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ARTICLE

An integrated functional and clinical genomics
approach reveals genes driving aggressive
metastatic prostate cancer
Rajdeep Das 1,2, Martin Sjöström 1,2, Raunak Shrestha1,2, Christopher Yogodzinski2,3, Emily A. Egusa1,2,

Lisa N. Chesner1,2, William S. Chen1,2, Jonathan Chou 2,4, Donna K. Dang1,2, Jason T. Swinderman2,3,

Alex Ge2,3, Junjie T. Hua1,2, Shaheen Kabir2,3, David A. Quigley2,3,5, Eric J. Small 2,4, Alan Ashworth2,4,

Felix Y. Feng 1,2,3,4,7,8✉ & Luke A. Gilbert 2,3,6,7,8✉

Genomic sequencing of thousands of tumors has revealed many genes associated with

specific types of cancer. Similarly, large scale CRISPR functional genomics efforts have

mapped genes required for cancer cell proliferation or survival in hundreds of cell lines.

Despite this, for specific disease subtypes, such as metastatic prostate cancer, there are likely

a number of undiscovered tumor specific driver genes that may represent potential drug

targets. To identify such genetic dependencies, we performed genome-scale CRISPRi screens

in metastatic prostate cancer models. We then created a pipeline in which we integrated pan-

cancer functional genomics data with our metastatic prostate cancer functional and clinical

genomics data to identify genes that can drive aggressive prostate cancer phenotypes. Our

integrative analysis of these data reveals known prostate cancer specific driver genes, such as

AR and HOXB13, as well as a number of top hits that are poorly characterized. In this study we

highlight the strength of an integrated clinical and functional genomics pipeline and focus on

two top hit genes, KIF4A and WDR62. We demonstrate that both KIF4A and WDR62 drive

aggressive prostate cancer phenotypes in vitro and in vivo in multiple models, irrespective of

AR-status, and are also associated with poor patient outcome.

https://doi.org/10.1038/s41467-021-24919-7 OPEN

1 Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA. 2Helen Diller Family Comprehensive Cancer Center,
University of California, San Francisco, San Francisco, CA, USA. 3 Department of Urology, University of California, San Francisco, San Francisco, CA, USA.
4Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA. 5Department of
Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA. 6 Department of Cellular & Molecular Pharmacology,
University of California, San Francisco, San Francisco, CA, USA. 7These authors contributed equally: Felix Y. Feng, Luke A. Gilbert 8These authors jointly
supervised this work: Felix Y. Feng, Luke A. Gilbert ✉email: Felix.Feng@ucsf.edu; Luke.Gilbert@ucsf.edu

NATURE COMMUNICATIONS |         (2021) 12:4601 | https://doi.org/10.1038/s41467-021-24919-7 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24919-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24919-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24919-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24919-7&domain=pdf
http://orcid.org/0000-0002-1041-4931
http://orcid.org/0000-0002-1041-4931
http://orcid.org/0000-0002-1041-4931
http://orcid.org/0000-0002-1041-4931
http://orcid.org/0000-0002-1041-4931
http://orcid.org/0000-0002-2629-9966
http://orcid.org/0000-0002-2629-9966
http://orcid.org/0000-0002-2629-9966
http://orcid.org/0000-0002-2629-9966
http://orcid.org/0000-0002-2629-9966
http://orcid.org/0000-0003-1258-0391
http://orcid.org/0000-0003-1258-0391
http://orcid.org/0000-0003-1258-0391
http://orcid.org/0000-0003-1258-0391
http://orcid.org/0000-0003-1258-0391
http://orcid.org/0000-0003-3191-6268
http://orcid.org/0000-0003-3191-6268
http://orcid.org/0000-0003-3191-6268
http://orcid.org/0000-0003-3191-6268
http://orcid.org/0000-0003-3191-6268
http://orcid.org/0000-0002-0963-7687
http://orcid.org/0000-0002-0963-7687
http://orcid.org/0000-0002-0963-7687
http://orcid.org/0000-0002-0963-7687
http://orcid.org/0000-0002-0963-7687
http://orcid.org/0000-0001-5854-0825
http://orcid.org/0000-0001-5854-0825
http://orcid.org/0000-0001-5854-0825
http://orcid.org/0000-0001-5854-0825
http://orcid.org/0000-0001-5854-0825
mailto:Felix.Feng@ucsf.edu
mailto:Luke.Gilbert@ucsf.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Prostate cancer is a common cancer and the second leading
cause of cancer-related deaths among men in the United
States1. Androgens are a key driver of prostate cancer cell

proliferation, and androgen deprivation therapy (ADT) is the
mainstay of treatment for men with metastatic prostate cancer2,3.
While ADT is initially effective, metastatic prostate cancer
patients on ADT will ultimately develop resistance and inevitably
progress to lethal metastatic castration-resistant prostate cancer
(mCRPC)4. There is a critical unmet need to identify new
molecular therapeutic targets for patients with mCRPC. We
sought to address this issue using both functional genomics and
clinical genomics strategies to identify driver genes that are
associated with disease progression.

Advances in DNA sequencing have enabled comprehensive
genomic analysis of metastatic tumors and have identified
adaptive changes in the underlying molecular signaling pathways
associated with mCRPC5–7. Similarly, the advent of loss-of-
function CRISPR functional genomics platforms has system-
atically revealed which genes are required for cancer cell pro-
liferation and survival8,9. Although both of these approaches have
generated substantial amounts of data, it remains unclear how
best to utilize these strategies to identify driver genes that are
specific to the context of a particular disease, such as mCRPC. In
principle, the combination of clinical and functional genomics
data enables one to distinguish universally essential genes from
genes that drive specific cancers that are associated with poor
prognosis. We therefore hypothesized that an integrated
approach could nominate innovative therapeutic targets for
patients with aggressive prostate cancer.

We first performed genome-scale CRISPR-interference
(CRISPRi) screens in metastatic prostate cancer models to iden-
tify genes required for cellular proliferation or survival. We then
created an analytic pipeline that integrated mCRPC functional
and clinical genomics data with pan-cancer CRISPR functional
genomics data, and in doing so identified a number of previously
undescribed prostate cancer-specific driver genes. We demon-
strated that two of these genes, KIF4A (Kinesin Family Member
4A) and WDR62 (WD Repeat Domain 62), promote aggressive
prostate cancer phenotypes in vitro and in vivo. These experi-
ments, combined with clinical data on these genes, serve to
nominate KIF4A and WDR62 as prostate cancer-specific
driver genes.

