the DWM1000 UWB transceiver, one of the most popular

UWB transceivers on the market.

3.2 UWB sensor placement

This section reports on the effect of the UWB sensor placement on the foot-to-foot ranging,

and subsequently, on the localization accuracy of a dual-foot mounted ZUPT-aided INS. The

testbed we used to collect the data, called the Lab-On-Shoe platform, is shown in Fig. 3.1.

Detailed description of the Lab-On-Shoe platform can be found in [108] and [109]. The raw
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Figure 3.1: The Lab-On-Shoe platform.

measurements obtained from the UWB sensors are the range and the signal power metric

(PM). The PM is a popular measure that is used for NLoS UWB signal identification [2],

[110]. PM is the difference between the total received signal power and the direct-path

signal power. The principle behind the power-based NLoS identification method is that in

LoS condition, the power of the received direct-path signal takes a big proportion of the total

received signal power, while in NLoS condition the direct-path is significantly attenuated or

even completely blocked. When the difference between total received power and the direct-

path power, which is the PM, is larger than a threshold value, the range measurement is

identified as NLoS [2]. The performance of this approach, however, depends highly on the

choice of the discrimination threshold value. When UWB sensors are installed well above the

ground (for example on shoulders), the threshold used for a PM-based NLoS discriminator

is 6 dBm, that is any signal with PM value above 6 dBm is identified as NLoS [2], [110].

3.2.1 Ground Effect

Due to the Fresnel zone effect [111], as shown in Fig. 3.2, the height above the ground at

which the UWB sensors are placed affects the range measurement. A Fresnel zone is one of a

series of confocal prolate ellipsoidal regions of space around a transmitter and a receiver. The
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𝐹1: the radius of the 1-st Fresnel Zone at point P
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Figure 3.2: The first Fresnel zone.

obstacles inside the Fresnel zone can cause a significant interference in signal propagation

between receiver and transmitter. Fresnel zone computations are used to anticipate obstacle

clearances. On the other hand, the location of the transmitter and the receiver can be

designed to avoid obstacles based on the Fresnel zone. Intuitively, clear LoS between the

transmitter and the receiver guarantees the accuracy of UWB range measurements. But,

because of the complex nature of the radio waves, obstructions within the first Fresnel zone

can cause a significant weakness even if those obstructions are not blocking the apparent LoS

signal path. For example, suppose the two UWB sensors are placed in LoS condition but

not high enough above the ground and not close enough to each other. Then, the ground

can be an obstacle inside of the first Fresnel zone, causing a significant impact on the signal

strength. This phenomenon is known as the ground effect on UWB measurements.

Based on the distance between two parallel feet and the frequency of the UWB signal of the

Decaware DWM1000 module, we calculated the radius of the first Fresnel zone F1 according

to (3.1)

F1 = 0.5
√

cD/f , (3.1)

where c is the speed of light, D is the distance between the transmitter and the receiver
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mounted on the feet, and f is the frequency of the transmitted signal. Given that the foot-

to-foot distance is 12 in (standing parallel), and the frequency of the UWB signal of DWM

1000 sensors is 6.5 GHz, based on (3.1), the theoretical radius of the first Fresnel zone is

0.06 m. Therefore, the two UWB sensors should be placed at least 0.06 m above the ground

to avoid the ground effect.

The minimum height obtained by the Fresnel zone criterion is a theoretical value. We tested

the effect of the height on the ranging accuracy and the PM value of the DWM1000 UWB

sensors by placing two UWB transceivers face-to-face (at 0◦ angle shown in Fig. 3.4(a)) and

at different heights of 1.0, 2.0, 2.5, 4.0, and 6.5 inches and ranges of 12, 14, 16 and 18 inches

from each other. The results are shown in Fig. 3.3. Fig. 3.3(a) clearly shows the adverse effect

of approaching close to the ground on ranging accuracy, as predicted by the Fresnel zone

study. Notice that the recommended height of 0.06 m ≈ 2.36 in by the Fresnel zone analysis

when UWB sensors are 12 in apart correlates well with the experimental value observed

in Fig. 3.3(a). With regards to PM value, we can see in Fig. 3.3(b) that the deterministic

threshold of 6 dBm is not respected well when sensors are closer to ground. Only at the

height of 6.5 in the average PM value starts to go under 6 dBm. Recall that PM values below

6 dBm indicated LoS measurements. This phenomenon can be resulted from the multipath

propagation due to ground effects.

3.2.2 Orientation Effect

Besides the UWB sensors’ height from the ground, the relative orientation of the transceivers

also affects the accuracy of UWB ranging. To find an optimal relative orientation for the

UWB sensors placed on the Lab-on-Shoe, we collected raw measurements at 8 relative angles

shown in Fig. 3.4 (a). The UWB sensors were placed at 6.0 in (0.1524 m) above the ground,

which is the same height that the UWB sensors are from ground on Lab-on-Shoe platform
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1.0 in 2.0 in 2.5 in 4.0 in 6.5 in true mean

(a) Range vs. Height

1.0 in 2.0 in 2.5 in 4.0 in 6.5 in true mean

(b) PM vs. Height

Figure 3.3: The range and PM values at different heights and distances. In each height/distance
pair, 1000 measurement samples are taken.

and 12.0 in (0.3048 m) from each other. The collected data is visualized in Fig. 3.4 (b).

The radius of the solid green circle is the actual distance between the sensors (12.0 in).

The sensors’ location is shown in the X − Y plane, with one of them placed fixed at the

center and the other one placed at different relative angles as shown in Fig. 3.4 (a). The

optimal relative orientation to place the UWB sensors is when the empirical mean of the

collected measurements is on the perimeter of the green circle (to have zero mean Gaussian
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(a) Schematic

(b) Measurement Cloud

Figure 3.4: UWB sensor measurements at various relative angles when they are 12 in apart and

6 in above the ground. (a) is the schematic for the collected data cloud in (b).

distribution). According to the results showing RMSE of the UWB range measurements at

different orientations, Fig. 3.4 (b) and Table 3.1, we concluded that the optimal configuration

to place the UWB sensors on the Lab-on-Shoe platform is when the sensors are at 270◦

relative orientation.

On the right-hand side plot in Fig. 3.4 (b), the Z axis denotes the PM, and the green circle

is in the 6 dBm plane, which represents the deterministic threshold used in literature [2]

to discriminate LoS and NLoS when the sensors are placed well above the ground. This

experimental study, given that all the measurements are collected in clear LoS, similar to

the results in Fig. 3.3(b), indicates that the PM value of 6 dBm is not the appropriate

threshold value for distinguishing LoS and NLoS in lower heights, which is also reported in

[112]. To investigate further, we collected a set of measurements in NLoS when we place
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Table 3.1: The UWB range measurements RMSE in different orientations.

Angle (◦) 0 45 90 135 180 225 270 315
RMSE (in) 3.0 5.5 2.3 4.9 6.6 7.6 1.7 2.4

Figure 3.5: The UWB measurements under LoS and NLoS conditions.

a metal plate of 1 in thickness as an obstacle between two feet. The results are shown in

Fig. 3.5. As it can be learned from the top view of data, there is a positive bias in the

UWB range measurement under NLoS conditions compared to LoS conditions. Once the

NLoS is identified, the bias can be removed manually. However, the LoS and NLoS UWB

PM measurements are not separable with merely a fixed deterministic threshold according

to the 3-D plot. Therefore, our results conclude that a power-based identification based

on a fixed PM threshold is not an appropriate measure to identify NLoS measurements at

lower heights.

3.2.3 UWB placement effect on localization accuracy

To investigate the effect of UWB sensor placement on localization accuracy of a dual-foot

mounted ZUPT-aided INS, we carried out a set of experiments in which a pedestrian walked

on a straight line of length 43.5 m, as shown in Fig. 3.6. The experiments were conducted in

the Engineering Gateway Building at the University of California, Irvine, using the Lab-on-
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Shoe platform (Fig. 3.1) whose foot-mounted UWB sensors were at 6.0 in height from the

ground in four different configuration shown in Fig. 3.7. In this setting, there is always a clear

path between the two feet, which ensures the LoS condition throughout the experiments.

The sampling rates of the IMU and the UWB sensor were set to 1000 Hz and 10 Hz,

respectively. Comparing with sensors placement discussed in Section 3.2.2, configuration 1

to 4 corresponds to a relative orientation of 180◦, 90◦, 0◦ and 270◦ between the sensors. We

carried out five sets of walks along straight reference trajectory for each configuration. The

results of these experiments are shown in Fig. 3.8, which presents the localized trajectories,

and Fig. 3.9, which shows the CEPs. The CEP is a measure of precision defined as the median

error radius of a circle centered on the true value (the endpoint location in our experiments).

As we can conclude from these plots, configuration 4 with CEP of 0.41% of the distance

traveled compared to 0.42%, 1.07% and 0.85% of the distance traveled, respectively for

configurations 1, 2 and 3, demonstrates the best localization performance. This result is

consistent with what we concluded in Section 3.2.2, which indicated the relative orientation

of 270◦ is the optimal configuration when the sensors are placed stationary and the pedestrian

stands still with feet parallel. The reader should note that for all four configurations the

CEP value reported in Fig. 3.9 normalized by the distance traveled is significantly less than

the CEP values of 6.90% and 4.64% of the distance traveled reported in [107] (a walk over

a straight line of 53 m) for, respectively, ZUPT aided by ultrasonic foot-to-foot ranging and

ZUPT aided by vision-based foot-to-foot ranging.

3.3 Conclusions

This section investigates the effect of the UWB sensor placement for foot-to-foot ranging

in dual-foot mounted ZUPT-aided pedestrian inertial navigation. We discuss the factors

affecting the UWB measurements, including the height from the ground and the relative
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End point

Start point

Pedestrian

Figure 3.6: The ZUPT-aided pedestrian inertial navigation experiment.

Configuration 1 Configuration 2

Configuration 3 Configuration 4

Figure 3.7: Four different UWB sensor placement configurations.

orientation of the UWB sensors. The result showed that the UWB orientation significantly

influences the measurement quality. The height also impacts the measurements significantly

in lower heights due to the ground effect. In a set of experimental studies, we demonstrate

the best placement for the UWB sensors and derived a preferable configuration in the ZUPT-

aided pedestrian inertial navigation. Our results also illustrated that the well-known power-

based NLoS discriminator that uses a fixed power metric threshold to identify NLoS UWB

range measurements is not an appropriate measure at low heights.
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Figure 3.8: The estimated trajectories of the right foot in four configurations. The black dashed

line represents the reference trajectory. The red, yellow, light blue, dark blue and gray lines denote

the walks 1 to 5, respectively.
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Figure 3.9: The CEP for four configurations.
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Chapter 4

UWB LoS and NLoS Identification

and Bias Compensation

In this chapter, we further investigate the approaches to increase the accuracy of the UWB

ranging via identifying the LoS and NLoS scenarios and compensate the bias accordingly.

In our earlier work in navigation filters that processed both LoS and NLoS UWB ranging

(see our papers [113] and [114]) we assumed that the LoS and NLoS measurements could

be identified and distinguished from each other with exact certainty. In these navigation

filters, we used the popular power-based NLoS identification method of [2]. As we illustrate

in previous chapter, the working principle of the power-based NLoS identification methods

is that in LoS condition, the power of the received direct-path signal takes a big proportion

of the total received signal power. In contrast, in NLoS conditions, the direct path is signif-

icantly attenuated or even completely blocked. When the difference between total received

power and the direct-path power is larger than a threshold value, the range measurement is

identified as NLoS [2]. The performance of this approach, however, depends highly on the

choice of the discrimination threshold value and our experimental study in previous chapter

shows that in practice, the deterministic identification of the UWB ranging mode is not
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accurate.

