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Abstract
The disease coronavirus disease 2019 (COVID-19) is a severe respiratory illness 
that has emerged as a devastating health problem worldwide. The disease 
outcome is heterogeneous, and severity is likely dependent on the immunity of 
infected individuals and comorbidities. Although symptoms of the disease are 
primarily associated with respiratory problems, additional infection or failure of 
other vital organs are being reported. Emerging reports suggest a quite common 
co-existence of gastrointestinal (GI) tract symptoms in addition to respiratory 
symptoms in many COVID-19 patients, and some patients show just the GI 
symptoms. The possible cause of the GI symptoms could be due to direct infection 
of the epithelial cells of the gut, which is supported by the fact that (1) The 
intestinal epithelium expresses a high level of angiotensin-converting enzyme-2 
and transmembrane protease serine 2 protein that are required for the severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry into the cells; (2) 
About half of the severe COVID-19 patients show viral RNA in their feces and 
various parts of the GI tract; and (3) SARS-CoV-2 can directly infect gut epithelial 
cells in vitro (gut epithelial cells and organoids) and in vivo (rhesus monkey). The 
GI tract seems to be a site of active innate and adaptive immune responses to 
SARS-CoV-2 as clinically, stool samples of COVID-19 patients possess proinflam-
matory cytokines (interleukin 8), calprotectin (neutrophils activity), and immuno-
globulin A antibodies. In addition to direct immune activation by the virus, 
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impairment of GI epithelium integrity can evoke immune response under the 
influence of systemic cytokines, hypoxia, and changes in gut microbiota 
(dysbiosis) due to infection of the respiratory system, which is confirmed by the 
observation that not all of the GI symptomatic patients are viral RNA positive. 
This review comprehensively summarizes the possible GI immunomodulation by 
SARS-CoV-2 that could lead to GI symptoms, their association with disease 
severity, and potential therapeutic interventions.

Key Words: COVID-19; Gastrointestinal symptoms; Pathogenesis; Innate immune 
response; Adaptive immune response; Gut microbiota; Dysbiosis; Therapeutics; Probiotic; 
Pre-existing diseases

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Coronavirus disease 2019 (COVID-19) is a global pandemic. Many COVID-
19 patients either present gastrointestinal (GI) symptoms in addition to respiratory 
symptoms or just GI symptoms. Syndrome coronavirus 2 (SARS-CoV-2) directly 
infects GI epithelial cells as they express significant levels of angiotensin-converting 
enzyme-2 and transmembrane protease serine 2 protein, required for SARS-CoV-2 
entry. This article reviews gut infection and GI immunomodulation by SARS-CoV-2, 
leading to spectrum of GI symptoms and pathogenesis in COVID-19-patients. Special 
emphases are given on the innate and acquired immune responses in the GI tract due to 
intestinal and non-intestinal SARS-CoV-2 infection, COVID-19 severity in people 
with pre-existing intestinal diseases, role of gut microbiota, and possible therapeutic 
interventions are discussed.

Citation: Roy K, Agarwal S, Banerjee R, Paul MK, Purbey PK. COVID-19 and gut 
immunomodulation. World J Gastroenterol 2021; 27(46): 7925-7942
URL: https://www.wjgnet.com/1007-9327/full/v27/i46/7925.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i46.7925

INTRODUCTION
In December 2019, pneumonia cases with unrecognized etiology were reported in the 
Wuhan city of China, causing fever and acute respiratory distress. The causative agent 
is a novel coronavirus named syndrome coronavirus 2 (SARS-CoV-2), and the disease 
is referred to as coronavirus disease 2019 (COVID-19)[1,2]. SARS-CoV-2 belongs to the 
order “Nidovirales”; family of “Coronaviridae”, and subfamily “Orthocoronavirinae”
[3]. Coronaviruses are single-stranded RNA viruses, usually zoonotic but have 
regularly affected humans to cause a major health crisis[4,5]. COVID-19 rapidly spread 
like an epidemic in China, followed by worldwide transmission of the infection and, 
therefore, was declared a pandemic and global crisis by the World Health 
Organization (WHO) in March 2020. As of May 23, 2021, the WHO COVID-19 
dashboard reported 166352007 confirmed cases of COVID-19, and 3449189 deaths 
worldwide, making this one of the worst pandemics in the 21st century. The high rate 
of human-to-human transmission, asymptomatic carriers, and the absence of 
therapeutic intervention led to the global pandemic.

The evolution of new variants of the virus has made the situation even worse. New 
SARS-CoV-2 strains are emerging like B.1.351 was detected in South Africa, B.1.207 in 
Nigeria, while strain B.1.1.7 was identified in the United Kingdom in December 2020 
and is highly infectious. The new strains like B.1.1.7 strain harbor several mutations, 
especially in the S protein, including the N501Y (asparagine to tyrosine substitution), 
69/70 deletion. P681H and enhances the virus-angiotensin-converting enzyme-2 
(ACE-2) binding efficacy, thereby making the variants highly contagious. B.1.617.1, 
B.1.617.2, and B.1.617.3 are the three subtypes of the Indian variant reported in 
October 2020 is highly infectious and causing fresh waves of infection in many 
countries around the world. Three important mutations in the sequence coding for the 
viral spike protein co-occur in variant B.1.617.1: L452R, E484Q, and P681R. B.1.617.2 is 
also linked to the L452R, T478K, and P681R mutations[6]. Indications suggest that 
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these variants can trigger severe disease conditions or higher fatality rates. The 
complete impact of these mutations is not yet understood and is still being researched, 
but comprehensive genomic strain surveillance is needed to better understand the 
strain-specific infection, pathogenesis, epidemiological and therapeutic aspects. 
Several potential therapeutic and prophylactic interventions are under investigation or 
have undergone randomized controlled trials. Great strides have been made in vaccine 
development, and COVID-19 vaccines are now approved for mass use in several 
countries. Raising hopes for curbing the COVID-19 crisis and WHO’s guidelines on 
wearing a mask, social distancing, and sanitization needs to be strictly followed to 
bend down the infection curve.

