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Stability Regions of Nonlinear Autonomous 
Dynamical Systems 

Abstract-A topological and dynamical characterization of the stabil- 
ity boundaries for a fairly large class of nonlinear autonomous dynamic 
systems is presented. The stability boundary of a stable equilibrium point 
is shown to consist of the stable manifolds of all the equilibrium points 
(and/or closed orbits) on the stability boundary. Several necessary and 
sufficient conditions are derived to determine whether a given equilibrium 
point (or closed orbit) is on the stability boundary. A method to find the 
stability region based on these results is proposed. The method, when 
feasible, will find the exact stability region, rather than a subset of it as in 
the Lyapunov theory approach. Several examples are given to illustrate 
the theoretical prediction. 

I. INTRODUCTION 

HE problem of determining the stability region (region of T attraction) of a stable equilibrium point for a nonlinear 
autonomous dynamical system is an important one in many 
applications, such as electric power systems [l], [2], economics 
[3], ecology [4], etc. The numerous methods proposed in the 
literature for estimating the stability region can be roughly divided 
into two classes [6]: those using Lyapunov functions, and all 
others. Most of the methods belong to the Lyapunov function 
approach, which is based mainly on La Salle's extension of 
Lyapunov theory [7]-[ 101. The estimated stability region based on 
these methods usually is only a subset of the true stability region. 
Recently, methods using computer generated Lyapunov functions 
[l l] ,  [12] have been proposed. Another method, belonging to the 
Lyapunov function approach, is the Zubov method [8]. Theoreti- 
cally, this method provides the true stability region via the 
solution of a partial differential equation. Recent advance includes 
the maximal Lyapunov function [30]. One of the early non- 
Lyapunov methods proposed for planar systems [3 11 requires the 
construction of a nontrivial integral function. The method of sinks 
[13], also for planar systems, utilizes the analogy between the 
vector field and the velocity field of an incompressible fluid. An 
iterative procedure using the Volterra series for estimating the 
stability region was proposed [14]. Another method, called the 
trajectory-reversing method, was recently proposed [5], [6], in 
which the estimation of the stability region is synthesized from a 
number of system trajectories obtained by integrating the system 
equations. 

In this paper a comprehensive analysis of the stability region is 
conducted. It is an extension of our earlier work [32]. Several 
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necessary and sufficient conditions for an equilibrium point (or 
closed orbit) to lie on the stability boundary are derived. A 
complete characterization of the stability boundary is presented 
for a fairly large class of nonlinear autonomous dynamical 
systems satisfying two generic conditions plus one additional 
condition that every trajectory on the stability boundary ap- 
proaches one of the equilibrium points (or closed orbits) as the 
time t approaches infinity. It is shown that the stability boundary 
of this class of systems consists of the union of the stable 
manifolds of all equilibrium points (and/or closed orbits) on the 
stability boundary. A method to find the stability region based on 
these results is proposed; this method belongs to the non- 
Lyapunov function approach. The method is applied to several 
examples studied in the literature. 

The organization of the paper is as follows. Some fundamental 
concepts in the theory of mathematical dynamical systems that are 
essential in the subsequent developnient in this paper are 
introduced in Section 11. Ih Section 111 topological properties of 
the equilibrium point and closed orbit on the stability boundary are 
presented. In Section IV a complete characterization of the 
stability boundary of a class of systems is given. The class of 
systems is examined in Section V and is shown to be fairly large. 
In Section VI a new method for determining stability region is 
proposed. In Section VII the method is applied to several 
examples. 

II. CONCEPTS IN DYNAMICAL SYSTEMS 

In this section we introduce some concepts that play a central 
role in the theory of dynamical systems. For general background 
on the theory of mathematical dynamical systems the reader is 
advised to consult the survey paper by Smale [ 151, or the books by 
Guckenheimer and Holmes [28] or Palis and De Melo [20]. 

Abstractly, a dynamical system (M, f) is characterized by: 
1) a state-space M of the possible states for the system under 

consideration; 
2) a vector field f, defined on M, which generates the time 

evolution of the states x in M. 
The state-space M is assumed to be Haudsdorff; usually M is a 

manifold or an open subset of some topological vector space. 
Here the state-space M is a C2 manifold without boundary. 
The time evolution is a map from M x Z + M, defined by (x, t) 
+ @,(x), where I is an interval of R and a,( e )  is called the flow 
(induced by the vector field f). A vector field is said to be 
complete if @,(x) is defined on A4 x R. If M is compact, all its 
vector fields are complete. We may write @,(x) = x( t ) ,  the map t 
-+ x( t )  is the trajectory of x E M, the image of this map is called 
the orbit. The set of all trajectories is called the phase portrait. 

When the vector field f does not depend on time the dynamical 
system is said to be autonomous. A nonlinear autonomous 
dynamical system can be described by a set of differential 
equations 

X=f (x )  x E M. (2-1) 

We shall assume that the vector field f is C'; this is a sufficient 
condition for existence and uniqueness of solution. 

A zero of a vector field is referred to as an equilibrium point 
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(e.p.) or simply an equilibrium. It is a solution of the equation 

f ( x )  = 0. (2-2) 

We shall denote the set of equilibrium points of (2-1) by E : = 

An equilibrium point x off is said to be hyperbolic if, in local 
coordinates, none of the eigenvalues of the Jacobian matrix J, f at 
x has zero real part. For a hyperbolic equilibrium point x ,  we can 
decompose the tangent space T,(M) uniquely as a direct sum of 
two subspaces E" + E" such that each subspace is invariant under 
the linear operator J, f ,  the eigenvalues of J, f restricted to E" 
have negative real part, and the eigenvalue of J, f restricted to E" 
have positive real part. Letting the dimension of E" be n, and the 
dimension of EU be nu, we can express such subspace as the 
following: 

{x: f (x)  = 01. 

the stable subspace E"= span { U', u 2 ,  * * , U""} 

the unstable subspace E"=span {w', wz, e . . ,  w"u} 

where U', u 2 ,  . * ,  U"" are the n, (generalized) eigenvectors whose 
eigenvalues have negative real parts, w ' ,  w2, - e ,  w"u are the nu 
(generalized) eigenvectors whose eigenvalues have positive real 
parts. Obviously, n, + nu = n.  

We call the value nu the type of x .  An equilibrium point of type 
0 is called a sink; one of type n is called a source; all others are 
called saddle. Type-one equilibrium point (nu = 1) will be of 
some importance. Note that sinks are stable equilibrium points, 
while sources and saddles are unstable equilibrium points. 

