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Abstract

Genome annotation remains a fundamental effort in modern biology. With reducing costs, and new 

forms of sequencing technologies, annotations specific to tissue type and experimental conditions, 

are continually being generated (e.g., histone methylation marks). Computing the statistical 

significance of overlap between two different annotations is key to many biological findings, but 

has not been systematically addressed previously. We formalize the problem as follows: let I and If 

each describe a collection of n and m intervals of genome with particular annotation. Under null 

hypothesis that genomic intervals in I are randomly arranged with respect to If, what is the 

significance of k of m intervals of If intersecting with intervals in I? We describe a tool ISTAT that 

implements a combinatorial algorithm to accurately compute p-values. We applied ISTAT to 

simulated and real data-sets to obtain precise estimates and contrasted them against previous 

results using permutation or parametric tests.
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eTOC Blurb

Annotating the genome by demarcating coordinates of gene structures, sequences associated with 

methylation marks, etc., is a fundamental problem in biology. Annotated regions can be abstracted 

as intervals on a line, and the overlap between sets of intervals is often used to establish correlation 

between annotations and obtain biological insights.

Computing the statistical significance of overlap between annotations is a relatively unexplored 

problem, often done using permutation tests and assumptions on the null distribution. We describe 

a tool for efficiently computing the significance of the overlap between two sets of intervals using 

a dynamic programming approach. The tool corrects the p-values reported in previous experiments 

by orders of magnitude.

Keywords

Interval overlap; Genome annotations; Statistical significance; p-value

Primer

Genome annotation, referring to the assignment of function to specific regions, remains a 

foundational effort of modern biology. With reducing costs, and new forms of sequencing 

technologies, annotations specific to tissue type and experimental conditions, are continually 

being generated (e.g., histone methylation marks, regions with high gene expression, 

genomic copy number, etc.). Furthermore, excessive overlap of the intervals in a pair of 

annotations is indicative of a biological association, and is widely used as a basis for new 

biological insight, including examples such as the overlap of histone methylation sites, and 

promoter activity, targeted insertion of viral sequences into the human genome, and others. 

Computing the statistical significance of the overlap between two different annotations is 

key to these experiments. However, the problem has not been systematically addressed 

previously. To the best of our knowledge, the p-value computation for sets of overlapping 

intervals has been limited either to permutation tests which do not scale to computation of 

small p-values, or simple parametric tests such as hypergeometric or binomial tests which 

are based on simplifying assumptions about the length and structure of intervals. Our paper, 
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however, formulates a null model where the size of intervals and their relative arrangement 

are considered when the significance of overlap is evaluated.

We formalize the problem as follows: let I and If each describe a collection of n and m non-

overlapping intervals on a line segment of finite length. Under the null hypothesis that 

intervals in I are randomly arranged w.r.t If, what is the significance of k of the m intervals 

of If intersecting with some interval in I? We describe a tool ISTAT that implements a 

combinatorial algorithm to accurately compute p-values, and also describe trade-offs that 

make the computation fast without losing accuracy. ISTAT first computes k, the number of 

intervals in If which have overlap with any interval in I. The significance of the overlap 

between reference and query intervals is measured by sampling a random set of intervals, Ir, 

where the positions of query intervals are randomized along the genomic region, while 

retaining the total number of intervals and their individual lengths same as the intervals in I. 
To reduce the combinatorial complexity of the problem, we also assume that the order of 

intervals in I are preserved when sampling for Ir, but we show through our simulations that 

the impact of this additional assumption is negligible for a typical enrichment problem. The 

p-value is computed by counting the fraction of times when k or more overlaps occur 

between If and Ir. We applied ISTAT to simulated and real data-sets to obtain precise 

estimates. In many cases, the ISTAT estimates provided a significant correction to previous 

results obtained using permutation tests or parametric tests.

Introduction

Annotating the genome is a central problem in biology. Subsequent to the sequencing and 

assembly of the human genome, and the development of deep sequencing technologies, 

researchers have developed a number of technologies aimed at identifying functional regions 

on the genome. Examples of annotation include repeat elements (Jurka, 2000), protein 

coding genes (Venter et al., 2001), non-coding RNA (Bartel, 2009), regulatory regions 

(Dunham et al., 2012), sites with specific epigenetic modifications (Bimey et al., 2007), 

transcription start sites (Dunham et al., 2012), ribosome initiation sites (Ingolia et al., 2009, 

2012), as well as regions relating to genome structure, such as the regions with a change in 

copy number and other variation (Pinkel et al., 1998; Feuk et al., 2006). With reducing costs, 

and new forms of sequencing technologies, annotations specific to tissue type and 

experimental conditions, are continually being generated.

In all of these examples, we implicitly represent the genome as a line segment, and an 

‘annotation’ as a collection of non-overlapping intervals on that line. Excessive overlap of 

the intervals in a pair of annotations is indicative of a biological association, and is widely 

used to support hypotheses asserting biological principles. While studying the function of 

epigenetic modifications on the genome, Guenther et al. (2007) observed that about 3 / 4 of 

all known promoter regions overlapped with intervals highly enriched for the methylation of 

lysine 4 on histone H3 (H3K4me3) including in genes without any detected transcript. 