Though COVID-19 mainly causes respiratory illness, many patients experience 
gastrointestinal (GI) symptoms, including nausea, vomiting, belly pain, appetite loss, 
and diarrhea. GI symptoms are often associated with the presence of CoV2 RNA in 
many patients’ stool (feces) samples[7]. Though the mechanism of lung infection is 
widely studied, there is a dearth of information regarding the enteric phase of SARS-
CoV-2, especially the immune contexture and response. The gut microbiome is 
considered to play a key role in regulating the impact of SARS-CoV-2, and significant 
alterations in the microbiota profiles are reported in COVID-19 patients. The role of 
the gut-lung axis and the severe respiratory distress associated with gut imbalance is 
also very relevant[8]. COVID researchers have reported a disturbance of the gut 
microbiota and its association with lung and gut infections, which can cause hindrance 
in the gut-lung axis. Recent data suggest that GI symptoms might be a warning sign of 
a more serious condition with poor prognosis. Because of the GI infection and COVID 
severity, the present paper deals with a complete review of the COVID-19-associated 
gut-infection, pathogenesis, innate and acquired immune responses, gut microbiota, 
and possible therapeutic intervention. Figure 1, is a schematic showing SARS-CoV-2 
infection and activation of cell death-associated release of damage-associated 
molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), 
associated inflammation and host intracellular immune response.

COVID-19 PATHOGENESIS AND INFECTION PROCESS 
Human-to-human transmission of COVID-19 can occur when the infectious res-
piratory droplets of patients are transmitted as droplets or aerosol that finally gets 
deposited into the nasal, oral, and conjunctival mucosa of an uninfected human being. 
SARS-CoV-2 prominently attacks the lungs and infects other organs such as the gut, 
heart, blood vessels, kidney, cortex, and central nervous system[9]. SARS-CoV-2 
infects host cells when the viral spike (S) protein binds to the cell surface receptor 
ACE2. Thereby, ACE2 is the crucial cellular receptor for the entry of SARS-CoV-2[10]. 
Two functional domains are found in the S protein: A receptor-binding domain and a 
second domain with S1/S2 cleavage site containing multiple arginine residues that 
must be cleaved by cell proteases for cellular entry. The furin-mediated pre-cleavage 
of the S1/S2 site leads to further activation of viral fusion to the cells by trans-
membrane protease serine 2 protein (TMPRSS2)[11,12]. ACE2 receptors and TMPRSS2 
are expressed in various human cells susceptible to viral infection, including epithelial 
cells in the lungs, small intestine, and colon, tubular cells of the kidney, neuronal and 
glial cells in the brain, enterocytes, vascular endothelial cells, smooth muscle cells and 
cardiomyocytes[13]. Viruses are shed in the feces long after the resolution of the 
pulmonary symptoms, making the fecal-oral route of SARS-CoV-2 transmission a 
possibility. Single-cell transcriptomics data suggest that the GI epithelium, especially 
the enterocytes lining of the ileum and colon, shows a higher frequency of 
coexpression of both the ACE2 and TMPRSS2 and therefore, are conducive for SARS-
CoV-2 interaction and infection, which may explain the GI pathogenesis[14,15]. The 
viral entry is associated with the release of proinflammatory cytokines, immune cell 
infiltration, and overall immune activation leading to inflammation. The infection-
associated GI-specific symptoms include anorexia, watery diarrhea, nausea and 
vomiting, and associated abdominal pain[14] (Figures 1 and 2).

COVID-19 AND GI SYMPTOMS
Similar to lung infection, the GI-infection by SARS-CoV-2 triggers an antiviral immune 
response characterized by the release of interferon (IFN), cytokines, and chemokines in 
the infected cells. Figure 2 presents a brief overview of the GI infection routes and 
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Figure 1 COVID-19 and gut Immunomodulation. A: Model is showing gut infection; B: Zoomed in area of the gut; C: Zoomed in representation of an area 
showing the intestinal crypts; D: Zoomed in C, showing a histological representation of intestinal crypts. The intestinal epithelium is folded and organized into crypts 
and villus. Villus is the finger-like projections gutting out towards the lumen of the intestine (red cells). The crypts base (shown in yellow and green cells) houses the 
intestinal stem cells, while the blue cells comprise the transit-amplifying cells. SARS-CoV-2 activates angiotensin-converting enzyme 2 receptors, and epithelial cell 
death-associated release of damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). DAMPs and PAMPs are 
considered a danger signal by immune cells, especially the dendritic cells, macrophages, and innate immune cells. This damage recognition is associated with 
proinflammatory cytokine production (like Interferon, tumor necrosis factor-α), followed by immune infiltration and virus-specific B and T cell response. CD8+ T cells 
undergo clonal expansion and kill the infected cells and launch an antiviral attack. B cells differentiation to plasma cells can lead to antiviral antibody production and 
subsequent neutralization of SARS-CoV-2[10,14]. Some images (Free Stock Media) are downloaded from Canva.com using subscription. IFN: Interferon; TNF-α: 
Tumor necrosis factor-α; DAMP: Damage-associated molecular patterns; PAMP: Pathogen-associated molecular patterns; DC: Dendritic cells; MQ: Macrophages.

symptoms. These inflammatory mediators promote infiltration of neutrophils, 
macrophages, and T cells to the site of infection, resulting in enteric inflammation that 
may lead to diarrhea and other GI symptoms[10]. Studies have shown that the 
elevated fecal levels of calprotectin (a marker protein expressed mainly by neut-
rophils) in patients with COVID-19 adds to the growing evidence that SARS-CoV-2 
infection triggers an inflammatory response in the intestine. Calprotectin concen-
trations were found to be significantly higher in COVID-19 patients who had suffered 
from diarrhea along with elevated serum interleukin (IL)-6 levels[16]. An alternate 
mechanism implicated in GI symptoms in COVID-19 patients is oxygen deprivation
[17]. Hypoxia is one of the major clinical symptoms in COVID-19 patients known to 
influence intestinal homeostasis, including microbiota composition and immune 
function. It is shown that oxygen deprivation (exacerbated hypoxia) can contribute to 
GI disorders and inflammatory disease severity[18].

The tissues that are targeted by SARS-CoV-2 go through an early phase of infection 
where a high viral load induces intestinal symptoms such as vomiting and diarrhea 
associated with COVID-19 during the initial phase in some patients. Thus, diarrhea 
should also generate awareness of a possible SARS-CoV-2 infection and should be 
investigated to reach an early diagnosis of COVID-19 to slow down its transmission 
instead of waiting for the respiratory symptoms to develop.