By a closed orbit of a dynamical system we mean the image of 
a nonconstant periodic solution of (2-l), i.e., a trajectory y is a 
closed orbit if y is not an equilibrium point and @,(x) = x for 
some x E y, t # 0. A closed orbit y is said to be hyperbolic if for 
anyp E y, n - 1 of the eigenvalues of the Jacobian of +,(y) a t p  
have modulus not equal to 1 (one eigenvalue must always be 1). A 
critical element of the vector field f is either a closed orbit or an 
equilibrium point. 

Let 2 be a hyperbolic equilibrium point. Its stable and unstable 
manifolds W s ( i ) ,  Wu(2) are defined as follows: 

W s ( 2 ) =  { x  E kk+t (x )+f  as t+m} (2-3a) 

WU(2)=  { x  E M + , ( x ) + f  as t+ - w} .  (2-3b) 

Similarly, the stable and unstable manifolds of a hyperbolic closed 
orbit y are defined as the following: 

(2-w Ws(y)= { x  E M:+,(x)+y as t+m} 

W U ( y ) =  { x  E M:+,(x)+y  as t+ - m}. (2-4b) 

Since the stable manifold of the critical element of the flow @,(e) 

coincides with the unstable manifold of the critical element of the 
flow @ - ( ( a ) ,  this dual property enables us to translate each 
property of stable manifold into that of an unstable manifold. A set 
S E R" is said to be an invariant set of (2-1) if every trajectory of 
(2-1) starting in S remains in S for all t .  Obviously, these two sets 
Ws( e),  Wu( .) are invariant sets. We say a map g:M + N is an 
immersion at x if the derivative map df,:T,(M) --t T,,(N) is 
injective, where T,(M) and TyCx)(N) denote the tangent spaces of 
Mand N at points x E Mand f ( x )  E N ,  respectively. It is known 
that ""(e) and W u ( . )  are the images of the injective C' 
immersions of R"s and R"u, respectively, [15]. 

The long-term behavior of the trajectory can be studied in terms 
of its a-limit set. We say y is in the a-limit set of x ,  denoted as 
w(x),  if there is a sequence { t i }  in R ,  ti -+ 03, such that 

y =  lim * , ; (x) .  

The a-limit set a(x) is defined similarly by letting ti --t - 03. It can 

1-m 

be shown that these limit sets are closed invariant subsets of M 
[27, p. 1981. For example, an equilibrium point is its own a-limit 
set; it is also the a-limit set of trajectories in its stable manifold 
and the a-limit set of trajectories in its unstable manifold. A 
closed orbit y is the a-limit set and the a-limit set of every point 
on y. 

The idea of transversality is basic in the study of dynamical 
systems. If A ,  B are injectively immersed manifolds in M ,  we say 
they satisfy the transversality condition if either i) at every point 
of intersection x E A fl B, the tangent spaces of A and B span 
the tangent space of M at x ,  

i.e., T,(A)+ T,(B)= T,(M) for x E A fl B 

or ii) they do not intersect at all. 
One of the most important features of a hyperbolic equilibrium 

point 2 is that its stable and unstable manifolds intersect 
transversely at i. This transversal intersection is important because 
it persists under perturbation of the vector field. 

III. EQUILIBRIUM POINTS ON THE STABILITY BOUNDARY 
We will show in Section IV that under fairly general conditions, 

the stability boundary of a stable equilibrium point is the union of 
the stable manifolds of the equilibrium points (and/or closed orbits) 
on the stability boundary. Therefore, in this section we shall derive 
conditions to characterize the equilibrium points and closed orbits 
on the stability boundary. The necessary and sufficient conditions 
for an equilibrium point (or closed orbit) to be on the stability 
boundary are derived in terms of both the stable manifold and the 
unstable manifold of the equilibrium point (or closed orbit). We 
also study the number of equilibrium points on the stability 
boundary. 

Consider a nonlinear autonomous dynamical system described 
by the differential equation 

x =  f ( x )  (3-1) 

where x is an n-dimensional vector and the vector field f is C' .  
Suppose x, is a stable equilibrium point of the vector field f. 

The stability region (or region of attraction) of x, is defined to 
be W"(x,), that is, the set of all points x such that 

lirn +,(x)+x,. (3-2) 
I-m 

We will also denote the stability region of x, by A(x,), its 
boundary and its closure by aA(x,) and A(x,),  respectively. 
When it is clear from the context, we write A for A(x,),  etc. 
Alternatively, the stability region can be expressed as 

A ( x , ) = { x  E R":w(x)=x, } .  (3-3) 

Based on the properties of the stable manifold of x,, we have the 
following proposition [ 151. 

Proposition 3-1: A(x,)  is an open, invariant set which is 
diffeomorphic to R". 

Since the boundary of an invariant set is also invariant and the 
boundary of any set is closed, therefore, we have the following. 

Proposition 3-2: aA (x,) is a closed invariant set of dimension 
< n . A (x,) is not dense in R ", then aA (x,) is of dimension n - 1 . 

Proof: A general result [29, p. 461 states that, if U is an open 
set in R", then aU is of dimension < n; moreover if U is not dense 
in R", then dU is of dimension n - 1. 

Remark: If there are at least two stable equilibrium points, then 
the dimension of stability boundary of each of them is n - 1; in 
particular, stability boundaries are nonempty in this case. 

Next, we give conditions for an equilibrium point to be on the 
stability boundary, which is a key step in the characterization of 
the stability region A(x, ) .  We do this in two steps. First we 
impose only one assumption on the dynamical system (3-l), 
namely, that equilibrium points are hyperbolic, and derive 
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conditions for an equilibrium point to be on the stability boundary 
in terms of both its stable and unstable manifolds (Theorem 3-3). 
Additional conditions are then imposed on the dynamical system 
and the results are further sharpened (Theorem 3-7). We also 
derive the characterizations of closed orbits on the stability 
boundary. We use the notation A - B to denote those elements 
which belong to A but not to B. 