Results
Genome-scale CRISPRi screens identify prostate cancer-
specific driver genes. We performed genome-scale screens
using our previously described CRISPRi functional genomics
platform10,11 in two mCRPC cell lines, LNCaP and C42B, to
identify genes that are required for prostate cancer cell pro-
liferation or survival (Fig. 1A). To begin, we generated multiple
malignant and immortalized benign prostate CRISPRi cell-line
models that stably express dCas9-BFP-KRAB fusion proteins
(Supplementary Fig. 1). LNCaP and C42B cell lines are excellent
preclinical in vitro models to study mCRPC12. These cell models
represent androgen-sensitive (LNCaP) and androgen-insensitive
aggressive (C42B) mCRPC. Genome-scale pooled genetic screens
were performed by transducing LNCaP or C42B cells stably
expressing dCas9-KRAB (hereafter denoted as LNCaPi and
C42Bi) with a human genome-scale CRISPRi library10,11 (Fig. 1A
and Supplementary Data 1). Samples were collected at time zero
(T0) and after 8 population doublings (T8) (Fig. 1A). Each screen
was performed in duplicate. We then used next-generation
sequencing to quantify the abundance of the sgRNAs in each
population of cells. Results obtained from the replicate screens
were highly correlated (Fig. 1B and Supplementary Fig. 2A, B).

The LNCaP and C42B CRISPRi screens had many shared and
selective genetic dependencies (Supplementary Fig. 2C). We were
primarily interested in androgen-sensitive mCRPC and so
prioritized the LNCaPi screen data. Analysis of our LNCaPi
screen data revealed 1472 genes that are required for cell pro-
liferation or survival (Fig. 1C and Supplementary Data 2). Given
that the vast majority of these genes were expected to be generally
required for cell proliferation, rather than being specifically
essential in prostate cancer, we next developed a bioinformatic
strategy to identify prostate cancer-specific driver genes.

In order to identify driver genes that are specific to aggressive
prostate cancer, we applied a clinical genomics filter designed to
prioritize CRISPRi hits with evidence of genomic amplification
and/or increased gene expression. This analysis strategy revealed
the Androgen Receptor (AR) as the top prostate cancer-specific
gene hit, but the next four top-ranked hits were genes not
previously associated with prostate cancer: KIF4A, MRPL13,
NDUFB11, and TSR2 (top 5) (Fig. 1D and Supplementary
Data 3). Examination of pan-cancer functional genomics data13,14

for essentiality phenotypes for the top 5 hits revealed that AR is
selectively essential for prostate cancer models as expected
(Supplementary Fig. 3A). In contrast, top hits such as TSR2 are
essential for the proliferation or survival of nearly all cell types
and thus are almost certainly not prostate cancer-specific driver
genes (Supplementary Fig. 3B). Other top hits such as KIF4A,
MRPL13, and NDUFB11 are essential for a number of cell types
but not for others (Supplementary Fig. 3C–E). These results
demonstrated that solely using clinical data to filter loss-of-
function CRISPR functional genomics data can identify known
driver genes but also generates a significant rate of false-positive
hits as exemplified by TSR2 in this analysis.

Given these results, we next tested whether a combined clinical
and functional genomics filtering strategy would more robustly
reveal prostate cancer-specific driver genes in our LNCaPi screen
data. We first filtered our list of 1472 LNCaP essential genes
against a CRISPR pan-cancer functional genomics datasets
(pooled in vitro CRISPR knockout library essentiality screens
(PICKLES) and DepMap datasets)13,15. We then filtered the
remaining hits against two published non-prostate cancer
CRISPRi screens16 to remove CRISPR DepMap false negatives
in the prostate cancer CRISPRi screen data. Lastly, we prioritized
genes associated with increased expression in metastatic prostate
cancer samples (Fig. 1D and Supplementary Data 4). This
integrative functional genomics and clinical genomics filtering
strategy revealed known prostate cancer-specific driver genes, AR
and HOXB13, as the top two hits5,7,17,18. Additional top hits, such
as WDR62, are uncharacterized in prostate cancer (Fig. 1D).
These results demonstrate that an integrated functional genomics
and clinical genomics filtering strategy can identify known driver
genes and also reveal uncharacterized genes that may drive
metastatic prostate cancer progression.

To validate our screen results, we demonstrated that eight top
hits from this screen are required for prostate cancer cell
proliferation or survival, suggesting our screen results and
subsequent analysis nominate reproducible hit genes with a low
false-positive rate (Fig. 1E). In order to demonstrate that the hits
identified by these two integrated functional and clinical
genomics approaches are potential prostate cancer-specific driver
genes, we chose to study KIF4A and WDR62 as they were
relatively uncharacterized in the context of mCRPC.

KIF4A is an AR-independent driver gene in metastatic prostate
cancer. We chose to further investigate KIF4A because two
independent mCRPC clinical genomics datasets (Quigley, et al.5

and Abida, et al.6.) demonstrate that KIF4A is a copy number
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amplified in ~33% of mCRPC patient samples (Supplementary
Fig. 4A, B) supporting the hypothesis that this may be a mCRPC
driver gene. KIF4A and AR are both on the same arm of the X-
chromosome and are frequently co-amplified despite being 2.55
megabases apart5. AR is also focally amplified in mCRPC5. The
occurrence of recurrent long amplicons encompassing more than
just AR supports the hypothesis that KIF4A, AR, and possibly
additional genes may be a ‘cluster’ of cancer driver genes that are
co-amplified on the X-chromosome to drive prostate cancer
tumorigenesis. In localized primary human prostate cancer
samples from the TCGA cohort, we observed that KIF4A and AR
gene expression are correlated (Supplementary Fig. 5A). Sur-
prisingly, in our mCRPC data5, we found no correlation between
AR and KIF4A expression, suggesting an independent role for
KIF4A from AR (Fig. 2A). In support of this finding, we also
found no correlation between AR and KIF4A expression in
another independent mCRPC cohort (Abida, et al.6.) (Supple-
mentary Fig. 5B). Importantly, we found that high KIF4A
expression was associated with poor outcome in mCRPC patients
(Fig. 2B). There was also a strong positive correlation between
expression of KIF4A and of MKI67, a marker of cell proliferation
in mCRPC samples (in both Quigley et al. and Abida et al.)
suggesting KIF4A is associated with cancer cell proliferation or
survival in patients (Supplementary Fig. 6A, B). Collectively, these
data suggest that KIF4A may have different functions in primary
prostate cancer and mCRPC.