The first results linking GI symptoms with COVID-19 were obtained from a study 
conducted in COVID-19 confirmed patients in Wuhan, China[19]. In this study, 204 
patients with COVID-19 who presented at three hospitals were analyzed. Although 
most patients presented with respiratory symptoms, many patients also presented 
with GI -specific symptoms. It is possible that GI symptoms associated with COVID-19 
could be underreported due to the focus on fatal respiratory symptoms. However, a 
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Figure 2 Illustrative model showing gastrointestinal infection routes and symptoms. The figure shows the main routes of infection. Infectious 
respiratory droplets or aerosols deposited on the nasal, oral, or conjunctiva may lead to person-to-person spread. SARS-CoV-2 is detected in feces of infected 
patients may infect by fecal-oral transmission. The right upper section of the figure also discusses the significant gastrointestinal symptoms associated with COVID-19 
infection. The receptors (angiotensin-converting enzyme 2 and TMPRSS2) of SARS-CoV-2 are detected on various organs, especially the lungs, intestine, liver and 
kidneys. The right lower section describes the infection process leading to intestinal symptoms. After SARS-CoV-2 infection, cytopathic effect occurs due to infection 
and associated immune activation leading to compromised intestinal barrier function, microbial dysbiosis, and severe symptoms. Many studies have established the 
link between healthy intestinal flora and the gut-lung axis. COVID-19 severely induces the intestinal microbiota dysbiosis and affects the gut-lung axis, especially the 
immune response. Probiotics and appropriate nutritional supplements can help protect from SARS-CoV-2 associated symptoms[10,14]. Some images (Free Stock 
Media) are downloaded from Canva.com using subscription. ACE2: Angiotensin-converting enzyme 2.

study by Pan et al[20] reported that patients without GI symptoms were more likely to 
recover and be discharged than those with GI symptoms (60% vs 34%). This data 
indicates that GI symptoms like diarrhea may be associated with a worse outcome 
requiring respiratory assistance and intensive care admission. It was also found that 
patients with COVID-19, especially those with digestive symptoms, remained for a 
long time from the onset of symptoms to hospital admission with an average time of 9 
d compared to patients with only respiratory symptoms who had an average 
admission time of 7.3 d[19]. This may indicate that those with digestive symptoms 
waited longer to be diagnosed in the hospital, as they were unsuspected of being 
SARS-CoV-2 positive in the absence of respiratory symptoms[21]. Besides, prolonged 
hospital stay could also be due to treatment time needed to resolve multiple symptoms 
in patients with GI and respiratory infections.

Wang et al[22] analyzed the biodistribution of SARS-CoV-2 in different tissues of 
patients with confirmed COVID-19[22]. In this study, SARS-CoV-2 was detected in 
multiple tissue specimens collected from 205 COVID-19 patients. Bronchoalveolar 
lavage fluid specimens showed the highest positive rates (14 of 15; 93%). However, the 
virus was also detected in feces suggesting that the infectious virions are secreted from 
the virus-infected GI cells. The virus has also been detected in GI histological samples 
and by endoscopy[23]. Therefore, the fecal-oral transmission could be a possible route 
for the viral spread. To further investigate the presence of SARS-CoV-2 in feces, Xiao et 
al[24] examined the viral RNA in feces from 73 patients with SARS-CoV-2 during their 
hospitalizations. Out of the 73 hospitalized patients infected with SARS-CoV-2, 39 
(53.42%) tested positive for SARS-CoV-2 RNA in their stool. The study also found that 
17 (23.29%) patients continued to have positive stool results after showing negative 
outcomes in the respiratory samples. Overall, these data suggest viral GI infection and 
a potential fecal-oral transmission that can last even after viral clearance in the 
respiratory tract, and also advocates implementing testing of the virus in feces by real-
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time reverse transcription polymerase chain reaction for disease monitoring and 
surveillance.

IMMUNOMODULATION IN GI TRACT DUE TO INTESTINAL AND NON-
INTESTINAL INFECTIONS
Clinical data suggest that co-infection of GI tract along with respiratory tract are quite 
prevalent[25]. Xiao et al[24] has reported the presence of replicating viruses in the 
epithelium of the GI tract[24], and the in vitro models of cell and organoid culture of 
human intestinal epithelial cells (hIECs) support efficient SARS-CoV-2 infection, 
replication and production of infectious de novo virus particles[25]. Intestinal viral 
load seems to show a stronger association with the severity of respiratory and GI 
symptoms in COVID-19 patients[26]. Recently, in a non-human primate (rhesus 
monkey) model of SARS-CoV-2 infection, in vivo infection of GI tract triggered 
reduced proliferation and increased apoptosis of intestinal epithelial and goblet cells 
along with intestinal inflammation by macrophages has been reported by performing 
immunohistochemistry for proliferation (Ki67), apoptosis (cleaved caspase 3), and 
recruited macrophages (CD68+), and multiplex cytokine assay of GI tract tissues[27]. 
These reports support immune modulation in the GI tract due to direct infection of GI 
tract cells by the virus or due to changes in the GI tract integrity and microbiota under 
the influence of systemic cytokines and hypoxic conditions or a combination of all. GI 
tract is a site of active immune reaction to generate tolerant immunity against various 
commensal pathogens and an effective immunity to fight the pathogenic infectious 
agents, such as bacteria, viruses, parasites, etc. Direct or indirect modulation in the GI 
tract's immune activation during SARS-CoV-2 infection seems a reason for observed 
GI symptoms in COVID-19 patients.

Innate immune response to SARS-CoV-2
The initial protection against pathogens is established by innate immunity. Although 
more studies are needed, it is reasonably convincing that intestinal epithelium gets 
infected and is associated with some sort of GI symptoms. Virally infected cells can 
recognize the virus and virus-associated molecular patterns to elicit initial innate 
immune pathways to release cytokines and chemokines to recruit body's innate-
immune cells such as neutrophils, macrophages, etc. to the infected area of the gut, 
which further augments the inflammation in order to restrict the viral replication. This 
inflammatory response also promotes antigen processing and presentation to establish 
the adaptive immune response. However, some of the inflammatory cytokines are 
known to increase permeability of the intestinal lumen to the commensal microbes and 
may contribute to the onset of the GI-symptoms. The possible host immune responses 
during COVID-19 infection is discussed in this review.