Assuming that the presence of histone H3K4me3 was correlated with transcription initiation, 

they hypothesized that transcription initiation occurs in all genes, but was followed by 

transcriptional elongation only in active genes. In another example, Zarrei et al. (2015) 

computed the association of the copy number variable (CNV) genomic regions against each 
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of multiple annotations such as protein-coding and non-coding genes, cancer genes, 

lincRNAs, Promoters, etc., to assess the variability of different functional regions of the 

genome. Wu et al. (2003) studied viral integration in the human genome finding that a large 

fraction of HIV-1 and MLV integrations in H9 and HeLa cells lay within the start and end of 

transcription of a gene. In contrast, while 16.8% of the MLV integrations landed ±1Kb from 

a CpG island, only 2.1% of HIV-1 integrations landed near a CpG island. They computed p-

values using permutation tests to assert the significance of these differential associations.

In experiments related to genome annotations, such questions are ubiquitous, and they all 

distill down to the underlying statistical question of significantly overlapping intervals. 

Hence, it has been a standard practice to compute a p-value using the null distribution of 

overlaps against randomly located intervals. Random annotations can be generated by 

randomizing the position of intervals while preserving the coherence of each region, and 

provide exact answers when the space of all possible random samples can be enumerated. 

However, in many real-life examples including the above studies, the sample space is 

enormous, and naive sampling-based methods cannot achieve adequate resolution to 

distinguish between rare events in feasible running times. On the other hand, while 

parametric tests used in the literature are computationally efficient, they oversimplify the 

problem by casting intervals as points and ignore the dimension of annotated regions on the 

genome, which often result in artificially low p-values, thereby inflating apparent 

significance.

In this paper, we introduce a tool, ISTAT, which can enumerate over the space of all 

randomized samples in order to find the exact null distribution, under the assumption that the 

order of intervals is preserved when randomizing their position. Using simulated data, we 

show that the impact of our assumption on p-value calculation is limited. ISTAT also provides 

a fast approximate solution based on Poisson binomial distribution, and using simulated 

data, we characterize its performance in approximating the generic null distribution. 

Moreover, we demonstrate the result of applying our methods to four examples of interval 

overlap problem from previously published studies, and compare ISTAT results with the p-

values reported in those studies.

Results

We used the following notation throughout the paper. Let If denote a ‘reference’ collection 

of m intervals, and I denote a ‘query’ collection of n intervals (Figure 1). Each interval is 

denoted by a pair of indices (u1,u2) with 0 ≤ u1 < u2 ≤ g, where g denotes the length of the 

genomic region of interest, for example a chromosome. ISTAT first computes k, the number 

of intervals in If which have overlap with any interval in I. The significance (p-value) of the 

overlap between reference and query intervals is measured by sampling a random set of 

intervals, Ir, where the positions of query intervals are randomized along the genomic region, 

while retaining the total number of intervals and their individual lengths same as the 

intervals in I (Figure 1). To reduce the combinatorial complexity of the problem, we also 

assume that the order of intervals in I are preserved when sampling for Ir, but we show 

through our simulations that the impact of this additional assumption is negligible for a 
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typical enrichment problem. The p-value is naturally defined as the probability of observing 

k or more overlaps between If and Ir.

It is not feasible to count random sets one by one as the space of all possible random 

intervals expands exponentially with the number of intervals. Instead, ISTAT uses a dynamic 

programming (DP) algorithm. For each 0 ≤ k ≤ m, we recursively compute the number of all 

distinct random sets resulting in k overlaps, and calculate the p-value from the cumulative 

distribution of the overlap statistics (c:DP]STAR Methods). In practice, to make the 

computation efficient for large genomes with large numbers of intervals, we use a practical 

interval ‘scaling’ option by considering the natural partitioning of the genome into intervals 

and the gaps amidst them, and scale each interval and gap in I and If by a fraction ν. The 

running time of ISTAT p-value computation is O(ngνm), and the memory usage scales as 

O(gνm), where both can be controlled by choosing a proper scaling factor ν <1.

In ISTAT, we provide an even more efficient option to approximate the p-value. Specifically, 

assuming that intervals in If are overlapped (by Ir intervals) independently from each other, 

we can show that the overlap statistics k follows a Poisson binomial (PB) distribution (STAR 

Methods). We characterize the impact of independence assumption on the accuracy of 

computed p-values by defining a parameter η as a measure of ‘spread’ of intervals in If 

(STAR Methods), and investigating the approximation for different values of η. We provide 

empirical bounds on η to guide the user on how closely PB approximates the distribution of 

overlap statistics, especially when annotations include a large number of intervals.