To experimentally dissect the role of KIF4A in prostate cancer,
we tested whether KIF4A expression was required for prostate
cancer cell proliferation and or survival in both AR-dependent
(LNCaPi, C42Bi, and 22Rv1i) and AR-independent (PC3i and
DU145i) cell-line models. We observed that inhibition of KIF4A
expression reduced clonogenic survival in both AR-dependent
and AR-independent prostate cancer models (Fig. 2C). KIF4A
knockdown in LNCaPi cells did not decrease AR mRNA or
protein levels (Supplementary Fig. 7A, B) KIF4A knockdown was
similar across this panel of cell lines (Supplementary Fig. 8A). We
also observed that KIF4A overexpression increased clonogenic

survival in both malignant (LNCaPi) and benign prostate cells
(RWPE1i and PNT2i) (Fig. 2D). KIF4A overexpression also
increased anchorage-independent colony formation in both
malignant and benign prostate cells (Fig. 2E). The level of KIF4A
overexpression was similar across the cell-line models at mRNA
level (Supplementary Fig. 8B) and at protein level (Supplementary
Fig. 8C). Next, we modulated KIF4A expression and performed
migration/invasion assays, and observed that the repression of
KIF4A decreases cell migration/invasion while overexpression of
KIF4A increases cell migration/invasion in AR-dependent as well
as AR-independent cell models (Fig. 2F and Supplementary
Fig. 8D). We also performed cell-cycle analysis on LNCaPi and
PC3i cells, which are AR-dependent and -independent, respec-
tively, with and without knockdown of KIF4A. KIF4A knockdown
resulted in accumulation of cells in S phase (Supplementary
Fig. 9A–D). Lastly, we created an inducible CRISPRi LNCaP
(LNCaPi-Dox) model (Supplementary Figs. 10 and 11A). We
implanted LNCaPi-Dox cells expressing negative control sgRNAs
or sgRNAs targeting KIF4A cells into mice. At tumor onset, mice
were treated with doxycycline to induce KIF4A knockdown or
control. We observed that KIF4A is necessary for tumor growth
in vivo (Fig. 2G). We collected tumor samples 21 days after
addition of doxycycline and observed that KIF4A repression
remained stable at this time point (Supplementary Fig. 11B).

Our clinical filtered screen results nominated KIF4A as a
prostate-specific driver gene; however, DepMap CRISPR func-
tional genomics data reported that KIF4A was essential in a
number of cancer cell lines (Supplementary Fig. 3C). To test the
model that KIF4A is a prostate-specific driver gene, we generated
a panel of diverse CRISPRi non-prostate cancer cell-line models
(breast: MDA-MB-231i, ovarian: OVCAR3i, lung: H358i and
A549i, colon: DLD1i) (Supplementary Fig. 12A). We repressed
KIF4A in each of these models and then measured the impact of
KIF4A knockdown on cell proliferation and survival in 10-day
and 21-day clonogenic survival assays. In five out of the six cell
models, KIF4A was dispensable for cell proliferation or survival
(Fig. 2H). Similarly, KIF4A knockdown in these non-prostate
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cancer cells did not show an effect on cell cycle (Supplementary
Fig. 12C–H). KIF4A knockdown was similar across this panel of
cell lines and also similar to KIF4A knockdown in prostate cancer
cells (Supplementary Figs. 8A and 12B). Basal KIF4A protein
levels do not correlate with gene essentiality across prostate and
non-prostate cell-line models (Supplementary Fig. 13). This
suggested that the driver gene properties of KIF4A could be
relatively specific to prostate biology. Alternately, this discrepancy

could be due to differences in the level of KIF4A disruption by
CRISPR and by CRISPRi which would suggest that the exact level
of KIF4A required for cell viability varies between cell types. If
this is the case, then our data would demonstrate that there is a
therapeutic window for inhibiting KIF4A as an anti-cancer
strategy.

To further investigate why KIF4A is required for prostate
cancer proliferation or survival, we measured the transcriptional
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consequences of KIF4A repression in LNCaPi cells. Using gene
set enrichment analysis (GSEA), we observed a signature of
multiple cancer signaling pathways, including MYC and E2F,
known to drive cell proliferation (Supplementary Fig. 14A–E).
KIF4A is a chromokinesin with two reported functions. KIF4A is
reported to regulate multiple aspects of spindle organization and
chromosome positioning/integrity, processes which are thought
to be required for all dividing cells. KIF4A is also reported to
form a complex with both DNMT3B19, an enzyme that catalyzes
DNA methylation as well as key genes that regulate chromatin,
such as HDAC1 and SIN3A19, suggesting KIF4A could be
required for epigenetic programs that support mCRPC. To test
whether repression of KIF4A alters the chromatin landscape of
prostate cancer cells, we performed an Assay for Transposase-
Accessible Chromatin using sequencing (ATAC-Seq) experiment
in LNCaPi and C42Bi cells. Our data demonstrated that the
patterns of open and closed chromatin are broadly remodeled
upon KIF4A knockdown suggesting KIF4A may play a role in the
regulation of chromatin biology in prostate cancer cells
(Supplementary Figs. 15A–E and 16A, C). The altered ATAC-
seq peaks were enriched for pathways which have been
established to play crucial role in cancer cells proliferation and
survival, including prostate cancer (Supplementary Fig. 16B, D).

WDR62 is an uncharacterized prostate cancer driver gene. We
were intrigued by the observation that WDR62 is an unchar-
acterized top CRISPRi screen hit gene that is crucial for prostate
cancer cell proliferation or survival. In clinical genomics data, we
observed that the expression of WDR62 is significantly higher in
primary (TCGA) and metastatic (MSKCC) prostate cancer
samples relative to benign prostate samples (Supplementary
Fig. 17A, B). We found that high WDR62 expression is associated
with poor patient outcome in mCRPC patients (Quigley et al.)
(Fig. 3A). There is also a strong positive correlation between
WDR62 expression and MKI67, a marker of cell proliferation in
mCRPC samples suggesting WDR62 could drive tumor cell
proliferation or survival (Fig. 3B). These data demonstrate that
WDR62 expression is correlated with disease progression and/or
poor outcomes in mCRPC patients.

To experimentally dissect the role of WDR62 in prostate
cancer, we performed clonogenic survival assays in five prostate
cancer cell models and observed a significant decrease in the
colony formation following knockdown of WDR62 in all five
models demonstrating WDR62 is required for prostate cancer
proliferation or survival irrespective of AR status (Fig. 3C).
WDR62 basal protein expression and knockdown was similar
across this panel of cell lines (Supplementary Fig. 18A, B). This is
supported by our clinical data demonstrating WDR62 levels are
not correlated with AR levels in metastatic prostate cancer
(Fig. 3D). Overexpression of WDR62 significantly increased
clonogenic survival of both malignant and benign prostate cells

suggestingWDR62 is a driver gene in prostate cancer that is likely
independent of AR (Fig. 3E). The level of WDR62 overexpression
was similar across prostate malignant and benign cell-line models
(Supplementary Fig. 18C). We also observed that knockdown of
WDR62 suppressed the ability of prostate cancer cells to migrate/
invade, while WDR62 overexpression increased migration and
invasion (Fig. 3F). Lastly, we subcutaneously implanted LNCaPi-
Dox cells expressing control sgRNAs or sgRNAs targeting
WDR62 into mice (Supplementary Fig. 19A). At tumor onset
we treated the mice with doxycycline to induce WDR62
knockdown and observed that WDR62 is required for tumor
growth in vivo (Fig. 3G). Thirty days after addition of
doxycycline, we collected the tumors and observed that WDR62
repression remains stable at that time point (Supplementary
Fig. 19B). These results demonstrate WDR62 is a driver of
aggressive prostate cancer phenotypes both in vitro and in vivo.