Innate immune response mechanism to SARS-CoV-2: As explained in previous 
sections, it is evident that SARS-CoV-2 can infect various tissues of GI-tract followed 
by intestinal cell death, macrophage recruitment and release of various pro inflam-
matory cytokines to compromise the intestinal barrier[27]. Therefore, it is likely that 
SARS-CoV-2 infection of intestinal epithelial cells (IEcs) would trigger a coordinated 
innate immune response due to the recognition of SARS-CoV-2 associated molecular 
patterns (PAMPs), similar to that reported in the lung’s epithelial cells[25,28]. The 
initial cytokine released by the infected cells can further recruit immune cells 
(neutrophils, macrophages, lymphocytes etc.), in the gut microenvironment to amplify 
the inflammatory response by recognition of PAMS and cytokines by their specialized 
receptors to restrict the virus propagation[29,30]. Notably, this early innate immune 
response is essential to facilitate the emergence of a more specific adaptive immune 
response by lymphocytes. The nature, timing and strength of innate and adaptive 
immune responses have been reported to be determining factors for the COVID-19 
patient’s symptoms[31]. Several components of inflammation exist but we have 
limited knowledge on the nature of inflammatory pathways triggered in the GI-tract 
by SARS-CoV-2.

One of the important components of inflammation is IFN response that includes 
large number of genes exerting antiviral effect. Recent report in a monkey model has 
shown many proinflammatory cytokines in the GI tract but they show no clear 
evidence on the IFN-I response genes and thus further omics studies may shed some 
lights in this regard[27]. It is apparent that asymptomatic and mild/moderate 
symptomatic patients develop a compelling early innate immune response to 
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successful viral clearance. While, patients with severe symptoms (especially the 
elderly and those with pre-existing health conditions) exhibit a dysfunctional early 
innate immune response against SARS-CoV-2 to allow the dissemination of infection 
leading to life-threatening complications[32,33]. In general, inadequate early innate 
immune response and failure to generate enough antiviral IFNs allow immune 
evasion, viral propagation, the spread of infection and subsequently cell death, and the 
release of PAMPs and DAMPs to cause cytokine storm. However, there is no strong 
correlation between viral load and severity of the disease highlighting the role of 
genetic or physiological state of the individual in developing the severe symptoms. 
Currently, we have little knowledge about the contribution of GI tract infection and 
inflammation towards cytokine storm and organ damage, which needs further 
exploration in the clinical and experimental setup. However, in the rhesus monkey 
model, it is evident that infection of GI-tract can contribute to systemic inflammation 
and inflammation to lungs[27].

IEcs and goblet cells undergo apoptosis[27]; however, other form of inflammatory 
cell death could be operational, which needs to be investigated in a preclinical and 
clinical setup as various types of cell death can occur due to the activation of innate 
immune recognition of PAMPs and DAMPs. The inflammatory cell death includes 
Pyroptosis, Apoptosis and Necroptosis, also termed as Panoptosis[30]. Pyroptosis is an 
inflammasome or Gasdermin mediated phenomena that involve caspase1, 4, and 5 
activations (in humans) and gasdermin mediated pore formation and release of Il1b 
and IL-18. Recent data suggested a role of SARS-CoV-2 infection induced pyroptosis in 
peripheral blood mononuclear cells through NLRP3 (NLR family pyrin domain-
containing 3) inflammasome activation, cleavage of caspase-1, and secretion of IL-1β 
and IL-18[34]. Necroptosis is a mixed-lineage kinase domain-like pseudokinase 
(MLKL)-mediated inflammatory cell death, during which oligomerized MLKL is 
translocated to form channels in the plasma membrane, which has been documented 
in SARS-CoV-2 infection[35]. Karki et al[35] have shown that a combination of just 
tumor necrosis factor (TNF)-α and IFN-γ can exert significant cell death in bone 
marrow-derived macrophages and their blockage can abrogate the cell death and 
severe symptoms in COVID-19 situation. We guess, possibly similar kind of cell death 
also operates in GI-tract as TNF-α and IFN-γ are induced in SARS-CoV-2 infected GI-
tract[35]. Here, as part of an innate immune response, we elaborate on the evidence of 
IFN (IFN-I and IFN-III) and proinflammatory cytokines production in the context of 
human GI tract cells that may have consequences towards GI symptoms.

Induction of IFN and cytokines in the cells of the GI tract upon SARS-CoV-2 
infection: To successfully combat and generate immune memory against SARS-CoV-2, 
the host’ cells must generate an early innate immune response that includes the 
production of antiviral IFN and proinflammatory cytokines soon upon viral detection
[36]. The severity of COVID-19 disease has been correlated with a defective or lower 
level of systemic IFN production but an elevated level of proinflammatory cytokines
[37-39]. Since, infection of GI-tract contribute to the systemic cytokine pool[27], a 
detailed transcriptomic profile of GI-tract in non-human primate model can reveal 
some clues in future. In the in vitro models, similar to lung epithelial cells, the IEcs and 
intestinal organoids induce both type-I (IFN-I) and type-III IFN (IFN-III)[25,26,40]. 
Interestingly, SARS-CoV-2 induces stronger IFN-stimulated genes than SARS-CoV in 
the intestinal organoids, which seems similar to that observed in lung epithelial cells
[26]. Analysis of feces of COVID-19 patients has revealed a significant association of 
elevated proinflammatory cytokine (IL-8) and lower level of anti-inflammatory 
cytokine (IL-10) in the COVID-19 patients as compared to healthy people, which 
indicate an inflammation/immune response in the intestine[26]. Post infection, 
expression of cytokines is evident in the time course analysis of 23 cytokines in the GI-
tract of SARS-CoV-2 infected rhesus monkey[27]. Current studies analyzing the IEcs 
response upon SARS-CoV-2 infection have little data on IFN and ISG at later time 
points (24 h or longer). Also, analysis of cytokines in gut biopsy samples from various 
disease category may be useful. Future studies can be carried out to investigate other 
proinflammatory cytokines profiles that are usually observed in other viruses or 
bacterial infections. A comparative study would be necessary to dissect the molecular 
differences in response between IEcs and lung’s epithelial cells. Whether intestinal 
inflammation contributes to the systemic cytokine pool (which seems convincing in 
rhesus monkey model), caused various types of cell death in intestinal epithelium and 
resident immune cells would be important aspects to explore.