Let x be a hyperbolic critical element. Let U be a neighborhood 
of x in Ws(x) whose boundary aU is transversal to the vector field 
f. We call au a fundamental domain of Ws(x). A cross section V 
C R" of a vector field f is a manifold V of dimension n - 1, 
which need not be a hyperplane but must be in a manner such that 
the Bow off is everywhere transversal to it. Any cross section off 
containing a U and transversal to Ws(x) is the so-called fundamen- 
tal neighborhood G(x)  associated with Ws(x). It follows that 

contains a neighborhood of x. 
Theorem 3-3 (Characterization of the Equilibrium Point on 

the Stability Boundary): Let A be the stability region of a stable 
equilibrium point x,. Let P # x, be a hyperbolic equilibrium 
point. Then: 

i) if { "'(2) - 2 )  n A # 4, then 2 E dA. Conversely, if 2 
E aA, the { W'(P) - a} fl A # 4; 

ii) suppose 2 is not a source (i.e., { Ws(P) - 2 )  z 4). Then 2 
E dA if and only if { Ws(2) - 2) n 8.4 # 4, 

W'(X) = U i E R  @,(aLI) U { x }  and Ut20 @,(G(x)) U W'(X)  

Proof: i) If y E Wu(x) n A ,  then 

But since A is invariant, we have 

It follows that 

2 E A. 

Since P cannot be in the stability region, P is on the stability 
boundary. 

Suppose conversely that P E aA . Let G c { Wu(P) - 2 )  be a 
fundamental domain of W"(P); this means that G is a compact set 
such that 

U @ , ( G ) = {  WU(2) -2 } .  (3-4) 
[ E R  

Let G, be the +neighborhood of G in R". Then Ulco @.,(G,) 
contains a set of the form { U  - Ws(P)}, where U is a 
neighborhood of 2. Since P E aA, it follows that U fl A # 4. 
But, by assumption, P E 8.4, so Ws(P) fl A = 4. Therefore, we 
have 

(3-5) { U -  wya)} n A #+ 

or 

(3-6) 

This implies that G, f l  @.,(A) # 0 for some t. Since A is invariant 
under the flow it follows that 

G, n A + + .  

Since e > 0 is arbitrary and G 4s a compact set, we conclude that 
G contains at least a point of A.  

## 
Similarly, we can characterize the closed orbit on the stability 

boundary as follows. 
Corollary 3-4: (Characterization of the Closed Orbit on the 

Stability Boundary): Let A be the stability region of a stable 

The proof of ii) is similar to the proof of i). 

equilibrium point. Let y be a hyperbolic closed-orbit. Then 
i) y C aA if and only if{ Wu(y)  - y} n A # 4; 
ii) Suppose { Ws(y) - y) # 4. Then y C dA if and only if 

As a corollary to Theorem 3-3, if { Wu(P) - P} n A # 4, 
then 2 must be on the stability boundary. Since any trajectory in 
A (x,) approaches x,, we see that a sufficient condition for P to be 
on the stability boundary is the existence of a trajectory in W"(2) 
which approaches x,. The nice thing about this condition is that it 
can be checked numerically. From a practical point of view, 
therefore, we would like to see when this condition is also 
necessary. We are going to show that this condition becomes 
necessary under two additional assumptions which are reasonable. 

So far we have assumed only that the critical elements are 
hyperbolic. This is a generic property for dynamical systems. 
Roughly speaking, we say a property is generic for a class of 
systems if that property is true for almost all systems in this class. 
A formal definition is given in [15]. It has been shown [16] that 
among C'(r 2 1) vector fields, the following properties are 
generic: i) all equilibrium points and closed orbits are hyperbolic 
and ii) the intersections of the stable and unstable manifolds of 
critical elements satisfy the transversality condition. Theorem 3-3 
can be sharpened under two conditions, one of which is generic 
for the dynamical system (3-1). That is the transversality 
condition. The other condition requires that every trajectory on 
the stability boundary approach one of the critical elements. 

The following lemma [ 151 is used in the proofs of the next two 
theorems. 

Lemma 3-5: Let x, and x, be hyperbolic critical elements of 
(3-1). Suppose that the intersection of stable and unstable 
manifolds of x, , x, satisfy the transversality condition and { Wu (x,) 
- x,}  n { W"(x,) - x,} # 4. Then dim W"(x,) 2 dim W'(x,), 
where the equality sign is true only when x, is an equilibrium point 
and x, is a closed orbit. 

The following lemma, which is a weak version of the A-lemma 
[23], is useful in the proof of the next theorem. Recall that the type 
of an equilibrium point is the dimension of its unstable manifold. An 
mdisk is a disk of dimension m. 

Lemma 3-6: Let G be a hyperbolic critical element of (3-1) with 
dim W'(G) = m. If 17 is an equilibrium point, let D be an m-disk 
in Wu(G). If G is a closed orbit, let D be an (m - 1)-disk in Wu(G) 
f l  S, where S is a cross section at p E G. Let N be an m-disk (if I? 
is an equilibrium point) or (m - 1)-disk (if G is a closed orbit) 
having a point of transversal intersection with W"(;). Then D is 
contained in the closure of the set n,,, @ , ( N ) .  

Now, we present the key theorem of this section which 
characterizes an equilibrium point being on the stability boundary, 
in terms of both its stable and unstable manifolds. From the 
practical point of view, this result is more useful than Theorem 
3-3. 

Theorem 3-7 (Further Characterization of the Equilibrium 
Point on the Stability Boundary): Let A be the stability region 
of a stable equilibrium point. Let P be an equilibrium point. 
Assume the following. 

{ w w  - 71 n a~ + 4. 

i) All the equilibrium points on aA are hyperbolic. 
ii) The stable and unstable manifolds of equilibrium points on 

iii) Every trajectory on aA approaches one of the equilibrium 

1) P E aA if and only if Wu(P) fl A # 4. 
2) 2 E aA if and only if W"(P) E 8A. 

aA satisfy the transversality condition. 

points as t -+ W. 

Then 

Proof: 1) Because of Theorem 3-3 we only need to prove 
that, under these assumptions Wu(P) n A # 4 implies W"(P) fl 
A # 4. Let n,(x) denote the type of an equilibrium point x, i.e., 
the dimension of its unstable manifold. It follows from assumption 
i) that n,(x) 2 1 for all equilibrium points x E dA. Let P E aA 
and n,(P) E h. By Theorem 3-3 there exists a pointy E { Wu(P) 
- P} n A. If y E A,  the proof is complete. If y E aA, by 
assumption iii) there exists an equilibrium point 2 E aA and y E 
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{ Ws(P) - 2). Let n,(P) = m. By assumption ii) W"(2) and 
Ws(P) meet transversely at y ,  thus by Lemma 3-5, h > in. Now, 
consider two cases. 

a) h = 1: Then m must be zero (i.e., 2 must be a stable 
equilibrium point), which is a contradiction to the fact that no 
stable equilibrium point exists on the stability boundary. Conse- 
quently, Wu(2) fl A # 4. 

b)  h > 1 : Without loss of generality, we assume inductively 
that ""(2) fl A # 4. Since W"(2) and Ws(P) intersect 
transversely at y ,  W"(2) contains an m-disk N centered at y ,  
transverse to Ws(P). Applying Lemma 3-6 with v^ = 2, we have 
@,(N)  n A # C#J for some t > 0. Since A is invariant, this 
implies N f l  A # 4, hence, W"(2) fl A # 4. This completes 
part a). 