Our functional genomics filters nominated WDR62 as being
selectively essential in prostate cancer models (Fig. 3H). However,
to experimentally confirm this, we repressed WDR62 expression
in our panel of diverse CRISPRi non-prostate cancer cell-line
models. In six out of six models, we found that WDR62 is not
required for cell proliferation and survival in a 10-day clonogenic
survival assay or progression through the cell cycle (Fig. 3I,
Supplementary Fig. 20A–D). In this experiment, WDR62 was
repressed to an equivalent extent in each model as observed in
CRISPRi prostate cell lines (Supplementary Fig. 20E). Collec-
tively, these data suggest that WDR62 is selectively essential in
prostate cancer models. Basal protein expression of WDR62 was
similar across this panel of non-prostate cancer cell lines
(Supplementary Fig. 20F).

WDR62 mediates the stability of the TPX2/AURKA protein
complex in prostate cancer. Relatively little is known about
WDR6220–25. Mutations in WDR62 are associated with micro-
cephaly in humans20,22,23. WDR62 has been reported to interact
with Aurora A and TPX222,26. However, this interaction is not
annotated in protein–protein interaction databases27. In our
mCRPC clinical data, we observed a strong positive correlation
between WDR62 and TPX2 expression levels (Fig. 4A), as well as
between WDR62 and AURKA expression levels (Fig. 4B), which
can reflect a functional relationship28. A similar correlation was
also found in an independent mCRPC cohort (Abida et al.6)
(Supplementary Fig. 21A, B). TPX2 and AURKA bind directly in
a known protein complex that is required for mitosis in most cell
types and as such both are common essential genes (Supple-
mentary Fig. 21C, D)29–31. To test whether AURKA, TPX2, and
WDR62 form a protein complex in mCRPC, we immunopreci-
pitated WDR62 from LNCaP cells and then western blotted for
TPX2 and AURKA (Fig. 4C). This experiment demonstrated that
WDR62 interacts with TPX2 and AURKA likely forming a pro-
tein complex in prostate cancer cells. We hypothesized that

Fig. 2 KIF4A is an AR-independent driver gene in metastatic prostate cancer. A Scatter plot showing no correlation between AR and KIF4A in 99 mCRPC
patients based on a two-sided Spearman’s correlation test (Quigley et al); B A Kaplan–Meier curve of overall survival of 96 patients with CRPC with high
and low level of KIF4A. Differences between groups were tested with a two-sided log-rank test. Hazard ratios were calculated using the Cox proportional
hazards regression model. Number at risk is shown under the plot; C Colony formation assay in range of prostate cancer cell-line models with KIF4A
knockdown (n= 3 as biological replicates; Mean ± SEM; Unpaired two-tailed t-test was used to determine statistical significance); D Colony formation
assay in malignant and benign prostate cells with KIF4A overexpression (n= 3 as biological replicates; Mean ± SEM; Unpaired two-tailed t-test was used to
determine statistical significance); E Anchorage-independent growth assay in malignant and benign prostate cells with KIF4A overexpression (n= 3 as
biological replicates; Mean ± SEM; Unpaired two-tailed t-test was used to determine statistical significance); F Migration and Invasion assay with KIF4A
knockdown and overexpression in malignant prostate cells (n= 3 as biological replicates; Mean ± SEM; Unpaired two-tailed t-test was used to determine
statistical significance); G Line plot showing average tumor volume in KIF4A knockdown and control cells implanted in vivo. Average tumor volume was
plotted and two-way ANOVA was used to measure statistical significance; H Colony formation assay in a range of non-prostate cancer CRISPRi cell-line
models with KIF4A knockdown (n= 3 as biological replicates; Mean ± SEM; Unpaired two-tailed t-test was used to determine statistical significance).
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WDR62 may regulate the stability or function of the TPX2/
AURKA protein complex in prostate cancer cells. We observed
that the knockdown of WDR62 results in loss of TPX2 and
AURKA protein suggesting WDR62 regulates the stability of this
protein complex in prostate cancer cells (Fig. 4D). Mechan-
istically, we observed that upon knockdown of WDR62, AURKA
is efficiently degraded by the proteasome (Fig. 4E).

To further confirm that WDR62 is a prostate cancer-specific
regulator of the TPX2/AURKA protein complex, we examined

WDR62, AURKA, TPX2 genetic dependencies in the DepMap. As
expected, TPX2 and AURKA genetic dependencies are highly
correlated (Fig. 4F). In contrast, there is no correlation between
WDR62 and TPX2 phenotypes in DepMap data compatible with
the hypothesis that WDR62 specifically regulates TPX2/AURKA
in prostate cancer cells (Fig. 4G). Notably, only a single prostate
cancer cell line (VCaP) is represented in the DepMap data and so
we do not expect a pan-cancer correlation between TPX2 and
WDR62 if the biology of WDR62 is prostate cancer-specific.
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Together, these data suggest that WDR62 is a prostate cancer-
specific driver gene and in addition is a potential therapeutic
target in mCRPC.

Discussion
Most advanced cancers are driven by the biochemical activity of
multiple driver genes. In prostate cancer, AR is the major driver
of disease progression, but it remains unclear how additional
genes drive mCRPC through AR-dependent and independent
mechanisms. In addition, an emerging theme in mCRPC is that
not all tumors are addicted to AR32–34. Using a genome-scale
CRISPRi functional genomics platform, we have identified genes
required for proliferation or survival in two models of advanced
prostate cancer. Integrative analysis of these data with clinical
genomics data and functional genomics data revealed AR as a top
hit in these screens but also nominated a number of additional
poorly characterized prostate-specific driver genes. Our work
highlights the strength of an integrated clinical and functional
genomics pipeline and focuses on two of the poorly characterized
hit genes. Our data demonstrated KIF4A and WDR62 are AR-
independent prostate cancer driver genes that are associated with
poor prognosis in patients with advanced metastatic disease.