Adaptive immune response to SARS-CoV-2 in the GI tract
The adaptive immune response mediated by B and T lymphocytes is usually 
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pathogen-specific and develops slowly relative to the innate immune response. B cells 
and T cells in the intestine are continually interacting with a vast amount of antigen-
derived from diet and commensal microbes and maintain immune homeostasis. The 
interaction of gut-associated antigen and lymphocytes primarily happens in the gut-
associated lymphoid tissues, including the Peyer’s patches, isolated lymphoid follicles, 
and gut-draining mesenteric lymph nodes, leading to maturation and differentiation 
of lymphocytes[41]. We will discuss the potential adaptive immune response to SARS-
CoV-2 infection.

Lymphopenia in COVID-19
Non-severe COVID patients show a near-normal number of circulating lymphocytes, 
while severe patients show a reduced number of circulating lymphocytes, a condition 
known as lymphopenia[42,43]. Whereas, a detailed analysis of lymphocyte subsets 
shows a significant reduction in T cells and NK cells, but without any alteration in B 
cell number in severe patients[22,42,43]. COVID-19 patients with pre-existing 
metabolic disease, like diabetes, show a higher proportion of severe infection[44], and 
lymphopenia has been linked to the severity of Crohn's disease[45]. Lymphopenia in 
severe COVID-19 patients may result from the synergistic effect of inflammation and 
metabolic disorder. The cellular mechanism of lymphopenia could be due to the 
following reasons and beyond. First, inhibition of lymphocyte proliferation in severe 
disease. Pre-existing metabolic disease, such as diabetes, enhances the propensity of 
the severity of COVID-19[46], and metabolic molecules, such as elevated blood lactic 
acid levels, may inhibit lymphocyte proliferation[47]. Second, higher lymphocyte 
death in severe disease. The potential mechanism of lymphocyte death could be due to 
metabolic disorder, inflammation, damage of lymphatic organs, and direct infection of 
lymphocytes[47]. Third, reduced lymphocyte production by skewed hematopoietic 
lineage cell fate decision. Metabolic disease (ulcerative colitis) and inflammation can 
skew hematopoietic fate decision towards the myelopoiesis with a concomitant 
decrease in lymphopoiesis[22,47,48]. Forth, infiltration of lymphocytes at the site of 
infection.

B cell and antibody-mediated immunity in COVID-19
In general, the intestine offers a model example of the diversity of antibody-secreting 
cells (ASCs) and comprises at least three subpopulations in humans[49]. Binding of 
antigen to antigen-specific B cells generates activated B cells that differentiates into 
ASCs with the help of T helper cells. It has been shown that 70% of non-severe 
COVID-19 patients have high and persistent SARS-CoV-2 neutralizing immuno-
globulin (Ig)G in the sera after their recovery[50]. Antibody isotype analysis shows 
SARS-CoV-2 specific serum IgA and IgM in non-severe patients[51,52]. A longitudinal 
study in recovered patients showed that IgG antibodies are relatively stable up to 105 
d post symptom onset while IgA and IgM antibodies rapidly decay[52]. Interestingly, 
an anti-SARS-CoV-2 antibody found in the mucosal fluid (saliva, nasal fluid, and tear 
fluid) and COVID-19 recovered patients have anti-SARS-CoV-2 specific IgG and IgA 
in saliva, indicating that antibody in the GI tract could be as crucial as antibodies in the 
serum for protective immunity[52-54]. ASCs in the intestine is a significant source of 
IgA producing cells in human. This indicates that the GI tract plays an essential role in 
generating anti-SARS-CoV-2 antibodies and protective immunity against SARS-CoV-2. 
The antibody can protect SARS-CoV-2 infection possibly by the following; antibody-
mediated neutralization of the pathogen, phagocytosis of infected cells, and antibody-
dependent cellular cytotoxicity. Patient-generated SARS-CoV-2-specific antibody can 
neutralize the virus SARS-CoV-2 in ex-vivo condition[53,55]. Furthermore, a mounting 
adaptive response in GI is supported by the prevalent presence of IgA in the stool of 
severe SARS-CoV-2 patients[26]. However, the importance and potency of antibody-
mediated neutralization of SARS-CoV-2 in vivo require future studies in the model 
systems.

Longitudinal studies have shown that IgG and IgA levels to SARS-CoV-2 were 
significantly elevated as the disease progresses[52,56,57]. Anti-SARS-CoV-2 IgG was 
detected within the first week after onset of the symptoms in approximately 40% of 
patients. Within 15 d (late stage of infection), antibody levels increased by almost 100% 
of patients[57]. In general, severe patients showed a significantly higher IgG and IgA 
level compared to non-severe patients at late stages of infection. Surprisingly, the 
antibody level increases as the disease worsen in the severe group; on the contrary, the 
disease cured (patients recovered) in the non-severe group[51,56,57]. A few studies 
have shown that the severity of the disease positively correlated with an increased 
amount of IgG against S-protein and N-protein, especially in elderly patients[58].
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Similarly, a very high level of anti-SARS-CoV-2 IgA correlated with severe acute 
respiratory distress syndrome[51]. Recent studies have shown that antibody levels 
(especially those of IgG and IgA) and B cell repertoire are highly dependent on the 
nature of microbiota in the gut[59,60]. Similarly, B cells and antibodies in the gut could 
affect the composition of the microbiota. B cell knock-out mice (a proxy for antibody 
deficiency) and AID deficiency mice (don’t have secretory IgA in the gut) have 
reduced microbial diversity and alter the composition of gut microbiota[61]. Therefore, 
antibodies and microbiota have a feedback loop to maintain a healthy immune 
response. The current understanding is that people with dysbiosis (imbalance 
microbiota) have a prevalence of COVID-19[62]. Alternatively, it could be possible that 
high IgA levels in the severe patients who recovered have altered the composition of 
the microbiota and may have a long-term health effect. Figure 3 schematically 
represents the development of COVID-19 progress and its relationship to changes in 
the gut flora and disease progression.