Performance on simulated data

We simulated intervals in a randomly generated chromosome to test the performance of 

ISTAT. To study the impact of scaling and fixed-order assumption on the DP algorithm, we 

chose g = 200 Mbp, and the two sets of intervals I and If with n = m = 100 intervals. The 

intervals in I and If were generated with random lengths li and xj distributed uniformly over 

[1Kbp,10Kbp]. The intervals in If were placed uniformly at random along the chromosome, 

while ensuring no overlap between them. We benchmarked ISTAT speed across a wide range 

of values for n, m, and g. We also simulated intervals in If distributed non-uniformly to study 

how their positional distribution impacted the quality of PB approximation.

The impact of scaling on DP p-value

The ISTAT algorithm has substantial demands on memory and time. To allow it to work on 

the human genome, we scaled down the intervals and the gaps between them by a fraction ν. 

To test the impact of scaling, we considered the example of a chromosome described above, 

with g = 200 Mbp, and n = m = 100. The impact on DP p-values due to scaling with ν ∈
{1,10−1,10−2,10−3} is shown in Figure 2A. As can be observed, scaling preserves the p-

values tightly. To further investigate robustness of DP p-value computation to the scaling, we 

also considered an adversarial example where I and If contain intervals smaller than ν−1. For 

that purpose, the interval lengths were selected from a uniform distribution over [100bp, 

4Kbp]. Thus, when we applied scaling factor ν = 10−3, approximately one-fourth of 

intervals were smaller than the resolution ν−1 and become unit intervals. Nevertheless, p-
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values obtained with ν = 10−3 tightly followed finer-scale p-values (Figure 2B), validating 

the use of scaling to make the computation efficient.

Effect of order on p-value

To test the effect of fixed order on p-value, we used a scaling factor ν = 10−3, and applied 

the ISTAT DP method to 100 random instances of simulated intervals described before, each 

with a random permutation of I. In Figure 2C, we plotted the mean p-value for all k, as well 

as the standard error of the mean. We observe that the standard error was distributed tightly 

around the mean (at least an order of magnitude smaller than the mean for all k). while its 

ratio to the mean increased slightly for smaller p-values. The mean p-value range from 

0.4320±2.279·10−4 for k = 1 to 1.017·10−269±6.246·10−271 for k = 100. The results suggest 

that fixing the order in DP algorithm to compute the p-value is an acceptable compromise 

for many real data-sets.

Running time

Using a desktop PC with Intel Core i7-6700K CPU and 32GB DDR4 RAM, the running 

time of our DP algorithm (in a logarithmic scale) versus the number of query intervals is 

plotted in Figure 2D for a number of scaling factors. The running time scales almost linearly 

with the number of query intervals n. It also scales linearly with the number of reference 

intervals m (Figure 2E) and the size of chromosome g (Figure 2F), and when larger scaling 

factors is used.

Poisson binomial approximation

To study the accuracy of using Poisson binomial for the distribution of overlap statistics, we 

simulated different cases by changing the number of query and reference intervals as well as 

the spread of reference intervals over the genome. Although the closeness of PB 

approximation is a complicated function of the distribution of intervals and its exact 

characterization is hard, the parameter η, defined as the ratio of spread of reference intervals 

to the total length of genomic region (STAR Methods), proved to be relevant, yet simple to 

calculate. To test the role of η in p-value estimation, we compared the p-values of the 

Poisson binomial method against the DP method for different values of η (Figure 3). 

Relative to the DP, the PB approximation underestimates p-values when η = 0.005445 

(Figure 3A), and over-estimates for η = 0.6197 (Figure 3C). However, this over-estimation is 

not as pronounced as the under-estimation in the case of clumping, and reduces with large n 
(Figure 3E–F). As a rule of thumb, we suggest using DP (with the largest computationally-

feasible scaling ν) when η < 0.06, to avoid inflating the significance of overlap. For the case 

of multiple chromosomes, the minimum η among all chromosomes is recommended as a 

conservative choice.

Enrichment analysis on real data

To test our methods on interval data from previously published studies, we applied ISTAT to 

four examples from the literature and compared the results with the reported p-values. The 

first example comes from Deshpande et al. (2018), relating to matching of focal copy 

number changes in tumor genomes. The second dataset is from Zarrei et al. (2015) where a 
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map of copy number variation (CNV) in the human genome is provided, and different 

genomic elements are investigated for the presence/absence of CNVs. We also ran ISTAT on 

an example from epigenetics context (Guenther et al., 2007), where the promoters are found 

to be enriched for H3K4 methylation. The last example was extracted from an effort to 

systematically annotate genome by the means of characterizing chromatin states (Ernst and 

Kellis, 2010).

TCGA-CNV enrichment in extra-chromosomal DNA

Focal copy number amplification (CNA) is central to the pathology of many cancers (Davoli 

et al., 2017; Verhaak et al., 2019), but its mechanistic origin is not well understood. Recent 

results suggest that CNA can often be attributed to formation of independently replicating 

extra-chromosomal DNA (ecDNA) elements (Turner et al., 2017). This could be tested by 

measuring the significance of association of ecDNA regions obtained from tumor derived 

cell-lines (I) against CNAs identified from array-CGH data (denoted as If) from tumor 

genomes (The Cancer Genome Atlas Program - National Cancer Institute).