2) If Ws(2) c aA, then 2 E aA since 2 E Ws(2). 
Conversely, suppose 2 E aA . By part a), ""(2) fl A # 4. Let 
D C W"(2) fl A be an mdisk, m = dim W"(2). Let y E Wy2)  
be arbitrary. For any E > 0, let N be an mdisk transversal 
to W"(2) at y ,  contained in the €-neighborhood of y .  By Lemma 3- 
6 with v^ = 2, there exists t > 0 such that @,(A') is so close to D 
that @ , ( N )  contains a pointp E A. Thus, @ - , ( p )  E N .  SinceA 
is invariant, this shows that N fl A # 4. Letting E + 0 proves y 
E A .  Thus, Ws(2) C A .  Since Ws(2) is disjoint from A,  it 

## 
Remarks: 
1) Fig. 1 shows an example for which the assumption that every 

trajectory on the stability boundary approaches one of the 
equilibrium points does not hold. For this system, the unstable 
manifold of xI does not intersect with the stability region (see 
Theorem 3-7) and a part of the stable manifold of xI is not on the 
stability boundary (see Theorem 3-7). 

2) To show that the transversality condition is needed in 
Theorem 3-7, let us consider the example taken from [17]. In Fig. 
2 the transversality condition is not satisfied because the intersec- 
tion of the unstable manifold of x1 and the stable manifold of x2 is 
a portion of the manifold whose tangent space has dimension 1 .  
Note that the unstable manifold of x1 intersects with the stability 
boundary (see Theorem 3-3), but not the stability region (see 
Theorem 3-7). A part of the stable manifold of xI (upper part in 
Fig. 2) is not in the stability boundary (see Theorem 3-7). 

Theorem 3-8 below extends the result of Theorem 3-7 to 
accommodate closed orbits on the stability boundary. 

Theorem 3-8 (Characterization of the Critical Element on 
the Stability Boundary): Let A be the stability region of a stable 
equilibrium point. Let r be a critical element. Assume the 
following. 

follows that W"(2) C EA.  

i) All the critical elements on aA are hyperbolic. 
ii) The stable and unstable manifolds of critical elements on dA 

satisfy the transversality condition. 
iii) Every trajectory on aA approaches one of the critical 

elements as t + 00. 

Then 
1) P is on the stability boundary aA if and only if W" (i) fl A # 

4, 
2) i is on the stability boundary aA if and only if Ws(i)  E U.  

Proof: 1) Because of Theorem 3-3 and Corollary 3 4  we 
only need to prove that, under these assumptions, F is on the 
stability boundary aA implies Wu(P) fl A # 4. We also use the 
notation n,(r) to denote the dimension of W'(P). From assump- 
tion i) we have that n,(r) 2 1 if i is an equilibrium point and nu@) 
2 2 if i is a closed orbit. Let 2 E 3A and n,(x) = h. By 
Theorem 3-3 or Corollary 3 4 ,  there exists a pointy E { W"(i) 
- i }  fl A. If y E A, the proof is complete. Suppose that y E 
aA; then by assumption iii) there exists a critical element P E aA 
and y E { Ws(P) - P } .  

Let nu(?) = m; then by Lemma 3-5 we have h 2 m. Consider 
the following cases: a) h = 1: then m = 0 (i.e., 2 is a stable 
equilibrium point) or m = 1 (i.e., P is a stable closed orbit), 
which is a contradiction. Thus, W"(i)  fl A@,) # 4. b) h = 2: 
then two subcases are possible; b ')  m = 1 (i.e., 2 is a type-one 
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Fig. 1. An example of a dynamical system whose trajectories on the 
stability boundary do not all approach its critical elements. 

Fig. 2. The intersection between the unstable manifold of x, and the stable 
manifold of x2 does not satisfy the transversality condition. 

equilibrium point), then Wu(i)  contains an m-disk N centered at y 
and transversal to Ws(f);  applying Lemma 3-6 with G = 2, we have 
N fl A # 4. b") m = 2 (i.e., P is a closed orbit with dim ""(2) 
= 2), then W"(i) contains an (m - 1)disk N centered at y and 
transversal to ""(2). After applying Lemma 3-6 with G = 2, 
we have N f l  A # 4. Consequently, Wu(i)  f l  A # 4. The 
proof is completed by an induction similar to that in the proof of 
Theorem 3-7 part i). 

2) This part is similar to the proof of part 2) of Theorem 3-7, 
## 

The next result concerns the number of equilibrium points on 
the stability boundary. We say that S C R" is a smooth manifold 
of dimension s if, for each point p E S, there exist a 
neighborhood U C S of p and a homeomorphism h:U + V,  
where V is an open subset of Rs, such that the inverse 
homeomorphism h- l: V -+ U C R" is an immersion of class C' .  

Theorem 3-9 (Number of Equilibrium Points on the 
Stability Boundary): If the stability boundary aA of a stable 
equilibrium point is a smooth compact manifold and all the 
equilibrium points on aA are hyperbolic, then the number of 
equilibrium points on aA is even. 

Proof: The proof is based on the following fact [24, Exercise 
7, p. 1391: the Euler characteristic of the boundary of a compact 
manifold is even. From the Poincare-Hopf index Theorem [25, p. 
1341, it follows that the sum of the indexes of equilibrium points 
off on the smooth, compact stability boundary aA are even. But 
the index off at a hyperbolic equilibrium point is either + 1 or 

## 
Remarks: 
1) Genesio and Vicino [22] have shown that Theorem 3-9 is 

true for a special case, namely; an odd order system (n # 5 )  
without degenerate equilibrium point. 

2)  Fig. 3 shows an example that the assumption of smoothness 

using Lemma 3-6 with P = i. 