T cell and cellular immunity in COVID-19
Cellular immunity is mediated by T cells, and microbiota profoundly affects T cell 
activation and differentiation, as observed in B cells. Dysbiosis can prompt multiple 
immune disorders mediated by T cells[63]. T cells have numerous subsets (CD4+ T 
cells, CD8+ T cells, and Treg) and distinct biological functions. CD4+ T cells primarily 
regulate the function of other immune cells, CD8+ T (cytotoxic T cells) cells can 
produce granzyme, and perforin results in the elimination of virus-infected cell, and 
regulatory T cell (Treg), which can restrain other activated T cells’ function[64,65]. 
COVID-19 recovered patients have SARS-CoV-2 reactive IFN + T cells and granzyme B 
producing CD8+ T cells[66,67]. The correlation of IFN + T cells and granzyme B 
producing CD8+ T cells in recovered patients may indicate activated T cells mediated 
elimination of the virus-infected cells[54]. Interestingly, it has been observed that 
asymptomatic or mild SARS-CoV-2 infected patients have SARS-CoV-2 specific CD4+ 
T cells, which could be due to cross-reactive CD4+ T cell recognition between the 
common cold and SARS-CoV-2 coronaviruses[66,67].

The T cell functions are dysregulated in many severe patients[67,68]. The source of 
dysregulated T cell functions in severe disease could be due to the following reasons. 
First, it has been shown that both severe and non-severe patients have a comparable 
proportion of activated T cells suggesting functionality of activated T cells may be 
restrained by other immune cells, such as Treg, in non-severe patients[32,42]. In line 
with this, Qin et al[42] showed that severe patients have fewer Treg (specifically, 
induced Treg). Several studies have shown that GI tract dysbiosis can alter Treg/CD4+ 
T cell axis and may have a pathogenic outcome[69]. The generation of fewer Treg in 
severe patients can be a synergistic effect of inflammation and mucosal microbiota 
imbalance. Second, T cells are exhausted in severe patients than non-severe COVID-19 
patients[67,68]. Dysbiosis can promote T cells exhaustion[70]. So, it could be possible 
that T cell exhaustion in severe patients is a combined effect of hyper inflammation 
and imbalanced GI microbiota. However, we can’t exclude other possibilities (such as 
bystander T cells) of dysregulated T cells in severe disease.

COVID-19 IN PEOPLE WITH PRE-EXISTING INTESTINAL DISEASES
Patients with chronic GI conditions may be at an increased risk of severe COVID-
related illness, therefore management of these patients becomes important. Although 
the primary source of transmission for SARS-CoV-2 is respiratory droplets, there is 
increasing evidence supporting the possibility of a fecal-oral route of transmission. 
Patients with active ulcerative colitis and Crohn’s disease have a greater tissue concen-
tration of ACE2, increasing the possibility of an infection[71]. Additionally, the level of 
serine protease TMPRSS2, is about ten times higher in patients with inflammatory 
bowel disease (IBD) than in healthy subjects, suggesting an increased risk of infection 
in these patients[72]. Brenner et al[73] created the Surveillance Epidemiology of 
Coronavirus Under Research Exclusion for IBD (SECURE-IBD) database to identify 
potential IBD-associated COVID-19 risk factors. Out of 525 patients with IBD and 
COVID-19, severe infection (defined as intensive care unit admission, ventilator use, or 
death) was reported in seven percent of patients. Potential risk factors in these patients 
include increasing age, ≥ 2 comorbidities like diabetes mellitus, chronic inflammatory 
disease, and systemic glucocorticoids use, but not with anti-TNF therapy[73]. Using 
anti-TNF antibodies has been shown to reduce inflammatory cell death during experi-
mental COVID-19 situation[35].
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Figure 3 Schematic diagram showing COVID-19 disease progression and correlation with alterations with gut microbiota. The progression of 
gut microbiome alteration and its association with clinical symptoms and gut dysbiosis is evident. Cartoon inspired by[10,62,85]. ACE2: Angiotensin-converting 
enzyme 2.

The clinical presentation of several GI diseases (e.g., Crohn's disease, ulcerative 
colitis) can mimic COVID-19 infection. Examples include diseases that manifest with 
diarrhea, nausea, vomiting, and/or anorexia. In a study by Mao et al[74], preliminary 
data have suggested that the prevalence of COVID-19 is not higher in IBD patients as 
compared to the general population[74]. Other studies have suggested that patients 
with IBD in remission are not at higher risk for SARS-CoV-2 virus infection and that 
such patients should continue maintenance therapy to sustain remission[74-76]. 
Digestive complications related to IBD relapse could be confused with symptoms of 
COVID infection and may skew the data for COVID symptoms in IBD patients. 
Discontinuing maintenance therapy for IBD has been associated with disease relapse 
and may lead to an increase of adverse outcomes such as hospitalizations, surgeries, 
and/or glucocorticoid therapy like prednisone that may increase the risk for severe 
COVID-19[76].

Patients with a flare of Crohn's disease/ulcerative colitis or active IBD, in the 
absence of COVID-19, may benefit from anti-inflammatory or biologic therapy to 
induce remission. Mild IBD therapeutic options include oral budesonide, aminosali-
cylates, and topical (rectal) therapy. While, the usual options for treating moderately to 
severely active IBD include biologic therapies (e.g., anti-TNF agents, anti-integrin 
agents, and anti-interleukin agents)[76] are still viable. However, if systemic glucocor-
ticoids are deemed necessary, the lowest dose of glucocorticoid with an appropriate 
clinical response is used for a short duration before transitioning to another therapy 
that is glucocorticoid-sparing[76]. Management of a patient hospitalized with severe 
ulcerative colitis in the absence of COVID-19 may include treatment with a glucocor-
ticoid (like methylprednisolone) and in unresponsive cases medical therapy may be 
escalated to infliximab[76]. Surgery is an alternative option for patients who do not 
improve with medical therapy. Additionally, in the COVID-19 era, the initial use of 
infliximab at a dose of 5 mg/kg rather than glucocorticoid therapy is a reasonable 
approach.

IBD patients with known or suspected COVID-19 should have individualized 
medication regimen adjustments in order to balance the risk of disease flare[77]. The 
goal is to reduce immunosuppression during active viral infection to lower the risk of 
COVID-19-related complications (e.g., pneumonia). Patients with suspected or 
confirmed COVID-19 infection can be treated with Budesonide, Aminosalicylates, 
including sulfasalazine, topical rectal therapy (e.g., topical glucocorticoid), and 
antibiotics. However, Glucocorticoids require dose adjustment based on the severity of 
COVID-19 infection and Immunomodulators like thiotropines, methotrexate; 
Tofacitinib (Janus kinase inhibitor); biologic agents like anti-TNF agents, ustekinumab, 
or vedolizumab are held or delayed in patients with active symptoms of COVID-19 
until symptoms resolve[78,79].