The number of intervals in query and reference sets were not large, with n = 116 and m = 

101, so we did not scale the intervals, obtaining the p-value 8.679·10−6 at the observed 

overlap K = 54. For comparison, we got the same p-value after scaling with ν = 10−1. As 

expected from η = 0.001, the PB approximation ( p − value = 2.642·10−10) inflated the 

significance of the association (Figure 4A). Overall, the ISTAT DP results were useful in 

validating proposed mechanisms for the origin of focal copy number amplifications in 

cancer.

Non-coding genes enrichment in CNVs

Zarrei et al. (2015) tested the overlap between n = 3132 regions of copy number gains (I) 
against the location of m = 9058 non-coding genes (If). Using a permutation test, they 

reported a p-value of 0.0001, showing the limited resolution of permutation tests. In 

supplementary data, they used a binomial distribution to report another estimate of p − value 

= 2.32·10−54, pointing to the difficulty of getting an accurate estimate.

Using the scaling factor ν = 10−2, with K = 987 of intervals in If overlapped, we computed p 
− value = 5.216·10−18. confirming high enrichment of non-coding genes in CNV gains. 

After applying an order of magnitude smaller scaling factor ν = 10−3, we obtained a very 

similar estimate of p − value = 2.532·10−18 providing confidence in our estimates using ν = 

10−2 (Figure 4B). The results also indicated that ~1018 randomized samples would have 

been needed to get an accurate estimate using permutation tests.

For this data, we computed η = 0.024 suggesting that the PB estimates would inflate the p-

value. Indeed, the PB approximation gave an estimate of 1.370·10−52, indirectly explaining 

how the binomial distribution used by the authors also resulted in smaller p-value and 

inflated the significance.
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Enrichment of H3K4me3 in promoters

Guenther et al. (2007) found that 74% of all annotated promoters were enriched for H3K4 

trimethylation, concluding that a large fraction of genes with no detected transcript have 

promoter-proximal nucleosomes enriched for H3K4me3 modification. To evaluate the 

statistical significance of this observation, we took the set of regions highly enriched for 

H3K4me3 in ES cells as the query set (data provided as supplementary information in their 

paper (Guenther et al., 2007)). However, they did not provide coordinates for the promoters. 

Therefore, for the reference intervals, we used the collection of all promoters (−5.5 Kbp to 

2.5Kbp relative to TSS of all RefSeq genes) as the reference set of intervals. Although with 

If that we used we did not get the same ratio of overlap as reported in the paper, but still the 

p-value was quite significant. At the observed overlap of K = 2642 out of m = 24889 

reference intervals, PB p-value was 1.775·10−76, while DP p-value with ν = 10−2 is 

2.734·10−82. For this example, η = 0.1 so PB approximation gave a conservative p-values as 

expected (Figure 4C).

Enrichment of promoters in promoter-associated chromatin states

In a study by Ernst and Kellis (2010), among 51 identified chromatin states, states 1 to 11 

were referred to as promoter-associated states because of high enrichment for promoter 

regions. We tried to compute the p-value of enrichment by considering the set of all 

promoter regions (within 2Kbp of RefSeq TSS) as the query set I, and 200-bp intervals 

identified with state 9 as the reference set If. From m = 4995 intervals in If, K = 344 are 

overlapped by the query intervals. The p − value = 1.588·10−8 (using the scaling factor ν = 

10−2) shows that it would be very unlikely to observe such overlap only by chance, yet it is 

much less significant than the p-value reported by the authors (≤ 10−200), computed using 

the hypergeometric distribution. As η = 0.01, PB approximation expectedly gives smaller p-

value (1.082·10−13; Figure 4D).

Discussion

Our results explore the statistics of interval overlaps. The question is quite natural in the post 

genomic era where annotating the genome for function, structure, and variation and 

identifying correlated annotations is a key problem. While scientists have used many 

different ways to compute the significance of overlap between two sets of intervals, their 

computations often do not explicitly state the assumptions on the null model, or accurately 

compute the p-values given specific assumptions.

To the best of our knowledge, the p-value computation for sets of overlapping intervals has 

been limited to either permutation tests which do not scale to computation of small p-values, 

or simple parametric tests such as hypergeometric or binomial tests which are based on 

simplifying assumptions about the length and structure of intervals. Our paper, however, 

formulates a null model where the size of intervals and their relative arrangement are 

considered when the significance of overlap is evaluated. We explicitly state the assumptions 

that we have made in our proposed model, and assess the impact of our assumptions 

thorough the experiments on simulated and real datasets. Computation of exact p-values may 

be necessary in some cases. For example, p-values can be used to compare the significance 
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of two ‘competing’ annotations with different numbers of intervals (n) and intersections (k). 

We develop a frame-work that makes exact computation of p-value possible, even for very 

small p-values.