- 1 [26, p. 371. Consequently, Theorem 3-9 follows. 
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Fig. 3.  The stability boundary of x, is not smooth. 

of stability boundary does not hold. For this system, the stability 
boundary contains only one equilibrium point (see Theorem 3-9). 

3) Theorem 3-9 is also true if instead of hyperbolicity, we 
assume only that every equilibrium point is nondegenerate in the 
sense that the corresponding Jacobian matrix of the vector field is 
invertible. The proof is the same. 

IV. THE STABILITY BOUNDARY 

In this section we characterize the stability boundary for a fairly 
large class of nonlinear autonomous dynamical systems (3-1) 
whose stability boundary is nonempty. We make the following 
assumptions concerning the vector field. 

Al) All the equilibrium points on the stability boundary are 
hyperbolic. 

A2) The stable and unstable manifolds of equilibrium points on 
the stability boundary satisfy the transversality condition. 

A3) Every trajectory on the stability boundary approaches one 
of the equilibrium points as t + 03. 

Remark: Assumption Al) is a generic property of C 1  dynami- 
cal systems, and can be checked for a particular system by direct 
computation of the eigenvalues of the corresponding Jacobian 
matrix of the vector field. Assumption A2) is also a generic 
property, however, it is not easy to check. Assumption A3) is not 
a generic property, but in many systems it can be verified by 
means of a V-function or by direct analysis (see Section V and 
Example 7.1). 

Theorem 4-1 asserts that if assumptions Al) to A3) are 
satisfied, then the stability boundary is the union of the stable 
manifolds of the equilibrium points on the stability boundary. 

Theorem 4-1 (Characterization of Stability Boundary): For 
a nonlinear autonomous dynamical system (3-1) which satisfies 
assumptions Al) to A3), let xi ,  i = 1 ,  2, be the equilibrium 
points on the stability boundary aA of the stable equilibrium 
point. Then 

all  =U WS(X;). 
I 

(4-1) 

Proof: Let xi, i = 1,2,  - * be the equilibrium points on the 
stability boundary. Theorem 3-7 implies 

U W S ( X ; )  s aA. (4-2) 
I 

The assumption A3) implies 

aA E U W”(x;). 
I 

(4-3) 

Combining (4-2) and (4-3) we have the required result. ## 
Remarks: 
1) Earlier attempts to characterize the stability boundary was 

2) Results similar to Theorem 3-7 and Theorem 4-1 under a 

3) Zaborszlq et al. [33] have developed independent proofs of 

presented by Tsolas, Arapostathis, and Varaiya in [17]. 

stronger condition than A3) have been derived previously [32]. 

Theorems 3.3, 3.7, and 4.1 for power system models, 

Theorem 4-1 can be generalized to allow closed orbits to exist 
on the stability boundary. 

Theorem 4-2 (Characterization of Stability Boundary): 
Consider a dynamical system (3-1) whose vector field satisfies the 
following assumptions. 

B1) All the critical elements on the stability boundary are 
hyperbolic. 

B2) The stable and unstable manifolds of critical elements on 
the stability boundary satisfy the transversality condition. 

B3) Every trajectory on the stability boundary approaches one 
of the critical elements as t + 03. 

L e t x ; , i =  1,2,  ..., betheequilibriumpointsand~~,j= 1 ,  
2, e - . ,  be the closed orbits on the stability boundary aA of a 
stable equilibrium point. Then 

Proof: By Theorem 3-8, the stable manifolds of critical 
elements which are on aA lie in aA. By assumption B3), every 
point of dA is on the stable manifold of one of the critical elements 
on aA. Combining these two we have the required result. ## 

Remark: Assumption B1) is a generic property of C’ dynami- 
cal systems, however, because closed orbits are hard to deter- 
mine, it is difficult to check assumption B1) for a given system 
except perhaps for planar systems. Assumption B2) is also a 
generic property; but it is even harder to check. Assumption B3) 
is a generic property only for planar systems. For higher 
dimensional systems no general methods of verifying it are 
known. Nevertheless we believe Theorem 4-2 has considerable 
theoretical interest, since the class of systems satisfying assump- 
tions B1) to B3) may be considered the simplest class of systems 
having closed orbits. 

The following theorem gives an interesting result on the 
structure of the equilibrium points on the stability boundary. 
Moreover, it presents a necessary condition for the existence of 
certain types of equilibrium points on a bounded stability 
boundary. 

Theorem 4-3 (Structure of Equilibrium Points on the 
Stability Boundary): For the nonlinear autonomous dynamical 
system (3-1) containing two or more stable equilibrium points and 
satisfying the assumptions Al) to A3), the stability boundary must 
contain at least one type-one equilibrium point. If, furthermore, 
the stability region is bounded, then aA must contain at least one 
type-one equilibrium point and one source. 

Proof: Since there are at least two stable equilibrium points 
including, say x,, it follows that the dimension of aA(x,) is (n - 
1) (see the proof of Proposition 3-2). Since aA (x,) = U “,(xi), 
where x, E aA(x,), at least one of the xi must be a type-one 
equilibrium point, say x I ,  so that the dimension of U Ws(x,) is (n 
- 1). Repeating the same argument, if aWs(xl) is nonempty, 
then the dimension of a Ws(xl) is < (n - 2), say (n - k).  The 
application of Theorem 4-1 yields a Ws(xl)  = U Ws(x,), xj E 
a Ws(xl).  In order for U Ws(xj) to have dimension ( n - k),  at 
least one of the xj must be a type-k equilibrium point. If the 
stability region is bounded, the same argument can be repeated 
until we reach a type-n equilibrium point (a source). 

The contrapositive of Theorem 4-3 leads to the following 
corollary, which is useful in predicting unboundedness of the 
stability region. 

Corollary 4-4 (Sufficient Condition for the Stability Region 
to be Unbounded): For the nonlinear autonomous dynamical 
systems (3-1), if assumptions Al)  to A3) are satisfied and if 
aA(x,) contains no source, then the stability region A(xJ is 
unbounded. 

V. SUFFICIENT CONDITION FOR ASSUMPTION A3) 

The characterization of stability boundaries in the previous 
section is valid for dynamical systems satisfying assumptions Al) 
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to A3). Since assumptions Al) and A2) are generic properties, 
assumption A3) is the crucial one in the application of Theorem 
4-1. In this section, we will show that many dynamical systems 
arising from physical system models satisfy assumption A3). We 
first present two theorems that give sufficient conditions for this 
assumption. 