However, the association of comorbidities, and their effect on the prognosis of 
COVID-19 needs to be further evaluated. In a recent study, 18 (1%) of 1590 COVID-19 
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cases had a history of cancer of which three had a history of colorectal cancer, one each 
of colonic tubular adenocarcinoma, rectal carcinoma, and colorectal carcinoma. It was 
also noted that patients with a history of cancer and positive SARS-CoV-2 virus were 
observed to have a higher risk of severe events[80]. Several strategies have been 
proposed, such as delaying of adjuvant chemotherapy or elective surgery on a patient-
by-patient basis, stronger personal protection provisions, and more intensive sur-
veillance or treatment[80].

In a cross-sectional survey of 86602 individuals, 53130 reported prior abdominal 
pain, acid reflux, heartburn, and regurgitation with 6.4 percent COVID positivity. 
Proton pump inhibitors (PPI) users were shown to be considerably more likely than 
non-users to report a positive COVID-19 test result, with a dose-dependent increase in 
the likelihood of a positive test result, and further studies are required to ascertain the 
link. PPI increase the risk of enteric infections due to PPI-induced hypochlorhydria. 
The usage of Histamine-2 receptor antagonist was not associated with an increase in 
risk[81].

GUT MICROBE AND COVID-19
The gut microbiota, which includes approximately 1014 resident bacteria, archaea, 
virus, and fungi, regulates not only the metabolism and host immunity but also the 
overall health. The gut and the lung microbiota seem to bi-directionally modulate each 
other and maintain a healthy gut-lung axis and is reported to be altered in COVID-19 
patients and other diseases[82]. Lung infections can also significantly change the 
composition of gut microbiota, a process collectively termed as “gut microbial 
dysbiosis.” Viral respiratory infections are also known to induce inappetence and 
significantly impact the gut microbiota[7]. Severe pulmonary SARS-CoV-2 infection is 
associated with a hyperactive immune reaction and “cytokine storm”. Inflammatory 
mediators cause significant lung cytopathy and hyper-permeability, leading to a viral 
transfer to the gut via circulation or some other unknown mechanisms. The inflam-
matory mediators also damage the intestinal barrier leading to the leakage of intestinal 
microorganisms and associated metabolites into the main bloodstream that may 
further the inflammation and GI symptoms.

Moreover, microorganism-associated molecular patterns and PAMPs are recognized 
by host immune mediators and evoke a strong detrimental immunological reaction in 
organs, including the lungs and intestine. This vicious cycle of chronic immune 
activation leads to tissue inflammation and damage. Giron et al[83], 2020 study the role 
of COVID-19-associated lung injury, systemic inflammation, and disruption of the 
gut's barrier functions, resulting in the enhanced vulnerability of microbial products
[83]. Thus, COVID-19 affects the gut lung axis and induces microbial dysbiosis.

There is a dearth of information regarding the direct vs the indirect effect of SARS-
CoV-2 on gut microbiota. Zuo et al[84], 2020 analyzed fecal microbiome from COVID-
19 patients using shotgun metagenomic sequencing technology and detected higher 
opportunistic pathogens (including, Clostridium hathewayi, Actinomyces viscosus, and 
Bacteriodes nordii) and a concomitant decrease in beneficial commensals (including, 
Faecalibacterium prausnitzii, Lachnospiraceae bacterium 5_1_63FAA, Eubacterium rectale, 
Ruminococcus obeum, and Dorea formicigenerans[84]. Interestingly all patients in this 
study cohort did not present GI symptoms. Data regarding the use of probiotics and 
nutritional intervention can further confirm the hypothesis that SARS-CoV-2 
associated disease severity may be dictated by the patient’s microbiota status. 
Probiotics are live microbes, when consumed, can provide gut health. Several studies 
have shown that the administration of probiotics in COVID patients can ameliorate 
gut dysbiosis and improve host immune response[85,86]. In the absence of specific 
data, further investigation regarding the particular role of probiotics and supplements, 
microbial type or nutritional component needs investigation in larger SARS-CoV-2 
infected patient cohorts[87].

Elderly people (> 60 years) are associated with severe symptoms and higher 
mortality rates. The link between aging and progressive alteration of detrimental gut 
microbiota is well worked out[88]. An increasing number of reports suggest that a 
strong relationship exists between the gut microbiome and SARS-CoV-2 infection 
severity. Therefore, the heightened risk of aged patients may be associated with 
microbial dysbiosis, leaky gut, inflammation, and a dysfunctional gut-lung axis in 
addition to pre-existing conditions. A major question that has not been addressed is 
why certain developed countries have significantly higher mortality rates as compared 
to some underdeveloped or developing nations. Amongst many possibilities, the role 
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of lung and gut microbiome and resulting interference with systemic immunity may 
also help explain the global disparities in COVID-19 associated disease severity and 
death[89]. To have a comprehensive idea investigation with a larger data set is 
warranted.

THERAPEUTICS OPTIONS FOR COVID-19
Though infection prevention, control strategies, and preventive treatment are the 
mainstay of the current management of COVID-19. Some glimmer of hope has arrived 
in the form of COVID-19 vaccines’ approval for emergency use by many nations, but 
currently, no safe and effective treatment exists. The possible list of emerging 
therapeutics for the treatment of COVID-19 is steadily expanding and evolving, and 
that too in a short period of time. The United States Food and Drug Administration 
(FDA) has approved emergency use authorizations (EUAs) for a few medications and 
therapies and several others are under clinical trials[90]. This review will concentrate 
on the strategies especially aimed at prophylactic and therapeutic modulating the host 
immune system. Pre-infection immunoprophylaxis depends on the immune activation 
of the host immune system before infection and disease initiation. At the same time, 
therapeutic intervention strategies are focused to repair the immune systems during 
the duration of the illness, post-infection. Several therapeutic targets including IFN-I, 
TNF, JAK/STAT, IL-1, IL-6, GMCSF, convalescent plasma, and complements, are 
under investigation. A comprehensive list of all prophylactic and therapeutic 
molecules undergoing clinical trials is available online (https://www.who.int/
ictrp/en/; clinicaltrials.gov).

Approved therapeutics for COVID-19
Several antiviral molecules are undergoing clinical trials, and Remdesevir has been 
approved by United States FDA for therapeutic management of COVID-19 patients
[91]. Remdesevir (Veklury), being a nucleoside analog, prevents viral replication by 
inhibiting the viral RNA-dependent RNA polymerase (RdRp) activity, shortened 
recovery time, and reduced mortality rates. Eli Lilly and Company has also received 
EUA for a combinatorial use of Baricitinib (Olumiant; an inhibitor of JAK kinase) with 
Remdesevir in patients requiring supplemental oxygen.