In this dissertation work, we propose a novel bias correction framework called OptiTrack-

aided learning-based UWB bias correction (OLUC) for both LoS and NLoS UWB ranging

via low-cost UWB transceivers. Our method is depicted in Fig. 4.1. The novel features

we use in our ML-based framework are the first path power level (FPPL), the received

signal strength (RSS), the power metric (PM), and the raw range measurement, which are

readily available on low-cost UWB transceivers such as the popular DWM1000 developed

by DecaWave [115]; see Section 4.2.1 for more details. Recognizing that the nature of the

bias generation in the LoS and the NLoS modes are different, we take a two-step approach

to our bias correction. First, we use an artificial neural network (ANN), referred to as

LaNANN (short for LoS and NLoS ANN), to discriminate the LoS and NLoS measurements.

Then, we use a set of two ANNs, LoS bias correction ANN (LBCANN), and NLoS bias

correction ANN (NBCANN), to learn the bias-free ranges out of the uncorrected UWB range

measurements under LoS and NLoS conditions, respectively. We adopt ANN as our learning

model because the universal approximation theorem claims that an ANN with enough depth

can approximate any continuous function given certain weights. In other words, we can

approximate the complex unknown UWB bias model using the ANN and minimize the size

of the ANN to reduce the computational complexity.

4.1 Objective statement

Figure 4.2 shows the result of a set of experimental studies that compares the raw UWB

range measurements with the true distance between UWB sensors. As seen in Fig. 4.2, the

NLoS bias is more significant than the LoS bias. On the other hand, as the distance between

the sensors grows the LoS bias also grows due to multi-path effects. Literature shows that

the LoS bias can also become significant in short ranges when the sensors are close to the
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UWB Measurements:

Range, PM, FPPL, RSS

LaNANN

LBCANN NBCANN

NLoS

Bias-free Range

No Yes

Figure 4.1: The diagram of our learning-based UWB LoS and NLoS classification and bias correc-

tion method. PM: Power Metric, FPPL: First Path Power Level, RSS: Received Signal Strength,

LaNANN: Line-of-sight and Non-line-of-sight artificial neural network, NLoS: Non-line-of-sight,

LBCANN: Line-of-sight bias compensation artificial neural network, LaNANN: Non-line-of-sight

bias compensation artificial neural network.

NLoS

LoS

Figure 4.2: The raw UWB range measurements collected at different true distances within 10 m

in LoS and NLoS conditions. The measurements are collect by DecaWave DWM1000 UWB sensors

described in Section 4.2.3. The red dash-line, regarded as the “ground truth”, represents the ideal

raw range measurement of the UWB without any error.

grounds due to ground effect; for more details see e.g., [38] where we used UWB sensors for

foot-to-foot ranging to improve pedestrian localization using a double-foot-mounded INS.
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Bias in the range measurements degrades the ranging accuracy of the localization filters.

To observe the effect of the bias, let us consider a beacon-based localization of an UWB-

tagged mobile agent using a group of N anchor UWB nodes located at known positions

{A1, A2, · · ·AN} ∈ R3. Denote the position of the tagged agent by PTag ∈ R3. The agent can

communicate with each of the N anchors and compute the corresponding ToF ranges. The

measured range with respect to each anchor consists of the actual distance, the measurement

noise, and a bias. Thus, the range measurement zn between the UWB tag and the n-th anchor

is computed as

zn=∥An − PTag∥2 + ω + bn, (4.1)

where ∥.∥2 is the Euclidean distance, ω is the zero mean white Gaussian noise and

bn =


bLoSn , LoS

bNLoS
n , NLoS

, n = 1, 2, · · · , N, (4.2)

is the measurement bias whose value differs in the LoS and NLoS ranging conditions. The LoS

bias is due to various effects such as multi-path, relative orientation, and radiation pattern

whose value varies at different actual distances. For the NLoS range measurements, bias

is additionally due to the range measurement increment resulted from the NLoS increased

transmission time. The recursive least square (RLS) estimator[116] to estimate the tag

location P̂ k
Tag when the range zkn between the UWB tag and the n-th anchor is obtained at

timestamp k is

P̂ k
Tag = P̂ k−1

Tag +Kk(zkn − ẑkn), (4.3)

where Kk is the estimator gain matrix, ẑn =∥An − P̂ k−1
Tag ∥2 is the predicted range measure-

ment. Given the biased range measurement model in (4.1), the estimation error ek of the
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RLS estimator at time k is

ek = P k
Tag − P̂ k

Tag = (I−KkHk)ek−1 −Kk(bn + ω), (4.4)

where I is the identity matrix and Hk =
∂∥An−PTag∥2

∂PTag
|PTag=P̂k−1

Tag
. On the other hand, he

location estimation covariance matrix Σk at time k is

Σk = (I−KkH)Σk−1. (4.5)

As (4.4) and (4.5) show the bias bn does not directly affect the covarianceΣ
k but it aggravates

the location estimation error ek. This means that the bias in the measurements not only

increases the error it will also cause inconsistent estimation (overly optimistic estimates),

which eventually leads to filter instability and divergence. The objective of this work is to

improve the UWB localization filter accuracy and stability by removing the bias from the

UWB measurements both in LoS and NLoS measurements using an ML approach.

4.2 Learning-based UWB LoS and NLoS Classification

and Bias Correction

This section gives a detailed account of our learning-based bias correction method depicted

in Fig. 4.1.

4.2.1 Feature Analysis and Selection

We focus on designing a bias correction method that can be used with low-cost UWB

transceivers. In this work, we use the popular UWB transceiver DWM1000 developed by
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OptiTrack Camera

Teensy 3.2

Figure 4.3: The screenshot of tracking the DecaWave DWM1000 UWB sensor attached with

reflective markers in the Motive software.

DecaWave [115] whose data acquisition and ranging software runs on a Teensy 3.2 as shown

in the right-hand side of Fig. 4.3. The Teensy 3.2 microcontroller implements a serial periph-

eral interface protocol to communicate with the UWB and collect sensor measurements [117].

To pick the features for measurement classification and correction, we constrained the choice

to the signals that are readily available on this UWB ranging sensor.

To distinguish NLoS UWB measurements from LoS ones, [2] employs a PM-based ranging

mode discriminator with a deterministic threshold. The motivation for this choice is that in

the LoS condition, the received direct-path signal’s power takes a big proportion of the total

received signal power. In contrast, in the NLoS conditions, the direct path is significantly

attenuated or even completely blocked. When the difference between the total received

power and the direct-path power is larger than a threshold value, [2] argues that the range

measurement can be identified as NLoS. To investigate the effectiveness of this feature, we

carried out an experimental study at different distances between two UWB sensors under a

controlled environment where we know the true measurement ranges and the measurement

mode in terms of LoS and NLoS. The result shown in Fig. 4.4, however, indicates that

the deterministic threshold represented by the red line cannot completely separate LoS and

NLoS measurements, and there are still significant overlapping PM values.

To obtain a better separation between LoS and NLoS measurements, in addition to the
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NLoS

LoS

Figure 4.4: The power metric of UWB measurements collected at different distances within 10 m

in LoS and NLoS respectively. The red line denotes the deterministic threshold to discriminate LoS

and NLoS proposed by [2].

Figure 4.5: The 3-D plot of UWB measurements when true distance between the sensors is 7 m.

PM, we also included the FPPL and RSS of UWB signals and the raw range measurements

(uncorrected) as features. For a fixed distance, e.g., 7 m, the 3-D visualization of the UWB

measurements under controlled data collection is shown in Fig. 4.5. As seen in this plot, using
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these features the LoS and NLoS measurements are more clearly separated from one another.

As we discussed earlier, the relative pose of the transceivers can also affect the ranging bias

and thus recent work like [59] considered relative bias as an input feature. However, since

relative pose is hard to obtain without additional sensors, we did not consider it as a direct

feature. Relative pose affects FPPL and RSS. In our learning approach, the effect of relative

pose on the bias is captured implicitly by the use of diverse training data that is collected

in various relative poses between ranging sensors. That is, we allow the ANNs to learn the

effect of the relative pose on the bias from its implicit application on the other features i.e.,

PM, FPPL, and RSS. Our evaluation study for localizing a moving pedestrian in Section

4.3 shows that the use of diverse training data results in in a bias correction method that

delivers high-accuracy localization results.

4.2.2 ANN architecture design

In general, the LoS and NLoS scenarios of the UWB measurement can be modeled as a

random variable θ with a Bernoulli distribution mathematically whose probability mass

function is

f(θ; p) =


p, if θ = LoS

1− p, if θ = NLoS

(4.6)

The probability of LoS p, as well as the bias-free range z̃n = ∥An−PTag∥2 +ω, based on our

selection of the features, are functions of range, RSS, FPPL and PM, respectively.

p = fLaN(range,RSS,FPPL,PM), (4.7a)

z̃n = fBC(range,RSS,FPPL,PM). (4.7b)

58



Range

RSS

Input

FPPL

PM

Node1

Node2

Node3

Node4

…

Node1

Node2

Node3

Node4

…

Hidden Layers

PLoS

…

…

…

…

…

Output

Figure 4.6: The ANN model for UWB LoS and NLoS Classification. The ANN structure for

learning the range bias looks similar except that the output layer represents the bias-free range.

Then our objective boils down to use ANNs to approximate these functions without explicitly

knowing the exact mathematical relations, that is, we will approximate them with

p̂ = f̂LaNANN(range,RSS,FPPL,PM), (4.8a)

ˆ̃zn =


f̂LBCANN(range,RSS,FPPL,PM), if p̂ ≥ 0.5

f̂NBCANN(range,RSS,FPPL,PM), if p̂ < 0.5

. (4.8b)

where f̂LaNANN, f̂LBCANN and f̂NBCANN denote, respectively, the generic functions of the feed-

forward LaNANN, LBCANN and NBCANN of our method shown in Fig. 4.1. Figure 4.6

depicts the LaNANN component, which classifies the measurement type. It uses four nodes

in the input layer corresponding to the UWB measurements of range, RSS, FPPL, and PM.

The output layer has one node for the LoS probability. The NLoS probability is obtained

via 1 − p̂. We use the same input for the two ANNs of LoS and NLoS bias correction in

parallel while their output layers have one node of the bias-free UWB range.
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Figure 4.7: The OptiTrack motion capture system in KCS lab at University of California Irvine.

The cameras have 1280× 1024 resolution with a 120 Hz native frame rate.

4.2.3 OptiTrack-aided Training Data Generation

The success of ML-based methods depends on extensive and informative training data gen-

eration, otherwise, the out-of-sample performance cannot be guaranteed due to the distribu-

tional mismatch. An important factor of the bias in the measurements is the relative pose

between the UWB ranging sensors. As mentioned in Section 4.2.1, we propose to incorporate

the relative pose implicitly in the measurements. Therefore, we have to make our training

data set contain as many relative poses as possible. Collecting training data manually at

various relative poses is not feasible since there are infinite possibilities of relative poses. To

obtain truly diverse and rich training data in terms of relative poses, we use the OptiTrack

motion capture camera system to obtain an accurate bias-free range dynamically by taking

measurements between a moving tagged agent and a set of stationary UWB beacons.

The OptiTrack system is a precise motion capture and 3-D tracking system with a localization

error of less than 0.2 mm via optical ranging and trilateration for numerous applications,

e.g., video game design, virtual reality, and robotics. The OptiTrack system in our Kia

Cooperative Systems (KCS) lab at University of California Irvine (UCI) is shown in Fig. 4.7.