It should be stressed that the main results in this paper are 
independent of the existence of Lyapunov functions. For a 
convenient sufficient condition for guaranteeing assumption A3), 
however, we will introduce a function in the following theorems 
which bears some resemblance to a Lyapunov function. Recall 
that E denotes the set of equilibrium points of (3-1). If V is a 
scalar function on R", then V ( x ) : =  d /dt \ l=oV(@f(x) )  = 
v V(x)  - f ( x ) .  

Theorem 5-1: Suppose that there exists a C' function V:R" -+ R 
for the system (3-1) such that 

1) V(x)<O i f x  @ E. 

Suppose also that there exists 6 > 0 such that for any 2 E E, the 
openball&(f):= { x : l x -  21 < 6}containsnootherpointinE, 
and that the distance between any two such balls is at least 6. 
Furthermore, suppose that there exist a positive continuous 
function 01 : R" -+ R + and two constants, c1 > 0 and c2 > 0, such 
that 

2)  a (x) ( f (x ) (<c l  for d x  E U;  

and 

3) a ( x )  P(x)  < - c2 unless x E ~ ~ ( 2 )  for some 

2 e ~ n  a ~ .  
Then the assumption A3) is true: every trajectory on aA 
converges to an equilibrium point as t -+ 00. 

Proof: Let x(t ) :  = @,(x) be a trajectory on the stability 
boundary. Suppose x( t )  does not approach one of the equilibrium 
points, we show this leads to a contradiction. We consider two 
cases. 

Case I :  There exists a T > 0 such that for all t > T, @[(x) is 
not in any B6(2). 

Therefore, by condition (3) we have 

21 

for all t > T. 

We estimate for t > T 

V(x(t ) ) -  V ( x ( T ) ) =  S T  V(x(7)) d7 

(5-1) 

This shows that lim,-- V(x( t ) )  = - 00. But this contradicts the 
fact that V ( . )  is bounded below [by V(x,)] along any trajectory on 

the stability boundary, which follows from condition 1) and the 
continuity property of the function V( .). 

Case 2: There is an infinite sequence {Si} of equilibrium points 
and increasing sequence ri + 03 such that x(rj) E &Ui). 

Let us define two increasing sequences { t i }  and {si} :ti is the 
first time x( t )  enters the &ball &@i) and si is the first time > ti 
that x(t )  leaves the 26-ball B26Qi). 

Fix an integer m > 0; then for t 2 tm+ we have 

V(x(t ) )  - V(x(0)) = 1' P(x(r)) d7 

c2 < -- m6. 
CI 

Letting m + 00, we contradict the fact that V( e )  is bounded below 
on the stability boundary. Therefore, every trajectory on the 
stability boundary must approach one of the equilibrium points. ## 

Corollary 5-2: Suppose that the system (3-1) has a finite 
number of equilibrium points on its stability boundary and there 
exists a C' function V:R" -+ R, and two positive numbers E ,  6 for 
the system (3-1) such that 

P(x)<O ifxeE; (5-2) 

P(x)< - 6  ifx@Be(2), Z E E  

and 

If(x)l is bounded for x E  R". (5-3) 

Theorem 5-3: Suppose there exists C' function V:R" + R for 

1) V ( x )  Q O at every point x @ E; 

2)  if x @ E, then the set { t E R: P(+,(x)) = 0 )  

Then assumption A3) is true. 

the system (3-1) such that 

has measure 0 in R; 

and either 

3) the map V:R"+R is proper; 

or 

3') : for each x E R", if { V ( + , ( X ) ) } ~ > ~  is bounded, then 
{@l(x)} f>O is bounded. 

Then the assumption A3) is true. 
Proof: From the well-known Lyapunov-type argument, 

conditions 1) and 2) imply that all the limit sets of trajectories 
consist of equilibrium points [27, p. 2031. Since the stability 
boundary is a closed invariant set, by the continuity property of 
the function V( 0 )  and conditions 1) and 2) we have the value of 
V( e )  along every trajectory on the stability boundary is bounded 
below by V(X,). Hence, condition 3) or condition 3') implies 
{ x ( t ) }  is bounded. Since the limit set of any compact trajectory 

## 
Remarks: 
1) It can be shown, by applying Corollary 5-2, that the 

is nonempty, thus A3) follows. 

following dynamical systems satisfy assumption A3). 

X=Df(x) 
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where f : R n  + R n  is a bounded gradient vector field with only 
finitely many equilibrium points on aA (x3) and the matrix D is a 
positive definite matrix. 

2)  It has been shown [19] that many second-order dynamical 
systems frequently encountered in physical system models satisfy 
assumption A3). These are systems of the form 

MX+ DX+ f (x) = 0 

whose state-space representation is 

My = - Dy - f (x) (543) 

where A4 is a diagonal matrix with positive elements, D is a 
symmetric, diagonally dominant matrix with positive diagonal 
elements, f : R n  -+ R n  is a bounded gradient vector field with 
bounded Jacobian. In addition, f(-) is assumed to satisfy the 
following condition. There exists E > 0 and 6 > 0 such that the 
distance between the two balls B, (xi) and B, (xi) is greater than E ,  
for all xi, x, E E and 1 f ( x )  1 > 6, for x B UIEEB,(Z), where E 
:= {x$(x) = 0}, Br(P) := {x:(x - 21 < r } .  

VI. AN ALGORITHM TO DETERMINE THE STABILITY REGION 

Theorems 3-7 and 4 - 1  lead to the following conceptual 
algorithm to determine the stability boundary of a stable equilib- 
rium point of (3-l), assuming that assumptions A l )  to A3) of 
Section IV hold. 

Algorithm: To determine the stability boundary aA (x,) 
Step I :  Find all the equilibrium points. 
Step 2: Identify those equilibrium points whose unstable 

manifolds contain trajectories approaching the stable equilibrium 
point x,. 

Step 3: The stability boundary of x, is the union of the stable 
manifolds of the equilibrium points identified in Step 2. 

Step 1 in the algorithm involves finding all the solutions off(x) 
= 0. Step 2 can be accomplished numerically. The following 
procedure is suggested. 

i) Find the Jacobian at the equilibrium point (say, 2). 
ii) Find many of the generalized unstable eigenvectors of the 

Jacobian having unit length. 
iii) Find the intersection of each of these normalized, general- 

ized unstable eigenvectors (say, y;) with the boundary of an €-ball 
of the equilibrium point. (The intersection points are P + ~ y ;  and 

iv) Integrate the vector field backward (reverse time) from each 
of these intersection points up to some specified time. If the 
trajectory remains inside this €-ball, then go to the next step. 
Otherwise, we replace the value t by OLE and also the intersection 
points P k ey; by P k wy; ,  where 0 < a < 1. Repeat this step. 

v) Numerically integrate the vector field starting from these 
intersection points. 

vi) Repeat the steps iii) through v). If any of these trajectories 
approaches x,, then the equilibrium point is on the stability 
boundary. 