The proposed DP method is able to compute very small p-values by efficiently counting the 

number of possible random rearrangements of intervals resulting in specific amount of 

overlap. Although we assume that the order of intervals is not changed, and it may be 

possible to construct adversarial examples where changing the order has a material impact 

on p-values, but our simulation of typical examples of interval data show that the resulting 

change in p-values is not significant. Our experiments on simulated and real datasets also 

suggest that to improve the speed and memory usage, we can employ reasonable scaling 

factors and still obtain accurate p-values.

The Poisson binomial approximation is very efficient to compute. However, our results 

suggest that for typical values found in real-life examples, the independence assumption is 

too strong, and might result in under-estimated p-values, or the false reporting of some 

overlap as being significant. Nevertheless, we have introduced parameter η which can be 

readily computed from the data before running the DP method, to estimate the accuracy of 

PB method compared to DP algorithm results. Future work should look into more systematic 

characterization of PB approximation.

Throughout our experiments, we let the intervals to be uniformly distributed over the whole 

extent of chromosomes. However, one might be interested in a non-uniform distribution of 

intervals under the null model, to account for confounding variables such G/C content, 

sequence context, or intergenic/genic region. Our methods can be used in such cases by 

confining the problem to the specific regions of interest. Hence, only intervals falling into 

such regions are considered, and g would be the total length of the segments that intervals 

are allowed to be distributed there. Moreover, we considered the overlap of two intervals as a 

binary event, and defined the statistic based on the number of overlapping intervals. 

However, DP method can be modified to compute the p-value when the overlap statistic is 

defined based on the total amount of shared base pairs instead. Thus, we provide this as an 

option in ISTAT software and give the user the flexibility of choosing the appropriate measure 

of overlap for their specific application.

STAR★Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by 

the Lead Contact, Vineet Bafna (vbafna@cs.ucsd.edu).

METHOD DETAILS

We use the space-counted, zero-start convention for the genomic coordinates. Namely, we 

count the space between bases starting from 0 (the one before the first base) up to g (the one 

after the last base), where g denotes the length of the genomic region of interest. We use ‘i’ 
to index the intervals in query set I, which has total number of n intervals, and designate ‘j’ 
to index the intervals in reference set If, which consists of m intervals in total. The length of 
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i-th query interval and j-th reference interval are represented by li and xj, respectively. Two 

intervals (u1,u2) and (νl, ν2) overlap iff they share common nucleotide(s). A collection of 

intervals is non-overlapping if no pair of intervals in the collection overlap.

Problem Formulation—Let If ⊆ I denote the subset of intervals in If that are hit (overlap 

with intervals in I). Suppose |If ⊆ I|= k. We measure the significance (p-value) of this 

observation by sampling a random set of intervals Ir with the following properties

• |Ir|=|I|. Ir has exactly n elements.

• Intervals in Ir have the same lengths as the intervals in I.

• The location of intervals in Ir are drawn from a distribution (implicitly) such that 

all possible random sets are equally likely.

Let Ir be drawn according to the process above, then p-value is defined as

P − value(k) = Pr ∣ If ⊆ Ir ∣ ≥ k .

While the computational complexity of the problem is not known, we can argue that it is 

hard. Clearly, the number of possible random sets is very large; ranging from 
g + n − ∑i li

n

when all li’s are identical, to 
g + n − ∑i li

n
 n! when all li are distinct. For typical values of g 

= 2·108 (length of a chromosome), n = 100 (number of annotated regions), and ∑li = 106 

(total length of regions covered by an annotation), counting all possibilities naively to 

compute Pr(|If ⊆ I|≥k) is computationally intractable. Thus, we impose the restriction that 

the intervals in Ir must retain the same order as the intervals in I (i.e, if interval B starts after 

interval A in I, same should happen in Ir), and present a dynamic programming (DP) 

algorithm to compute the number of distinct random sets with |If ⊆ Ir|=k, for all k. In 

practice, to apply the algorithm to large genomes with abundant annotation, we use a 

practical interval ‘scaling’ scheme by considering the natural partitioning of the genome into 

intervals and the gaps amidst them, and scale each interval and gap in I and If by a fraction 

ν. Ideally, we want to have ν = 1, but large problems require smaller fractions to make the 

computation feasible from both running time and memory usage aspects. Nevertheless, we 

show that the algorithm still yields a close approximation of p-value.

Dynamic Programming Algorithm—For interval i in Ir, genomic location h, (1 ≤ h ≤ g), 

0 ≤ k ≤ m, a ∈ 0,1, let N(i,h,k,a) denote the number of arrangements of the first i intervals in 

Ir such that (see Figure 5):

• The i-th interval ends exactly at location h.

• k intervals in If are hit by the first i intervals in Ir.