The cameras can precisely perceive the particular reflective markers’ locations via visual-

based ranging techniques. As such, we attach at least 3 reflective markers on the UWB
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sensors so that they form a rigid body that can be recognized and tracked by the OptiTrack

system as shown in Fig. 4.3. The pivot point of the UWB rigid body defined by the reflective

markers can be manually assigned and tracked. Consequently, we can obtain the accurate

position of the UWB sensors by setting their antennas as the pivot points and then calculate

precisely the distances between the pivot points as the label values, i.e., bias-free ranges, for

the LBCANN and NBCANN.

To generate a diverse and abundant training data set, an agent holding a tag UWB sensor

that connected to three anchor UWB sensors walked on random paths under the OptiTrack

system in the LoS condition in our KCS lab for 5 minutes. The agent also waved the tag

UWB in the air to create different relative poses. All collected data were labeled by LoS.

For NLoS cases, we put various obstacles between the tag and the anchors and repeated the

same data collection procedure as for the LoS data collection. The OptiTrack-aided training

data generation experiment is illustrated in Fig. 4.8. By collecting data in such a dynamic

setting, we enrich the training data set to compensate for the lack of explicit knowledge of

the relative poses and thus mitigate the out-of-sample issue to a considerable extent.

4.2.4 Training Result

The UWB device we used to generate the training data is DecaWave DWM1000 and the

sampling rate was set to 10 Hz. We generated 300000, 150000, and 150000 samples of

the UWB range, PM, FPPL, RSS, and bias-free range for the LaNANN, LBCANN, and

NBCANN, respectively, generated by data collection experiments described in the previous

section. The samples are split into a training set, a validation set and a test set according

to the ratio of 70%, 15%, and 15%. For the LaNANN, the label is LoS (1) and NLoS

(0), while that of LBCANN and NBCANN is the bias-free range. We used the grid search

method [118, 119] to tune the hyperparameters of all ANNs during the training process. The
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Figure 4.8: The OptiTrack-aided training data generation experiment where the agent holding a

tag UWB sensor walks along a random trajectory. The reference position of all UWB sensors are

obtained by the OptiTrack system. The blue line denotes the trajectory of the tag UWB sensor

while the red crosses represent the anchors. For NLoS data collection, multiple obstacles such as

wooden boards (shown as the orange rectangles), books, foams, human body, and other items seen

in the lab are placed to block the direct path between the tag and the anchors.

Hyperparameters LaNANN LBCANN NBCANN
Number of hidden layers 2 3 3
Number of units per layer 10 11 18
Loss Cross-Entropy MSE MSE
Activation function Sigmoid ReLU ReLU
Optimizer Adam Adam Adam
Batch size 256 512 512
Learning rate 0.05 0.025 0.025

Table 4.1: The hyperparameter design of the ANNs.

fine-tuned design of all three ANNs is shown in Table 4.1.
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Training Validation Test
LaNANN (Accuracy: %) 94.39 94.12 92.73
LBCANN (RMSE: m) 0.1308 0.1316 0.1351
NBCANN (RMSE: m) 0.1557 0.1563 0.1662

Table 4.2: The summary of training result for all ANNs.

In summary, the training results are shown in Table. 4.2 where the best classification ac-

curacy in the test sets achieved by LaNANN is 92.73%. Also, the root mean square error

(RMSE) for the test set for LBCANN and NBCANN is 0.1351 m and 0.1662 m, respectively.

The training period took about 2 hours in total. The prediction run time for LaNANN,

LBCANN and NBCANN is 0.0022 ms, 0.0029 ms and 0.0041 ms using a Dell Laptop: Intel

CoreTM i5-1135G7@4.20GHz, quad-core, 8 GB memory.

4.3 Experimental Evaluations

In this section, we evaluate the effectiveness of our proposed OLUC method through a set

of pedestrian localization experiments using the RLS method described in Section II. To

demonstrate the positive impact of using a training data set that is collected in a diverse

set of relative poses, we compare the performance of the RLS-based pedestrian localization

in two parallel processes: in one we use our proposed OLUC bias correction and in the

other we use a bias correction method that we call “Stationary-ANN”. Stationary-ANN

has the same structure of the OLUC method as shown in Fig. 4.1, but it has been trained

using a different data set that was collected in a limited number of stationary configurations

where the true distances were measured by human using measuring tape. We also compare

the effectiveness of our proposed OLUC method to the existing OptiTrack-aided method

proposed in [63], which used an ANN method to fuse IMU/UWB-based localization results

with Optitrack position measurements to improve localization accuracy. We denoted this

method as “ANN-Fusion”. All the ANNs of the OLUC and the Stationary-ANN method used
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in the experimental studies described below were trained using the data collected in the KCS

lab at UCI, whereas the ANN-Fusion used the position data collected at the experimental

locations according to [63].

To show the generality of the proposed OLUC bias correction method, we conducted our

experimental studies at two different unseen locations, i.e., no data from these locations was

used in training the ANNs used in the experiments. The first location was the Public Safety

Immersive Test Center (PSITC), which is a collaborative facility between the First Responder

Network Authority and the National Institute of Standards and Technology’s Public Safety

Communications Research Division, located in Boulder, Colorado. The second place is in an

office space in the CALIT2 building at UCI.

4.3.1 Experimental Evaluation at the first Location: PSITC

In this experiment, three UWB anchors were placed at known locations at the PSITC facil-

ity. A pedestrian carrying a tag UWB sensor, which maintained communications with the

three UWB anchors, walked along three different trajectories: straight line, rectangle, and

lemniscate (figure-eight shape), for about five to six minutes, as depicted in Fig. 4.9. The

walks were repeated three times for each trajectory. Due to the blockage by human bodies,

roadblocks and walls in the testing venue, the measurement scenarios occasionally switched

between the LoS and the NLoS modes. We used the OptiTrack system installed in the

PSITC facility to obtain high-accuracy reference trajectories for performance comparison.

The reader should note that the reference trajectories were only used for the evaluation of

our bias correction methods that were trained based on the data collected in the KCS lab.

The experimental results are shown in Fig. 4.10 and Fig. 4.11.

As seen in Fig. 4.10, the RLS localization which uses our proposed OLUC method out-

performs the Stationary-ANN and ANN-Fusion methods. The error plots, as well as the

64



w/o Bias Correction OLUC ANN-Fusion
Loop-Closure Error (m) 0.8046 0.2643 1.5020

Table 4.3: The loop-closure error of the trajectory using the proposed OLUC method versus the
ANN-Fusion.

performance metrics in Fig. 4.11, show that our method achieved the substantial bias reduc-

tion rates of 66.91%, 64.66%, and 63.13%, respectively in the three trajectories that we used.

Note that the Stationary-ANN has an inferior performance due to the lack of diversity in

its training data set (out-of-sample problem), which we discussed earlier. As for the ANN-

Fusion method of [63], it has slightly worse performance compared to our proposed OLUC in

this experimental setting but the reader should notice that this method only applies at the

facilities that a motion capture system like OptiTrack exists because we used the accurate

position data provided by the OptiTrack to train the ANN of the ANN-Fusion method in

this particular location. Therefore, it does not posses the wide generality that our OLUC

method offers, as it is shown in the next experimental study.

4.3.2 Experimental Evaluation at the second Location: CALIT2

To verify the generalization of our proposed OLUC method as well as the ANN-Fusion

method against unseen data (new location), we additionally conducted a set of localization

experiments in an office space in the CALIT2 building at UCI, where the OptiTrack system

is not available and the LoS/NLoS conditions are more complicate due to the cubicles in

the environments as shown in Fig. 4.12. The experimental settings remained the same as

the previous case, except the designed trajectory and the environment (no OptiTrack and

more complicate LoS/NLoS conditions). Note that in this extra experiment, all methods

were tested via a new trajectory on which they were not trained. Figure 4.13 and Table 4.3

illustrate the additional comparison results. We used the loop-closure error for the mobile

UWB tag instead of the RMSE since its start and end point were identical and the reference
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Figure 4.9: The demonstration experiments conducted in the PSITC facility associated with the

bottom diagram that shows the designed trajectories of the mobile UWB tag, the positions of the

anchors, and of the obstacle roadblocks.

trajectory was measured by human labor and thus was less accurate. As we can see, without

the available OptiTrack and re-training the ANN (the ANN of the ANN-Fusion method was

trained in the first location, PSITC), the ANN-Fusion method delivers poor localization

results compared to our proposed OLUC method whose ANNs were only initially trained

using the data collected in the KCS lab.

We can find the evidence in the second comparison studies from both Fig. 4.13 showing the

trajectories and Table 4.3 comparing the loop-closure errors that the ANN-Fusion performs

even worse than using the raw measurements without the bias correction which indicates the
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(a) Straight Line (b) Figure 8 (c) Rectangle

Figure 4.10: The estimated trajectories of the agent using RLS localization method as well as the

localization error plots without (w/o) bias correction (using raw measurements) and after applying

different bias correction methods, i.e., Stationary-ANN method, ANN-Fusion and the proposed

OLUC.

Figure 4.11: The average experimental statistics of the different trajectories using different bias

correction methods.

ANN of the ANN-Fusion failed and cannot be generalized to other locations. On the contrary,

our proposed method still performed well. It can be concluded that the big constraint of the

ANN-Fusion is that it works only when the OptiTrack is available or the training and the

evaluation trajectories are the same. Because it necessarily needs to train the ANN based on

the estimated position obtained by both the UWB sensors and the OptiTrack rather than
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Figure 4.12: The demonstration experiments conducted in the cubicle environment in the CALIT2

building at UC Irvine associated with the bottom diagram that shows the designed trajectories of

the mobile UWB tag, the start and end point, the positions of the anchors, and of the cubicle

configurations.

Figure 4.13: The estimated trajectory of the mobile UWB tag using the proposed OLUC method

and the ANN-Fusion.

the UWB signal, which makes the generalization performance not satisfactory. Therefore,

the ANN-Fusion method is only a position enhancement that uses and is highly dependent

on the OptiTrack. If the OptiTrack is not available and the designed trajectory is not seen

by the ANN, it fails easily. Conversely, our proposed OLUC learns the bias from the signal
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which is comparatively robust against the change of locations and does not highly rely on

the OptiTrack, since the OptiTrack is only used to generate training data. The evaluation

using the OptiTrack is not a necessity.

4.4 Conclusions

UWB ranging bias correction has a significant impact on the localization accuracy of the

UWB-based navigation algorithms. In this dissertation work, we addressed the problem of

UWB ranging bias correction in complex localization scenarios by training neural network

models to distinguish the LoS and NLoS scenarios and predict the corresponding bias-free

range in real-time using features that are readily available on low-cost UWB sensors. Our

experimental data collection resulted in identifying a novel set of features, raw range, PM,

FPPL and RSS, to train ANNs for measurement type classification and bias-free range

prediction. The effectiveness of any learning-based solution depends on the diversity and

informativeness of its training data. Recognizing that the relative orientation of the ranging

sensors affects the ranging accuracy, we used an Optitrack motion capture system to collect

high-accuracy ranging between a tag UWB sensor on a moving agent and fixed UWB anchor

nodes. In doing so, we collected a diverse set of data in various relative poses between

the sensors. The effectiveness of our OptiTrack-aided supervised learning-based UWB bias

correction method was demonstrated via a set of pedestrian localization experiments using

the RLS algorithm for location estimation in two different locations. Our experiments showed

that our method leads to a considerable improvement in the localization accuracy.
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Chapter 5

Cooperative Localization Using

Learning-based Constrained

Optimization

To reduce the computational cost of the consistent implicit track-to-track fusion and CL

methods, we propose using machine learning (ML) based solvers to solve the optimization

problems used in these methods. We demonstrate our approaches for solving the optimization

problems in the DMV and the PECMV methods for CL proposed in [48]. We evaluate the

effectiveness of our proposed approaches using a set of experiments for pedestrian localization

using an INS aided by CL. In these experiments, we observe that the run time of the proposed

approaches compared with DMV and the PECMV is reduced 53.85% and 99.98% with

no sacrifices on the localization accuracy and estimation consistency of CL filters. Notice

that our proposed ML base optimizer is an approach that can be easily extended to the

loosely-coupled estimation algorithms reviewed above as well as covariance union (CU) and

arithmetic average (AA) density fusion [120].
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ML-based solutions for optimization problems have been successfully used in the applications

such as combinatorial optimization [81], wireless network optimization [82], and supply chain

management [83]. ML-based approaches have also been used in CL problems but for different

purposes. For example, [84] uses a deep neural network (DNN) to assist a CL for vehicular

networks, where DNN is designed to solve the chronic nonlinear approximation problem.