For a planar system, the type of the equilibrium point on the 
stability boundary is either one (saddle) or two (source). The 
stable manifold of a type-one equilibrium point in this case has 
dimension one, which can easily be determined numerically as 
follows. 

a) Find a normalized stable eigenvector y of the Jacobian at the 
equilibrium point P. 

b) Find the intersection of this stable eigenvector with the 
boundary of an €-ball of the equilibrium point 2. (The intersection 
points are 2 + EY and 2 - EY.)  

c) Integrate the vector field from each of these intersection 
points after some specified time. If the trajectory remains inside 
this €-ball, then go to the next step. Otherwise, we replace the 

2 - €y;.) 

value E by OLE and also the intersection points P k EY; by 2 k 
aey;, where 0 < a < 1. Repeat this step. 

d) Numerically integrate the vector field backward (reverse 
time) starting from these intersection points. 

e) The resulting trajectories are the stable manifold of the 
equilibrium point. 

For higher dimensional systems, the numerical procedure 
similar to the one above can only provide a set of trajectories on 
the stable manifold. Finding the stable manifold and unstable 
manifold of an equilibrium point is a nontrivial problem. A power 
series expansion of the stable manifold of an equilibrium point is 
derived in [ 181.  

VII. EXAMPLES 

The method for the determination of stability region proposed 
in Section VI has been applied to some examples we have found in 
the literature; almost all of them are planar systems. In this section 
we present these examples to illustrate the results of this paper. In 
each example we give two figures; one compares the estimated 
stability region by previous methods and the present one, the other 
gives the phase portrait of the system to verify the results of this 
paper. Throughout these examples we assume the transversality 
condition A2) is satisfied. 

Example I :  This is an example studied in [22], [lo] 

i,= -2x,+x,x2 

x2= -xz+x,x2. (7- 1) 

There are two equilibrium points: (0.0, 0.0) is a stable equilib- 
rium point and ( 1 ,  2) is a type-one equilibrium point. The 
assumption Al)  is satisfied. The trajectory on the unstable 
manifold of ( 1 ,  2) converges to the stable equilibrium point (0.0, 
O.O), hence ( 1 ,  2) is on the stability boundary (Theorem 3-7). 
Next, we check assumption A3). Consider the following function: 

V(x1, x2)=x:-2xIx2+x;. 

The derivative of V(x,,  x2) along the trajectory of (7-1) is 

av  av  
ax, axz 

Pyx,, x2) = - x, + - x2 

= -2(2x, -xz)(x, -xz). 

Hence, 

P(xl, x2)<0 for (x,, xZ) E B C  := R ~ - B  

where B := {(x,, x2):2xl - x2 2 0 andxl - x2 < 0) .  
Define the following sets: 

B : =  B1 U B2 U B3 

whereB1 = { ( x l , x ~ ) : x l  < l , x 2  < 2}, B2 = { ( x l , x 2 ) : x I  2 1 ,  
xz < 2)  (3 B ,  and B3 = {(xl, x2):x1 > 1 ,  x2 > 2) .  

Since, in the set B,,  both Ix,(t;)t and Ix2(tj)I are strictly 
decreasing sequences, we conclude that Bl is inside the stability 
region of (0, 0). In other words, the stability boundary dA(0, 0) 
cannot lie in B1. On the other hand, every trajectory of (7-1) in the 
set B, is unbounded as t + w, therefore, the stability boundary 
aA(0,O) cannot lie in B3 either. However, by checking the vector 
field of (7-1)  in B2 we find that every trajectory in B2 will either 
enter into B ,  or B3, or converge to the point ( 1 ,  2). Hence, we 
have shown that the stability boundary dA(0, 0) cannot be in B, 
nor in B3, the part of the stability boundary aA(0, 0) in B2 must 
converge to (1, 2). Next, we will show that the part of the stability 
boundary aA (0, 0) in R Z  - B also converges to ( 1 ,  2). Then, we 
may claim that assumptip A3) is satisfied. Note that V(x, ,  x2) < 
0 for (x,, x2) E R 2  - B c Bc and that the function V ( x l ,  x2) is a 
proper map in R 2  - B. Thus, following the same argument as in 
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(b) 
Fig. 4. (a) Predictions of the stability region of Example 1 by different 

methods. Curves A and B are obtained by the methods in [lo] and [22]. 
Curve C is obtained by the present method. (b) The phase portrait of this 
system. Note that all the points inside the curve C converge to the stable 
equilibrium point which verified that curve C is the true stability region. 

the proof of Theorem 5-3 we conclude that every trajectory-of 
aA(0,O) in R 2  - is bounded and, if it converges in R2 - B, it 
must converge to an equilibrium point in R 2  - B. However, there 
is no equilibrium point in R2 - B. So, the part of the stability 
boundary aA(0,O) in R 2  - must enter the set_B. But, we have 
shown that the stability boundary (0, 0) in B converges to (1, 
2). Therefore, the trajectories on the stability boundary aA(0, 0) 
converge to (1, 2), and assumption A3) is shown to be satisfied. 

Consequently, the stability boundary is the stable manifold of 
(1, 2) (Theorem 4-l) ,  which is the curve C in Fig. 4(a). Because 
there is no source, the stabililty region is unbounded (Corollary 
4-4). Curves A and B in Fig. 4(a) are obtained by the methods in 
[ 101 and [22], respectively. The approximately true stability 
boundary mentioned in [22] seems to agree with curve C. Fig. 
4(b) is the phase portrait of this system. 

Example 2: The following system is considered in [lo]: 

XI =x2 

x2=0.301 -sin (xl+0.4136) 

+0.138 sin 2(x1+0.4136)-0.279 x2. (7-2) 
Since this system is of the same form as (5-4), it follows that the 
assumption A3) is satisfied. The equilibrium points of (7-2) are 
periodic in the subspace { (xlr x2) 1 x2 = O}; the Jacobian matrix 
of (7-2) at (xl, x2) is 

r 

(7-5) 

where a = -cos (xl + 0.4136) + 0.276 cos 2(x1 + 0.4136). 