Our interest in KIF4A was driven by the clinical data analysis
showing this gene has many of the properties of a human cancer
driver gene. In support of this, our data in vitro and in vivo data
demonstrated that KIF4A promotes phenotypes associated with
poor prognosis in mCRPC, irrespective of AR status, suggesting
KIF4A is a driver gene that promotes disease progression in
human prostate cancers. Mechanistically, KIF4A biology is
complex and the role of KIF4A in prostate cancer is fairly
unknown. We demonstrated through transcriptome profiling and
genome-wide chromatin accessibility analysis that knockdown of
KIF4A reveals gene signatures that are established to have pro-
found effect on prostate cancer phenotypes. However, open
questions remain with respect to how KIF4A interacts with other
proteins to modulate gene expression, chromatin biology, and
prostate cancer phenotypes. We note that KIF4A has been
nominated as a clinical biomarker of aggressive prostate cancer35.
Our data currently does not support the hypothesis that KIF4A
and AR form an auto-regulatory positive feedback loop in pros-
tate cancer36. However, it will be important to model KIF4A in
genetically engineered mouse models of prostate cancer to further
explore the biology of how KIF4A promotes tumorigenesis,
metastasis, and drug response.

A top hit in our CRISPRi screen is WDR62, an uncharacterized
gene in prostate cancer. The identification of WDR62 and addi-
tional hit genes as poorly characterized prostate cancer driver
genes highlights the strength of our integrated clinical and
functional genomics analysis strategy. WDR62 is one of the most
commonly mutated autosomal recessive primary microcephaly-

associated genes, with over 30 identified mutations leading to
reduced brain size and a spectrum of cortical abnormalities20,37.
In this study, we demonstrated that WDR62 is highly expressed
in primary as well as metastatic prostate cancer and is associated
with poor patient outcome. We demonstrated both in vitro and
in vivo that WDR62 promotes aggressive prostate cancer phe-
notypes in all of the prostate cancer models that were tested,
irrespective of AR-status, suggesting that this is an AR-
independent human prostate cancer driver gene. We note that
WDR62 was previously characterized as a biomarker of resistance
to AR targeted therapies in models of neuroendocrine prostate
cancer (NEPC) and in NEPC patient samples however to our
knowledge WDR62 has not been previously implicated as a driver
of prostate cancer adenocarcinoma38. Mechanistically, our data
demonstrated that WDR62 modulates the activity of AURKA by
stabilizing the AURKA/TPX2 protein complex in prostate cancer
cells. Genetically engineered mouse models of prostate cancer are
needed to further explore the biology of how WDR62 promotes
tumorigenesis, metastasis, and drug response. AURKA and TPX2
are required for proliferation in most cells; however, our data and
data from DepMap demonstrated that WDR62 is uniquely
essential for proliferation in prostate cancer cells, suggesting
WDR62 could be a potential molecular target in mCRPC patients
to disrupt AURKA-TPX2 signaling without being lethal to other
non-prostate tissues39–41. However, additional studies are
required to prove that WDR62 does not regulate AURKA/TPX2
activity across other cell types.

To our knowledge, no previous studies have utilized the
strengths of integrating clinical genomics and functional geno-
mics data to identify prostate cancer-specific driver genes. Our
manuscript leverages an integrated clinical and functional geno-
mics pipeline to identify and validate genes that can drive
aggressive prostate cancer phenotypes. As expected, AR was the
top hit in our analysis. Development of novel agents targeting
mCRPC drivers, other than AR, such as KIF4A and WDR62 may
provide important therapeutic strategies for mCRPC patients.
Furthermore, for patients with metastatic AR-dependent prostate
cancer innovative combination therapies that co-target multiple
driver genes simultaneously may lead to increased patient
survival.

Methods
Cell culture. LNCaP, C42B, 22Rv1, PC3, DU145, RWPE-1, OVCAR3, MDA-MB-
231, A549, H358, DLD1 cell lines were purchased from ATCC. PNT2 cells were
purchased from Millipore Sigma. RPMI 1640 medium (Gibco Catalog number:
11875119) + 10% FBS (fetal bovine serum) were used to grow all the cell lines,
except RWPE-1 and HEK293T cells. RWPE-1 cells were grown using Keratinocyte
Serum Free Medium (Gibco Catalog number: 17005042) + 10% FBS.
HEK293T cells were grown using DMEM medium (Gibco Catalog number:
11885084) + 10% FBS. All cell lines underwent verification by short tandem repeat
profiling at Genetica Cell-Line Testing.

Fig. 3 WDR62 is an uncharacterized prostate cancer driver gene. A A Kaplan–Meier curve of overall survival of 96 patients with CRPC with high and low
expression of WDR625. Differences between groups were tested with a two-sided log-rank test. Hazard ratios were calculated using the Cox proportional
hazards regression model. Number at risk is shown under the plot; B Scatter plot showing correlation between expression level ofMKI67 and WDR62 in 99
mCRPC patients5. Spearman’s correlation with a two-sided test for significance was calculated; C Colony formation assay in a range of prostate cancer cell-
line models withWDR62 knockdown (n= 3 as biological replicates; Mean ± SEM; Unpaired two-tailed t-test was used to determine statistical significance);
D Scatter plot (n= 99) showing no correlation between WDR62 and AR5. Spearman’s correlation with two-sided test for significance was calculated;
E Colony formation assay in malignant and benign prostate cells with WDR62 overexpression (n= 3 as biological replicates; Mean ± SEM; Unpaired two-
tailed t-test was used to determine statistical significance); F Migration and Invasion assay with WDR62 knockdown and overexpression in malignant
prostate cells (n= 3 as biological replicates; Mean ± SEM; Unpaired two-tailed t-test was used to determine statistical significance); G Line plot showing
average tumor volume in WDR62 knockdown and control cells implanted in vivo. Average tumor volume was plotted and two-way ANOVA was used to
measure statistical significance; H Histogram of pan-cancer essentiality CERES scores of WDR62 in DepMap database. The red line denotes the median
gene effect of all common essential genes.; I Colony formation assay in a range of non-prostate cancer CRISPRi cell-line models with WDR62 knockdown
(n= 3 as biological replicates; Mean ± SEM; Unpaired two-tailed t-test was used to determine statistical significance).
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CRISPR vectors. Lentiviral vectors were used to express the CRISPRi protein and
sgRNAs in human cells as previously described10. The CRISPRi protein (dCas9-
BFP-KRAB) was expressed from either the SFFV or TET3G promoter. The sgRNA
vector encodes an sgRNA driven by the mouse U6 promoter as well as a fluorescent
protein (BFP or GFP) T2A puromycin N-acetyl transferase gene driven by the
human EF1α promoter. The sgRNA sequences used in experiments are provided in
Supplementary Table 2.

Lentivirus generation: HEK293T cells were used to generate lentivirus. pCMV-
dR8.91 and pMD2-G were used as packing vectors. LT1 transfection reagent
(Mirus MIR2300) was used for transfection. To enhance viral production viral
boost reagent (Alstem # VB100) was used.