Or, [85] uses an ML-based surrogate model as a measurement scheduling merit function.

5.1 Problem Definition

Consider a group of N mobile agents with communication and computation capabilities. The

equation of motion of each agent i ∈ V = {1, · · · , N} at time step t ∈ Z+ is described by

xi(t) = f(xi(t− 1),ui
m), xi ∈ Rni

, (5.1)

where xi(t) ∈ Rni
is the state of agent i (e.g., position, velocity, attitude) and ui

m = ui(t)+νi
u

is the self-motion measurement command obtained, e.g., from odometry or IMU. Here, νi
u is

the self-motion measurement noise. Each agent uses a local filter to obtain an estimate of its

own state x̂i–(t) ∈ Rni
and its corresponding error covariance matrix Pi–(t) ∈ S++

ni at each

timestep t ∈ Z+ using its motion model and occasional access to absolute measurements

through e.g. GPS or measurement from known landmarks. Here, S++
n is the set of positive

definite matrices of size n. We call beli–(t) = (x̂i–(t),Pi–(t)) the prior belief of agent i at

time t. In this context, S++
n represents the set of positive definite matrices of size n. We

refer to beli–(t) = (x̂i–(t),Pi–(t)) as the prior belief of agent i at time t.

Due to the contaminating noise in the self-motion measurements, the localization accuracy of

the agents degrades during the mission horizon. If access to absolute measurements to correct

dead-reckoning based localization is limited, to bound the error and improve accuracy, CL
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via joint processing of occasional relative measurements among two agents is used. Let the

relative measurement (e.g., relative range, relative bearing, relative pose, or a combination

of them) zij(t) obtained by agent i from agent j at time t be

zij(t) = h(xi(t),xj(t)) + νi(t), zij ∈ Rni
z (5.2)

where νi(t) ∈ N (0,Ri(t)) is the zero mean Gaussian measurement noise with covaraince

matrix Ri(t) ∈ S++
ni
z
.

When no inter-agent measurement is available to update the local belief, the updated belief

is set to be the propagated belief, i.e., beli+(t) = beli–(t) = (x̂i–(t),Pi–(t)). Otherwise,

the local belief is corrected using the fusion approaches as briefly outlined below. For more

information, see [48]. To simplify the notation, hereafter we only include the time index t

when the clarification is needed.

5.1.1 Relative measurement processing via DMV method in the

absence of explicit knowledge of the inter-agent cross-

covariances

Let the joint belief of the agents i and j be bel–J (t) = (x̂–J (t),P
–
J (t)), where

x̂–J (t) =

x̂i–(t)

x̂j–(t)

 , P–
J (t) =

Pi–(t) P–
ij(t)

P–
ij(t)

⊤ Pi–(t)

 . (5.3)

When agent i takes a relative measurement from agent j, agent i can correct its local belief

using the measurement feedback zij(t)− ẑij(t), where ẑ
i
j(t) is the estimated relative measure-

ment based on agent i and j’s prior beliefs. When the cross-covariance term P–
ij(t) is known,

the feedback gain can be computed from an Extended Kalman like update procedure. DMV
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algorithm aims to process the relative measurement zij(t) to correct the local beliefs in the

absence of explicit knowledge of the cross-covariance P–
ij(t), see [48]. In the DMV method,

similar to the joint estimate interpretation of the data fusion problem in [121], a discorrelated

upper bound is used to account for any unknown cross-covariance term P–
ij(t) as

Pi–(t) P–
ij(t)

P–
ij(t)

⊤ Pj–(t)

≤
 1

ω
Pi–(t) 0

0 1
1−ω

Pj–(t)

, ω∈ [0, 1]. (5.4)

Then, the DMV algorithm updates the propagated belief of agent i at time t, beli–(t),

according to

x̂i+(t) = x̂i–(t) + K̄
i
(ωi

⋆) (z
i
j(t)− ẑij(t)), (5.5a)

Pi+(t) = P̄
i
(ωi

⋆), (5.5b)

where K̄
i
(ω) = Pi–

ω
Hi⊤

i

(
Hi

i
Pi–
ω
Hi

i

⊤
+ Hi

j
Pj–
1−ω H

i
j
⊤+ Ri

)−1
, and P̄

i
(ω) =

(
ω(Pi–)−1 +

(1 − ω)Hi⊤
i (Hi

jP
j–Hi⊤

j + (1 − ω)Ri)−1Hi
i

)−1
, with Hi

i = ∂h(x̂i–, x̂j–)/∂xi and Hi
j =

∂h(x̂i–, x̂j–)/∂xj. The optimal ω, denoted by ωi
⋆, is obtained from the optimization prob-

lem (5.6)

ωi
⋆ = argmin

0≤ω≤1
log det P̄

i
(ω). (5.6)

According to [48, Theorem 3.1], despite the unknown P–
ij(t), the DMV update is guaranteed

to be no worse than the local belief of the agents.
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5.1.2 Relative measurement processing via PECMV in the ab-

sence of explicit knowledge about the inter-agent cross-

covariance

Since the upper bound of DMV on the joint covariance matrix accounts for all the possible

values for the unknown cross-covariance P–
ij(t), DMV produces conservative updates. To

reduce the conservatism of DMV, the PECMV [48] proposes an alternative way in which the

unknown cross-covariance X in the joint covariance matrix

P–
J (X) =

Pi– X

X⊤ Pj–

 (5.7)

is estimated from the following optimization problem

X⋆= argmax
X

det

Ini

0


⊤

(P–
J (X)−1+Hi⊤Ri−1

Hi)−1

Ini

0

 , (5.8a)

subject to

Pi– X

X⊤ Pj–

 > 0. (5.8b)

where Ini is the identity matrix. PECMV estimates P–
ij by obtaining X⋆ that provides the

most conservative updated covariance. It is shown in [48] that this optimization problem can

be cast in an equivalent convex matrix optimization with linear inequality (LMI) constraints

and solved by CVXOPT [122], a Python software for convex optimization.

Once X⋆ is obtained from (5.8), the PECMV updated belief beli+PECMV(t) =
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(x̂i+
PECMV(t),P

i+
PECMV(t)) for agent i is

x̂i+
PECMV = x̂i– +Ki

PECMV (zij − ẑij), (5.9a)

Pi+
PECMV =

Ini

0


⊤

(P–
J (X

⋆)−1+Hi⊤Ri−1
Hi)−1

Ini

0

 (5.9b)

where Ki
PECMV =

[
Ini 0

]
P–

J (X
⋆)Hi

i

⊤
(Hi

iP
–
J (X

⋆)Hi
i

⊤
+Ri)−1. The PECMV update satisfies

Pi+
PECMV(t) ≤ Pi–(t) and Pi+

PECMV(t) ≤ Pi+
DMV(t).

5.1.3 Objective statement

The optimization problems (5.6) and (5.8) used respectively in DMV and PECMV algorithms

can be viewed as the the following functions

ωi
⋆ = fDMV(P

i–,Pj–,Hi
i,H

i
j), (5.10a)

X⋆ = fPECMV(P
i–,Pj–,Hi

i,H
i
j). (5.10b)

Evaluating these functions to obtain the desired outputs is computationally expensive and

time-consuming. Our objective is to use an ML approach to learn these functions and cir-

cumvent solving constrained optimization problems required to evaluate the function values.

5.2 LDMV and LPECMV

The universal approximation theorem claims that a neural network (NN) with enough depth

can approximate any continuous function given certain weights [123]. If one perceives fDMV

and fPECDMV as a continuous function, then they can be approximated by NNs similar to
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the one in Fig.5.2. But learning these functions cannot be carried out in a trivial manner.

ωi
⋆ and X⋆, the output of fDMV and fPECDMV, are each constrained values, i.e., ωi

⋆ ∈ [0, 1],

and X⋆ should be computed such that the joint covariance matrix (5.7) is positive definite.

As we explain below, we ensure ωi
⋆ ∈ [0, 1] by appropriate choice of a proper activation

functions for the output layer of NN representation of fDMV. To ensure positive definiteness

of joint covaraince matrix, however, we need to take further actions when designing an NN

model of fPECDMV. The main tool aiding us is the following result. Here, recall that a

matrix M ∈ Rp×q is a strict contraction matrix if and only if ∥M∥2 < 1, where ∥.∥2 is the

2-norm [124].

Lemma 5.2.1 (c.f. [124, page 207 and page 350]). Let A ∈ Rp×p and B ∈ Rq×q, and

X∈Rp×q be given. Then, the joint matrix
[

A X
X⊤ B

]
is positive definite if and only if A and B

are positive definite and there is a strict contraction matrix M such that X =
√
A

⊤
M
√
B.

Invoking Lemma 5.2.1, to ensure positive definiteness of the joint covariance matrix (5.7),

we can write

X =
√

Pi
⊤
C
√

Pj (5.11)

and require that ∥C∥2 < 1. Thus, to obtain X⋆ using an NN we will learn

C⋆ =

(√
Pi

⊤
)−1

X⋆
(√

Pj
)−1

,C⋆ ∈ Rni×nj

(5.12)

i.e., the function we want to learn is

C⋆ = fPECMV(P
i–,Pj–,Hi

i,H
i
j).

For the learning process, all the matrices are flatten into vectors, meaning that the matrices

are learned in an element-wise manner. We carry out a supervised learning in which we collect
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the labeled data by solving the optimization problem (5.6) to obtain ωi
⋆ and optimization

problem (5.8) followed by (5.12) for C⋆. The input and the corresponding label values are

input = vectorization(Pi–,Pj–,Hi
i,H

i
j), (5.13a)

labelDMV = ωi
⋆, (5.13b)

labelPECMV = vectorization(C⋆). (5.13c)

The feed-forward result of the C⋆ prediction network is reconstructed to have the same shape

as the C⋆ matrix and used to compute the predicted X⋆.

For the ω prediction network, we set the activation function of the output layer to the

standard logistic function (Sigmoid) S(χ) = 1
1+e−χ which maps R → [0, 1]. This choice

naturally constraints the learned ωi
⋆, denoted as ω̂i

⋆, to [0, 1]. Enforcing the learned C⋆,

denoted as Ĉ
⋆
, to be strict contraction matrix, i.e., ∥Ĉ

⋆
∥2 < 1 is not straightforward and

requires a careful selection of the activation functions for the output layer. To enforce

∥Ĉ
⋆
∥2 < 1, we implement three methods. In the first method, we add a barrier function [125]

into the loss function for training the NN as shown below,

L(Y, Ŷ)=
1

M

M∑
m=1

(
∥Ym − Ŷm∥2+λ log(1−∥Ŷm∥2)

)
, (5.14)

where M is the number of the total data points, Ym ∈ Rninj×1 is the m-th vector of label

values, Ŷm ∈ R(ni×nj)×1 is them-th feed-forward prediction of the network andB = λ log(1−

∥Ŷm∥2) is the barrier function with the barrier parameter λ selected properly [125]. It is

observed from (5.14), when Ŷm approaches 1, the value of the barrier function approaches

infinity, which prevents the solution from violating the inequality constraint ∥Ŷm∥2 < 1 for

all m = 1, 2, · · · ,M . For the output layer activation function, we use hyperbolic tangent
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function (Tanh), T (χ) = eχ−e−χ

eχ+e−χ to constraint every output to [−1, 1]. Given the norm

relations [124]

∥Ĉ
⋆
∥2 ≤ ∥Ĉ

⋆
∥F = ∥Ŷm∥2 < 1, (5.15)

where ∥.∥F denotes the Frobenius norm, the barrier B = λ log(1 − ∥Ŷm∥2) constraints the

output of the NN to respect the constraint ∥Ĉ
⋆
∥2 < 1 for the training data but there is no

guarantee for non-training data. The potential distributional mismatch between the training

and non-training data can lead to inconsistent performance or even unsafe execution [126]. In

the second method, given (5.15) and ∥Ĉ
⋆
∥F =

√∑ni

i=1

∑nj

j=1 |ĉ⋆ij|2, we choose the activation

function of the output layer to be Tanh normalized by D =
√
ni × nj, i.e., T (χ) = 1

D
eχ−e−χ

eχ+e−χ .