• a = 0 if the interval from If that spans h (if any) has not been counted earlier; a = 

1 otherwise.
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We also define N1(i,h,k,a) identically to N(i,h,k,a) with the exception that the i-th interval 

ends at or before location h. Note that if the j-th interval in If spans h, it is counted as a hit, 

but may have already been counted by some other interval in Ir. Although a separate 

function can be defined to store that information, we use a as an indicator in dynamic 

programming for the sake of brevity. In order to compute N1(i,h,k,a), we must define some 

auxiliary functions. Let c(i,h) denote the number of intervals in If which intersect with (h − 

li,h) in Ir. While evaluating c(i,h), (j1, j2) in If is counted as an intersecting interval with (h − 

li,h) if j1, < h and j2 > h − li. We also define binary function f : (0, g] → {0,1}, where f(h) = 

1 if some interval in If spans h, meaning that it starts before h and ends after it, and f(h) = 0 

otherwise (Figure 5). For the simplicity of exposition, it is assumed that a single nucleotide 

overlap between two intervals from Ir and If is sufficient to count the reference interval as 

intersected. However, we can be more strict by accepting only the overlaps which include z 
or more base pairs (units). In that case, we just need to generalize the definitions of c(i,h) 

and f(h). For c(i,h), the intersection conditions should change to j1 ≤ h − z and j2 ≥ h − li + z, 

which can be compressed into a single condition min{j2,h} − max{j1,h − li} ≥ z. Also, f(h) = 

1 if j1 ≤ h − z and j2 ≥ h + z.

To explain the recurrences, note that N1(i,h,k,a) can be computed by adding cases where the 

i-th interval ends exactly at h, and cases where the i-th interval ends strictly before h. To 

compute N(i,h,k,a) we need to consider all arrangements where the first i − 1 intervals in Ir 

ends before the start of the i-th interval at h − li.

N1(i, ℎ, k, a) =
N(i, ℎ, k, a) ℎ = 1
N(i, ℎ, k, a) + N1 i, ℎ − 1, k, min a, f(ℎ − 1) Otherwise (1)

N(i, ℎ, k, a) =
0 ℎ < Σx = 1

i
lx or k < c(i, ℎ) − a

1 i = 1 and k = c(i, ℎ) − a
N1 i − 1, ℎ − li, k − c(i, ℎ) + a, f(ℎ − li) Otherwise

where

1 ≤ i ≤ n, 1 ≤ ℎ ≤ g, 0 ≤ k ≤ m, a ∈ {0, 1} .

The DP p-value (Pr(|If ⊆ Ir|≥k)) can be computed using the ratio

P − value(k) =
∑κ = k

m N1(n, g, κ, 0)

∑κ = 0
m N1(n, g, κ, 0)

.

Recall that the total number of configurations is

∑
κ = 0

m
N1(n, g, κ, 0) = g − ∑i = 1

n li + n
n

.
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which can be very large and surpass the upper limit of ordinary data types. Therefore, we 

perform all calculations using a logarithmic scale. The multiplication and division can be 

done trivially in the logarithmic scale. For the addition and subtraction, we use the following 

simple math trick. Let a = logA and b = logB. Then, c = log(A ± B) is calculated without 

explicitly converting a and b to their intractably large counterparts, A and B, using

c = a + log(1 ± exp(b − a)) if b > a
b + log(1 ± exp(a − b)) if a > b

As a matter of fact, this trick is useful when A and B are both large, but the ratio 
A
B = exp(a − b) is computable, which is the case in the recurrence relation given by Eqn. 1.

Time Complexity—The number of iterations to complete the table of values for 

N1(i,h,k,a) is O(ngm). The functions c(i,h) and f(h) can be pre-computed (using a modified 

version of binary search algorithm), so each iteration is computed in a constant time. 

Therefore, the total time complexity is O(ngm) which is pseudo-polynomial because the input 

size is O((n + m)log g). The running time can be reduced to O(ngνm) by scaling the genome 

using scaling factor ν < 1. We also use a number of tricks to improve the speed of 

computations, including lowering memory usage from O(ngm) to O(gm). We should note that 

this time complexity is achieved under the assumption that the order of intervals in Ir is same 

as I. In Results, we show that choosing different orders does not significantly change the p-

value.

Multiple Chromosomes—In many cases of interest, the intervals reported are on 

multiple chromosomes, with a non-uniform distribution across chromosomes. Therefore, the 

appropriate random interval set Ir′ may only allow permutation of interval positions within 

the chromosome it is originally assigned to. For this alternative null model, the DP algorithm 

is applied to each chromosome to enumerate rearrangements of intervals within each 

chromosome, and then the results are combined to compute the overall p-value. Specifically, 

consider Q chromosomes. For an arbitrary chromosome q, 1 ≤ q ≤ Q, let Iq ⊆ I and If,q ⊆ If 

denote the subsets of intervals paced on q, containing nq and mq intervals, respectively. 

Similarly, we can define Ir,q to be a random reordering of Iq on chromosome q. Let Nq(kq) 

denote the number of configurations of intervals in Ir,q s.t. |If,q ⊆ Ir,q|=kq. Using dynamic 

programming on each of Q chromosomes, we can obtain Nq(kq) 1 ≤ q ≤ Q,0 ≤ kq ≤ mq. For 

k ∈ [0,m] we define the p-value to be

P − value(k) = Pr ∑
q = 1

Q
kq ≥ k .