Cell-line construction. For constitutive and inducible CRISPRi cell lines, poly-
clonal cells expressing dCas9-BFP-KRAB fusion proteins driven from an SFFV or
TRE3G promoter, respectively, were generated by viral transduction followed by
fluorescence-activated cell sorting to purity using a BD Fusion. Prostate cancer
CRISPRi lines are denoted as LNCaPi, C42Bi, 22Rv1i, PC3i, and DU145i. LNCaPi,

C42Bi, and 22Rv1i AR-dependent prostate cancer lines, whole PC3i and DU145i
are AR-independent cell lines. Benign prostate CRISPRi lines are denoted as
RWPE1i and PNT2i. Doxycycline inducible CRISPRi line on LNCaP line is
denoted as LNCaPi-Dox. Non-prostate cancer CRISPRi lines are denoted as
OVCAR3i (is an ovarian cancer line), MDA-MB-231i (is a breast cancer line),
A549i and H358i (are lung cancer lines), and DLD1i (is a colon cancer line).

CRISPRi screen. The human CRISPRi V2 Top5 sgRNA library was used to per-
form CRISPRi screens11. This sgRNA library targets 18,905 human genes with five
sgRNAs per transcription start site. Cells were grown at minimum library coverage
of 1000x for genome-scale screens. Cells were collected at 0 and 8 doubling after
puromycin selection and harvested cells were processed for next-generation
sequencing. The screens were performed in two technical replicates. Briefly, DNA
was isolated, the cassette encoding the sgRNA was amplified by PCR, and relative
sgRNA abundance was determined by next-generation sequencing as previously
described10,11. Data were analyzed using publicly available code (https://github.
com/mhorlbeck/ScreenProcessing).
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Fig. 4 WDR62 mediates the stability of the TPX2/AURKA protein complex in prostate cancer. A and B Scatter plots (n= 99) showing a correlation
between TPX2 and WDR62 and AURKA and WDR62, respectively5. Spearman’s correlation with a two-tailed test for significance was calculated; C Co-
immunoprecipitation of WDR62 with TPX2 and AURKA (* non-specific band). The co-immunoprecipitation experiment was performed twice to determine
reproducibility; D Western blot showing loss of AURKA and TPX2 following knockdown of WDR62. Each western blot experiment was performed twice to
determine reproducibility; E Western blot of AURKA following knockdown of WDR62 with and without MG132, a proteasome inhibitor. Each western blot
experiment was performed twice to determine reproducibility; F and G Scatter plots showing phenotype (gene effect) correlation between TPX2 and
AURKA and TPX2 and WDR62, respectively14. Spearman’s correlation was performed for statistical analysis.
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Clinical cohorts. Quigley et al.5 is the published whole-genome and -transcriptome
analysis of 101 castration-resistant prostate cancer metastases. Gene expression and
copy number data were processed as described in the original publication. Abida
et al.6 TCGA42 and MSKCC43 datasets were downloaded through the cBioPortal
for Cancer Genomics44,45, and gene expression and copy number data were ana-
lyzed as processed by cBioPortal. All analyses on these cohorts were performed in
the R statistical environment version 3.6.3 using RStudio 1.2.50346,47. The corre-
lation was calculated by Spearman’s rank correlation. A two-sided Wilcoxon rank-
sum test was used to test for differences between two groups, unless otherwise
stated. Violin plots were created using the ggplot2 package48. Survival analyses for
the Quigley et al. study were performed with overall survival as endpoint, calcu-
lated from the time of mCRPC diagnosis until death or censoring, and visualized
using the Kaplan–Meier method using the survival package and plotting functions
from the rms package49–52. Differences between groups were tested with a two-
sided log-rank test. Hazard ratios were calculated using the Cox proportional
hazards regression model. High expression was defined as the top quartile of gene
expression for the respective genes.

Clinical genomics filters. Considering that drivers of mCRPC commonly have
copy number gains6,7, first, we ranked the genes (n= 1472) by number of mCRPC
samples having a copy number gain of the gene in the Quigley et al. We then
further narrowed down this list of genes by the criteria that a copy number gain
would result in a corresponding change in phenotype (gene expression) due to the
copy number gain. The cut-off for the change in gene expression with or without
copy number gain was set to be ≥ 2 fold change in mean expression (transcripts per
million, TPM) with p value ≤ 0.001 (two-sided Wilcoxon rank-sum test).

Combined functional genomics and clinical data filters. The goal of this filter
was to identify prostate cancer-specific genes that are expressed higher in metas-
tases compared to primary prostate tumors and/or benign prostate. First, the 1472
genes were filtered against the published pan-cancer, except prostate cancer
PICKLES database15. Genes that were called as essential in 90% of the cell lines
were removed from the gene list. Second, the gene list was filtered through the
CERES cancer dependency database (DepMap, Version 20Q1)13. Genes called
essential by the DepMap database were removed from the list. Third, we further
removed any gene on the list that were found to be as a significant hit in two non-
prostate cancer CRISPRi screen published recently16. Finally, the genes whose
expression were found to be high in metastasis samples (in MSKCC cohort)
compared to primary tumor were only considered. The narrowed-down gene list
was then ranked based on their screen phenotype score and p value (smallest to
largest).

For DepMap gene effect data, as defined by DepMap a score of 0 is equivalent to
a gene that is not essential, whereas a score of −1 corresponds to the median of all
common essential genes14,53,54.

Competitive growth assay. LNCaPi cells plated out at 150,000 cells per well in
six-well plates were infected with lentivirus sgRNA targeting gene of interest and
control. Each lentiviral transduction of sgRNA and control were done in three
biological replicates and performed at least twice to determine the reproducibility
of the data. Data were collected and analyzed using Invitrogen Attune NxT Flow
Cytometer at day 3 post-infection and every 48 h thereafter. The relative fraction of
sgRNA in the infection cells was measured.

Clonogenic assay. Cells transduced with the indicated sgRNAs and then were
treated with puromycin for achieve a pure population of the transduced cells. One
thousand cells were seeded out per well in a six-well plate. Each experimental setup
was performed in three biological replicates and done at least thrice to determine
the reproducibility of the data. RNA was isolated from the remaining cells to
confirm knockdown by qRT-PCR. The cells were allowed to grow for 4 days. On
day 5, the wells were washed with PBS, and colonies are fixed with 25% methanol
and stained with crystal violet (0.05% w/v). Images were scanned and analyzed
using ImageJ software. Average number of colonies formed was counted and two-
tailed t-test was used to determine statistical significance.