Since the constraint ∥Ĉ
⋆
∥2 < 1 is embedded in the NN, we drop the barrier function from

the loss function (5.14). Our second method enforces the constraint ∥Ĉ
⋆
∥2 < 1 in a hard

way, but comes with some degree of conservatism, as it limits the ranges of the elements of

matrix Ĉ
⋆
. For cases that ni = nj = n, we propose an alternative method that enforces

the constraint ∥Ĉ
⋆
∥2 < 1 and it also comes with lower computational complexity. For this

third method, we approximate C⋆ with a diagonal matrix, i.e., C⋆ ≈ C⋆
Diag = Diag(ρ⋆),

where ρ⋆ = [ρ⋆1, ρ
⋆
2, · · · , ρ⋆n] and to enforce ∥Ĉ

⋆
∥2 < 1 we set the output layer activation

functions to Tanh function. We set our objective to find a C⋆
Diag that results in minimum

value for ∥C⋆− Ĉ
⋆
∥F . Given the definition of the Frobenius norm, the off-diagonal elements

of C⋆ does not play a role in choosing C⋆
Diag. Therefore, our loss function is L(Y, Ȳ) =

1
M

∑M
m=1 ∥Ym−Ȳm∥2 where Ȳm is the vectorized form of diagonal elements of training C⋆s.

We train three NNs summarized in Table 5.1, each for one of the methods we discussed

to enforce ∥Ĉ
⋆
∥2 < 1 and test each well-trained NN on a test data set. We evaluate the

performance of each proposed method by comparing the value of the objective function (5.8a)

with (5.11) computed using the prediction of each NN, i.e., Ĉ
⋆
to the optimal objective

function value attained by C⋆, and we subtract the optimal value from the value of each
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Methods Output layer Loss function
activation function

1 T (χ) = eχ−e−χ

eχ+e−χ L(Y, Ŷ)= 1
M

∑M
m=1

(
∥Ym − Ŷm∥2+λ log(1−∥Ŷm∥2)

)
2 T (χ) = 1

D
eχ−e−χ

eχ+e−χ L(Y, Ŷ)= 1
M

∑M
m=1

(
∥Ym − Ŷm∥2

)
3 T (χ) = eχ−e−χ

eχ+e−χ L(Y, Ȳ) = 1
M

∑M
m=1 ∥Ym − Ȳm∥2

Table 5.1: Summary of the three NNs using three methods, where D =
√
ni × nj .

C
o

s
t 

F
u

n
c
ti
o

n
 V

a
lu

e

Samples Samples

C
o
s
t 
F

u
n
c
ti
o
n

 V
a
lu

e

Figure 5.1: The objective function value associated with the optimal C⋆ and Ĉ
⋆
obtained from

different learning methods (left) and the difference between each learning method and the optimal

one, respectively (right).

learning method to show the difference. The result is shown in Fig. 5.1.

As depicted in Fig.5.1, all proposed learning methods perform less optimally comparing to

the original optimization (5.8) as expected, but the differences are insignificant. Also, the

information loss when approximating matrix C⋆ with a diagonal matrix in the third method

is negligible while normalizing the output value in the second method degrades the optimal-

ity further since the hard constraint imposed by the normalized activation function restricts

conservatively the feasible set for the optimization of NN weights, which may exclude the op-

timal NN weights in the corresponding unconstrained optimization, resulting in a prediction

that performs less optimally than others. Given the possibility of Ĉ
⋆
≥ 1 in the first method,

we therefore adopt the third method, i.e., learning a diagonal approximation C⋆
Diag of matrix

C⋆ to build the NN to learn the matrix constrained optimization. The label value of the

C⋆
Diag prediction network is ρ⋆, the diagonal of C⋆

Diag, instead of (5.13c). The prediction

Ĉ
⋆

Diag is used to calculate the predicted X⋆. Figure 5.2 shows the NN structure that we used
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Figure 5.2: The NN structure for learning C⋆ of PECMV. The structure for learning ω⋆ ∈ [0, 1]

of DMV looks similar except that at the output layer we have a single neuron.

to learn the outputs of fDMV and fPECMV. The NN regression we use for learning-based DMV

(LDMV) and learning-based PECMV (LPECMV) is fast and suitable for real-time applica-

tion since the training process is conducted off-line despite the large amount of the training

data collected with a high sampling rate. The training and the hyperparameter fine-tuning

process for the NNs for the experimental demonstration is presented in Section 5.3.

5.3 Experimental Result

We generated the training data for LDMV and LPECMV via a set of CL-aided pedestrian

inertial navigation experiments implementing DMV and PECMV, which were conducted in

the Calit2 building at the University of California, Irvine (UCI) and the Firstnet building of

the National Institute of Standards and Technology (NIST) in Colorado. Two agents with

shoe-mounted IMUs and UWB sensors, shown in Fig. 5.3, walked along different trajectories,

e.g., rectangles, circles, lemniscates, and even more complex trajectories. Two example tra-

jectories are shown in Fig. 5.4. Two additional UWB sensors are placed at known locations

acting as beacons. Only agent 1 has access to the beacons, and agent 2 can merely commu-

nicate with agent 1. Based on the UWB range measurements, CL can be implemented to

correct the zero velocity update (ZUPT) [105] aided pedestrian inertial navigation solution
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IMU

UWB

Agent 1
Agent 2

Figure 5.3: Training data generation experiments in Firstnet building.

Figure 5.4: Examples of the designed trajectories.

of the agent 2. To generate independent and identically distributed samples for training,

validating, and testing, we performed single-step propagation and update from initial belief

with randomly generated errors for each pair of self-motion measurement and relative mea-

surement. We solved the optimization problems in both DMV and PECMV using the data

from each experiment and obtained an abundant and diverse solution set. The training data

is generated by randomly sampling from the entire solution set.

The execution time of DMV is much shorter than PECMV in the sample experiments, as

expected. From all experiments, we sampled 50000 samples which are split into a training

set (40000 samples), validating set (5000 samples), and test set (5000 samples). The number
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(a) ω⋆ NN Fitting

Error = Learned element of 𝐂𝐃𝐢𝐚𝐠
⋆ - Label element of 𝐂𝐃𝐢𝐚𝐠

⋆

(b) C⋆
Diag NN Error

Figure 5.5: The training results of the ω⋆ prediction NN (a) and the C⋆
Diag prediction NN (b),

respectively. (a) is the fitting performance of ω⋆ prediction NN for all data sets with R to be the

square root of the coefficient of determination which indicates the fitness of the predicted output

and the target value. The closer to 1, the better the fitness. Also, the perfect fit line is shown as

”Fit” in gray. (b) is the training error histogram of the C⋆
Diag prediction NN which represents the

difference between the predicted outputs and the label values of the NN for the training, validation

and test set respectively.

of the states of each agent i is ni = 9, and the size of the measurement vector is ni
z = 1. Each

sample training data after vectorization is flattened to a vector with 2×
(
9×(9+1)/2

)
+2×9 =

108 features due to the symmetry of covariance matrices. The features are normalized to

achieve easier optimization and faster learning. Based on the NN structures in Fig. 5.2, we

put 108 nodes in the input layer and only 1 node in the output layer of ω⋆ prediction network

while the output layer node number of C⋆
Diag prediction network is 9, i.e., ni = nj = n = 9.

The number of hidden layers and the number of nodes in each hidden layer are fine-tuned

using a grid search method during the training process. The activation function of the ω⋆

network is Sigmoid for each layer while the one of C⋆
Diag network is Tanh. We use Mean-

squared-error (MSE) as the loss function due to its convexity and also facilitate the learning

using the stochastic gradient descent (SGD) and Adam [127]. The fine-tuned design of the

two NNs is shown in Table 5.2, and the training results are shown in Fig. 5.5.
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Hyperparameters ω⋆ network C⋆
Diag network

Number of hidden layers L 4 3
Number of units NL per layer 9 20
Loss MSE MSE
Activation function Sigmoid Tanh
Optimizer SGD Adam
Batch size 256 512
Learning rate α 0.05 0.025
Epochs 200 200

Table 5.2: The hyperparameter design of the NNs.

5.3.1 Numerical Evaluation

We evaluated the efficiency of our proposed LDMV and LPECMV algorithms by implement-

ing them in another set of CL-aided pedestrian inertial navigation experiments conducted

in the KCS lab in the Engineering Gateway building at UCI. In these experiments, two

agents equipped with shoe-mounted IMUs and UWB sensors walked along two rectangular

trajectories maintaining the communication as depicted in Fig. 5.6. Agent 1 kept receiving

information from both a UWB anchor at a known location and agent 2. The sampling rates

of the IMU for agent 1 and agent 2 were, respectively, 200 Hz and 40 Hz, making agent 1 the

more accurate agent and thus creating a non-homogeneous scenario where agent 2 improved

its accuracy via CL with agent 1. Both agents implemented a local ZUPT aided INS. We

used an OptiTrack real-time motion capture system, as shown in Fig. 5.6, to provide high

accuracy reference trajectories for evaluating the performance of our CL algorithms. We at-

tached the reflective markers of the OptiTrack system to the IMUs so that their locations are

obtained as references. With the aid of the reference trajectory, the Root Mean Square Error

(RMSE) and the Normalized Estimation Error Squared (NEES) are calculated and used as

the performance metric to evaluate different localization algorithms. The experiments were

repeated 10 times. The experiment results for the position RMSE and the NEES plots are

shown in Table 5.3 and Fig. 5.7. The two-sided 95% region for the NEES is [0.96, 3.42] for

this set of experiments, see [100]. Also, we compared the average execution time of the CL
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Agent 1 Agent 2

IMU

UWB

Camera

Camera

Figure 5.6: The test experiments for LDMV and LPECMV conducted in the KCS lab with the

aid of the OptiTrack motion capture system.

(a) Agent 1 (b) Agent 2

Figure 5.7: The NEES plots for the two agents over 50 Monte Carlo runs. The shaded area in the

NEES plots show the consistency zone.

ZUPT-only DMV LDMV PECMV LPECMV
Agent 1 0.4732 0.1050 0.1158 0.1035 0.1125
Agent 2 0.4902 0.3221 0.3528 0.2950 0.3027

Table 5.3: The average RMSE (m) of the estimated trajectories.

DMV LDMV PECMV LPECMV
Full simulation time (s) 86.9828 40.1316 189282.6081 43.9001

Single execution time (ms) 3.2197 0.2122 7261.5138 0.2002

Computing platform Dell Laptop: Intel CoreTM i5-1135G7@4.20GHz,
quad-core, 8 GB memory

Table 5.4: The average run time of each algorithm with the computing platform.

algorithms. The results are reported in Table 5.4. The estimated trajectories of the agents

are shown in Fig. 5.8.