With the equiprobability assumption and using simple arguments based on multiplication 

principle to count the number of desired configurations, we can compute the p-value as
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P − value(k) =
∑(k1, k2, …, kQ) ∈ Tk ∏q = 1

Q Nq(kq)

∑(k1, k2, …, kQ) ∈ T0 ∏q = 1
Q Nq(kq)

,

where Tk is the set of all Q-tuples (k1,k2,…,kQ) such that ∑q = 1
Q kq ≥ k. While the 

denominator can be easily computed via the following identity

∑
(k1, k2, …, kQ) ∈ T0

∏
q = 1

Q
Nq(kq) = ∏

q = 1

Q
∑

kq = 0

mq
Nq(kq),

it is not efficient to iterate over Tk to compute the numerator for each k. Instead, we use a 

simple recursive procedure to compute it. Let M(q,k) be the number of configurations that 

the first q chromosomes have k intersections. The p-value can be expressed in terms of 

M(q,k) as

P − value(k) =
∑κ = k

m M(Q, κ)

∑κ = 0
m M(Q, κ)

.

The following recurrence relation lets us to efficiently compute the p-value for all k ∈ [0,m]

M(q, k) = ∑
l = 0

min{k, mq}
M(q − 1, k − l)Nq(l)

M(q, 0) = ∏
u = 1

q
Nu(0), M(1, k) = N1(k)

where the time complexity is O(Qm2). Nevertheless, in almost all practical cases, the total 

time complexity of calculating the p-value is dominated by the complexity of applying DP 

algorithm to each chromosome to compute all Nq(kq). As DP algorithm on each 

chromosome is done independently, we can take advantage of parallel computing and the 

total running time would be O max
q

nqgqmq .

Poisson Binomial Approximation—For the case that annotations contain too many 

intervals such that the processing resources to run DP algorithm cannot be afforded, we 

provide an approximation which is reasonably close under certain condition. For simplicity, 

we remove the non-overlapping assumption on Ir. Thus, Ir is a randomly located collection 

of n intervals of lengths l1,l2,l3,…,ln with arbitrary order. Let Eij denote the event that the j-
th interval in If is intersected by the i-th interval in Ir. Then,
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pij ≔ Pr(Eij) =
li + xj − 1

g

As before, we assumed that a single nucleotide overlap is sufficient. For the more strict 

overlap condition of at least z base pairs overlap, pij is given by

pij =
0 if z > min{xj, li}
li + xj − 2z + 1

g Otherwise

Now, let Eij be the event that the i-th interval in Ir does not intersect the j-th interval in If. In 

the absence of the non-overlapping assumption on Ir, the events Eij, i = 1,2,…,n, are 

independent, and the probability of their intersection is given by the product of individual 

probabilities. Therefore, the probability of Ej = ⋃i = 1
n Eij, which is the event where interval 

j ∈ If is hit by Ir, can be calculated as

Pj ≔ Pr(Ej) = Pr( ∪i = 1
n Eij) = 1 − Pr( ∩i = 1

n Eij) = 1 − ∏
i = 1

n
Pr(Eij) = 1 − ∏

i = 1

n

(1 − Pr(Eij)) .
(2)

Now consider the binary indicator variable Xj, where Xj = 1 iff event Ej occurs. We have m 
Bernoulli experiments with success probabilities P1,P2,…,Pm, and we are interested in 

computing Pr Σj Xj = k . In general, there are dependencies between Ej’s for different values 

of j. However, under certain condition where intervals are not too close or far away, we can 

approximately assume independence between different intervals. The sum of m independent 

Bernoulli trials with different success probabilities is a Poisson binomial (PB) distribution 

(Wang, 1993).

Pr ∑
j = 1

m
Xj = k = ∑

A ∈ Fk
∏

u ∈ A
Pu ∏

ν ∈ Ac
(1 − Pν) (3)

where Fk is the set of all subsets of {1,2,…,m} with k elements. Eqn. 3 allows us to compute 

the p-value as

P − value(k) = Pr ∑
j = 1

m
Xj ≥ k .

We cannot directly use Eqn. 3 by enumerating over all elements in Fk, but use a recursive 

approach to compute it, following Hong (2013). It is reproduced here for completeness. Let 

πk, j = Pr ∑u = 1
j Xu = k  denote the probability of getting k hits in the first j intervals in If. 

Our goal is to compute Pr ∑u = 1
m Xu = k = πk, m. All values πk,j can be computed in O m2

time using
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πk, j = Pjπk − 1, j − 1 + (1 − Pj)πk, j − 1, 0 ≤ k ≤ m, 0 ≤ j ≤ m (4)

with the boundary conditions π−1,j = πj+1,j = 0, j = 0,1,…,m and π0,0 = 1. Other FFT based 

methods are also applicable (Hong, 2013).