Migration and invasion assay. Cells transduced with sgRNAs targeting the gene
of interest and control were treated with puromycin for a pure population. A total
of 100,000 cells were then plated in serum-free media for invasion in Matrigel-
coated micropore transwells (Corning Bio-Coat). Each experimental setup was
performed in three biological replicates and done at least thrice to determine the
reproducibility of the data. RNA was isolated from the remaining cells to confirm
knockdown by qRT-PCR. Three days after invasion/migration plating, transwells
were fixed in 4% formaldehyde, stained with crystal violet, and cells on the upper
side of the micropore membrane wiped off. Cells on the lower side of the mem-
brane were photographed with a microscope, the dye was dissolved in 10% acetic
acid and optical density measured at 560 nm. Average number of cells migrated
was counted and two-tailed t-test was used to determine statistical significance.

Overexpression vectors. Mammalian gene collection fully sequenced human
KIF4A cDNA (Horizon, Cat #MHS6278-202758261) and human WDR62 (Hor-
izon, Cat #MHS6278-202830915) was used to transfect cells and overexpress
KIF4A and WDR62, respectively. Overexpression efficiency was measure either by
qPCR or by western blotting.

Soft-agar assay. Growth in anchorage-independent condition was assessed by
colony formation in low melting agarose. Melted agar solution (1%) was plated out
in 10 cm plates and allowed to solidify. Cells transduced to have gene over-
expression and control were counted and prepared. Each experimental setup was
performed in three biological replicates and done at least thrice to determine the
reproducibility of the data. The cell suspension was mixed with 0.6% low melting
agar (1:1) and plated out over the solidified agar. The cells were allowed to grow for
21 days. The colonies were then stained with nitroblue tetrazolium chloride. Images
were scanned and analyzed using ImageJ software. Average number of colonies
formed was counted and two-tailed t-test was used to determine statistical
significance.

Cell-cycle assay. Stably expressing dCas9-KRAB CRISPRi cells were plated out at
150,000 cells per well and lentiviral transfected with sgRNA targeting KIF4A and
control sgRNA. Post puromycin selection, cells were stained with manufacturers
protocol55. Briefly, harvested cells were washed with PBS, counted, fixed with 70%
ethanol and stained with Propidium Iodide Solution (Cat# 421301). Each experi-
mental setup was performed in three biological replicates and done at least thrice to
determine the reproducibility of the data.

In vivo experiments. Doxycycline inducible LNCaP cells were lentiviral trans-
fected with sgRNA targeting KIF4A (and also WDR62) and control sgRNA. Post
puromycin selection, cells were counted, and the cell suspension was mixed with
Matrigel (1:1). A total of 2 × 106 cells were injected subcutaneously on each flank of
the mice. NOD-SCID-Gamma mice were used. UCSF IACUC and laboratory
animal resource center (LARC) mouse husbandry standards were followed for all
mouse housing (https://larc.ucsf.edu/). Once the tumors were palpable the mice
were randomly categorized in two groups receiving either doxycycline diet (Bio-
Serv, Cat#S3888) or control diet. Tumors were measured using digital caliper by
two different laboratory personnel to rule out any measurement bias. Tumor
volume was calculated using the equation: Volume= length × width2 × 0.52, where
the length represents the longer axis. Average tumor volume was plotted and two-
way ANOVA was used to measure statistical significance. The mice were humanely
euthanized once the tumor reached 1000 cubic mm of size following appropriate
UCSF’s LARC protocol. Protein was extracted from the tumors of the mice to
determine knockdown efficiency. All animal experiments conducted were reviewed
and approved by UCSF IACUC board.

RNA extraction and qPCR. Cells were viral transduced with sgRNA targeting the
gene of interest or control sgRNA for 3 days and selected with puromycin for pure
population for 3 days. The entire setup of the experiment was done in three
biological replicates. Post-selection RNA was extracted from the cells as per the
manufacturer’s protocol using the Zymo Quick-RNA-extraction kit Cat# R1054.
RNA quantification was done using Thermo Scientific Nanodrop 2000 system.
cDNA was prepared using SuperScript III First-Strand Synthesis System for RT-
PCR (Cat # 18080-051). QuantStudio Flex Real-Time PCR system was used to
measure mRNA expression of gene of interest. The list of all primers used is
provided in Supplementary Table 1.

Western blot. Cells were lysed using RIPA buffer with protease inhibitor (Thermo,
Cat#78430), sonicated and centrifuged to extract protein. Either NuPAGE 4–12%
Bis-Tris or 3-8%Tris-Acetate precast polyacrylamide gels were used for protein
analysis56,57. Antibodies used were as follows: KIF4A (Thermo, Cat# PA5-30492),
WDR62 (Bethyl Labs, Cat#A301-560A), GAPDH (14C10) (Cell signaling,
Cat#2118), Aurora A (D3E4Q) (Cell signaling, Cat #14475), TPX2 (Novus Bio,
Cat#NB500-179), AR (D6F11) (Cell Signaling #5153). Antibody specificity for
primary antibodies was validated by CRISPRi knockdown experiments. All anti-
bodies were raised for human proteins and used to detect human proteins. All the
western blot experiments were at least done twice to determine reproducibility.

RNA-Seq sample preparation. LNCaPi cells were viral transduced with sgRNA
targeting KIF4A or control sgRNA for 3 days and selected with puromycin for pure
population for 3 days. Post-selection RNA was extracted from the cells as described
above for library preparation to generate Illumina compatible libraries of sequences
and to perform qPCR to determine the sgRNA knockdown efficiency. QuantSeq 3′
mRNA-Seq library prep kit FWD for Illumina (Lexogen, Cat# 015.24) was used to
prepare the library as per the manufacturer’s protocol. Quality control was per-
formed by using the Agilent Bioanalyzer 2100 system and the samples were
sequenced in Illumina HiSeq 4000. The entire set of the experiment was done in
two biological replicates.
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RNA-seq data processing. The RNA-seq single-end fastq data generated by
Illumina HiSeq 4000 sequencing system were first trimmed to remove adapter
sequence using Cutadapt v2.658 with “-q 10 -m 20” option. After adapter trimming,
FASTQC v0.11.859 was used to evaluate the sequence trimming as well as overall
sequence quality. Using splice-aware aligner STAR (2.7.1a)60, RNA-seq reads were
aligned onto the Human reference genome build hg38 using “–outSAMtype BAM
SortedByCoordinate–outSAMunmapped Within–outSAMmapqUnique
50–sjdbOverhang 65–chimSegmentMin 12–twopassMode Basic” option and exon-
exon junctions, according to the known Human gene model annotation from the
GENCODE v3061. Apart from protein-coding genes, non-coding RNA types, and
pseudogenes are further annotated and classified. Furthermore, based on the reads
that can only be mapped to a single genomic location, the transcript/gene
expression quantification was performed using “featurecount” function within
Rsubread R-package62 with “GTF.featureType= “exon”, GTF.attrType= “gen-
e_id”, useMetaFeatures= TRUE, allowMultiOverlap= FALSE, countMulti-
MappingReads= FALSE, isLongRead= FALSE, ignoreDup= FALSE,
strandSpecific= 0, juncCounts= TRUE, genome=NULL, isPairedEnd= FALSE,
requireBothEndsMapped= FALSE, checkFragLength= FALSE, countChimeric-
Fragments= TRUE, autosort= TRUE” option. Cross-sample normalization of
expression values and differential expression analysis between the KIF4A-
knockdown and control was done using DESeq2 R-package63. Benjamini-
Hochberg corrected p-value < 0.05 and log2 fold change >0.5 or <0.5 were con-
sidered statistically significant.