The NEES plots in Fig. 5.7 show that LDMV and LPECMV CL algorithms maintain the

consistency of the estimates the same way as DMV and PECMV as reported in [48]. As it
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Figure 5.8: The estimated trajectories of the agents implementing ZUPT-only, DMV, LDMV,

PECMV and LPECMV algorithms.

can be concluded from Fig. 5.8 and Table 5.3, all the CL algorithms significantly improve

the ZUPT/INS-only solution. As expected, PECMV and LPECMV outperform DMV and

LDMV respectively in terms of the RMSE due to their less conservatism as reported in [48],

and the PECMV and DMV have better localization accuracy compared to the corresponding

learning-based algorithms while the differences are insignificant. Because the solution of

DMV and PECMV is provably the global optimum [48], LDMV and LPECMV can only

perform no better than DMV and PECMV. Moreover, Table 5.4 shows that LDMV achieves
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a considerable reduction in execution time in contrast to DMV. Besides, despite the colossal

amount of computation time of PECMV, LPECMV takes only 43.9001 seconds. Overall, the

percentage reduction of the execution time is 53.85% and 99.98% after applying LDMV and

PECMV, respectively, which indicates a significant improvement in the time complexity. In

summary, the computational cost is reduced substantially by the proposed learning-based

optimization without compromising the localization accuracy and consistency, which enables

conducting CL updates at higher rates, especially in embedded computing systems.

5.4 Conclusions

Multi-agent estimation solutions in which the correlation among the local estimates of the

agents in cooperative estimation problems are accounted for implicitly, either via the use of

conservative uncorrelated estimate upper bounds or by estimating the unknown correlation

locally, are attractive because of eliminating persistent inter-agent communications. But,

these methods often come with higher computation costs. To reduce the computation cost,

this dissertation work proposed to use NN surrogate functions to produce the solution of the

time-consuming optimization problems that appear in the implicit approaches to account

for correlations. To demonstrate our idea, we focused on the problem of cooperative local-

ization and two particular solutions for this problem from literature: DMV and PECMV

methods [48]. We proposed the learning-based algorithms, LDMV and LPECMV, to sub-

stitute the time-consuming constrained optimization problems that appear in DMV and

PECMV methods by learning their optimal solutions via a NN that is designed elaborately

to incorporate the constraints. The training data is obtained by solving the optimization

problems directly using the experimental data. Then, the well-trained NNs are used to

predict the optimal solution. The efficacy and the generosity of the LDMV and LPECMV

are demonstrated in a different set of CL experiments. The agents used the direct predic-
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tions from the output of the NNs rather than solve the complex optimization problems in

real-time, which makes the computational cost reduced remarkably without compromising

the localization accuracy and enables the real-time implementation of the CL algorithms in

embedded systems.
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Chapter 6

Self-localizing On-demand Portable

Wireless Beacons for Coverage

Enhancement

Localization systems using RF signals typically utilize pre-installed devices (beacons) with

known locations [128]. Robust solution requires access to at least three beacons at all times

for continuous and high-accuracy localization. Despite the promise of the RF beacon-based

indoor localization, the deployment of these wireless beacons still faces the coverage problem.

Full coverage, i.e., making sure the targets will have access to at least three infra structure

beacons, requires installing a large number of beacons. Covering an indoor area may involve

hundreds of nodes since wireless beacons have effective ranges and coverage degrades due to

the signal attenuation. Moreover, knowing the accurate positions of the deployed beacons is

vital for the indoor localization algorithms. Therefore, fast and accurate beacon deployment

and positioning are key to the implementation of these indoor techniques [129]. And the

last part of this dissertation work focus on generalizing the navigation algorithm to reduce

connectivity requirements.
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Figure 6.1: A schematic depiction of portable wireless beacon deployment for coverage enhance-

ment of indoor localization systems.

Installing the beacons in underutilized spaces is not conducive. Moreover, in a dynamic

environment, it is always possible to have blockage in line-of-sight access to beacons because

of indoor obstructions. Deploying on-demand portable beacons to extend the coverage is a

cost-effective solution for a robust and reliable RF beacon based localization system. The

challenge though is how to localize these deployed beacons. In this work, we propose a

novel decentralized cooperative self-localization method to localize portable wireless beacons

that are deployed to tackle the limited connectivity/coverage of the infrastructure beacons,

see Fig 6.1. Our method is able to localize the deployed beacons in the condition that

some of them have no access to the infrastructure beacons, but they are able to self-localize

by cooperating with nearby deployed beacons which have connectivity to the infrastructure

beacons. Besides, the correlation among deployed beacons are treated carefully and implicitly

to ensure the consistency of the positioning. Finally, since this method can be computed in

a distributed way, it is also suitable for the large scale beacon deployment. We describe next

the self-localization problem and the techniques we propose to solve it.
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6.1 Problem Statement

Consider a network deployment of N (N > 3) beacons with communication and computation

capabilities in an M -dimensional space, M ∈ {2, 3}, whose positions are denoted as X =

[x1,x2, · · · ,xN ] ∈ RM×N . Within the network, assume there are at least three infrastructure

beacons installed at known positions Xk which have been measured elaborately, and the

rest of the beacons are deployed, to enhance the beacon coverage and signal strength of

certain areas, at unknown positions Xu which are required to be determined such that

X = [Xk,Xu]. Let the relative measurement (e.g., relative range, relative bearing, relative

pose, or a combination of them) zij ∈ R1,2,3 taken by beacon i from beacon j be described as

zij = h(xi,xj) + νi, (6.1)

where h is the relative measurement model and νi ∼ N (0,Ri) is the zero mean Gaussian

measurement noise with covariance matrix Ri.

Given the available relative measurements {zij} and the known beacon positions Xk, our

objective is to determine the unknown beacon positions Xu subject to limited connectivity

between beacons, i.e., beacons are only connected to their neighbors whose positions may

also belong toXu and thus need to be estimated. In other words, due to the effective range of

wireless beacons, some deployed beacons may not be able to obtain direct measurements from

the beacons at known positions. Another issue is the correlation among unknown beacons.

Once the estimates of any two beacons, x̂i
u and x̂j

u, are correlated, to keep an explicit track of

the correlations requires a high communication and computation capability [48]. Moreover,

given that the beacon network can be dynamical, i.e., beacons can be added or removed

from the network as desired, centralized localization method are less suitable in terms of

autonomous self-localization.
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In general, the position of each beacon i in the set of beacons with unknown positions

(hereafter we call them unknown beacons) denoted as U is estimated by solving the below

optimization problem

x̂i
u = argmin

xi
u

∑
j∈NG(i)

∥∥zij − ẑij
∥∥2

, (6.2)

with the uncertainty Pi = E[(x̂i
u − E[x̂i

u])(x̂
i
u − E[x̂i

u])
⊤], where NG(i) represents the set of

neighbors of beacon i and ẑij = h(x̂i
u, x̂

j
u) is the estimated measurement.

6.2 Beacon Self-Localization

To solve (6.2), depending on whether the neighbor beacon j has a known position xj
k or an

unknown position xj
u, the solutions differ in two cases.

6.2.1 Recursive Least Squares Method

For the first case, if j /∈ U , which indicates the beacon i is connected to the known neighbor

j, (6.2) is solved for all j ∈ NG(i) at time t by the recursive least squares (RLS) algorithm

[100] with uncertainty Pi[t] using sequential updating to process multiple concurrent mea-

surements {zij[t]} (See [100]) as follow

x̂i
u[t] = x̂i

u[t− 1] +Ki[t](zij[t]− ẑij[t]), (6.3a)

Pi[t] =
(
I−Ki[t]Hi[t]

)
Pi[t− 1], (6.3b)

where Ki[t] = Pi[t− 1]Hi⊤[t]
(
Hi[t]Pi[t− 1]Hi⊤[t] +R

)−1
is known as the Kalman gain and

Hi = ∂h[t](x̂i
u[t− 1], x̂j

k[t− 1])/∂xi
u.
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If beacon i is connected to an unknown neighbor j, i.e., j ∈ U , solving the optimization prob-

lem in (6.2) requires careful handling of the correlation between unknown beacons. In short,

once a relative measurement is proceeded to update the estimate of two unknown beacons,

they are correlated. If the correlation is not properly taken care of or is completely ignored,

the estimator will be likely to diverge [48]. Therefore, in the following sub-section, we in-

troduce a decentralized cooperative localization algorithm, Discorrelated Minimum Variance

(DMV), proposed in [48] to solve the self-localization problem (6.2) with elaborate design to

deal with the correlation issue instead of the RLS. For more information, see [48].

6.2.2 Decentralized Cooperative Self-localizing Method

To simplify the notation and avoid confusion, hereafter we only include the subscripts u and

k for position estimates when clarification is needed. For i, j ∈ U , let the joint position

estimate mean and covariance of the beacons i and j at time t−1 be x̂J [t−1] and PJ [t−1],

where

x̂J [t− 1] =

x̂i[t− 1]

x̂j[t− 1]

 , (6.4a)

PJ [t− 1] =

 Pi[t− 1] Pij[t− 1]

Pij[t− 1]⊤ Pj[t− 1]

 . (6.4b)

When beacon i takes a relative measurement zij[t] from beacon j at time t, beacon i can

correct its local estimate using the measurement feedback zij[t] − ẑij[t]. When the cross-

covariance term Pij[t− 1] is known, the feedback gain can be computed from a Kalman like

update procedure. When Pij[t− 1] is not available or too computationally expensive to be

tracked, the DMV algorithm is able to process the relative measurement zij[t] to correct the

local estimates in the absence of explicit knowledge of the cross-covariance Pij[t − 1]. It is
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important to note that correlation terms Pij[t−1] due to prior relative measurement updates

cannot be ignored trivially. Ignoring the correlations leads to overconfident estimates and

even filter divergence [130].

In the DMV method, a discorrelated upper bound is used to account for any unknown

cross-covariance term Pij[t− 1] as

 Pi[t− 1] Pij[t− 1]

Pij[t− 1]⊤ Pj[t− 1]

≤
 1

ω
Pi[t− 1] 0

0 1
1−ω

Pj[t− 1]

, (6.5)

ω∈ [0, 1].

Then, the DMV algorithm updates the position estimate of agent i at time t − 1, (x̂i[t −

1],Pi[t− 1]), according to

x̂i[t] = x̂i[t− 1] + K̄
i
(ωi

⋆) (z
i
j[t]− ẑij[t]), (6.6a)

Pi[t] = P̄
i
(ωi

⋆), (6.6b)

where K̄
i
(ω)= Pi[k−1]

ω
Hi

i

⊤(
Hi

i
Pi[k−1]

ω
Hi

i

⊤
+Hi

j
Pj [k−1]

1−ω Hi
j

⊤
+Ri

)−1
, and P̄

i
(ω) =

(
ω(Pi[t−1])−1+

(1− ω)Hi
i

⊤
(Hi

jP
j[t− 1]Hi

j

⊤
+ (1− ω)Ri)−1Hi

i

)−1
, with Hi

i=∂h(x̂i[t− 1], x̂j[t− 1])/∂xi and

Hi
j=∂h(x̂i[t− 1], x̂j[t− 1])/∂xj. The optimal coefficient ω, denoted by ωi

⋆, is obtained from

the optimization problem

ωi
⋆ = argmin

0≤ω≤1
log det P̄

i
(ω). (6.7)

Similarly, the sequential updating technique is applied for DMV. According to [48, Theorem

3.1], despite the unknown Pij[t− 1], the DMV update is guaranteed to be no worse than the

local estimates of beacon i and j. The computation complexity in (6.7) can be reduced by

applying machine learning tools as we have demonstrated in our prior work in [131]. That
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is, the optimal coefficient ω can be predicted directly from a neural network as

ωi
⋆ = fDMV(P

i,Pj,Hi,Hj), (6.8)

where the fDMV is the function approximated by the neural network. See [131] for more

information.