Let XI, X, be the eigenvalue of J(x) :  

hl+h2= -0.279 (7-6a) 

h l x X 2 =  -a .  (7-6b) 

The following observations are immediate. 
1) Assumption Al) is satisfied. 
2) At least one of the eigenvalues must be negative, which 

implies there is no source in the system (7-2). By Corollary 4-4 we 
conclude that the stability region (with respect to any stable 
equilibrium point) is unbounded. 

3) The stable equilibrium points and the type-one equilibrium 
points are located alternately on the xl-axis. 

It can be shown that (6.284098, 0.0) is a stable equilibrium 
point of (7-2). Let us consider its stability region. The application 
of Theorem 3-7 shows that the type-one equilibrium points 
(2.488345,O.O) and (8.772443,O.O) are on the stability boundary. 
The stability region is again unbounded owing to the absence of a 
source. The stability boundary obtained by the present method is 
the curve B shown in Fig. 5(a) which is the union of stable 
manifolds of the equilibrium points (2.488345, 0.0) and 
(8.772443, 0.0). Curve A is the stability boundary obtained in 
[lo] (after a shift in coordinates). It is clear from the phase portrait 
in Fig. 5(b) that the trajectories of the points inside curve B 
converge to the stable equilibrium point which verifies that the 
curve B is the exact stability boundary. 

In the following examples, assumptions Al) and A3) have been 
checked; the details are omitted. 
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Example 3: The following system was also considered in [6]: 

XI = -XI +x2 

X2=0.l xl-2.0x2-x;-0.1 x;. (7-7) 

There are three equilibrium points: (0.0, 0.0) is stable, (- 2.55, 
-2.55) is type-one, and (-7.45, -7.45) is also stable. We are -30.0 

1.5 - -- 

-15- -- 

-3.0 1.0 5.0 9.0 13.0 

(a) 

~ 

3.0 

-3.0 
-3.0 12.0 

(b) 
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Fig. 5. (a) Predictions of the stability region of Example 2 by different 
methods. Curve A is obtained by the methods in [lo] (after a shift in 
coordinates). Curve B is obtained by the present method. (b) The phase 
portrait of this system. 

-100 -50 0 50 100 

(b) 

30.0 

region in this case is (nbchded. Fig. 6(aj shows the stabiliG 
region obtained by our method. Fig. 6(b) represents the phase 
portrait of this system. 

Example 4: A simple nonlinear speed-control system studied 
by Fallside, etc. [21] and Jock [6] shown in Fig. 7(a) can be 
described by the following equation: 

XI =x2 

For Kd = 1 and g = 6, there are three equilibrium points: 
(- 0.78865, 0.0) is stable (the corresponding Jacobian has two 
real negative eigenvalues), ( - 0.21 135, 0.0) is type-one, and (0.0, 
0.0) is also stable (the corresponding Jacobian has two complex 
eigenvalues with negative real parts). The type-one equilibrium 
point is on the stability boundary of (0.0, 0.0) and also on the 
stability boundary of ( - 0.78865, 0.0) because the two branches 
of its unstable manifold approaches them. Thus, by Theorem 4-1 
we conclude that the stability region of (0.0, 0.0) is the open set 
containing (0.0, 0.0); its boundary is characterized by the stable 
manifold of ( -  0.21 1325,0.0); the stability region of ( -  0.78865, 

(d 
Fig. 6. (a) Predictions of the stability region of Example 3 by the present 

method. The curves in this figure are the stable manifold of the type-one 
equilibrium point (-2.55, -2.55). The stability region of (0.0,O.O) is the 
region inside these curves which contains (- 2.55, - 2.55). (b) The phase 
portrait of this system. (c) The phase portrait of this system with the 
coordinate system rescaled. 

0.0) is the open set containing ( -  0.78865, 0.0) with the same 
boundary as that of (0.0, 0.0). The region in Fig. 7(b) is the 
stability region predicted by this method. The region denoted by 
AJ in Fig. 7(c) shows the stability region predicted by method of 
sinks [13], and the region A, is predicted by [21]. The phase 
portrait of this control system is in Fig. 7(d). 

Example 5: Consider the following system which is similar to 
(7-8) except the term -&X2 is replaced by KdX2. 

I, =x2 

For Kd = 1 and g = 6, there are three equilibrium points: 
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-1.0 1.0 
( 4  

Fig. 7 .  (a) A simple nonlinear speed-control system. (b) The stability region 
of Example 4 predicted by the present method. (c) Predictions of the 
stability region of Example 4 by different methods. The regions denoted by 
AJ and Aw are obtained by the methods in [13] and [21]. (d) The phase 
portrait of this system. 
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Fig. 8. (a) The stability region of Example 5 predicted by the present 
method is the whole state space except for the stable manifold of 
(-0.21 135,0.0), denoted by the curve A and the source (0.0,O.O). (b) The 
phase portrait of this system. Note that all the points except for the curve A 
converge to the stable equilibrium point. 

(-0.78865,O.O) is stable, (-0.21 135,O.O) is type-one, and (0.0, 
0.0) is a source. It can be shown that both the type-one 
equilibrium points and the source are on the stability boundary. 
Both parts of the unstable manifold of the type-one equilibrium 
point (-0.21 135, 0.0) approach the stable equilibrium point. We 
conclude that they both belong to the stability region; conse- 
quently, the stability region is the whole state-space except for the 
stable manifold of (-0.21135, 0.0) and the source (0.0, 0.0). 
Fig. 8(a) shows the stable manifold and unstable manifold of 
(-0.21 135,O.O). The phase portrait of this system is in Fig. 8(b). 
Comparing system (7-9) to system (7-8) we found that the stability 
region of (0.0, 0.0) for (7-8) is shrunk to a point for (7-9) while 
the stability region of the stable equilibrium point of (7-9) is 
expanded to fill almost all of the state space. 

VIII. CONCLUSION 

A comprehensive theory of stability regions of stable equilib- 
rium points for nonlinear autonomous dynamical systems is 
presented. A complete dynamical characterization of the stability 
boundary of a fairly large class of nonlinear autonomous 
dynamical systems is derived. A method for finding the stability 
region based on its topological properties is proposed. 

The proposed method requires the determination of the stable 
manifold of an equilibrium point. For lower dimensional systems 
this may be done by numerical methods. For higher dimensional 
systems efficient computational methods to derive the stable 
manifolds are needed. 
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