The RNA-seq data generated in this study have been deposited in the NCBI’s
Gene Expression Omnibus (GEO) database under accession code GSE178330.

ATAC-Seq sample preparation. We performed ATAC-Seq on LNCaP and C42B
cells following knockdown of KIF4A or control. The experiment was carried out as
described in the published method papers by Buenrostro, et al64. and Corces,
et al65. with the following modifications. Cells were resuspended in buffer (Illumina
Cat#), incubated on ice for 10 min, and lysed using a dounce homogenizer. 50,000
nuclei were incubated with 25uL 2X TD Buffer and 1.25uL Transposase (Illumina
Tagment Enzyme/Buffer Cat# 20034210) shaking at 300 rpm at 37 C for 30 min.
Zymo DNA Clean and Concentrator 5 kit (Cat# D4014) was then used to purify
DNA. Transposed DNA was amplified using PCR master mix and indexes from
Nextera DNA Library Prep kit (Cat# 15028211) for 5 cycles and then assessed
using qPCR. Final cleanup was performed using 1.8X AMPure XP beads (Cat#
A63881) and libraries quantified using the DNA High Sensitivity Agilent 2100
Bioanalyzer System. Samples were sequenced at the UCSF Core Facility on the
NovaSeq, paired end. The entire experimental setup was performed in two tech-
nical replicates.

ATAC-seq data processing. The ATAC-seq paired-end fastq data generated by
Illumina NovaSeq 6000 sequencing system were first trimmed to remove Illumina
Nextera adapter sequence using Cutadapt v2.658 with “-q 10 -m 20” option. After
adapter trimming, FASTQC v0.11.859 was used to evaluate the sequence trimming
as well as overall sequence quality. Bowtie2 version 2.3.5.166 was then used to align
the ATAC-seq reads against the Human reference genome build hg38 using
“–very-sensitive” option. The uniquely mapped reads were obtained in SAM for-
mat. Samtools version 1.967 was used to convert SAM to BAM file as well as sort
the BAM file. Picard (https://broadinstitute.github.io/picard/) was then used to
remove duplicates using the MarkDuplicates tool using “REMOVE_DUPLICATES
= true” option. The resulting BAM file reads position were then corrected by a
constant offset to the read start (“+” stranded +4 bp, “-” stranded −5 bp) using
deepTools2 v3.3.268 with “alignmentSieve–ATACshift” option. This resulted in the
final aligned, de-duplicated BAM file that was used in all downstream analyses.
ATAC-seq peak calling was performed using MACS2 v2.2.569 to obtain narrow
peaks with “callpeak -f BAMPE -g hs–nomodel -B–keep-dup all–call-summits”
option. The resulting peaks that map to the mitochondrial genome or genomic
regions listed in the ENCODE hg38 blacklist (https://www.encodeproject.org/
annotations/ENCSR636HFF/) or peaks that extend beyond the ends of chromo-
somes were filtered out. Non-overlapping unique ATAC-seq narrow peaks regions
were obtained from the all samples analyzed. Only those non-overlapping unique
peak regions present in at least two samples were considered for further analysis.
Sequencing reads mapped to these non-overlapping unique regions were counted
using “featurecount” function within Rsubread R-package62 with “isPairedEnd=
−TRUE, countMultiMappingReads= FALSE, maxFragLength= 100, autosort=
TRUE” option. Further normalization of the feature counts and differential open
chromatin regions between KIF4A-knockdown and control were obtained using
DESeq2 R-package63. Only those peak regions with Benjamini-Hochberg corrected
p-value < 0.05 and log2 foldchange >0.5 or <0.5 were considered statistically
significant.

The ATAC-seq data generated in this study have been deposited in the NCBI’s
GEO database under accession code GSE178330 (https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE178330)

Gene set enrichment analysis (GSEA). We used GSEA70 to identify the signaling
pathways enriched in the differentially expressed genes between KIF4A-

knockdown and control obtained from RNA-seq analysis. For this, we used fgsea
R-package71 with Hallmark pathway collection from MSigDB72.

Statistical analysis. In the Quigley et al. study, Spearman’s correlation was used to
determine statistical significance for all the correlation plots: KIF4A and AR;
MKI67 and KIF4A; WDR62 and AR; MKI67 and WDR62. For gene expression and
correlation, a two-sided Wilcoxon rank-sum test was used to test for differences
between two groups, unless otherwise stated. Survival analyses for the Quigley et al.
study were performed with overall survival as endpoint, calculated from time of
mCRPC diagnosis until death or censoring, and visualized using the Kaplan–Meier
method. Differences between groups were tested with a two-sided log-rank test.
Hazard ratios were calculated using the Cox proportional hazards regression
model. Spearman’s or Pearson correlation analysis was used for all other datasets:
prostate cancer TCGA, Abida et al. and MSKCC.

Unpaired t-test was used to determine statistical analysis for all the column
plots: colony formation assay, anchorage-independent assay, migration and
invasion assay, and qPCR results. Two-way ANOVA was used to determine
statistical significance in the in vivo data. Spearman’s correlation analysis was
performed a correlation of CERES data between TPX2 and AURKA and TX2 and
WDR62. In RNA-Seq data, Benjamini–Hochberg test was performed. Corrected p
value < 0.05 and log2 foldchange >0.5 or <0.5 were considered statistically
significant. In ATAC-Seq data peak regions with Benjamini-Hochberg corrected p-
value < 0.05 and log2 foldchange >0.5 or <0.5 were considered statistically
significant.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data generated or analyzed during this study are included in this published article and
its supplementary information files. The RNA sequencing and ATAC sequencing
datasets generated in this study have been deposited in the NCBI’s Gene Expression
Omnibus (GEO) database under accession code GSE178330. PICKLES (http://pickles.
hart-lab.org) and DepMap (https://depmap.org/portal/) data are publicly available. A
reporting summary for this article is available as a Supplementary Information file.

Code availability
Custom code used in this manuscript is publicly available at https://github.com/
GilbertLabUCSF/CanDI or freely available on request.
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