6.2.3 Full Algorithm

In summary, the entire beacon self-localization process consists of both RLS and DMV which

is depicted in Algorithm 2.

Algorithm 2 Beacon Self-Localization

1: Input: {x̂i[t = 0], Pi[t = 0], zij} for all i ∈ U and j ∈ NG(i)

2: repeat
3: t = t+ 1
4: for each j ∈ NG(i) do
5: if j /∈ U then
6: Calculate x̂i[t] and Pi[t] using (6.3)
7: else
8: Calculate x̂i[t] and Pi[t] using (6.6) and (6.7) or (6.8)
9: end if
10: end for
11: until Convergence
12: Output: x̂i[t], Pi[t]

6.3 Simulation Study

In this section, we assess the effectiveness of our beacon self-localization algorithm through

a simulated scenario. The scenario involved the deployment and self-localization of 25 UWB

beacons in a 2-D space with an area of 60m×60m, i.e.,M = 2 andN = 25. UWB beacons can

take the TOA ranging measurements, i.e., h(xi,xj) =
√
(xi − xj)2, to obtain the distance
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information between beacons. Moreover, the measurement noise covariance were chosen to

be R = 0.01 with respect to the empirical ranging error of UWB sensor whose standard

deviation is 0.1m. The simulation time interval was ∆t = 0.1, the total simulation time was

T = 50 seconds and the sampling rate of the UWB beacon was 10 Hz. The configuration

of the simulation is illustrated in Fig. 6.2. As it is shown in Fig. 6.2, there are 15 beacons

with known positions denoted by red circles being installed in the hallway environment while

10 additional beacons denoted by the crosses are deployed at the locations as desired. The

dashed lines represent the connectivity among the known and unknown beacons which is

designed on purpose. We assumed the prior knowledge of the positions of the unknown

beacons that we desired to deploy them inside the area surrounded by the known beacons.

The objective is to determine the positions of all unknown UWB beacons xi
u (i = 1, 2, · · · , 10

in this case) given the range measurements and constrained by the connectivity. Note that

in this setting, beacon 2, 7, 8 and 9 (marked with green crosses in Fig. 6.2) connect to two

known beacons, beacon 3, 5 and 6 (marked with orange crosses) only connect to one known

beacon and beacon 4 (marked with a blue cross) connects to no known beacons by design to

simulate the limited connectivity condition while all unknown beacons connect to at least

three beacons.

Three groups of simulations were conducted to estimate the unknown beacon positions sep-

arately and the simulations were repeated 1000 times in each group to mitigate the random

error that occasionally caused by the bad initialization of unknown beacons. In the first

group of simulations, we only proceed the measurements between the known and unknown

beacons using RLS estimator to make it serve as a control group. The second one was what

we called “NaiveCL” group referring to the naive way of processing the correlation between

correlated beacons where the correlations are completely ignored. It is equivalent to using the

RLS solely to estimate all unknown beacon positions with all available measurements. We

implemented the proposed self-localization method in the last group of simulations. Besides,

without loss of generosity, we intentionally moved the beacon 6 to a new assigned location at
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timestamp 300 when the algorithm converged for the first time to demonstrate the robust-

ness of our method in terms of the autonomous re-localization capability. The simulation

results are illustrated in Fig. 6.3, Fig. 6.4, Fig. 6.5 and Table 6.1 where the average root

mean square error (RMSE) and maximum error were used as the performance metric of the

self-localization. Absolute error and the 3−σ bound were drawn to compare the consistency

and robustness of the methods. And we drew gray semi-transparent boxes in the figures to

highlight the beacons of interest and their corresponding ground truth locations.

As it is visualized in Fig. 6.3a, beacon 3, 4, 5 and 6 cannot self-localize themselves well with

measurements from only one known beacon as expected because at least measurements from

three beacons (non-collinear with the beacon to be estimated) are need to estimate precisely

the positions in the 2-D space. Therefore, the relative measurements between unknown

beacons should also be taken into account to estimate the beacon positions. However, if

we naively update the local estimates and ignore the correlation between the unknown bea-

cons, the localization performance will be deteriorated. Fig. 6.3b shows the corresponding

evidence and in Table 6.1, the average RMSE and maximum error of the NaiveCL are signif-

icantly larger than those of our proposed method due to the inconsistency of the estimator

when correlations are neglected although the NaiveCL outperforms the RLS method in the

first group. In contrast, our proposed method significantly improves the localization perfor-

mance as shown in Fig. 6.3c with the lowest average RMSE and maximum error in Table

6.1. With a particular care of the correlation between the unknown beacons, our proposed

method enables the accurate beacon self-localization without the necessity of each beacon

being connected to three pre-installed infrastructure beacons compared with the other two

methods.

Another comparison regarding to the robustness is that after being moved for certain reasons

to a new positions, the beacon 6 cannot accurately acquire its new position and even ends

up with affecting the neighbor beacons and resulting in a higher localization error using the
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Figure 6.2: The simulation configuration of beacon self-localization. The black, green, orange and

blue crosses represent the unknown beacons with more than three connections, two connections,

only one connection and no connection to known beacons, respectively.

NaiveCL as shown in Fig. 6.4. However, by implementing our proposed method, beacon

6 still re-localize itself in the decentralized manner without effecting the neighbor beacons

demonstrated in Fig. 6.5. The localization error falls into the 3 − σ bound throughout the

entire simulation, which exemplifies the robustness of our solution and the capability to de-

ploy the beacons on demand to extend the coverage of the beacon networks. As long as each

beacon has at least three connections to neighbors, pre-knowledge or manual measurement

of only a handful of beacon position is sufficient to estimate other unknown ones accurately,

which perfectly facilitates the coverage enhancement for the beacon-based localization sys-

tems. Future work will focus on the initialization of the unknown beacons to avoid the

estimated beacon positions being stuck in a statistical local minimum and further enhance

the robustness of the proposed algorithm.

97



(a) RLS (b) NaiveCL

(c) Proposed

Figure 6.3: The self-localization results in three groups of simulations. The gray semi-transparent

boxes in the figures bound the highlighted beacons of interest and their ground truth locations.

Table 6.1: Localization accuracy regarding average RMSE and maximum error in three groups
over 1000 simulations.

Method RMSE [m] Maximum Error [m]
RLS 5.1599 12.0692

NaiveCL 1.6355 4.0473
Proposed 1.0727 2.3298

6.4 Conclusion

This dissertation work considered the beacon self-localization under limited connectivity for

deploying the portable wireless beacons. Specifically, we proposed a decentralized beacon

self-localization algorithm which relaxes the essential requirement of sufficient connections
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Manually moved

(a) Re-localization Result (b) Absolute Error

Figure 6.4: The re-localization performance of the NaiveCL method. Before the beacon was moved

to a new location, the NaiveCL has worse performance of self-localization in terms of consistency.

After the re-localization, it generates larger error and cannot converge to the new ground truth.

Manually moved

(a) Re-localization Result (b) Absolute Error

Figure 6.5: The re-localization performance of our proposed method. After the beacon was moved

to a new location, our method made the estimate converged to the new ground truth and stayed

consistency as before.

to the beacons with known positions and avoids the labor-intensive and error-prone manual

measurement of the beacon positions. The simulation results demonstrated the efficacy of

our proposed method in terms of the accurate autonomous position estimation for multiple

beacons and its robust re-localization capability which enables a more flexible deployment of

the on-demand portable beacons. Additionally, the distributed computation pattern reduces

the computational burden on each single device. When the position estimates of beacons

are accurate sufficiently, they can serve as the new known beacon to consequently extend
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the network coverage. Last but not least, in large-scale settings, the significant reduction in

human labor fulfilled by our method is substantial.
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Chapter 7

Conclusions

This dissertation work contributes towards enhancing the robustness of navigation algorithms

via integrating integrity monitoring, effective use of machine learning tools for navigation

systems, reducing the computational complexity to enable real-time implementation, and in-

novative navigation framework to enhance external signal access. The objective is the design

of robust and light-weight navigation algorithms to monitor the sensor performance and en-

hance the navigation accuracy. The main application of this work is the integrity monitoring

and measurement enhancement for INS aided by external measurements obtained from GPS

and UWB sensors in a tightly coupled manner with cooperative processing. This work is

end-to-end spanning algorithm design, theoretical modeling and analysis and experimental

demonstrations/validation. The main contributions of this work are as follows.

• Developing a novel integrity monitoring framework for Bayesian filter-based

multi-sensor navigation systems to increase the fault detection rate and

enhance the robustness of the navigation

In order to achieve robust navigation requirements, the faulty measurements have to

be detected and excluded before using. Given that the modern navigation systems are
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commonly based on filter-based framework, we propose a modified Rényi divergence-

based FDE approach for a tightly coupled GNSS/INS system. The main contribution

is to analyze the components of the close-form of the Rényi divergence under Gaussian

assumption and to propose a modified Rényi divergence as the new test statistics

that has a lower computational complexity but delivers the same result. Further, we

present a statistical procedure to select the order α of the Rényi divergence measure

for FDE to increase the detection accuracy. Additionally, we introduce a ratio test

among the Rényi divergence measure between the propagated and updated estimates

due to individual GNSS measurement channels to detect multiple faults in one single

check. Lastly, a probabilistic threshold method is proposed to enable the autonomous

threshold selection. We demonstrate our results via a simulated flight platform in

CADAC++ and MATLAB. The simulation results show the desirable performance

for FDE in reducing false alarm cases, eliminating miss detection cases, and selecting

threshold optimally and autonomously.

• Developing a learning-based UWB LoS/NLoS measurement model discrim-

inator to increase the localization accuracy.

UWB ranging bias correction has a significant impact on the localization accuracy of

the UWB-based navigation algorithms. In this dissertation work, we addressed the

problem of UWB ranging bias correction in complex localization scenarios by training

neural network models to distinguish the LoS and NLoS scenarios and predict the

corresponding bias-free range in real-time using features that are readily available on

low-cost UWB sensors. Our experimental data collection resulted in identifying a novel

set of features, raw range, PM, FPPL and RSS, to train ANNs for measurement type

classification and bias-free range prediction. The effectiveness of any learning-based

solution depends on the diversity and informativeness of its training data. Recognizing

that the relative orientation of the ranging sensors affects the ranging accuracy, we used

an Optitrack motion capture system to collect high-accuracy ranging between a tag
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UWB sensor on a moving agent and fixed UWB anchor nodes. In doing so, we collected

a diverse set of data in various relative poses between the sensors. The effectiveness

of our OptiTrack-aided supervised learning-based UWB bias correction method was

demonstrated via a set of pedestrian localization experiments using the RLS algorithm

for location estimation in two different locations. Our experiments showed that our

method leads to a considerable improvement in the localization accuracy.

• Designing learning-based surrogate functions to substitute the time-

consuming constrained optimization problems that appear in the implicit

CL algorithms by learning the optimal solutions and respecting the con-

straints and reduce the computational complex of the algorithms without

sacrificing the navigation performance.

Multi-agent estimation solutions in which the correlation among the local estimates

of the agents in cooperative estimation problems are accounted for implicitly, either

via the use of conservative uncorrelated estimate upper bounds or by estimating the

unknown correlation locally, are attractive because of eliminating persistent inter-agent

communications. But, these methods often come with higher computation costs. To

reduce the computation cost, this dissertation work proposed to use NN surrogate

functions to produce the solution of the time-consuming optimization problems that

appear in the implicit approaches to account for correlations. To demonstrate our idea,

we focused on the problem of cooperative localization and two particular solutions for

this problem from literature: DMV and PECMV methods. We proposed the learning-

based algorithms, LDMV and LPECMV, to substitute the time-consuming constrained

optimization problems that appear in DMV and PECMV methods by learning their

optimal solutions via a NN that is designed elaborately to incorporate the constraints.

The training data is obtained by solving the optimization problems directly using

the experimental data. Then, the well-trained NNs are used to predict the optimal

solution. The efficacy and the generosity of the LDMV and LPECMV are demonstrated
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in a different set of CL experiments. The agents used the direct predictions from the

output of the NNs rather than solve the complex optimization problems in real-time,

which makes the computational cost reduced remarkably without compromising the

localization accuracy and enables the real-time implementation of the CL algorithms

in embedded systems.

• Proposing the self-localizing on-demand portable wireless beacons for cov-

erage enhancement

This dissertation work consider the beacon self-localization under limited connectivity

for deploying the portable wireless beacons. Specifically, we proposed a decentral-

ized beacon self-localization algorithm which relaxes the essential requirement of suffi-

cient connections to the beacons with known positions and avoids the labor-intensive

and error-prone manual measurement of the beacon positions. The simulation results

demonstrated the efficacy of our proposed method in terms of the accurate autonomous

position estimation for multiple beacons and its robust re-localization capability which

enables a more flexible deployment of the on-demand portable beacons. Additionally,

the distributed computation pattern reduces the computational burden on each single

device. When the position estimates of beacons are accurate sufficiently, they can serve

as the new known beacon to consequently extend the network coverage. Last but not

least, in large-scale settings, the significant reduction in human labor fulfilled by our

method is substantial and reversely the robustness is enhanced.

The work in this dissertation has led to the design of a robust navigation framework that

works as an augmentation service on top of sensor fusion solutions to improve localization

accuracy and enhance the navigation safety. Based on this dissertation work, we reinforce the

robustness and security of modern navigation solutions, specifically the indoor UWB/INS

navigation for firefighters and first-responders that run in real-time on a portable computing

system. Extensive simulations and experiments demonstrated the effectiveness of our design.
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7.1 Future Work

In light of the findings of our work, we discuss several future research directions below.

• In fault detection and exclusion, incipient faults are hard to be detected by residual-

based integrity monitoring algorithms since the statistics we use for detection has high

dependency on the historical state estimates. The incipient faults can grow slowly

preventing the test statistics from exceeding the threshold but destroy the navigation

solution completely. Therefore, developing a more robust FDE algorithm that can

typically deal with incipient faults efficiently is of great importance.

• For the application of the FDE, the multiple object tracking (MOT) in computer vision

(CV) is promising. Given that the forefront research effort of the MOT is to increase

the detection rate of the target and maintain the robust tracking under occlusion, FDE

is extremely important. A general mathematical FDE framework for image sequence

data is necessary to be developed and thus contribute to the CV development.

• In measurement bias or fault modeling, the assumption that the bias or fault is a Gaus-

sian random variable is not always true. Also, using probability-theoretical techniques

to develop a bias modeling and compensation method, which eliminates the particular

assumptions, can lead to more generalized applications to other navigation systems.

Lastly, the learning-based method has the limitation of overfitting and cannot be eas-

ily generalized to more complex scenarios. As future work, one can investigate the

combination of learning methods and statistical inference methods to further improve

the bias modeling in RF signals.

• Another venue for the future work is investigating the robust cooperative localiza-

tion algorithm without Gaussian assumption, i.e., generalizing the DMV and PECMV

method to general Bayesian filtering framework. With a potential transformation, the
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computational complexity can be significantly reduced for maintaining the correlation.

Also, theoretical development of the FDE can be done for non-Gaussian filters.
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and fail-safe multi-sensor data fusion. In 2020 IEEE International Conference on Mul-
tisensor Fusion and Integration for Intelligent Systems (MFI), pages 61–67, Karlsruhe,
Germany, 2020.

[24] Jinwon Kim, Jang-Gyu Lee, Gyu-In Jee, and Tae-Kyung Sung. Compensation of
gyroscope errors and GPS/DR integration. In Proceedings of Position, Location and
Navigation Symposium - PLANS ’96, pages 464–470, Atlanta, GA, 1996.

[25] Kichun Jo, Keonyup Chu, and Myoungho Sunwoo. GPS-bias correction for precise
localization of autonomous vehicles. In 2013 IEEE Intelligent Vehicles Symposium
(IV), pages 636–641, Gold Coast City, Australia, 2013.

[26] Jianan Zhu and Solmaz S. Kia. Bias compensation for UWB ranging for pedestrian
geolocation applications. IEEE Sensors Letters, 3(9):1–4, 2019.

[27] Fazeelat Mazhar, Muhammad Gufran Khan, and Benny Sällberg. Precise indoor posi-
tioning using UWB: A review of methods, algorithms and implementations. Wireless
Personal Communications, 97(3):4467–4491, 2017.

[28] Daquan Feng, Chunqi Wang, Chunlong He, Yuan Zhuang, and Xiang-Gen Xia.
Kalman-filter-based integration of IMU and UWB for high-accuracy indoor positioning
and navigation. IEEE Internet of Things Journal, 7(4):3133–3146, 2020.

[29] Om Prakash Kumar, Pramod Kumar, Tanweer Ali, Pradeep Kumar, and Shweta Vin-
cent. Ultrawideband antennas: Growth and evolution. Micromachines, 13(1):60, 2021.

[30] Dingyang Wang, Sungwon Yoo, and Sung Ho Cho. Experimental comparison of IR-
UWB radar and FMCW radar for vital signs. Sensors, 20(22):6695, 2020.

[31] Kawon Han and Songcheol Hong. Phase-extraction method with multiple frequencies
of FMCW radar for human body motion tracking. IEEE Microwave and Wireless
Components Letters, 30(9):927–930, 2020.

[32] Nakorn Kumchaiseemak, Itthi Chatnuntawech, Surat Teerapittayanon, Palakon
Kotchapansompote, Thitikorn Kaewlee, Maytus Piriyajitakonkij, Theerawit Wilaipr-
asitporn, and Supasorn Suwajanakorn. Toward ant-sized moving object localization
using deep learning in FMCW radar: A pilot study. IEEE Transactions on Geoscience
and Remote Sensing, 60:1–10, 2022.

[33] Alwin Poulose and Dong Seog Han. UWB indoor localization using deep learning
LSTM networks. Applied Sciences, 10(18):6290, 2020.

[34] Thien Hoang Nguyen, Thien-Minh Nguyen, and Lihua Xie. Range-focused fusion of
camera-IMU-UWB for accurate and drift-reduced localization. IEEE Robotics and
Automation Letters, 6(2):1678–1685, 2021.

109



[35] Min-Won Seo and Solmaz S. Kia. Online target localization using adaptive belief prop-
agation in the HMM framework. IEEE Robotics and Automation Letters, 7(4):10288–
10295, 2022.

[36] Kegen Yu, Kai Wen, Yingbing Li, Shuai Zhang, and Kefei Zhang. A novel NLoS mitiga-
tion algorithm for UWB localization in harsh indoor environments. IEEE Transactions
on Vehicular Technology, 68(1):686–699, 2018.

[37] Ardiansyah Musa, Gde Dharma Nugraha, Hyojeong Han, Deokjai Choi, Seongho Seo,
and Juseok Kim. A decision tree-based NLoS detection method for the UWB indoor
location tracking accuracy improvement. International Journal of Communication
Systems, 32(13):e3997, 2019.

[38] Changwei Chen, Chi-Shih Jao, Andrei M. Shkel, and Solmaz S. Kia. UWB sensor
placement for foot-to-foot ranging in dual-foot-mounted ZUPT-aided INS. IEEE Sen-
sors Letters, 6(2):1–4, 2022.

[39] Jianlin Chen, Devin Raye, Wahab Khawaja, Priyanka Sinha, and Ismail Guvenc. Im-
pact of 3D UWB antenna radiation pattern on air-to-ground drone connectivity. In
Vehicular Technology Conference, pages 1–5, Porto, Portugal, 2018.

[40] K. Wen, K. Yu, and Y. Li. NLoS identification and compensation for UWB ranging
based on obstruction classification. In European Signal Processing Conference, pages
2704–2708, Kos island, Greece, 2017.

[41] Niranjini Rajagopal, Patrick Lazik, Nuno Pereira, Sindhura Chayapathy, Bruno Sinop-
oli, and Anthony Rowe. Enhancing indoor smartphone location acquisition using floor
plans. In ACM/IEEE International Conference on Information Processing in Sensor
Networks, pages 278–289, Porto, Portugal, 2018.

[42] Zhuoqi Zeng, Steven Liu, and Lei Wang. UWB/IMU integration approach with NLOS
identification and mitigation. In 2018 52nd Annual Conference on Information Sci-
ences and Systems (CISS), pages 1–6, Princeton, NJ, 2018. IEEE.

[43] Ardiansyah Musa, Gde Dharma Nugraha, Hyojeong Han, Deokjai Choi, Seongho Seo,
and Juseok Kim. A decision tree-based NLOS detection method for the UWB indoor
location tracking accuracy improvement. International Journal of Communication
Systems, 32(13):e3997, 2019.

[44] Andreas De Preter, Glenn Goysens, Jan Anthonis, Jan Swevers, and Goele Pipeleers.
Range bias modeling and autocalibration of an UWB positioning system. In 2019
International Conference on Indoor Positioning and Indoor Navigation, pages 1–8,
Pisa, Italy, 2019.

[45] Julian Blueml, Alessandro Fornasier, and Stephan Weiss. Bias compensated UWB an-
chor initialization using information-theoretic supported triangulation points. In 2021
IEEE International Conference on Robotics and Automation (ICRA), pages 5490–5496,
Xi’an, China, 2021.

110



[46] Justin Cano, Gael Pages, Eric Chaumette, and Jerome Le Ny. Clock and power-induced
bias correction for UWB time-of-flight measurements. IEEE Robotics and Automation
Letters, 2022.

[47] Seong Yun Cho. Two-step calibration for UWB-based indoor positioning system and
positioning filter considering channel common bias. Measurement Science and Tech-
nology, 30(2):025003, 2018.

[48] Jianan Zhu and Solmaz S. Kia. Cooperative localization under limited connectivity.
IEEE Transactions on Robotics, 35(6):1523–1530, 2019.

[49] Bas van der Heijden, Anton Ledergerber, Rajan Gill, and Raffaello D’Andrea. Itera-
tive bias estimation for an ultra-wideband localization system. IFAC-PapersOnLine,
53(2):1391–1396, 2020.

[50] Wenda Zhao, Abhishek Goudar, and Angela P. Schoellig. Finding the right place:
Sensor placement for UWB time difference of arrival localization in cluttered indoor
environments. IEEE Robotics and Automation Letters, 7(3):6075–6082, 2022.

[51] Jeppe Bro Kristensen, Michel Massanet Ginard, Ole Kiel Jensen, and Ming Shen. Non-
line-of-sight identification for UWB indoor positioning systems using support vector
machines. In 2019 IEEE MTT-S International Wireless Symposium (IWS), pages 1–3,
Guangzhou, China, 2019. IEEE.

[52] Hongchao Yang, Yunjia Wang, Chee Kiat Seow, Meng Sun, Minghao Si, and Lu Huang.
UWB sensor-based indoor LOS/NLOS localization with support vector machine learn-
ing. IEEE Sensors Journal, 23(3):2988–3004, 2023.

[53] Rui Qi, Xiuping Li, Yi Zhang, and Yubing Li. Multi-classification algorithm for human
motion recognition based on IR-UWB radar. IEEE Sensors Journal, 20(21):12848–
12858, 2020.
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