The antibody cocktail of Casirivimab and Imdevimab by Regeneron Pharma-
ceuticals, Inc. has also obtained the EUA by the United States FDA for the treatment of 
mild to moderate COVID-19. Casirivimab and Imdevimab are monoclonal antibodies 
against spike protein of SARS-CoV-2, are supposed to neutralize the viral entry. Eli 
Lilly COVID-19 neutralizing antibody bamlanivimab (LY-CoV555) is also directed 
against the spike protein and has received EUA for non-hospitalized adults. 
Convalescent plasma (CP) is a passive immune therapy approach, where COVID-19 
recovered patient can donate plasma rich in SARS-CoV-2-specific neutralizing 
antibodies to persons at high risk of contracting COVID-19[92]. United States FDA has 
provided a EUA for the use of CP as a treatment option for COVID-19 patients.

The potential vaccine can change the course of the COVID-19 pandemic. 
Researchers have used several technological vaccine development platforms, including 
nucleic acid-based (DNA and RNA), virus mimicking particle subunit vaccine, peptide 
vaccines, attenuated virus-based vaccines. mRNA vaccines developed by Pfizer-
BioNTech and Moderna have received EUA from the United States FDA, bringing a 
big sigh of relief. mRNA vaccines prompt the cell to express the viral spike protein, 
which elicits a strong immune reaction against the infecting SARS-CoV-2 virus. The 
Oxford-AstraZeneca's COVID-19 vaccine has also received authorization in many 
countries. The Oxford-AstraZeneca vaccine uses the gene for the coronavirus S protein 
(double-stranded DNA) packed in an adenovirus. Other vaccine producers like 
Johnson & Johnson/Janssen Pharmaceuticals and Gam-COVID-Vac (Sputnik V) 
developed by the Gamaleya Research Institute of Epidemiology and Microbiology are 
also effective and are being used for mass vaccination in many countries. Bharat 
Biotech and the Indian Council of Medical Research collaborated to create Covaxin 
(codenamed BBV152), an inactivated virus-based COVID-19 vaccine. CoronaVac 
(inactivated vaccine) is produced by Sinovac is also used to vaccinate to fight against 
COVID-19. The new evolving strains with mutations in the S protein create a 
possibility of decreased susceptibility to monoclonal antibodies, vaccines and 
therapeutic agents. Scientists are investigating these mutations to help explain how 
quickly they can be spread and if vaccines will be effective.

https://www.who.int/ictrp/en/
https://www.who.int/ictrp/en/
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Under trial therapeutics for COVID-19
Several strategies to target the uncontrolled host immune system have been attempted 
and are currently in clinical trials (clinicaltrials.gov). TNF-α, a proinflammatory 
cytokine, exhibits a positive correlation with advances in disease stages. Preliminary 
clinical data suggest the effectiveness of anti-TNF-α in reducing the cytokine storm as 
well as tissue inflammation. TNF-α-blockers, both small molecule and antibodies 
(Adalimumab and Otilimab), are currently under trial[93]. Patients with IBD with 
COVID respond better to anti-TNF-α blockers than alternative agents[94]. Dysreg-
ulated early IFN-I response may eventually lead to COVID complications, and an early 
IFN-Iα/β treatment with broad antiviral response can ameliorate disease progression
[95]. IL-6 is associated with 'cytokine storm', and inhibition of IL-6 using a monoclonal 
antibody (Tocilizumab, Sarilumab) is under clinical trial and can be a potential 
treatment option. Initial clinical studies in China and a case study in France suggested 
a rapid favorable outcome on the therapeutic value of the anti-IL-6 receptor antibody
[96]. More investigation is warranted as IL-6 is also reported to prevent enterocyte cell 
death after injury and help proliferation and repair[97]. Sanofi’s KEVZARA Phase III 
trial investigating the efficacy of an anti-IL-6 receptor antibody in severe and critically 
ill patients did not yield promising results. Hence, further investigation is warranted 
to understand better the therapeutic advantage of inhibiting IL-6 signaling in COVID 
patients. Other than current therapeutics, patients suffering from systemic inflam-
mation and IBD and associated diarrhea may benefit from the potential use of pro and 
pre-biotics[91,98].

CONCLUSION
SARS-CoV-2 has spread exponentially as a pandemic throughout the world. Scientists 
and researchers all over the world are working tirelessly to develop potential 
coronavirus treatment options. The United States FDA has recently granted EAU for 
several therapeutic modalities for targeting COVID-19. Pfizer and Moderna are 
producing United States FDA approved vaccines in millions of doses for the prophy-
lactic use in COVID-19 patients. In this review, we have attempted to describe the link 
between COVID-19 associated GI infection, immune responses, and disease outcomes. 
SARS-CoV-2 primarily causes severe respiratory symptoms but also affects the GI 
system in many patients. The role of SARS-CoV-2 in gut infection, route of infection, 
relation with disease severity, localized vs systemic immune reaction, altered 
microbiota, dysbiosis, and the mechanism underlying pre-existing conditions and 
therapy. Many queries remain unexplored, especially in the context of GI infection, 
and need further investigation. The bidirectional gut-lung axis has been implicated in 
the homeostasis of the immune system. GI inflammation and dysbiosis may contribute 
to systemic inflammation and affect lung and other organs' health, and may be 
associated with severe COVID consequences. The vice versa may also be confirmed 
and the underlying mechanism that pathologically upsets the gut-lung communic-
ations during COVID-19 infection is not clearly understood. The role of probiotics in 
enhancing the immune system and the attenuation of dysbiosis may be a promising 
approach for reducing the GI-symptoms and preventing the COVID-19 severity. The 
emergence of new strains like B.1.207, B.1.351, B.1.1.7, B.1.617.1, B.1.617.2, and 
B.1.617.3 can impact GI significantly and therefore strain surveillance is important and 
its role in gut infection also needs to be studied. Hence the use of bioinformatics, 
mutational analysis, structural modeling to better understand the spike-ACE2 
interaction, and the use of organoid and non-human primate models to study the viral 
infection process and therapeutic screening are key in the fight against COVID-19.
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