With the above PB approximation, we assume that the event of an interval in If being hit is 

independent of other intervals being hit, greatly reducing the computational complexity of 

the problem. To understand the impact of this assumption, we introduce parameter η. Recall 

that Pj = Pr(Ej) = Pr(Xj = 1) is the probability that interval j (length xj) in If is hit by some 

interval in Ir. Let dj, denote the distance of interval j from interval j − 1. Define Δ := (m − 1)

·median{dj|j = 2,3,…,m}, and η ≔ Δ
g . Parameter η is a measure of the spread of intervals in 

If. For η ≪ 1, and j’ sufficiently close to j, we expect to have

Pr(Xj = 1 ∣ Xj′ = 1) > Pr(Xj = 1) .

In other words, if intervals in If are clumped, then Ej,Ej′ are not statistically independent but 

positively correlated, and we will underestimate the true p-value. For larger values of η, and 

j, j′ sufficiently distant,

Pr(Xj = 1 ∣ Xj′ = 1) < Pr(Xj = 1),

The negative correlation leads to an over-estimation of the p-value. To better recognize this 

effect, imagine an extreme case where n < m and due to the size and spread of intervals in If, 

at most n intervals in If can be hit. Therefore, p − value(n + 1) = Pr Σj Xj > n = 0. The 

independence assumption in PB computation, though, will lead to a non-zero value (over-

estimate) for p − value (n + 1).

DATA AND SOFTWARE AVAILABILITY

The ISTAT software is made publicly available on https://github.com/shahab-sarmashghi/

ISTAT.git
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Highlights

• The overlap between genome annotations is often used to study biological 

association

• We describe a tool for computing the statistical significance of annotations’ 

overlap

• Our method corrects p-values reported in previous experiments by orders of 

magnitude
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Figure 1: A Schematic of Interval Overlap Problem.
If denotes the reference collection of intervals, and I represents the query collection. The 

randomized set Ir is generated by relocating the intervals in I such that all possible non-

overlapping random sets are equiprobable.
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Figure 2: Testing DP algorithm on simulated data.
Impact of scaling parameter ν on DP p-value when: (A) li, xj~U[1Kbp, 10Kbp], and (B) 

li, xj~U[100bp, 4Kbp]. (C) Impact of ordering on DP p-value, with ν = 10−3. The mean of 

100p-value computations for random orderings is plotted, and the error bars represent the 

standard error of the mean. Running time (in secs.) of DP algorithm: (D) as a function of n, 

with m = 100 and g = 200 Mbp. (E) as a function of m, with n = 100, g = 200 Mbp. (F) as a 

function of g, with n = m = 100.
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Figure 3: Testing PB approximation on simulated datasets.
All simulations are run with g = 200 Mbp and m = 100. For (A–C) we set n = 100 and 

li, xj~U[1Kbp, 10Kbp], simulating different η values: (A) η = 0.0054, (B) η = 0.053, and (C) 

η = 0.62. For (D–F) we set n = 1000 and li, xj~U[1Kbp, 2Kbp], with η: (D) η = 0.0079, (E) η 
= 0.062, and (F) η = 0.68.
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Figure 4: Enrichment analysis on 4 biological datasets from published studies.
The p-value curve is plotted for a range of overlap statistics k, computed using two different 

scaling factors (shown in blue and green). The result of PB approximation is also shown in 

orange. The dashed line shows the observed overlap K for each dataset. For datasets A and 

B, the p-values computed using both scaling factors are almost identical. (A) TCGA-CNV 

enrichment in HIRT (extra-chromosomal data); K = 54. (B) Non-coding genes enrichment 

in CNVs; K = 987. (C) Enrichment of H3K4me3 in promoters; K = 2642. (D) Enrichment 

of promoters in promoter-associated chromatin states; K = 344.
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Figure 5: Illustrating the basics of the dynamic programming algorithm.
(A) How the functions c(i,h) and f(h) are evaluated. In this example, the i-th interval in Ir, 

which ends at h, intersects 3 intervals in If, so c(i,h) = 3 . Also, there is an interval in If 

spanning h, so f(h) = 1.

Sarmashghi and Bafna Page 22

Cell Syst. Author manuscript; available in PMC 2020 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Graphical Abstract
	eTOC Blurb
	Primer
	Introduction
	Results
	Performance on simulated data
	The impact of scaling on DP p-value
	Effect of order on p-value
	Running time
	Poisson binomial approximation
	Enrichment analysis on real data
	TCGA-CNV enrichment in extra-chromosomal DNA
	Non-coding genes enrichment in CNVs
	Enrichment of H3K4me3 in promoters
	Enrichment of promoters in promoter-associated chromatin states

	Discussion
	STAR★Methods
	CONTACT FOR REAGENT AND RESOURCE SHARING
	METHOD DETAILS
	Problem Formulation
	Dynamic Programming Algorithm
	Time Complexity
	Multiple Chromosomes
	Poisson Binomial Approximation

	DATA AND SOFTWARE AVAILABILITY

	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:



