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In recent years, advances in sequencing have enabled the mapping of DNA 

methylation variation across many different populations of human cell types and the 

identification of candidate DNA methylation biomarkers for clinical applications.  The 

clinical development of DNA methylation biomarkers has been limited, however, due to 

the high cost and the lack of flexibility in using the current experimental and 

bioinformatics tools.   



 

 

xxi 

We made improvements to the design of bisulfite padlock probes (BSPP) to 

greatly increase efficiency and throughput for targeted DNA methylation quantification. 

The cost effectiveness and scalability of this approach was demonstrated on hundreds 

of samples using a set of 330,000 probes.  We also developed a bioinformatics pipeline 

that performs SNP calling on bisulfite data and DNA methylation quantitation with 

reduced errors from various different assay types. 

Despite many available bioinformatics tools for differential DNA methylation 

analysis, there is a need for a more general computational tool to characterize DNA 

methylation variability on reference data.  Therefore, we developed a new differential 

methylation identification method and variability score to quantify DNA methylation 

variation across multiple groups of samples. For simulated 5X average depth of 

coverage datasets, cgDMR-miner, identified 42% of simulated DMRs with 73% precision 

while the next best approach identified 23% of simulated DMRs with 96% precision.  

Thus cgDMR-miner can identify potential targets from a shallow, low accuracy initial 

screen that can later be validated with a deeper screen using a targeted assay. 

Lastly, the coordinated methylation of nearby CpG sites was investigated in order 

to identify more robust biomarkers for cancer. Starting with a set of identified 147,888 

regions of tightly coupled CpG methylation or methylation haplotype blocks (MHBs), the 

linked status of CpGs within these regions were found useful for biomarker identification 

in human tissue samples and human cell free DNA.  
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Chapter 1: Introduction
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 Human epigenomes contain a plethora of chemical compounds that mark DNA 

and proteins which attach to DNA to orchestrate regulation of genes expression and 

cellular activities.  Most importantly, they enable diversity of cells and tissue types in 

multicellular organisms.  Epigenetic phenomena are plastic and often susceptible to the 

environmental and behavioral influences1–3.  In early mammalian development, 

epigenetic marks are erased and then reestablished after fertilization and also in the 

development of primordial germ cells.  Transgenerational epigenetic inheritance has only 

been shown for a few cases with the strongest evidence found in plants and some 

animal species4.  While initiation of epigenetic phenomena are established by epigenetic 

‘writers’, inheritance between cell divisions may be carried out by alternative 

mechanisms which are thought to be guided by cell memory5.  Thus, identification of 

differential patterns in the epigenome could generate a biomolecular roadmap to disease 

pathogenesis.  

 Two well-studied epigenetic phenomena are histone modification and DNA 

methylation.  Histones are proteins that comprise the basic units of nucleosomes. These 

nucleosomes are then utilized in the packaging of DNA within the nucleus.  The post-

translational modification of histones such as methylation and acetylation, can influence 

the 3-D structure of the nucleus and modulate gene expression patterns.  DNA 

methylation is a stable and reversible epigenetic mark that occurs on the fifth carbon of 

cytosines and chemically named “5-methylcytosine” (5mC).  It can be reversed passively 

over mitotic divisions or reversed actively via enzymatic processing and oxidation.  Many 

important biological processes are characterized by DNA methylation, such as X-

chromosome inactivation in females, transcriptional repression of transposons, genomic 

imprinting, and alleles specific silencing of genes in different tissues6,7.  Oxidized 

derivatives of 5mC, 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC) and 5-
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carboxylcytosine (5caC), may also carry out important functions in embryonic 

development and notably have been linked with cancer development8–11. 

 In this work, we focus on developing experimental techniques for profiling DNA 

methylation and novel bioinformatics approaches in the quantification of DNA 

methylation differences with applications towards biomarkers development.  Also, we 

focus on methods that are compatible with next-generation sequencing (NGS) and 

capable of absolute measurements.  In the next section, we describe DNA methylation in 

human epigenomes.  The following sections give an overview of the conventional single 

base resolution quantification methods used in the study of 5mC and 5hmC.  The final 

section will give an overview to differential DNA methylation analysis from next-

generation sequencing datasets. 

DNA methylation in human epigenomes  

 DNA methylation in human cells is generally at CpG dinucleotides.  Human 

genomes are highly methylated throughout with pockets of high density CpG regions 

known as CpG islands that are mostly unmethylated.  While nearly absence in almost all 

somatic cell types, non-CpG methylation patterns have been associated with brain 

development, pluripotency, and diseases such as Rett syndrome and diabetes12.  In this 

work, we focus on DNA methylation at CpG sites only, owing to the limited 

understanding of non-CpG methylation in human currently.  Methylated CpGs are able to 

mutate to TpG or CpA through deamination of the methylated cytosine, so the existence 

of high density CpG regions or CpG islands are indicative of some selection pressure in 

human genomes to maintain these regions and may explain the lack of methylation in 

these regions.  Dynamic DNA methylation is often observed at promoters with low CpG 

density sequences which means that other promoters with high CpG density sequences 

tend be regulated via alternative epigenetic mechanisms13.  It also shown that in normal 
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development, cells may switch between DNA methylation and alternative mechanisms 

for regulating genes expression13.  

 DNA methylation writers include the DNA methyltransferases: DNMT1, DNMT3A, 

and DNMT3B. DNMT1 ensures that 5mC is stably maintained through mitotic divisions 

while DNMT3A/B generates de novo 5mC marks. The enzymes that catalyze the 

reactions leading to de-methylation belong to the ten-eleven-translocation (TET) protein 

family and include TET1, TET2, and TET314. These proteins catalyze the oxidation of 

5mC to 5-hydroxymethylcytosines (5hmC). Further sequential oxidations lead to 5-

formylcytosine (5fC) and then 5-carboxylcytosine (5caC). Human thymine DNA 

glycosylase (TDG) can excise 5fC and 5caC to generate an abasic site that goes on to 

activate the base excision repair pathways, resulting in an unmodified cytosine15,16. TET 

protein mediated 5mC turnover is a significant phenomenon that occurs both during 

embryogenesis and the formation of primordial germ cells17.  The intermediates of de-

methylation, 5hmC, 5fC and 5caC, are sometimes stably maintained and perform 

biological functions such as epigenetic priming and modulating transcriptional timing18–25. 

 DNA methylation could inform clinical prognosis of patients and their response to 

drugs, including methylation inhibiting drugs, over time26–28.  Additionally, minimally 

invasive testing could be performed on circulating cell free DNA from cancer patients29–

31.  Further developments of DNA methylation quantification technologies and 

bioinformatics, however, are needed to enable clinical tools utilizing DNA methylation as 

biomarkers. 

Conventional DNA methylation quantification approaches 

 The most widely used method for mapping DNA methylation at a single base pair 

resolution involves sequencing DNA after a chemical conversion of unmethylated 

cytosines to uracils known as bisulfite sequencing (BS-seq).  The sequencing readouts 
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will show thymidines (T) at cytosine positions which were unmethylated due to uracils-

adenine pairing during polymerase chain reaction (PCR).  Recent discoveries of 

quantifiable amounts of 5hmC in various mammalian cells (up to 1% of cytosines), 

especially in embryonic and brain tissues, have also led to a recognition that 5hmC is 

resistant to deamination like 5mC in bisulfite treatment32.  Nonetheless, as 5hmC levels 

are typically low in most tissues types, BS-seq is still widely used for DNA methylation 

profiling.  Another popular methodology for genome-wide mapping 5mC is reduced 

representation bisulfite sequencing (RRBS)33.  While WGBS is considered the most 

comprehensive method for DNA methylation mapping, it is currently unsustainable for 

studies with large sample sizes because of the high sequencing cost.  In bulk library 

preparations using these approaches, an average measurement across a population of 

cells is taken and therefore noisy sampling and bias from various technical aspects of 

library preparation all can introduce errors in methylation quantification.  Thus, whole 

genome methylation quantification typically requires higher sampling or higher depth of 

coverage than whole genome sequencing (typically 30X versus 3X).  RRBS, though 

more cost-effective, leaves many important locus such as enhancers within low-CpG 

density regions uncharacterized34.  While both WGBS and RRBS are good candidates 

for biomarkers discovery, due to high cost of WBGS and inflexibility of RRBS, they have 

limited use for clinical applications and biomarker development.  

Conventional DNA hydroxymethylation quantification approaches  

 Quantification of 5-hydroxymethylcytosines has been largely performed using 

non-targeted enrichment approaches or in combination with arrays because the levels of 

5hmC are estimated to be less than 1% of total cytosine in human and mouse cells16.  

Non-targeted enrichment methods utilizes either specific antibodies, 5hmC sensitive 

restriction enzymes, or chemical labelling to enrich for 5hmC carrying DNA fragments35.  
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Whole genome methods to quantify 5hmC have been developed utilizing enzymatic or 

chemical treatments in addition to bisulfite conversion.  The first of these methods is Tet-

assisted bisulfite sequencing (TAB-seq)36 which provides absolute quantification of 

5hmC.  The second method capable of 5hmC quantification at single base resolution is 

oxidative bisulfite sequencing (oxBS-seq)37.  Sequencing readouts for oxBS-seq will 

generate cytosines at 5mC positions and thymidines at non-5mC positions.  Subtraction 

of oxBS-seq (5mC only) profiles from BS-seq (5mC+5hmC) profiles results in 5hmC only 

profiles38.  The DNA shearing step in both TAB-seq and oxBS-seq can be replaced with 

MspI digestion, which results in reduced representation libraries35,39.  The final library 

from both TAB-seq and oxBS-seq can also be applied to Infinium arrays, which can 

provide base resolution quantification of targeted CpG sites8,10,40,41. 

Differential DNA methylation analysis 

 Differential DNA methylation analysis is performed on two or more bulk samples 

and can be challenging due to sampling noise and various technical artifacts from the 

experiments.  A bulk sample is a sample with genomic content from a population of cells.  

In this work, we are mainly focused on absolute DNA methylation quantification, which is 

the estimated number of methylated cytosines at a single CpG position for a population 

of cells.  Assuming only sample noise as the source of error, differential methylation 

analysis can be done with the Fisher’s exact test (FET) for two bulk samples42,43.  When 

biological variations or more than one sample is available from each group, the beta-

binomial model is more commonly used [DSS44, MOABS45, RADMeth46, MethylSig47].  In 

the beta-binomial framework, the observed methylation counts are binomial distributed 

while the methylation proportions are varied according to a beta distribution.  Alternative 

methods utilizes the binomial distribution within a logistic regression framework 

[MethylKit48], root mean square test [MethylPy49], local likelihood estimation and T-test 
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[Bsmooth50], Wilcoxon or Krushal-Wallis paired non-parametric tests [MethylPipe51], 

wavelet-based functional mixed models [WFMM52], and full Bayesian partition model 

[MethyBayes53].  These methods have various tradeoffs between the ability to test 

different experimental settings, ability to determine regions and ability to account for 

covariates.  

 



 

 

8 

Chapter 2: Library-free bisulfite padlock probes 
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Introduction 

 In 2009, Deng et al developed bisulfite padlock probes (BSPP) to assay DNA 

methylation at targeted regions reliably in dozens of human samples54.  The unique 

advantages of BSPP over conventional methods are that every locus can be potentially 

captured by padlock probes, and that the assay can be performed on small or large 

genome-wide target sets.  

The design of padlock probes consists of a common linker sequence that 

connects two capture arms that can hybridize to two neighboring genomic regions. The 

probes anneal to genomic regions that have been chemically modified by bisulfite. The 

first capture arm from the 3’ end anneals in the forward direction, and the linker 

sequence, which is non-complementary, provides space to “invert” and allows the 

second capture arm to anneal in the reverse direction to a region upstream of the first 

capture arm. The gap in between the two arms are “captured” by extension of with 

thermostable polymerase from 5’ of the second capture arm to the 3’ end of the first, 

without displacing or degrading it. Thus, the polymerase used in this reaction must not 

have strand displacement or 5’ exonuclease activity. After extension, a thermostable 

ligase is used to anneal the extension end to the 3’ end of the probe, creating a circular 

DNA product. The circular DNA product is then amplified using PCR primers that anneal 

to the common linker sequence.  

 The primary challenge in bisulfite padlock probe capture is off-target annealing. 

However, this is dealt with experimentally and computationally. Bisulfite converted 

sequences have very few cytosines so the annealing arms cannot have G’s. Low CG 

content leads to low melting temperatures of DNA sequences.  Annealing arms are then 

made 25-30 bp long to obtain melting temperatures above 60 degrees centigrade.  



10 

 

 

 

Additionally, polymerase extension requires exact matching near the 5’ end of the probe 

and near the 3’ end of the probe for ligation.  Computationally, the two arms can be 

designed to not perfectly anneal elsewhere, although this still leaves the possibility for 

partial annealing of either arms to off-target regions. Off-target annealing of individual 

capture arms may not be captured because of polymerase inability to extend or ligase 

inability to create circular products, but may still cause probes to be inefficient. The 

second challenge in bisulfite probe design is avoiding variations such as polymorphisms 

and CG sites that may be methylated. If CG sites within capture arms cannot be 

avoided, then multiple versions of the probe should be made to allow annealing to both 

methylated and unmethylated sites.  

 BSPP capture is a flexible, high-throughput and low cost method that can be 

applied towards both discovery and validation of biomarkers. Additional technological 

improvements to reduce the time and cost of sample preparation, data quality, and 

comprehensive data interpretation in the form of a bioinformatics pipeline to analyze 

DNA methylation data at many scales would facilitate the use of DNA methylation 

biomarkers in the clinics.  Some of these improvements have contributed to a number of 

recent studies on mouse and human cells 42,43,55–58. 

 In this chapter, we report the technical details of an improved second-generation 

bisulfite padlock probe (BSPP) capture method for targeted DNA methylation analysis.  

Specifically, we developed a new library-free protocol that dramatically reduces the time 

and cost of sample preparation and is compatible with automation, and a bioinformatics 

pipeline calls BisReadMapper that accurately and efficiently obtains both methylation 

levels and SNP genotypes from targeted or whole genome bisulfite sequencing data.  

Results 
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Development of BS-seq bioinformatics pipeline 

 A bottleneck in bisulfite sequencing is a lack of computational tools to efficiently 

analyze sequencing data generated from hundreds of samples.  To overcome this issue, 

we developed a bisulfite sequence analysis pipeline for bisulfite read mapping and DNA 

methylation quantification called BisReadMapper (Figure 2-1).  BisReadMapper 

determines the origin strand of the read based on base composition and maps reads as 

if they were fully bisulfite-converted to a fully bisulfite-converted genome sequence, 

allowing mapping of both bi-directional and uni-directional bisulfite libraries in an 

unbiased manner.  Another new feature is the capability to call single nucleotide 

polymorphisms from bisulfite sequencing data; this feature not only allows for the added 

analysis of allele-specific methylation59, but also allows samples to be easily tracked in 

large-scale experiments.  
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Figure 2-1. Flowchart for bisulfite reads analysis pipeline, BisReadMapper v1.4 
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 Finally, BisReadMapper applies adaptor trimming and reads trimming rules that 

are specific to library types, either whole genome, reduced representation, or bisulfite 

padlock capture libraries.  Post-alignment, BisReadMapper also performs clipping of 

overlapping pair-end reads.  Clipping overlapping pair-ends and trimming are important 

for accurate quantification of methylation calls from current NGS technologies.  

BisReadMapper was written in Perl and runs on any Unix-based operating system. It can 

process 1 Gb of bisulfite-converted single-end or paired-end raw sequencing reads in 

less than one hour on a computational node with 4 CPU cores. The run time grows 

linearly as the amount of raw sequencing data increases to the typical data size of whole 

genome bisulfite sequencing experiments (~70 – 150 Gb). 

 Currently, the aligners that can be used with BisReadMapper are bowtie260 and 

BWA mem61. When the relative performances for each aligner on real data are 

compared, we found that the actual competitive advantage of each mapper depends on 

read length, sequencing quality, and data sizes. By utilizing the prior knowledge that 

read 1 are always from the reverse complementary orientation and read 2 are always 

from the forward orientation, we can count the number of times each mapper assigns the 

wrong orientation to each read. This provides a lower bound rough estimate of mapping 

error, which appears to be negligible, but shows the relative accuracies between aligners 

(Table 2-1).  BisReadMapper can also call variants with high confident at known variant 

positions.  When we used BisReadMapper to call variants on BSPP experiment data, we 

obtained 95-98% agreement with calls made by the Illumina 1M Duo bead chip (Data not 

shown). 
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Table 2-1. Performance comparison of different aligners 

Aligner 

Mapping 

rate (%) Time (min) 

Max mem. 

usage (GB) 

Incorrect 

mappings 

CPU 

threads Dataset1 

Bowtie2 93.9 52 6.1 161 8 A 

 73.4 30 6.1 261 8 B 

BWA mem 92.5 50 7.8 59 8 A 

 71.7 43 7.8 5 8 B 
1Dataset A is 3.3M quality trimmed PE 124bp reads. Dataset B is 1.6M quality 

trimmed PE 150bp reads. 

 

Development of library-free BSPP  

 Key requirements for methylation analysis of large sample sizes include low cost, 

simple workflow and automation compatibility. As the cost of DNA sequencing has 

rapidly decreased, sample processing has become a bottleneck in terms of cost and 

throughput. A complicated workflow increases variability between samples and reduces 

power in large-scale studies. To address these issues, we extended a 'library-free' 

protocol62 to multiplexed BSPP capture (Figure 2-2). This method eliminates five steps 

from Illumina's library-construction protocol such that multiplexed libraries can be 

generated from DNA in only four steps (Table 2-2). Using multiplexed primers with 6–

base pair (bp) barcodes, we have routinely generated libraries for 96 samples in 96-well 

plates and sequenced all at once in a single Illumina HiSeq flowcell.  Additionally we 

designed barcodes to process 384 samples per batch.  As sample-specific barcodes 

were added, barcoded libraries can be pooled for size selection, which is the most time 

consuming, contamination-prone and error-prone step if performed individually.  The 

protocol is compatible with the use of multichannel pipettes or liquid-handling devices.  It 

dramatically reduced experimental cost and time, and improved reproducibility and read 

mapping rates.  For large sample sizes, the library preparation cost (including probes) 

with our protocol was comparable to that of the reduced-representation bisulfite 
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sequencing and whole-genome bisulfite sequencing protocols, and the sequencing cost 

was much lower than that of whole-genome bisulfite sequencing owing to targeting of 

CpG sites of interest. Reduced-representation bisulfite sequencing is more cost-effective 

than BSPPs, but the former lacks BSPPs' flexibility in selecting specific sites or regions. 

 

 

Figure 2-2. Schematic of capture experiment 

Schematic of library-free BSPP protocol.  Each padlock probe had a common linker sequence 

flanked by two target-specific capturing arms (red) that annealed to bisulfite converted genomic 

DNA (black), and the 3’ end was extended and ligated with the 5’ end to form circularized DNA. 

After removal of linear DNA by exonucleases, all circularized captured targets were PCR-

amplified with barcoded primers. These amplicons can be directly sequenced with an Illumina 

sequencing platform (GA II(x) or HiSeq). Amplicon size is 363 bp, which includes captured target 

(180 bp), capturing arms (55 bp), and amplification primers and adapters (128 bp). The inserts 

can be read through with paired-end 120 bp sequencing reads.  
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Table 2-2. Comparison of bisulfite sequencing methods 

 Published 
BSPP  

N2-adapter 
BSPP 

Library-free 
BSPP 

RRBS WGBS 

Enzymatic reactions 10 6 3 4 3 

Purification 6 4 1 3 3 

Size-selection 2 1 11 1 1 

Cost per sample $71.151 $58.232 $37.862 $28.15 $31.10 

Mapping rate 44% 80% 87% 27%3 N.D. 

Genome coverage obtained at 10x 
depth 

<0.1% 
 

0.6%-1% 
 

0.6%-1% 
 

~1%3 76-96%4 

Sequencing (Gbps) 0.5 3.2 4.0 1.4 70.0 

Sequencing cost per sample5 $24.38 $156.00 $195.00 $68.25 $3412.50 
1BSPP protocol size selection is typically performed on 48-96 pooled libraries. 2 Includes the cost 

of ordering 400K synthesized probes from LC Sciences and reagents for preparing probes, 

bisulfite conversion, capture, and sequencing library preparation. Estimates assume that 10K 

samples will be processed. 3 Estimated from: Gu et. al., Nat Methods 2010; 7(2):133-136.4 

Adapted from: Beck et. al., Nat Biotechnol 2010;28:1026-1028. 5 Assumes sequencing using an 

Illumina HiSeq to generate 300 Gbps of sequencing data, with cost of $4920 for a flowcell, $6815 

for sequencing reagents, and $2890 for service fee. ($48.75 per Gbps) 

Design and development of DMR220K probe set 

 To test our assay, we generated a genome-scale probe set based on our 

previous results and new information about differential methylation54,63–65.  We targeted 

our new design for evaluation of methylation at genomic locations known to contain 

differentially methylated regions or differentially methylated sites63–66, transcriptional 

repressor CTCF binding sites and DNase I–hypersensitive regions. We also targeted all 

microRNA genes and all promoters for human US National Center for Biotechnology 

Information reference sequence (RefSeq) genes. Using ppDesigner [http://genome-

tech.ucsd.edu/public/Gen2_BSPP], we designed ~330,000 padlock probes that covered 

140,749 non-overlapping regions with a total size of 34 megabases.  We performed 

capturing experiments and end-sequencing, and found that these probes were slightly 

more specific (~96% on-target) and uniform than previous probes (Figure 2-3). To 

improve uniformity, we normalized the experimental capturing performance of these 

probes using subsetting and suppressor oligonucleotides as described previously54.  We 
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could characterize roughly 500,000 CpG sites with ~4 gigabases of sequencing reads, 

and additional sites became callable with deeper sequencing. 

 

Figure 2-3. Comparison of probe capture efficiencies between the DMR220K, LC4K probe sets 
and the previously published CGI30K set.  

The first three plots (CGI30k BSPP, DMR220k BSPP, LC4K) were generated from data without 

subsetting or suppressor oligos to allow for a direct comparison of probe design.  

 We used these probes to analyze H1 embryonic stem cells (H1 ESCs), PGP1 

fibroblasts and two technical replicates of PGP1 fibroblast–derived induced pluripotent 

stem cells (PGP1-iPSCs). For each sample, we sequenced on average ~3.66 gigabases 

and measured methylation for an average of 480,904 CpG sites. To assess whether 

these data could be used to identify potential epigenetic regulation of transcription, we 

used the genomic regions enrichment of annotations tool67 to predict the cis-regulatory 

potential of regions around captured CpG sites. In total, the padlock probes captured 

CpG sites in regions predicted to regulate 98% of RefSeq genes (Figure 2-4). 

 

Figure 2-4. Distribution of CpGs captured wrt nearby genes 
Captured CpG sites were tested for potential regulatory interactions with genes by GREAT 

(http://great.stanford.edu). (A) Most CpG sites were interacting with 1-2 genes. (B) Distance of 

CpG sites to the transcriptional start sites (TSS) of the predicted regulating genes. 
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 The data generated with BSPPs accurately represented the methylation status of 

the target regions. Methylation levels for the two technical replicates of PGP1-iPSCs 

were consistent both within a single batch and between separate batches (Pearson's 

correlation coefficient R = 0.97–0.98). Additionally, when we compared methylation 

levels between technical replicates, no CpG site was different by a Fisher Exact Test 

with Benjamini-Hochberg multiple testing correction (false discovery rate = 0.01, n = 

439,090). In comparison, large fractions of sites were differentially methylated owing to 

either the process of nuclear reprogramming (27.9% DMSs between PGP1-iPSCs and 

PGP1 fibroblasts) or the difference in cell type (31.3% DMSs between PGP1 fibroblasts 

and H1 ESCs) with the same criteria (false discovery rate = 0.01, n = 444,111 and 

359,290, respectively). Our BSPP results with H1 ESCs were consistent with the 

published whole-genome sequencing of bisulfite-converted DNA65 and published 

Infinium HM450K data68 (Figure 2-5). 

 

Figure 2-5. Comparison of BSPP with WGBS and Infinium HM450K 

Comparison between BSPP and whole genome bisulfite sequencing (WGBS) and with Infinium 

HM450K (Ilmn). We compared H1 ESC datasets which are from different cultures from different 

labs using sites with at least 10x read depth in each. 
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 Our assay has very low technical variability. We performed the assay on over 

150 samples in 96-well plates; the yield for each was similar (Figure 2-6). Approximately 

10% of CpG sites were targeted separately on each strand, allowing low-quality datasets 

with poor correlation between these built-in technical replicates to be identified.  As our 

BSPP assay measures absolute methylation, no normalization is necessary as long as 

the internal replicates are consistent. Therefore, many datasets, even those generated in 

different laboratories, can be directly compared without batch effects, which is important 

for case-control studies on large samples or for meta-analyses. Additionally, the SNP-

calling feature of BisReadMapper allowed us to characterize roughly 20,000 SNPs for 

each sample with an accuracy of 96% or better. This allowed us to unambiguously track 

samples, which is crucial for projects involving large sample sizes. 

 

Figure 2-6. Distribution of sequencing effort per sample 

Variation in amount of sequencing data obtained per sample in a multiplex BSPP capture 

experiment.  48 whole blood samples were captured and sequenced in one batch using the 

library-free BSPP method. There is little variation between samples in the amount of generated 

sequencing data. 
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Our library-free BSPP method is flexible for different study designs (Table 2-3). 

Whereas our genome-scale probe set allows global profiling on thousands of samples, a 

focused assay is often necessary to follow up on tens to hundreds of candidate regions 

identified in genome-scale scanning. Such an assay needs to be customizable to 

different genomic targets, scalable to a very large sample size (1,000–100,000 

samples), and inexpensive.  

Table 2-3. Representative cost per sample 

Expected number of samples to be processed 
Probe set sizes 

4,000 40,000 400,000 

Library-free protocol 

10 $134.57 $872.04  $9,298.78  

100 $35.57  $129.54  $1,131.28  

1000 $25.67  $55.29  $314.53  

10000 $24.68  $47.86  $232.86  

 

To additionally test the flexibility, we designed a second set of 3,918 probes to 

evaluate the methylation state 1 kbp upstream and downstream of 120 genomic regions 

previously known and confirmed by BSPP to carry aberrant methylation in induced 

pluripotent stem cells15. We acquired the oligonucleotides from a second vendor (LC 

Sciences). Even with shorter capturing sequences (40 bp total for capturing arms rather 

than 50 bp on average, Figure 2-7a-b) and a 100-fold smaller target size, an average of 

56% of mappable bases were on-target, equivalent to an enrichment factor of ~6,500. 

With the data from three cell lines (H1 ESCs, PGP1 fibroblasts and PGP1-iPSCs) we 

identified regions of aberrant methylation in induced pluripotent stem cells and 

demonstrated that aberrant methylation continues further upstream and downstream 

than observed previously. This analysis demonstrated that a focused probe set can be 
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used to validate specific regions of interest identified in global scanning using either our 

genome-wide probe set or other methods. 

 
Figure 2-7. Schematic for padlock probes 

 

Genomic coverage of BSPP compared with RRBS 

 In Table 2-2, we estimated that the cost per sample of generating sequencing 

libraries using the RRBS and BSPP protocols are very similar, with RRBS being slightly 

less ($28 versus $38).  To identify areas where each protocol is advantageous over the 

other, we applied RRBS and BSPP to ten primary human bone marrow samples and 

performed an average of 2.3 Gbp and 2.4 Gbp of sequencing per sample for BSPP and 

RRBS libraries respectively.  We used a cutoff of 5X depth of coverage to identify CpGs 

with coverage across all ten samples. For RRBS and BSPP, we obtained a total of 

924,381 and 246,278 CpG sites respectively.  Since it is able to cover 3.75 times as 

many CpG sites as BSPP, the cost per CpG coverage is much better for RRBS.  We 

also found very little overlap between the two assays, only 30,493 CpG sites or 12.4% 

and 3.3% of BSPP and RRBS CpG sites were overlapping between the two protocols.  

Even though BSPP have less CpG coverage, we were able to identified ~600 

differentially methylated CpG sites specific to human induced pluripotent stem cells42 

which were generally not covered (only 1 CpG was covered) and therefore not 

discovered by another study that applied the RRBS protocol to identify differentially 

methylated region specific to human induced pluripotent stem cells69.  When compared 
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side by side, the CpG sites from BSPP is more enriched for functional genomic elements 

than RRBS (Figure 2-8). 

 

Figure 2-8. Functional genomic region enrichment analysis of captured CpG sites 
Enrichment factor is computed for annotated genomic region sets. DHS denotes DnaseI 

hypersensitive regions identified by ENCODE. TFBS denotes transcription factor binding sites 

identified by ENCODE. CGI shores are CpG island shores. CGI are CpG islands.  

Unique molecular identifiers 

 Appending a unique molecular identifier (UMI) randomly to padlock probes during 

oligonucleotide synthesis is a strategy that allows for identification of clonal reads by 

matching UMIs (Figure 2-7c). We performed capture using probes that have been 

synthesized with ten random bases and quantified the methylation levels for each 

sample separately for Watson and Crick strands. We found significant improvement in 

the correlation between the strands when clonal reads were removed with the help of 

UMIs (n=8, p < 8.1473E-06, Student’s T-Test). With the combinatorial possibilities of ten 

random bases, we can sample up to 100,000 cells with less than 0.005 probability that 

two or more different molecules will collide with the same identifier.  Absolute counts 

also enabled us to estimate the true capture efficiencies of individual padlock probes 

(Table 2-4). 
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Table 2-4. Absolute capture efficiencies 

# Molecules captured % Capable probes 

At least 1 from 60 molecules 4% 

At least 1 from 600 molecules 39% 

At least 1 from 5000 molecules 95% 

 

Application to hydroxymethylation quantification 

 We performed 5hmC capture with our DMR220K padlock probes in H1 human 

embryonic stem cells to demonstrate the utility of padlock probes to capture Tet-assisted 

bisulfite converted DNA.  Furthermore, we prepared oxBS-seq libraries from OVCAR3 

cell line genomic DNA and successfully performed capture with a modified capture 

protocol (increased probes to target ratio to 1000:1) using a 80-bp gapsize probeset with 

~ 12K padlock probes.  While the DMR220K probes were not optimally designed for 

5hmC quantification, we were still able to get nearly 4 times the number of 5hmC per 

gigabase pair sequenced (Gbps) compared with TAB-seq. 

Conclusion 

 In summary, the second-generation BSPP method is scalable, cost effective, and 

provides absolute quantification of CpG and non-CpG methylation across a large 

number of highly informative genomic regions. It can be applied to methylation studies 

on population cohorts with sample sizes up to thousands, and greatly aids in identifying 

the effects of DNA methylation on human diseases.  We also developed a bioinformatics 

pipeline that can minimize many possible sources of errors in analysis, such as reads 

trimming to remove sequencing bias, adaptor trimming to remove erroneous methylation 

calls, high specificity reads alignment approach, and samples identification with SNP 
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calling. Together these two tools can further advance DNA methylation biomarker 

development.  

Methods 

Bisulfite padlock probe production (Oligonucleotides from Agilent)  

 Libraries of oligonucleotides (~150 nt) were synthesized by ink-jet printing on 

programmable microarrays (Agilent Technologies) and released to form a combined 

library of 330,000 oligonucleotides. The oligonucleotides were amplified by PCR in 96 

reactions (100 µl each) with 0.02 nM template oligonucleotide, 400 nM each of 

pAP1V61U primer and AP2V6 primer (Supplementary Table 2), and 50 μL of KAPA 

SYBG fast Universal 2x qPCR Master Mix (Kapabiosystems) at 95 ºC for 30 s, 15-16 

cycles of 95 ºC for 3 s; 55 ºC for 30 s; and 60 ºC for 20 s, and 60 ºC for 2 min. The 

amplified amplicons were purified by ethanol precipitation and re-purified with Qiaquick 

PCR purification columns (Qiagen). Approximately 20 ug of the purified amplicons were 

digested with 50 units of Lambda Exonuclease (5 U/μL; New England Biolabs (NEB)) at 

37 ºC for 1 h in lambda exonuclease reaction buffer.  

 The resulting single-strand amplicons were purified with Qiaquick PCR 

purification column. Approximately 5-8 μg of single strand amplicons were subsequently 

digested with 5 units USER (1 U/μl, NEB) at 37 ºC for 1 h. The digested DNAs were 

annealed to 5.88 μM RE-DpnII-V6 guide oligo (Supplementary Table 2) and denatured 

at 94 ºC for 2 min decreased the temperature to 37 ºC and incubated at 37 ºC for 3 min. 

The mixture was digested with 50 units DpnII (10U/μl, NEB) in NEBuffer DpnII at 37 ºC 

for 2 h. Then the mixture was further digested with 5 units USER at 37 ºC for 2 h 

followed by enzyme inactivation at 75 ºC for 20 min. The USER/DpnII digested DNAs 
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were purified with Qiaquick PCR purification column. The single-strand 102 nucleotide 

probes were purified with 6% denaturing PAGE (6% TB-urea 2D gel; Invitrogen).  

Bisulfite padlock probe production (Oligonucleotides from LC Sciences) 

 The oligonucleotides (100nt) were synthesized using a programmable 

microfluidic microarray platform (LC Sciences) and released to form a mix of 4,000 

oligonucleotides. The oligonucleotides were amplified by two-step PCR in a 200 μL 

reaction with 1nM template oligonucleotides, 400 nM each of eMIP_CA1_F primer and 

eMIP_CA1_R primer (Appendix, Table A-1), and 100 μL of KAPA SYBR fast Universal 

qPCR Master Mix at 95 ºC for 30 s, 5 cycles of 95 ºC for 5 s; 52 ºC for 1 min; and 72 ºC 

for 30 s, 10-12 cycles of 95 ºC for 5 s; 60 ºC for 30 s; and 72 ºC for 30sec, and 72 ºC for 

2 min. The resultant amplicons were purified with Qiaquick PCR purification columns 

and re-amplified by PCR in 32 reactions (100 μL each) with 0.02nM first round 

amplicons, 400nM each of eMIP_CA1_F primer and eMIP_CA1_R primer, and 50 μL of 

KAPA SYBR fast Universal qPCR Master Mix at 95 ºC for 30 s, 13-15 cycles of 95 ºC for 

5 s; 60 ºC for 30 sec; and 72 ºC for 30 s, and 72 ºC for 2 min.  

 The resultant amplicons were purified by ethanol precipitation and re-purified with 

Qiaquick PCR purification columns as described above. Approximately 4 μg of the 

purified amplicons were digested with 100 units of Nt.AlwI (100 U/ μL, NEB) at 37 ºC for 

1 h in NEBuffer 2. The enzyme was heat inactivated at 80 ºC for 20 min. The digested 

amplicons were then incubated with 100 units of Nb.BrsDI (10 U/ μL, NEB) at 65 ºC for 1 

h. The nicked DNA was purified by Qiaquick PCR purification column. The probe 

molecules (with size of approximately 70 bases) were purified by 6% denaturing PAGE 

(6% TB-urea 2D gel).  

Sample preparation and capture 
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 Genomic DNA was extracted using the AllPrep DNA/RNA Mini kit (Qiagen) and 

bisulfite converted with the EZ-96 DNA methylation Gold kit (Zymoresearch) in 96-well 

plate. Normalized amount of padlock probes, 200 ng of bisulfite converted gDNA, and 

4.2 nM oligo suppressor were mixed in 25 μL 1x Ampligase Buffer (Epicentre) in 96-well 

plate, denatured at 95 ºC for 10 min, gradually lowered the temperature at 0.02 ºC/s to 

55 ºC in a thermocycler, and hybridized at 55 ºC for 20 h. 2.5 μL of SLN mix (100 μM 

dNTP, 2 U/μL AmpliTaq Stoffel Fragment (ABI) and 0.5 U/μL Ampligase (Epicentre) in 

1X Ampligase buffer) was added to the reaction for gap-filling reaction. For 

circularization, the reactions were incubated at 55 ºC for 20 h, followed by enzyme 

inactivation at 94 ºC for 2 min. To digest linear DNA after circularization, 2 μL of 

exonuclease mix (10 U/μL exonuclease I and 100 U/ μL exonuclease III, USB) was 

added to the reactions, and the reactions were incubated at 37 ºC for 2 h then 

inactivated at 94 ºC for 2 min. 

 TAB-treated genomic DNA were generously provided by G. Hon. We performed 

bisulfite conversion and capture using DMR220K padlock probes as specified above. 

Generation of oxBS-seq libraries for capture 

 One microgram of genome DNA from OVCAR3 cell line was sheared using 

Covaris system to 150 bp average fragment size according to Covaris protocols. The 

sheared DNA was concentrated using 1.8X volumes Agencourt AMPure beads and 

eluted with 20 µL volume then end-repaired in a reaction with 1X End-it buffer, 1 mM 

dNTP, 1 mM ATP, and 1 μL of End-it enzyme mix (Epicentre).  The reaction was 

vortexed gently then spun down and incubated at RT for 45 min.  Next, the reaction was 

purified with 1.8X AMPure beads, allowing 10 minutes to bind because fragment sizes 

are small.  DNA were eluted in 15 μL nuclease free water but beads were carried on to 
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the next step.  The A-tailing reaction was performed with 500 μM dATP (New England 

Biolabs), 1X Tango buffer (Thermo Fisher), 1 µL of Klenow, exo- (Thermo Fisher), and 1 

µL of in-house generated controls DNA mixture.  The reaction was incubated at 30 °C 

for 20 min, 37 °C for 20 min, and 75 °C for 10 min.  The dA-tailed DNA was adapted 

immediately in 25 µL total volume of 1X Tango buffer, 1 µL of high capacity T4 DNA 

ligase (Thermo Fisher), 20 µM of methylated TruSeq adaptors (Illumina), and 500 µM 

ATP (New England Biolabs).  The reaction was carried out overnight at 16 °C.  The 

adaptor-ligated DNA were purified with AMPure beads using 1.8X but this time washing 

was done using 80% acetilenitrile 4 times while allowing 1 minute during each wash 

instead of 30 seconds.  Next, the adapted DNA were denatured by adding 22.75 µL with 

1.25 µL of 1 M NaOH.  The reaction was carried out at 37 °C for 30 min with gentle 

shaking and then immediately transferred to ice.  Next, 2 µL of 20 mM KRuO4 (Alpha 

Aesar) was added to begin oxidation. The reaction was carried out at 40 °C for 30 min 

with gentle shaking and then immediately transferred to ice.  Next, bisulfite conversion 

was performed using the Epitect Bisulfite Plus Kit (Qiagen) following protocols and then 

eluted with 20 µL nuclease-free water.  Conversion efficiencies were evaluated using 0.5 

µL of eluted DNA.  After successful conversion of 5hmC was confirmed, we carried out 

amplification of oxBS-seq library using compatible primers and KAPA Hifi Uracils+ 2X 

master mix (KAPA Biosystems).  The reaction was carried out using the following 

protocol on the thermocycler: 98 °C for 45 s, then 18 cycles of 98 °C for 15 s, 60 °C for 

30s, and 72 °C for 1 min, followed by 72 °C for 2 min.  

Capture circles amplification (Agilent Oligonucleotides) 

 10 μL circularized DNA was amplified and barcoded in 100 μL reactions with 400 

nM each of AmpF6.3Sol primer (Table 2-5) and AmpR6.3 indexing primer (Table 2-5), 
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0.4x SYBR Green I (Invitrogen), and 50 μL Phusion High-Fidelity 2x Master Mix (NEB) at 

98 ºC for 30 s, 5 cycles of 98 ºC for 10 s; 58 ºC for 20 s; and 72 ºC for 20 s, 9-12 cycles 

of 98 ºC for 10 s; and 72 ºC for 20 s, and 72 ºC for 3 min.  

Capture circles amplification (LC Sciences Oligonucleotides) 

 10 μL circularized DNA was amplified in a 100 μL reaction with 200nM each of 

CP-2-FA primer and CP-2-RA primer (Table 2-5) and 50 μL KAPA SYBR fast Universal 

qPCR Master Mix at 98 ºC for 30 s, 5 cycles of 98 ºC for 10 s; 52 ºC for 30 s; and 72 ºC 

for 30 s, 15 cycles of 98 ºC for 10 s; 60 ºC for 30 s; and 72 ºC for 30 s, and 72 ºC for 3 

min. The resultant amplicons with the corresponding expected size of approximately 260 

bp were purified with 6% PAGE (6% 5-well gel, Invitrogen) and resuspended in 12 μL of 

TE buffer. 30% of the gel-purified amplicons were re-amplified and barcoded in a 100 μL 

reaction with 200nM each of two different sets of primers to enable SE sequencing for 

both ends of the amplicons (CP-2-FA.IndSol primer and CP-2-RA.Sol primer or 

Switch.CP-2-FA and Switch.CP-2-RA.IndSol) and 50 μL KAPA SYBR fast Universal 

qPCR Master Mix at 98 ºC for 30 s, 4 cycles of 98 ºC for 10 s; 54 ºC for 30 s; and 72 ºC 

for 30 s, and 72 ºC for 3 min. 

Generation of RRBS sequencing libraries 

To generate RRBS sequencing libraries, 100 ng of gDNA were digested with 20 

U of MspI (Thermoscientific) in 1X Tango buffer (Thermoscientific) and 1 ng of 

unmethylated lambda DNA (Promega) in order to assess for bisulfite conversion rate in 

30µL total volume for 3 h at 37 ºC and heat inactivated at 65 ºC for 20 min. Next, 5U of 

Klenow fragment, exo- (Thermoscientifc) and a mixture of dATP, dGTP, and dCTP (New 

England Biolabs) were added to MspI-digested DNAs for a final concentration of 1 mM, 

0.1 mM, and 0.1 mM for dATP, dGTP, and dCTP, respectively in 32 µL for end-repair 
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and dA-tailing. The mixture was mixed and incubated at 30 ºC for 20 min, 37 ºC for 20 

min, and heat inactivated at 75 ºC for 10 min. dA-tailed DNA was purified with 2X 

volume of Agencourt AMPure XP beads (Beckman Coulter) and resuspended dA-tailed 

DNA with 20 µL nuclease-free water without discarding the magnetic beads. dA-tailed 

DNAs were then ligated to methylated adaptors in 30 µL total volume containing 30 U of 

T4 DNA ligase, HC (Thermoscientific), 1X Ligation buffer (Thermoscientific), and 500 nM 

individual TruSeq multiplexing methylated adaptors (Illumina). The ligation mixture was 

mixed well and incubated at 16 ºC for 20 h, heat inactivated at 65 ºC for 20 min, purified 

by adding 60 µL of PEG 8000/5M NaCl buffer (Teknova) to adaptor ligated DNA and 

bead mixture, and eluted in 20 µL of nuclease-free water. Next, the adaptor ligated DNA 

were bisulfite converted using the MethylCode Bisulfite Conversion kit (Life 

Technologies) following manufacturer’s protocol and eluted in 35 µL of Elution buffer 

(Life Technologies). Bisulfite treated DNAs were amplified using 5 U of PfuTurboCX 

(Agilent Technologies) and 300 nM each of TruS_F and TruS_R primers for 14 cycles in 

100 µL total volume. PCR products were purified with an equal volume of Agencourt 

AMPure XP beads (Beckman Coulter) and eluted with 50 µL of 10mM Tris-HCl, pH8.5, 

pooled in equimolar ratios, and size selected using 6% TBE gels for 150-400 bp. The 

concentration of sequencing libraries was quantified by qPCR using KAPA Library 

Quantification kit (KAPA Biosystems). Libraries were sequenced on Illumina HiSeq2500 

in RapidRun mode for PE 125 cycles. 

Spike-in controls 

 We prepared separate 50 µL PCR reactions with ZymoTaq polymerase, 200 nM 

of each forward and reverse primer, 1 ng of Lambda DNA template, and 2.5 mM of each 

dNTPs. For 5hmC control, we used Lambda_hmC primers with d5hmCTPs instead of 
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dCTPs. For 5mC control, we used Lambda_mC primers with d5mCTPs instead of 

dCTPs. For C control, we used Lambda_C primers with dCTPs. Appendix Table A-2 

shows all primer sequences. The cycling conditions were as follows: 95 ºC for 10 min, 30 

cycles of 95 ºC for 30 s, 55 ºC for 30 s, then 72 ºC for 1 min, and finally 72 ºC for 7 min. 

The PCR products were then purified with one QiaQuick column each and quantified 

with the Nanodrop spectrophotometer. Next, we size-selected the amplicons from a 6% 

TBE polyacrylamide gel to remove the remaining Lambda DNA template. We performed 

a 2nd round of amplification using the same PCR conditions as previously but with 0.2 

nM size-selected PCR products as templates instead of 1 ng of Lambda DNA.  

Conversion efficiencies assessment 

 The following procedures were used to assess the conversion efficiencies of 

control DNA post oxidative and or post bisulfite treatments. For each control, we used 

0.5 μL of converted DNA as input from a total of 20 μL elution volume as template in a 

10 μL PCR reaction with 5 μL of KAPA HiFi Uracil master mix, 3.0 μL water, and 1.5 μM 

of each primer. For C controls, we used the bisLambda_C primers, and for 5mC 

controls, we used the bisLambda_mC_F primer with the Lambda_mC_R primer. For 

assessing 5hmC controls post bisulfite only, we used the bisLambda_hmC_F primer with 

the Lambda_hmC_R primer. For assessing 5hmC controls post-oxidative bisulfite, we 

used the bisLambda_hmC primers. The cycling condition were as follows: 98 ºC for 45 s, 

25 cycles of 98 ºC for 15 s, 55 ºC for 30 s, and 72 ºC for 30 s, and 72C for 1 min.  

 For assessment via enzymatic digestion, we incubated 1 μL of PCR reaction for 

each control in a 10 μL reaction with 10 units of SphI and 1X of NEB buffer 2.1 for 3 

hours at 37 ºC followed by 20 min at 65 ºC. We ran all 10 μL of digestion reaction on a 

PAGE gel to analyze the digestion results. 
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BSPP read mapping and data analysis (v1.0) 

 Bisulfite converted data for the test capture experiments was processed using a 

previous version of BisReadMapper.  Reference genome is computationally converted 

by changing all C’s to T’s on Watson and Crick strands separately. FASTQ reads are 

encoded by 1) predicting the mapping orientation, 2) converting all predicted forward 

mapping reads by changing all C's to T's and converting all predicted reverse 

complementary mapping reads by changing all G's to A's, the original reads are 

maintained. The bisulfite reads are then mapped to the converted reference separately 

using SOAP2Align (http://soap.genomics.org.cn/soapaligner.html) with the parameters 

r=0, v=2 (one mismatch per 40bp sequenced), Paired-End: m=0, x = 400. Alignment files 

are then combined, and one alignment per read was selected. Original C calls were 

placed back into the alignment information. Alignments are then converted to pileup 

format using SamTools (http://samtools.sourceforge.net/).  Raw SNPs and methylation 

frequency files were computed from pileup counts.  

BSPP read mapping and data analysis (v1.4) 

 We first trimmed all PE or SE fastq files using trim-galore version 0.3.3 to remove 

low quality bases and capture sequence positions.  Next, the reads were encoded to 

map to a three-letter genome via conversion of all C to T or G to A if the read appears to 

be from the reverse complement strand. Then the reads were mapped using BWA mem 

version 0.7.5a, with the options “-B2 -c1000” to both the Watson and Crick converted 

genomes.  The alignments with mapping quality scores of less than 5 were discarded 

and only reads with a higher best mapping quality score in either Watson or Crick were 

kept. Finally, the encoded read sequences were replaced by the original read sequences 

in the final BAM files. Overlapping pair end reads were clipped with bamUtils clipOverlap 
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function.  Alignments are then converted to pileup format using SamTools 

(http://samtools.sourceforge.net/).  Raw SNPs and methylation frequency files were 

computed from pileup counts.  

Correlation of methylation levels between two samples 

 To check if methylation levels were similar between two samples, the Pearson’s 

correlation was calculated on all CpG sites characterizable in both.  First, a list of CpG 

sites with read depth of at least 10 in both samples was generated.  The methylation 

frequencies at these sites were obtained from BisReadMapper output, and input into the 

statistical package R.  Finally, Pearson’s correlation for the two samples was computed 

using the cor() function. 

Analysis of differential methylation 

 To identify sites showing a change in methylation between two samples, a list of 

CpG sites with read depth of at least 10 in both samples was generated.  From the 

BisReadMapper output, the raw read counts showing methylation and lack of 

methylation were assembled for each line.  Using these counts, a Fisher-Exact Test with 

Benjamini-Hochberg Multiple Testing Correction (FDR=0.01) was carried out on each 

CpG site. This resulted in a set of differentially methylated sites between the two lines; at 

each of these sites, the methylation levels were statistically significantly different.  

Technical replicates did not show any differential methylation, while different cell types 

showed a large degree (~33%). 

Enrichment analysis of methylation haplotype blocks for known functional 

elements 

 Genomic regions with same number and fragment length distribution were 

randomly sampled within the mappable regions (regions with minimum 10X coverage in 



33 

 

 

 

WGBS dataset), and repeated 1,000 times. Statistical significance was estimated based 

on the number of times an equivalent or higher number of overlapping regions were 

found. Fold changes (enrichment factors) were calculated as the ratios of observation 

over random expectation. Enhancer definition was based on Andersson et al.70, and 

promoter regions were based on the definition by Thurman et al.71. All the genomic 

coordinates were based on GRCh37/hg19. 
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Chapter 3: A generalized method for the identification of differentially 
methylated regions on shallow WGBS data 
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Introduction 

 A major goal of many epigenome mapping studies is to identify regions of 

dynamic or differential DNA methylation (DMRs). These regions are important for the 

mapping of methylation patterns, epigenome-wide association studies, and for the 

identification of epigenetic regulatory events. To identify DMRs from whole genome 

bisulfite sequencing (WGBS) datasets required either utilized high depth of coverage 

datasets (30-60X) or a stringent DMR finding criteria for low depth of coverage 

datasets43,49,72–74. Reducing the coverage requirement for DMR finding has the 

advantage of enabling higher sample sizes for the same cost that can lead to more 

robust DMRs. Additionally, studies on rare cells or samples that are difficult to attain 

often results in low coverage datasets and these studies would benefit from a DMR 

finding method with a low depth of coverage requirement. Finally, 5-

hydroxymethylcytosines modifications which predominantly occur at low levels would 

also benefit from a low coverage DMR finding method that leverages the power of 

nearby CpG sites to identify differentially hydroxymethylated regions (DHMRs).  

 There are currently a few DMR finding approaches that consider low depth of 

coverage datasets and they have mainly focused on pairwise comparison between two 

types of samples50,75. Pairwise comparisons of samples when performed on datasets 

with multiple groups of samples or undefined samples have exponential compute costs 

and multiple testing concerns. To overcome the limitations of current approaches, 

cgDMR-miner was developed to identify the most DMRs from generalized datasets, 

including samples that have not been categorized, without performing all pairwise 

comparison. 

 In this chapter, we developed cgDMR-miner, a generalized method for the 

identification of differentially methylated CpG regions (DMRs) on shallow whole genome 
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bisulfite sequencing (WGBS) datasets with more than two sample groups. The datasets 

can either be categorized or uncategorized because cgDMR-miner employs a variability 

score to identify the most variably methylated regions. As a key novel feature, this 

variability score is able to identify differential methylation patterns without being 

dependent on the methylation levels at individual locus and is the main novelty of this 

work. This method handles data with low depth of coverage at a higher sensitivity than 

previous methods, and can be applied to whole genome TET-assisted bisulfite 

sequencing (TAB-seq) datasets to identify regions of differentially 5-hydroxy-methylated 

CpG sites. 

Results 

Comparison with current approaches 

 The key to cgDMR-miner is the JSD metric. In comparison with other scores for 

quantifying methylation variabilities, JSD was able to discern larger absolute differences 

from smaller absolute differences while also being unbiased towards hypo- or hyper-

methylation (Figure 3-1).  The second best metric was the root mean square error 

(RMSE) that was also unbiased towards hypo- or hyper-methylation but an absolute 

difference of 0.1 versus 1.0 reduced the score linearly by ten times while for JSD the 

reduction was twenty-four times.  Unlike RMSE, JSD is more robust against small 

changes, and this property makes it useful for segmentation.   
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Figure 3-1. Quantifying methylation variabilities 

Methylation variabilities are quantified for artificial examples of ten samples (s1 to s10) across five 

CpG sites (#1-5). In (a), the acceptable metrics are bolded as they exhibit decrease in 

methylation variabilities for #1 to #3. Furthermore, Jensen-Shannon distance metric is best able 

to distinguish 0.1 difference from 1.0 difference, since it has 25 folds difference between #1 and 

#3. In (b), the acceptable metrics should give the same methylation variabilities for examples #4 

and #5.  

In tests to verify the performance of cgDMR-miner at 5X coverage, we found that 

it consistently outperforms Hon et al. 201372 and MethylPy49 from 0.1, 0.2, to 0.4 DMRs 

difference (Figure 3-2).  

  

Figure 3-2. Receiver operating characteristics for DMRs with 0.1, 0.2, and 0.4 methylation 
differences 

Receiver operating characteristics curves for cgDMR-miner, our implementation of the Hon et al. 

2013 method, and MethylPy for simulated datasets with 5X depth of coverage and DMR 

methylation differences of 0.10, 0.20, and 0.40. 
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When comparing the DMR CpGs identified by the five different methods at 20X 

depth of coverage, we found that cgDMR-miner was most similar to MethylPy (which 

uses RMSE test) and Hon et al. 2013 (which uses Pearson’s Chi-square goodness of fit 

test) and least similar to Ziller et al. 2013 (Figure 3-3).  

 

Figure 3-3. Similarity of five methods using DMRs from simulated 20X depth of coverage 

Five methods at simulated 20-fold average depth of coverage are compared using the DMRs 

called by each. Distances are 1 – Pearson’s correlation and is calculated on a binary matrix with 

“1” indicating that a CpG was identified as DMR or “0” indicating that it was not. Only CpGs that 

have been called DMR in a method are considered. cgDMR-miner is most similar to MethylPy 

and Hon et al. 2013. Ziller et al. 2013 is the most different, probably due to a higher number of 

false positives. DSS-general is in-between Ziller et al. 2013 and the other methods. 

Method overview 

 cgDMR-miner analyzes multiple chromosomes in parallel or sequentially when 

processing power is limited, and is comprised of the following analysis steps (Figure 3-

4a). First, cgDMR-miner applies the BSmooth function from the R package bsseq to 

perform local linear smoothing on each sample. The smoothing parameters necessary 

for BSmooth are determined by 10-folds cross-validation on one segment of the 

chromosome for each sample. After smoothing, cgDMR-miner calculates a cross-sample 

variability score for each CpG site based on the Jensen-Shannon distance (JSD) (see 

Methods). This metric is similar to the one described by Ziller et al. Nature 2013, except 

that the distance is calculated against a uniform distribution. Next, segmentation is 
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performed on the vectors of variability scores using a 5-states Hidden Markov Model. 

For non-WGBS data, circular binary segmentation76 is also implemented in cgDMR-

miner. Finally, a test for homogeneity of proportions is performed on the methylated read 

counts of each segment. We applied a generalized C(α) binomial goodness of fit test 

statistics derived by Tarone R. E. 1979 with adaptive permutation to estimate the p-

value.  This method by Tarone 1979 was shown to be applicable for testing 

overdispersion in heterogeneous data77.  Although this test is optimal for small sample 

sizes (where n is the total read depth), it will generate significant p-values for very large 

sample sizes with small differences. Thus, we apply a filter by effect size to identify 

DMRs.  

 

Figure 3-4. Overview of method and performance 
Overview of cgDMR-miner method and performance comparison. (a) Schematic of cgDMR-miner. 

(b) Recall comparison. (c) Precision comparison. 
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Usage 

 To run cgDMR-miner, the user launches a Perl script from command-line. 

Smoothing can require up to 20 GB of random accessed memory (RAM) and will take 

approximately 25 minutes per sample for human chromosome 1, while smaller 

chromosomes will take less time. After all the samples and chromosomes have been 

smoothed, DMR identification on chromosome 1 among 36 samples requires only up to 

8 GB of RAM and 22 hours of compute time on a single CPU core. The final outputs 

include (1) a matrix of the average methylation level of all methylation segments, (2) an 

information file for the DMRs with: overall average methylation level, total depth of 

coverage, test statistic, empirical p-value, maximum average methylation levels between 

two samples, and the standard deviation of the average methylation levels.  

Benchmarking 

 We benchmarked cgDMR-miner against previously published methods:  (Hon et 

al. Nature Genetics 2013, Ziller et al. Nature 2013, Schultz et al. Nature 2015 – 

MethylPy, Park et al. Bioinformatics 2016 – DSS-general44). To compare their 

performances, we generated a simulated dataset for chromosome 19 with 15,498 

randomly placed DMRs between 1 to 2,765 bp in lengths with 36 uncategorized 

samples. The overall number of DMR CpG accounts for 23% of CpGs with an average 

of 16 CpGs per DMR. We compared cgDMR-miner to other methods and found that 

cgDMR-miner outperform in recall rates while being second only to MethylPy in precision 

rates, with 42% recall and 73.3% precision at the 5X depth of coverage (Figure 3-4b,c). 

At the highest simulated depth of coverage of 20X, we found that cgDMR-miner was 

most similar to MethylPy and the Hon et al. 2013 approach. Furthermore, when applied 

to 36 human tissues dataset (Schultz et al. 2015), cgDMR-miner identified 5% more 

DMRs than MethylPy. MethylPy also required 23 hours with two processing cores to 
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process chr19 at 30X coverage for 36 samples, while cgDMR-miner used just 8.13 

hours.  

Application to real world data 

 Next, to assess the capability for DHMR calling, we applied cgDMR-miner to a 

real-world 30X average depth of coverage TAB-seq dataset consisting of matched tumor 

and normal tissues from two patients diagnosed with clear cell renal carcinoma 

(ccRCC)11. Since the level of 5hmC modification have not been found to be strongly 

correlation between nearby CpGs, we thought cgDMR-miner might perform poorly 

compared to MethylPy because smoothing would dilute some weak signals at the single 

CpG sites. We applied both methods to the TAB-seq dataset and found that 83% of the 

DHMRs identified by cgDMR-miner overlap with the DHMRs identified by MethylPy. 

However, cgDMR-miner have also identified 78% of the DHMRs identified by MethylPy. 

 Tissue specific DMRs have been shown to have significant enrichment of 

transcription factor binding sites72,74, here, we found that both cgDMR-miner and 

MethylPy can recover a higher fractions of DMRs overlapping with transcription factor 

binding (Figure 3-5).  While a higher proportion of DMRs by MethylPy overlapped with a 

transcription factor binding site, cgDMR-miner was able to identify more DMRs 

overlapping with transcription factor binding. For the total number of TFBS overlapping 

DMRs, cgDMR-miner identifies 332,473 (out of 737,084 DMRs called), MethylPy 

identifies 313,656 (out of 626,418 DMRs called), and Ziller et al. 2013 approach 

identifies 337,958 (out of 1,198,131 DMRs called). 

 Chen et al. Cell Research 2016 demonstrated that genes body with loss of 

hydroxymethylation and gain of methylation were significantly downregulated in kidney 

cancer.  Using cgDMR-miner to identify DMRs with loss of hydroxymethylation and gain 

of methylation in kidney cancer, we identified about ten times more DMR CpGs (~2 
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million DMR CpGs), some of these would be missed even if MethylPy was used (Figure 

3-6).  Re-analysis of RNA-seq data from the study allowed us to verify that the genes 

overlapping with the new set of DMRs were downregulated in kidney cancer as well 

(Figure 3-7).  

 

Figure 3-5. Differentially methylated regions overlap with transcription factor binding sites 

DMRs identified from 36 human tissues are overlapped with a list of all predicted transcription 

factor binding sites. In (a), the DMRs versus non-DMRs segments from cgDMR-miner are 

compared. In (b), the DMRs from cgDMR-miner are compared against the DMRs from Schultz et 

al. 2015 using either Ziller et al. 2013 approach or using MethylPy.  

 

 

Figure 3-6. Example of DHMR missed by MethylPy 
MethylPy missed a DHMR region. This region is found in the gene body of ZNF382, which 

encodes the transcription factor KZNF. KZNF have been associated with playing a critical role as 

tumor suppressor in multiple carcinomas.  
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Figure 3-7. Hypo-DHMRs with hyper-DMRs in kidney cancer tissues 

RNA-seq data shows expression profile of a ccrCC kidney (rCC) compared to the profile of a 

normal kidney. The “DMRs” genes (n=8,524) have gene bodies overlapping with 95,402 regions 

(covering 2,092,132 CpGs) with hypo-hydroxymethylation and hyper-methylation in ccrCC kidney 

versus normal kidney for two patients. In DMR overlapping genes, ccrCC kidney appears to be 

downregulated compared to normal kidney while the profiles for other non-DMRs genes has 

higher expression for ccrCC kidney. Using a site-wise comparison method, Chen et al. identified 

only 211,519 and 230,341 CpGs for patient 1 and 2 respectively. Thus, smoothing can also be 

applied to TAB-seq datasets to identify DHMRs. 

Conclusion 

 We demonstrated the usage of cgDMR-miner in simulated and real- world data 

and showed improved sensitivity for DMR finding in low coverage and 5-

hydroxymethylation datasets while maintaining a level of precision around 70% that is 

better than most current methods. With two processing threads, cgDMR-miner is almost 

300% faster than other methods that perform analysis at individual CpG sites. Most 

importantly, we demonstrated that smoothing and segmentation improved the sensitivity 

of DMR finding by combining neighboring sites with similar signals together.   

Methods 
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Data processing and (hydroxy)methylation calling from WGBS and TAB-seq 

datasets 

 Published WGBS (SRP000941) and TAB-seq datasets (SRP049710) are from 

the short reads archive (SRA). BisReadMapper 

(https://github.com/hdinhdp/bisReadMapper) is used align fastq reads to hg19/GRCh37. 

Methylation frequency files are generated using the aforementioned mapping and 

methylation analysis pipeline. Custom in-house scripts are used to re-format the 

methylation frequency files to the appropriate input files for each DMR calling software 

used in this study. A full list of published data utilized in this study is in Table 3-1. 

Data processing and analysis of RNA-seq datasets 

 Published RNA-seq datasets (SRP049710) are from the short reads archive 

(SRA). STAR (https://github.com/alexdobin/STAR) is used to align fastq reads to hg38. 

To map DMRs to genes, Gencode reference version 75 (for GRCh37) was used. The 

ensemble id for DMR genes were extracted and given as an input list to ngsplot-2.61 

(https://github.com/shenlab-sinai/ngsplot) to generate genes expression profile plots.  

Quantification of methylation variability 

 Various metrics for quantifying methylation variabilities can be considered. First, 

the Pearson’s chi-square statistics can be calculated using the average as the expected 

value. The Shannon entropy is calculated as follows: first the methylation frequency 

vector is transformed into a probability distribution by dividing each methylation 

frequency by the sum of all the methylation frequencies. The Jensen-Shannon distance 

(JSD) is determined using the same transformation of methylation frequencies into a 

probability distribution. Also, the smaller of either the JSD for the methylated frequencies 

from uniform or the JSD for the unmethylated frequencies from uniform. 

Differential methylation analysis with cgDMR-miner 
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Smoothing raw methylation frequencies. Each WGBS methylation frequency 

data is smoothed using local linear smoothing (R package BSmooth). Building the 

smoothing model requires the smoothing parameters h which is the minimum smoothing 

window size and ns which is the minimum number of site per smoothing window. Cross-

validation was performed to identify the optimal smoothing parameters for the data. The 

parameters for smoothing is determined for each chromosome using a segment with 

100,000 CpG sites not more than 50,000 bp apart between adjacent CpGs. 10% of sites 

is randomly selected as the validation set and remaining 90% as training set. The h 

parameter is kept constant first at 500 bp while values for the parameter ns is first tested 

in increment of 2 and from 14 to 50. The lowest value that generates the highest 

correlation of methylation level with the validation set is chosen. Next, the ns value is 

kept constant at the chosen value, and the h parameter is tested in increment of 400 

from 500 to 2000. The lowest h value with the highest correlation of methylation level 

with the validation set is chosen. Each chromosome is then smoothed using the chosen 

parameters.  

Computing the Jensen-Shannon distance.  The Jensen-Shannon distance 

(JSD) is calculated for each smoothed methylation vector at individual CpG sites. For 

each smoothed methylation vector, the missing values were also set equal to the median 

first.  Smoothed methylation frequencies are converted to probability distributions O = 

(o1,o2,o3,…,oN), P = (p1,p2,p3,…,pN), and Q = (q1,q2,q3,…qN) with elements that are 

defined by Eq. 1, Eq. 2, and Eq. 3. 

Eq. 3-1.  

Eq. 3-2.  

�� = ��/ � ���
�	
  

�� = (1 − ��)/ � (1 − ��)�
�	
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Eq. 3-3.   

 The Jensen-Shannon Distance (DJS) for probability distributions X and Y is 

defined by Eq. 4. The smaller distance between ���(�||�) and ���(�||�) is assigned to 

the JSD score. 

Eq. 3-4.  

 Where M is the average of two probability distributions, and DKL is the Kullback-

Leibler divergence which is the measure of difference between probability distributions. 

M and DKL are from Eq. 5 and Eq. 6. 

Eq. 3-5.   

Eq. 3-6.  

Segmentation.  The JSD scores along each chromosome are used for genome 

segmentation. Whole genome data is segmented using a 5-states Hidden Markov Model 

with a single Gaussian as the emission distribution for each state. The HMM is initialized 

with equal starting probabilities, a transition matrix which allows only stepwise changes 

from one state to the next, and starting emission Gaussians with means that are the 

sorted top five bins with highest frequencies and standard deviations that are simply the 

entire sample’s standard deviation. The R package hsmm performs expectation-

maximization to estimate the model and then global decoding to determine the hidden 

state sequence with the Viterbi algorithm. Non-whole genome data can be segmented 

using circular binary segmentation with the smooth.CNA function of the DNAcopy R 
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package. The default parameters were used in smooth.CNA. Finally, CpG sites with the 

same hidden state and within 1000 bp of each other are merged to form segments.  

Identifying differentially methylated segments.  The segments identified are 

regions that can be assumed to have consistent methylation levels across CpG sites and 

consistent variabilities across samples. Each segment is then summarized using the 

total CpG coverage and total methylated CpG counts. To minimize the noise from 

randomly sampling of bisulfite reads, only regions with a minimum total CpG coverage of 

10 in at least 2 samples is considered. The expected methylation count for sample #, �'& 
, is computed using Eq. 7 where (& is the total CpG coverage for sample # and )*+ is the 

estimated expected methylation frequency of each segment assuming that methylation 

frequencies observed fit the binomial model with mean )*+. The test statistic for the null 

hypothesis that each methylated counts are independent binomial random variables 

from a binomial model is defined by Eq. 8 where , is the number of samples, and the 

observed methylation count for sample # is �-&. This test statistic have an asymptotic 

chi-squared distribution with one degree of freedom (Tarone R. E. 1979). An empirical p-

value for each statistics is computed by adaptive permutation where the methylation 

counts are generated using a binomial distribution with (& total number of trials and )*+ 

probability of being methylated. Finally, the regions with effect sizes passing threshold 

and empirical p-value thresholds (p < 0.01) are identified as DMRs, thus rejecting the 

null hypothesis that a single binomial model fit the observed proportions for each 

sample. 

Eq. 3-7 �'& = )*+(& 

Eq. 3-8 .
/ = 0∑ (2345264)7
628(95628):4 ;∑ <4:4 =7

/>∑ <4:4 (<4;
)?  
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Analysis of simulated datasets using previous methods 

 Hon et al. 2013. A modified version of the method described by Hon et al. 2013 

is implemented using custom scripts. Similar to the published method, a chi-square 

statistic is generated along the genome using a 3-CpGs sliding window. Next, the chi-

square statistics are transformed using the natural log of 10. The 0 values are 

approximated to 0.0001. Hidden Markov Model segmentation is performed using a 4 

states HMM with 3 different emission distributions, one for each hidden state. The 

emission distributions are modeled as Gaussians. After segmentation, the adjacent 

windows with the same states are merged together unless they are more than 500 bp 

apart. Next, the DMRs are identified using the approach described in cgDMR-miner with 

permutation p-value cutoff of < 0.01.  

 Methylpy. Methylpy from Schultz et al. 2015 is utilized with no modification. The 

analyses use these parameters as followed: num_sims = 3000, num_sig_tests=100, 

dmr_max_dist=250, mc_max_dist=100, sig_cutoff=0.05, min_cov=1. The 

mc_max_dist parameter allows for adjacent CpGs within the set bp value to be 

counted together in low coverage datasets but also decrease the specificity. 

 Ziller et al. 2013. The analysis based on Ziller et al. 2013 is generated using the 

scripts from Schultz et al. 2015. The analysis of the simulated datasets has no 

modification.  

 DSS-general. One-versus-all analyses are performed using DSS-general with no 

modification. The DML are identified using the DMLfit.multiFactor and 

DMLtest.multiFactor functions. The DMRs are identified using the callDMR function with 

these parameters: minlen=1, minCG=1, and p.threshold=0.05.  

Simulated datasets 
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 The simulated datasets are based on chromosome 19 and methylation frequency 

files are generated for 36 samples. Individual CpG coverages are simulated using 

random sampling from the Poisson distribution with means that are estimated by the 

total coverage across 36 real human tissues WGBS datasets. The total coverages were 

normalized to the equivalence of 5X, 10X, 15X, or 20X average depth of coverages in 

different simulated datasets. Individual CpG methylated counts are simulated using 

random sampling from the Binomial distribution with the coverages as the number of 

trials and the methylation frequency across 36 real human tissues WGBS datasets.  

 The minimum lengths of differentially methylated regions are simulated by 20,000 

random sampling of a normal distribution with mean 500 bp and standard deviation of 

500 bp. Each potential DMR is assigned to a CpG randomly then extended to the next 

CpG until the DMR’s expected length is reached but if there is no adjacent CpG to 

extend the DMR to the expected length, the potential DMR is dropped. The samples are 

randomly assigned to a DMR, and the number of samples to assign to a DMR is 

determined by a random sampling of a Poisson distribution with mean of 0.3. The 

methylated counts for a sample with the DMR are simulated using random sampling 

from the Binomial distribution with the methylation frequency difference of 0.1, 0.2, or 0.4 

for different simulated datasets. The number of hypermethylated or hypomethylated 

DMRs are estimated from Schultz et al. 2015 DMRs, which is ~ 8% hypermethylated and 

~92% hypomethylated.  

Recall and precision calculation 

 Simulated datasets with 5X, 10X, 15X, or 20X average coverages and DMR 

methylation frequency difference of 0.3 are analyzed using cgDMR-miner or alternative 

approaches. The recall rate is the number of true DMR CpG identified determined as 
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within a DMR. The precision rate is the number of true DMR CpG identified out of all the 

CpGs determined as within a DMR.  

Receiving operator characteristics curves 

 The simulated datasets with 5X average coverages and DMR methylation 

frequency difference of 0.1, 0.2, and 0.4 are analyzed using cgDMR-miner or alternative 

approaches. Different p-value cutoffs from 0.001 to 1 are used to generate the receiving 

operator characteristics curves at different methylation difference levels for DMRs.  

Transcription factor binding sites enrichment analysis 

 References for transcription factor binding sites (TFBS) are from the ENCODE 

project. The segments of interest are randomly sampled 100,000 times without 

replacement. Each segment is extended 2000 bp to the left and to the right to generate a 

4000 bp region that is then split into 40 windows of 100 bp in sizes. Then each window is 

overlap with the set of defined TFBS and the number of bases within the window that is 

overlapping a TFBS is counted and averaged over each window.  
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Supplementary Tables 

Table 3-1. List of published datasets analyzed 

Sample Method Source Tissue 
Depth of 
coverage 

STL001BL-01 WGBS Roadmap Epigenetics Project Bladder 78 
STL001FT-01 WGBS Roadmap Epigenetics Project Fat 28 
STL001GA-01 WGBS Roadmap Epigenetics Project Gastric 30 
STL001LG-01 WGBS Roadmap Epigenetics Project Lung 28 
STL001LV-01 WGBS Roadmap Epigenetics Project Heart 64 
STL001PO-01 WGBS Roadmap Epigenetics Project Muscle 27 
STL001RV-01 WGBS Roadmap Epigenetics Project Heart 25 
STL001SB-01 WGBS Roadmap Epigenetics Project Intestine 70 
STL001SG-01 WGBS Roadmap Epigenetics Project Colon 75 
STL001SX-01 WGBS Roadmap Epigenetics Project Spleen 37 
STL001TH-01 WGBS Roadmap Epigenetics Project Thymus 66 
STL002AD-01 WGBS Roadmap Epigenetics Project Kidney 34 
STL002AO-01 WGBS Roadmap Epigenetics Project Vessel 25 
STL002EG-01 WGBS Roadmap Epigenetics Project Esophagus 31 
STL002FT-01 WGBS Roadmap Epigenetics Project Fat 36 
STL002GA-01 WGBS Roadmap Epigenetics Project Gastric 27 
STL002LG-01 WGBS Roadmap Epigenetics Project Lung 75 
STL002OV-01 WGBS Roadmap Epigenetics Project Ovary 76 
STL002PA-01 WGBS Roadmap Epigenetics Project Pancreas 30 
STL002PO-01 WGBS Roadmap Epigenetics Project Muscle 31 
STL002SB-01 WGBS Roadmap Epigenetics Project Intestine 22 
STL002SX-01 WGBS Roadmap Epigenetics Project Spleen 34 
STL003AD-01 WGBS Roadmap Epigenetics Project Kidney 72 
STL003AO-01 WGBS Roadmap Epigenetics Project Vessel 112 
STL003EG-01 WGBS Roadmap Epigenetics Project Esophagus 81 
STL003FT-01 WGBS Roadmap Epigenetics Project Fat 65 
STL003GA-01 WGBS Roadmap Epigenetics Project Gastric 78 
STL003LV-01 WGBS Roadmap Epigenetics Project Heart 70 
STL003PA-01 WGBS Roadmap Epigenetics Project Pancreas 62 
STL003PO-01 WGBS Roadmap Epigenetics Project Muscle 81 
STL003RA-01 WGBS Roadmap Epigenetics Project Heart 77 
STL003RV-01 WGBS Roadmap Epigenetics Project Heart 72 
STL003SB-01 WGBS Roadmap Epigenetics Project Intestine 28 
STL003SG-01 WGBS Roadmap Epigenetics Project Colon 65 
STL003SX-01 WGBS Roadmap Epigenetics Project Spleen 72 
STL011LI-01 WGBS Roadmap Epigenetics Project Liver 39 
P1-T WGBS GSE63183 Kidney 

cancer 
22 

P1-N WGBS GSE63183 Kidney 23 
P2-T WGBS GSE63183 Kidney 

cancer 
22 

P2-N WGBS GSE63183 Kidney 20 
P1-T TAB GSE63183 Kidney 

cancer 
29 

P1-N TAB GSE63183 Kidney 16 
P2-T TAB GSE63183 Kidney 

cancer 
33 

P2-N TAB GSE63183 Kidney 29 
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Chapter 4: Deconvolution of epigenetic heterogeneity in human tissues and 
plasma DNA by tightly coupled CpG methylation
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Introduction 

 CpG methylation in mammalian genomes is a relatively stable epigenetic 

modification, which can be transmitted across cell division5 through the DNA 

methyltransferase DNMT1 and dynamically either established or removed by the 

DNMT3A, DNMT3B and ten-eleven translocation proteins (TETs).  Due to the 

processivity of some of these enzymes, physically adjacent CpG sites on the same DNA 

molecules can share similar methylation status, although discordant CpG methylation 

has also been observed, especially in cancer cells78. The theoretical framework of 

linkage disequilibrium79, which was developed to model the coordinated segregration of 

adjacent genetic variants on human chromosomes among human populations, can be 

applied to the analysis of CpG co-methylation in cell populations.  A number of studies 

related to the concepts of methylation haplotypes59, epi-alleles80, or epi-haplotypes81 

have been reported, although at small numbers of genomic regions or limited numbers 

of cell and tissue types. Recent data production efforts, especially by large consortia82–84, 

have produced a large number of whole-genome, base-resolution bisulfite sequencing 

data sets for many tissue and cell types. These public data sets, in combination with 

additional whole-genome bisulfite sequencing (WGBS) data generated in this study, 

allowed us to perform full-genome characterization of locally coupled CpG methylation 

across the largest set of human tissue types available to date and to annotate these 

blocks of co-methylated CpGs as a distinct set of genomic features. 

 DNA methylation is cell-type specific, and the pattern can be harnessed for 

analyzing the relative cell composition of heterogeneous samples, such as different 

white blood cells in whole blood85, fetal components in maternal circulating cell-free 

DNA(cfDNA)31, or circulating tumor DNA (ctDNA) in plasma31. Most of these recent 

efforts rely on the methylation level of individual CpG sites, and they are fundamentally 
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limited by the technical noise and sensitivity in measuring single-CpG methylation. 

Recently, Lehmann-Werman et al. demonstrated superior sensitivity with multi-CpG 

haplotypes in detecting tissue-specific signatures in cfDNA30, although this was based 

on the sparse genome coverage of Illumina 450k methylation arrays (HM450K). Here we 

performed an exhaustive search of tissue-specific methylation haplotype blocks (MHBs) 

across the full genome and proposed a block-level metric, termed methylated haplotype 

load (MHL), for a systematic discovery of informative markers. By applying our analytical 

framework and identified markers, we demonstrate accurate determination of tissue 

origin and prediction of cancer status in clinical plasma samples from patients with lung 

cancer (LC) or colorectal cancer (CRC) (Figure 4-1a). 

Results 

Identification of methylation haplotype blocks 

 To investigate the co-methylation status of adjacent CpG sites along single DNA 

molecules, we extended the concept of genetic linkage disequilibrium59,79,86 and the r2 

metric to quantify the degree of coupled CpG methylation among different DNA 

molecules. Methylation status of multiple CpG sites in single- or paired-end Illumina 

sequencing reads were extracted to form methylation haplotypes, and pairwise ‘linkage 

disequilibrium’ of CpG methylation r2 was calculated from the fractions of different 

methylation haplotypes.  
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Figure 4-1. Identification and characterization of human methylation haplotype blocks (MHBs). 

(a) Schematic overview of data generation and analysis. (b) An example of an MHB at the 

promoter of the gene APC. Tx, transcription; DHS, DNA hypersensitive sites. (c) Smooth scatter 

plots of methylation linkage disequilibrium within MHBs in stem and progenitor cells (left), somatic 

cells (middle) and cancer cells (right). Red indicates relative higher density, and blue indicates 

relative lower density. The yellow dashed lines and percentages highlight the reduction of high 

linkage disequilibrium (r2 > 0.9) with n=500,000 sampling. (d) Co-localization of MHBs 

(n=147,888) with known genomic features. (e) Enrichment of MHBs (n=147,888) in known 

genomic features. 

 We started with 51 sets of published WGBS data from human primary 

tissues49,87, the H1 human embryonic stem cells, in-vitro-derived progenitors13 and 

human cancer cell lines88,89. We also included an in-house-generated WGBS data set 

from ten adult tissues of one human donor. Across these 61 samples (>2,000× 

combined genome coverage) we identified a total of ~0.711 billion methylation haplotype 
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informative reads that covered 58.2% of autosomal CpGs. The uncovered CpG sites 

were either in regions with low mappability or in CpG-sparse regions in which there were 

too few CpG sites within the Illumina read pairs to derive informative haplotypes. We 

partitioned the human genome into blocks of tightly coupled CpG methylation sites 

(which we refer to as MHBs; Figure 4-1b), using a r2 cutoff of 0.5. We identified 147,888 

MHBs at an average size of 95 bp and a minimum of three CpGs per block, which 

represents ~0.5% of the human genome that tends to be tightly co-regulated on the 

epigenetic status at the level of single DNA molecules (Figure 4-2a,b). The majority of 

CpG sites within the same MHBs were nearly perfectly coupled (r2 ~ 1.0) regardless of 

the sample type. We found that the fraction of tightly coupled CpG pairs (r2 > 0.9; Figure 

4-1c) slightly decreased over CpG spacing from stem and progenitor cells (94.8%; 

mostly cultured cells) to somatic cells (91.2%; mixture of primary adult tissues) to cancer 

cells (87.8%; mixture of CRC tissues and LC cell lines). 

 Although the WGBS data came from different laboratories, which might have 

technical differences from batch to batch, we found that that methylation LD extended 

further over CpG distance in stem and progenitor cells, which is consistent with our 

previous observations on 2,020 CpG islands59 for culture cell lines and with another 

report90. Notably, in cancer samples, we observed a reduction of perfectly coupled CpG 

pairs, which could be related to the pattern of discordant methylation that was recently 

reported in variable-methylation regions (VMRs)57,78. The cancer-specific decayed MHBs 

were enriched for cancer-related pathways and functions (Table 4-1). Nonetheless, the 

majority of MHBs in cancers still contains tightly coupled CpGs (87.8%), allowing us to 

harness the pattern for detecting tumors in plasma.  
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Figure 4-2. Characteristics of MHBs in the human genome 

(a) Distribution of MHB sizes. (b) Distribution of MHBs CpG densities (CpGs/bp). (c) Co-

localization of known genomic features broken down by CpG density. Note that closed brackets 

are inclusive. 
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Table 4-1. Gene ontology analysis to cancer loss linkage regions by GREAT 

# Term Name    
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positive regulation of mRNA catabolic process 0.047 1.63 13 14 0.0013 
negative regulation of TGF beta receptor signaling pathway 0.000 1.43 54 66 0.0052 
positive regulation of fibroblast proliferation 0.000 1.55 38 43 0.0037 
apoptotic mitochondrial changes 0.004 1.43 40 49 0.0039 
lens fiber cell differentiation 0.010 1.59 20 22 0.0019 
positive regulation of mitochondrion organization 0.016 1.36 42 54 0.0041 
regulation of insulin receptor signaling pathway 0.001 1.59 29 32 0.0028 
regulation of cellular response to insulin stimulus 0.002 1.50 35 41 0.0034 
filopodium assembly 0.039 1.51 19 22 0.0018 
positive regulation of macrophage differentiation 0.040 1.75 10 10 0.0010 
mature B cell differentiation 0.040 1.75 10 10 0.0010 
regulation of release of cytochrome c from mitochondria 0.007 1.50 29 34 0.0028 
regulation of monocyte differentiation 0.040 1.75 10 10 0.0010 
cellular metabolic compound salvage 0.006 1.53 27 31 0.0026 
positive regulation of protein deacetylation 0.016 1.75 12 12 0.0012 
stress fiber assembly 0.040 1.75 10 10 0.0010 
pyrimidine-containing compound salvage 0.040 1.75 10 10 0.0010 
focal adhesion 0.006 1.27 95 131 0.0092 
cell-substrate adherens junction 0.007 1.26 97 135 0.0094 
Genes related to Wnt-mediated signal transduction 0.013 1.28 65 89 0.0063 
Mechanism of Gene Regulation by Peroxisome Proliferators via 
PPARa(alpha) 0.036 1.30 43 58 0.0042 
Validated targets of C-MYC transcriptional repression 0.007 1.36 49 63 0.0048 
Ceramide signaling pathway 0.044 1.32 36 48 0.0035 
Erk1/Erk2 Mapk Signaling pathway 0.033 1.44 23 28 0.0022 
Genes involved in RORA Activates Circadian Expression 0.040 1.46 20 24 0.0019 
Genes involved in TGF-beta receptor signaling activates SMADs 0.040 1.46 20 24 0.0019 
Genes involved in Downregulation of TGF-beta receptor signaling 0.036 1.50 18 21 0.0017 
Hypoxia and p53 in the Cardiovascular system 0.006 1.60 21 23 0.0020 
Involved in Sema4D induced cell migration and growth-cone collapse 0.040 1.46 20 24 0.0019 
IL-2 Receptor Beta Chain in T cell Activation 0.013 1.43 31 38 0.0030 
Genes involved in Regulation of IFNG signaling 0.044 1.62 12 13 0.0012 
Cell Cycle: G1/S Check Point 0.012 1.50 24 28 0.0023 
Regulation of cytoplasmic and nuclear SMAD2/3 signaling 0.041 1.55 15 17 0.0015 
Regulation of transcriptional activity by PML 0.041 1.55 15 17 0.0015 
Genes involved in Sema4D in semaphorin signaling 0.025 1.45 24 29 0.0023 
IL3-mediated signaling events 0.017 1.49 23 27 0.0022 

 

While WGBS data allowed us to unbiasedly identify MHBs across the entire 

genome, the 61 sets of data did not represent the full diversity of human cell/tissue 

types. To validate the presence of MHBs in a wider range of human tissues and cultured 

cells, we examined 101 published reduced representation bisulfite sequencing (RRBS) 

datasets from the ENCODE project that included cell line and normal tissue samples, as 

well as 637 published Infinium HumanMethylation450K BeadChip (HM450K) datasets 
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from the TCGA project that included 11 human cancer tissues. The RRBS datasets were 

generated with short (36bp) Illumina sequencing reads, greatly limiting the length of 

methylation haplotypes that can be called. Similarly, Illumina methylation arrays only 

report average CpG methylation of all DNA molecules in a sample, preventing a 

methylation linkage disequilibrium analysis. Therefore, we calculated the Pearson’s 

correlation coefficient from methylation levels of adjacent CpGs across different sample 

sets for block partitioning. Note that the presence of such correlated methylation blocks 

is a necessary but not sufficient condition for MHBs (Figure 4-3a). Nonetheless, the 

absence of correlated methylation blocks in these data would invalidate the pattern of 

MHBs. We identified 23,517 and 2,212 correlated methylation blocks from RRBS and 

HM450K data respectively, among which 8,920 and 1,258 have significant overlaps with 

WGBS-defined MHBs. Additionally, we observed significantly higher correlation (r2) 

among the CpGs within the MHB regions compared CpG loci outside MHBs in HM450K 

and RRBS dataset (Figure 4-3b), further supporting the block-like organization of local 

CpG co-methylation across a wide variety of cells and tissues. Taken together, the 

MHBs that we have identified represent a distinct class of genomic feature where local 

CpG methylation is established or removed in a highly coordinated manner at the level 

of single DNA molecules, presumably due to the processive activities of the related 

enzymes coupled with the local density of CpG dinucleotides. 



62 

 

 

 

Figure 4-3. Validation of MHBs with TCGA HM450K beadchips and ENCODE RRBS data 

(a) Pearson correlatio r2 versus LD r2. (b) The Pearson correlation for CpGs in RRBS and 

HM450K data were significantly higher in regions overlapping with MHBs compared with the 

CpGs without overlapping with MHBs. IN denotes RRBS or HM450K CpGs within MHBs. OUT 

denotes RRBS or HM450K regions beyond MHBs. 

Co-localization of MHBs with known regulatory elements 

 The MHBs established by the WGBS data represent a distinct type of genomic 

feature that partially overlaps with multiple known genomic elements (Figure 4-1d). 

Among all of the MHBs, 60,828 (41.1%) were located in intergenic regions, whereas 

87,060 (58.9%) regions were located in transcribed regions. These MHBs were 

significantly enriched (p-value < 1.0 × 10−6) in enhancers, super-enhancers, promoters, 

CpG islands and imprinted genes. In addition, we observed a modest depletion in the 

lamina-associated domains (LADs)91 and the large organized chromatin 

Lys9 modifications (LOCK) regions92, as well as a modest enrichment in defined 

topologically associated domains (TADs)93. Notably, we observed a strong (26-fold) 

enrichment in VMRs (Figure 4-1e), suggesting that increased epigenetic variability in a 

cell population or tissue can be coordinated locally among hundreds of thousands of 

genomic regions94. We further examined a subset of MHBs that did not overlap with CpG 

islands and observed a consistent enrichment pattern (Figure 4-1e, 4-2c), suggesting 
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that local CpG density alone does not account for the enrichment. Previous studies on 

mice and humans63,74 demonstrated that dynamically methylated regions are associated 

with regulatory regions, such as enhancer-like regions marked by acetylation on Lys27 

of histone H3 (H3K27ac) and transcription-factor-binding sites. In publicly available 

histone-mapping data for human adult tissues, we found co-localization of MHBs with 

marks for active promoters (trimethylated Lys4 on histone H3 (H3K4me3) with H3K27ac) 

but not for active enhancers95 (no peak for H3K4me1) (Figure 4-4). We found that 

enhancers tended to overlap with CpG-sparse MHBs, whereas the co-localization with 

super-enhancers was independent of CpG density (Figure 4-2c). Therefore, MHBs 

probably capture the local coherent epigenetic signatures that are directly or indirectly 

coupled to transcriptional regulation. 
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Figure 4-4. Profiles of H3K27ac, H3K4me3 and H3K4me1 over methylation haplotype blocks for 
12 human adult tissue types 

X-axis denote the distances from the centers of MHBs (+/- 1000 bp) and y-axis denotes the 

average reads density in RPKM (input normalized reads per kilobase per million). Epigenomics 

Roadmap histones data were downloaded from NCBI GEO 

(https://www.ncbi.nlm.nih.gov/geo/roadmap/epigenomics/).  
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Block-level analysis using methylation haplotype load 

 To enable quantitative analysis of the methylation patterns within individual 

MHBs across many samples, we needed a single metric to define the methylated pattern 

of multiple CpG sites within each block. Ideally this metric should not only be a function 

of the average methylation level for all of the CpG sites in the block, but it should also be 

able to capture the pattern of co-methylation on single DNA molecules. Therefore, we 

defined MHL as the weighted mean of the fraction of fully methylated haplotypes and 

substrings at different lengths (i.e., all possible substrings). As compared to the other 

metrics used in the literature (methylation level, methylation entropy, epi-polymorphism 

and haplotype counts), the MHL is capable of distinguishing blocks that have the same 

average levels of methylation but various degrees of coordinated methylation (Figure 4-

5). In addition, the MHL is bounded between 0 and 1, which allows for direct comparison 

of different regions across many data sets. 

 

Figure 4-5. Comparison of methylation haplotype load with four other metrics used in the 
literature. 

Five patterns of methylation haplotype combinations (schematic) are used to illustrate the 

differences between methylation frequency, methylation entropy, epi-polymorphism and MHL. 

MHL is the only metric that can discriminate all five patterns. 

 We next asked whether treating MHBs as individual genomic features and 

performing quantitative analysis based on the MHL would provide an advantage over 



66 

 

 

previous approaches that used individual CpG sites or weighted (or unweighted) 

averaging of multiple CpG sites in certain genomic windows. Therefore, we clustered 65 

WGBS data sets (including four additional colon and lung cancer WGBS sets89) from 

human solid tissues on the basis of the MHL.  Principle component analysis (PCA) on all 

MHBs yielded a clustering of samples with same tissue of origin (Figure 4-6). 

Unsupervised clustering with the 15% most-variable MHBs showed that, regardless of 

the data sources, samples of the same tissue origin clustered together (Figure 4-7a), 

whereas cancer samples and stem cell samples showed patterns distinct from those of 

human adult tissues. To identify a subset of MHBs for effective clustering of human 

somatic tissues, we constructed a tissue specific index (TSI) for each MHB. Random 

Forest based feature selection identified a set of 1,360 tissue-specific MHBs that can 

predict tissue type at an accuracy of 0.89 (95%CI: 0.84-0.93), despite the fact that 

several tissue types share rather similar cell compositions (i.e. muscle vs. heart). Using 

this set of MHBs, we compared the performance between MHL, average methylation 

fraction in the MHL regions (AMF) and all individual CpG methylation fraction (IMF). 

MHL and the average methylation provided similar tissue specificity, while MHL has a 

lower noise (background noise: 0.29, 95%CI: 0.23-0.35) compared with average 

methylation (background noise: 0.4, 95%CI: 0.32-0.48). Clustering based on individual 

CpGs in the blocks has the worst performance that might be due to higher biological or 

technical viability of individual CpG sites (Figure 4-7c).  Thus block-level analysis based 

on MHL is advantageous over single CpG or local averaging of multiple CpG sites in 

distinguishing tissue types from regions of coupled CpG methylation and heterogeneity. 
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Figure 4-6. PCA of human tissues and cells based on methylation haplotype loads in MHB 
regions. 

Ten adult tissues WGBS were from this study and others were from 5 published studies. 
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Figure 4-7. Tissue clustering based on methylation haplotype load 

(a) MHL-based unsupervised clustering of human tissues using the top 15% most-variable 

regions. Color bar indicates the MHL value. (b) Supervised clustering of germ-layer-specific 

MHBs. (c) Comparison of cluster performance to different samples using matric MHL, AMF and 

IMF. MHL exhibits better signal-to-noise ratio than AMF and IMF for sample clustering. 
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 The human adult tissues that we used have various degrees of similarity among 

each other. We hypothesized that this is primarily defined by their developmental lineage 

and that the related MHBs might reveal epigenetic insights relevant to germ-layer 

specification. We searched for MHBs that had differential MHLs among the data sets 

from the three germ layers. In total we identified 114 ectoderm-specific MHBs (99 

hypermethylated and 15 hypomethylated), 75 endoderm-specific MHBs (58 

hypermethylated and 17 hypomethylated) and 31 mesoderm-specific MHBs (9 

hypermethylated and 22 hypomethylated). Cluster analysis based on layer-specific 

MHBs showed the expected clustering among tissues of the same lineage (Figure 4-

7b). We speculated that some of these MHBs might capture binding events of 

transcription factors (TFs) specific to the developmental germ layers. We observed 

patterns of TF binding to layer-specific MHBs that overlapped with ENCODE reported 

TF-binding events83 (Figure 4-8). For layer-specific MHBs with low MHLs, we identified 

53 TFs in mesoderm-specific MHBs, 71 TFs in endoderm-specific MHBs and 2 TFs in 

ectoderm-specific MHBs. Gene ontology analysis showed that mesoderm-specific TFs 

binding events have negative-regulator activity, whereas endoderm-specific TFs binding 

events have positive-regulator activity. For layer-specific MHBs with a high MHL, we 

identified 38 TFs in mesoderm-specific MHBs, 102 TFs in endoderm-specific MHB and 

145 TFs in ectoderm-specific MHBs. Notably, tissues in the ectoderm and endoderm 

lineage shared few bounded TFs, whereas mesoderm tissue shared multiple groups of 

TFs with the ectoderm and endoderm tissues. We identified two endoderm-specific high-

MHL regions, which are associated with the transcription factors ESRRA (also known as 

ERR1) and NANOG.  This is consistent with a previous finding that mouse embryonic 

stem cells differentiated spontaneously into visceral and parietal endoderm after 

knocking out Nanog96. The low-MHL regions shared by the mesoderm and endoderm 
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might have regulatory functions in the fate commitment toward multiple tissues, whereas 

the ectoderm-specific high-MHL regions might induce ectoderm development by 

suppressing the path toward cells of the immune lineage (Figure 4-8). These 

observations are indicative of two distinctive ‘push’ and ‘pull’ mechanisms in the 

transition of cell states that have been harnessed for the induction of pluripotency by 

overexpressing lineage specifiers97. 

 

Figure 4-8. Distinct patterns of functional enrichment for TFBS associated with layer-specific 
MHBs. 

(a) Venn diagrams of transcription factors (TF) with binding sites associated with layer specific 

hypo- or hyper- MHL regions. (b) Functional enrichment analysis of associated TFBS using 

GREAT (http://bejerano.stanford.edu/great/public/html/). 

Methylation-haplotype-based analysis of circulating cfDNA 

 A unique aspect of methylation-haplotype analysis is that the pattern of co-

methylation, especially within MHBs, is robust in capturing low-frequency alleles among 

a heterogeneous population of molecules or cells, in the presence of biological noise or 

technical variability, such as incomplete bisulfite conversion or sequencing errors. To 

explore potential clinical applications, we next focused on the methylation-haplotype 
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analysis of cfDNA from healthy donors and patients with cancer, in which low fractions of 

DNA molecules released from tumor cells and potentially carry epigenetic signatures 

distinct from those of white blood cells. We isolated cfDNA from the plasma of 75 healthy 

individuals (NCP), 29 patients with lung cancer (LCP) and 30 patients with colorectal 

cancer (CCP). Owing to the limited amounts of available DNA, we performed single-cell 

RRBS (sc-RRBS)98 and obtained an average of 13 million paired-end 150-bp reads per 

sample. On average, 57.7% of WGBS-defined MHBs were covered in our RRBS data 

set from the clinical samples. 

 We sought to detect the presence of tumor specific signatures in the plasma 

samples, using methylation haplotypes identified from tumor tissues as the reference 

and normal samples as the negative controls. For five lung cancer plasma samples and 

five colorectal cancer plasma samples, we also obtained matched primary tumor tissues, 

and generated RRBS data (30 million reads per sample) from 100ng of tumor genomic 

DNA. We focused on MHBs with low MHL (i.e. genomic regions that have low or no 

methylation) in the blood, and asked whether we can detect cancer-associated highly 

methylated haplotypes (caHMH). We required that such haplotypes were present only in 

the tumor tissues and the matched plasma from the same patient, but not in whole blood 

or any other non-cancer samples. We considered these highly confident tumor signature 

in circulating DNA.  We detected caHMH in all cancer patient plasma samples (“caHMH-

2”, Average=36, IQR=17, Table 4-2). These HMHs were associated with 183 genes, 

some of which are known to be aberrantly methylated in human cancers such as 

WDR37, VAX1, SMPD1. Next, we extended the analysis to 49 additional cancer plasma 

samples that have no matched tumor samples, using 65 normal plasmas as the 

background. On average, 60 (IQR=31) caHMH were identified for each cancer plasma 

sample (Table 4-3). Interestingly, a significant fraction (35%) of caHMH called on 
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matched tumor-plasma pairs were also detected the expanded set of cancer patient 

plasma samples. 

Table 4-2. Cancer associated High Methylation Haplotype based on matched plasma-tumor 
tissue samples 

Patient 
# caHMH 

candidates  # caHMH-1 # caHMH-2* # caHMH-3 

CRC-P-1 1885 526 37 14 

CRC-P-2 1257 340 20 9 

CRC-P-3 3630 880 35 19 

CRC-P-4 1700 509 55 21 

CRC-P-5 2062 614 21 10 

LC-P-1 2065 550 16 5 

LC-P-2 2320 571 36 15 

LC-P-3 1959 566 15 11 

LC-P-4 2068 658 97 46 

LC-P-5 1799 524 30 15 

* caHMH-2 were used in cancer DNA fragment estimation in Figure 4-5. caHMH-1: Cancer 

associated HMH defined as shared by primary tumor tissue and paired plasma while not in whole 

blood (WB).caHMH-2: Cancer associated HMH defined as shared by primary tumor tissue and 

paired plasma while not in normal plasma and WB.caHMH-3: Cancer associated HMH defined as 

shared by primary tumor tissue and paired plasma while not in normal plasma, WB, and normal 

tissues.  
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Table 4-3. Cancer associated HMH in all plasma samples  
  # caHMH identified 

CRC-P-10 48 
CRC-P-11 31 
CRC-P-12 247 
CRC-P-13 38 
CRC-P-14 27 
CRC-P-15 89 
CRC-P-16 34 
CRC-P-17 303 
CRC-P-18 21 
CRC-P-19 21 
CRC-P-20 32 
CRC-P-21 327 
CRC-P-22 85 
CRC-P-23 56 
CRC-P-24 70 
CRC-P-25 25 
CRC-P-26 29 
CRC-P-27 131 
CRC-P-28 26 
CRC-P-29 47 
CRC-P-30 21 
CRC-P-6 21 
CRC-P-7 55 
CRC-P-8 28 
CRC-P-9 43 
LC-P-10 37 
LC-P-11 38 
LC-P-12 23 
LC-P-13 18 
LC-P-14 29 
LC-P-15 24 
LC-P-16 24 
LC-P-17 34 
LC-P-18 243 
LC-P-19 40 
LC-P-20 43 
LC-P-21 33 
LC-P-22 62 
LC-P-23 36 
LC-P-25 15 
LC-P-26 10 
LC-P-27 96 
LC-P-28 18 
LC-P-29 15 
LC-P-30 51 
LC-P-6 42 
LC-P-7 40 
LC-P-8 63 
LC-P-9 46 
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 Next we quantified the tumor load in cancer plasma samples, using non-negative 

decomposition with quadratic programming, on the RRBS data from primary cancer 

biopsies (LC & CRC) and WGBS data from 10 normal tissues. We estimated that a 

predominant fraction, 72.0% (95% CI:0.659-0.782) in the cancer and normal plasma 

were contributed by white blood cells, which is consistent with the levels reported 

recently based on shallow whole genome bisulfite sequencing (69.4%)31.  Primary tumor 

and normal tissue-of-origin contributed at the similar level of 2.3% (95% CI: 0.4%-4.2%) 

and 3.0% (95% CI:1.2%-4.4%). In contrast, we applied the similar analysis to normal 

plasma, and found only residual tumor contributions (0.17% for CRC and 1.0% LC) to 

normal plasma, which were significantly lower (p-value =3.4x10-5 & 5.2x10-10 for CRC 

and LC, respectively) than cancer plasma. We also found that 76.7% plasma samples 

from CRC patients and 89.6% from LC patients had detectible contribution from tumor 

tissues while only 13% and 26% normal plasmas have certain (low) tumor contribution 

(Figure 4-9). Therefore, circulating cell-free DNA contains a relatively stable fraction of 

molecules released from various normal tissues, whereas in cancer patients tumor cells 

released DNA molecules that can be more abundant than normal tissues (Table 4-4).  

Table 4-4. Deconvolution of plasma samples to 10 normal tissues, lung cancer tissues(LCT), and 
colon cancer tissues(CCT) 
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CCP 0.027 0.015 0.019 0.036 0.030 0.035 0.031 0.030 0.145 0.046 0.044 0.543 

NP 0.015 0.002 0.002 0.001 0.037 0.010 0.013 0.010 0.056 0.044 0.003 0.808 

LCP 0.045 0.013 0.057 0.046 0.047 0.041 0.048 0.035 0.095 0.044 0.042 0.488 

Average values from only plasma samples with WB > 0.3.  
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Figure 4-9. Deconvolution of cancer and normal plasma samples using non-negative 
decomposition with quadratic programming. 

(a) Deconvolution accuracy as a function of tumor fraction using simulated data. (b) Cancer DNA 

proportions estimated by deconvolution of plasma samples using CCT or LCT as the tumor 

reference. 

 We next asked whether we can identify a small subset of MHBs among all the 

RRBS targets that have significantly higher levels of MHL in cancer plasma than in 

normal plasma. We found 81 and 94 MHBs with significantly higher MHL for colorectal 

and lung cancer. Some of these regions (such as HOXA3) have been reported to be 

aberrantly methylated in lung cancer and colorectal cancer. Using these MHBs as 

markers, the diagnostic sensitivity is 96.7% and 93.1% for colorectal cancer and lung 

cancer at the specificity 94.6% and 90.6%. As a comparison, we also performed a 
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prediction based on average 5mC methylation level within these MHB regions, or based 

on genome-wide single CpG sites. MHL was found to be superior to average 5mC 

methylation level (sensitivity of 90.0% and 86.2%; specificity of 89.3% and 90.6% for 

CRC and lung cancer) and methylation signal of individual CpG site (sensitivity of 89.6% 

and 80.6%; specificity of 89.3% and 92.0%). 

We then sought to use the information from normal human tissues, primary tumor 

biopsies and cancer cell lines to improve the detection of ctDNA. We started by selecting 

a subset of MHBs that show high MHL (>0.5) in primary cancer biopsies and low MHL 

(<0.1) in whole blood, then clustered these MHBs into three groups based on the MHL in 

all normal and cancer plasma, as well as cancer and normal tissues (Figure 4-10).  We 

identified a subset (Group II) of MHBs that have high MHL in cancer tissues and low 

MHLs in normal tissues. Cancer plasma showed significantly higher MHL in these 

regions than normal plasma (P=1.4×10-12 and 6.2×10-8 for CRC and LC, respectively). By 

computationally mixing the sequencing reads from cancer tissues and whole blood 

samples (WBC), we created synthetic admixtures at various levels of tumor fraction. We 

found that MHL is 2-5 folder higher than the methylation level of individual CpG sites 

across the full range of tumor fractions. Remarkably, MHL provides additional gain of 

signal-to-noise ratio (mean divided by standard deviation) compared with AMF as the 

fraction of tumor DNA decreases below 10%, which is typical for clinical samples 

(Figure 4-10c). We then took the individual plasma data sets, and predicted the tumor 

fraction based on the MHL distribution established by computational mixing (Figure 4-

10a-b). Except for a small number (N<5) of outliers, we observed significantly higher 

average MHL in cancer plasma than in normal plasma (Table 4-5, Table 4-6).  Note that 

all Group II MHBs were selected without using any information from the plasma 

samples, and hence they should be generally applicable to other plasma samples. 
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Interestingly, we also found that the estimated tumor DNA fraction were positive 

correlated with normalized cfDNA yield from the cancer patients (P<0.000023, Figure 4-

11).  

 

Figure 4-10. Quantitative estimation of the proportion of DNA derived from cancer cells in cell-free 
DNA, using the MHL of informative MHBs 

 (a,b) Left, heat maps showing the different patterns of MHL in patients with colorectal cancer (a) 

or lung cancer (b), as compared to that in healthy individuals (NP). GII regions have high MHL 

values in tissues (MHL > 0.5) and plasma from patients with cancer and low MHL values in WB 

and healthy tissues (MHL < 0.1). Bar plots show average MHL values in different groups of 

samples. MHLs in the plasma of patients with colorectal cancer (CCP) or lung cancer (LCP) and 

in the plasma of healthy individuals (NP) were compared with a two-tailed Student’s t-test. NCT 

denotes healthy colon tissues, NLT denotes healthy lung tissues, and ONT denotes other healthy 

tissues. (c) Comparison between signal-to-noise ratio of MHL and 5mC changes as the deduction 

of tumor DNA fraction. MHL has higher signal-to-noise ratio (Mean/SD ratio) than individual 5mC 

levels as tumor fraction decreases. x axis shows the tumor fraction in synthetic mixtures. 30 CRC 

and 29 LC samples were involved in the analysis (d) Estimation of the cancer DNA proportions in 

plasma samples (30 CCP, 29 LC and 75 NP).  
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Table 4-5. Relationship between Group II average MHL and cfDNA yield for cancer patient 

ID Type MHL Prediction 
Plasma volume 

(uL) 
Amount used for RRBS input 

(ng) 
Normalized yield per 1 mL 

(ng) 

CRC.P.001 CCP 0.0232 Colon 430 1.0 13.95 
CRC.P.002 CCP 0.0246 Spleen 540 1.0 61.11 
CRC.P.003 CCP 0.0080 Colon 220 1.0 214.09 
CRC.P.004 CCP 0.0043 Liver 550 1.0 48.49 
CRC.P.005 CCP 0.0127 Lung 665 1.0 21.97 
CRC.P.006 CCP 0.0069 Colon 650 1.0 11.49 
CRC.P.007 CCP 0.0273 Colon 700 1.0 10.59 
CRC.P.008 CCP 0.0264 Spleen 690 1.0 9.83 
CRC.P.009 CCP 0.0009 Colon 520 1.0 23.54 
CRC.P.010 CCP 0.0170 Colon 700 1.0 14.27 
CRC.P.011 CCP 0.0203 Colon 231 1.5 31.95 
CRC.P.012 CCP 0.1361 Colon 670 1.5 13.97 
CRC.P.013 CCP 0.0579 Colon 690 1.5 45.30 
CRC.P.014 CCP 0.0265 Colon 585 1.5 24.41 
CRC.P.015 CCP 0.0690 Colon 610 1.5 9.54 
CRC.P.016 CCP 0.0238 Colon 650 1.5 18.09 
CRC.P.017 CCP 0.1349 Colon 480 1.5 16.63 
CRC.P.018 CCP 0.0251 Colon 425 1.5 22.31 
CRC.P.019 CCP 0.0231 Colon 650 1.5 18.18 
CRC.P.020 CCP 0.0183 Colon 641 1.5 8.42 
CRC.P.021 CCP 0.1340 Colon 670 1.5 17.01 
CRC.P.022 CCP 0.1335 Liver 460 1.5 84.00 
CRC.P.023 CCP 0.0248 Colon 900 1.5 29.27 
CRC.P.024 CCP 0.0275 Colon 725 1.5 15.14 
CRC.P.025 CCP 0.0139 Colon 150 1.5 46.40 
CRC.P.026 CCP 0.0376 Colon 550 1.5 17.89 
CRC.P.027 CCP 0.0715 Colon 55 1.5 92.73 
CRC.P.028 CCP 0.0153 Colon 940 1.5 130.21 
CRC.P.029 CCP 0.0133 Colon 940 1.5 10.02 
CRC.P.030 CCP 0.0246 Colon 405 1.5 31.70 
LC.P.001 LCP 0.0057 Lung 475 1.0 43.71 
LC.P.002 LCP 0.0230 Lung 350 1.0 97.71 
LC.P.003 LCP 0.0350 WBC 398 1.0 15.68 
LC.P.004 LCP 0.0639 Lung 325 1.0 18.65 
LC.P.005 LCP 0.0901 Lung 440 1.0 75.68 
LC.P.006 LCP 0.0025 Lung 345 1.0 20.26 
LC.P.007 LCP 0.0038 Lung 320 1.0 21.47 
LC.P.008 LCP 0.0119 Lung 303 1.0 16.53 
LC.P.009 LCP 0.0366 Lung 330 1.0 21.00 
LC.P.010 LCP 0.0129 Lung 500 1.0 12.18 
LC.P.011 LCP 0.0719 Lung 595 1.5 21.28 
LC.P.012 LCP 0.0178 Lung 535 1.5 8.75 
LC.P.013 LCP 0.0108 Lung 630 1.5 15.33 
LC.P.014 LCP 0.0152 Lung 600 1.5 18.50 
LC.P.015 LCP 0.0382 Liver 455 1.5 21.23 
LC.P.016 LCP 0.0022 Lung 630 1.5 14.00 
LC.P.017 LCP 0.0121 WBC 355 1.5 91.77 
LC.P.018 LCP 0.5147 Lung 430 1.5 65.67 
LC.P.019 LCP 0.0342 Lung 760 1.5 17.37 
LC.P.020 LCP 0.0160 Lung 550 1.5 40.69 
LC.P.021 LCP 0.0834 Lung 620 1.5 17.81 
LC.P.022 LCP 0.0379 Lung 385 1.5 59.84 
LC.P.023 LCP 0.0003 Lung 540 1.5 88.89 
LC.P.025 LCP 0.0336 Lung 700 1.5 12.51 
LC.P.026 LCP 0.0015 Lung 690 1.5 11.48 
LC.P.027 LCP 0.1629 Lung 700 1.5 23.57 
LC.P.028 LCP 0.0103 Lung 780 1.5 40.77 
LC.P.029 LCP 0.0303 Lung 690 1.5 12.00 
LC.P.030 LCP 0.0173 Lung 398 1.5 174.87 
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Table 4-6. Relationship between Group II average MHL and cfDNA yield in healthy controls 

ID Type MHL Prediction 
Plasma volume 

(μL) 
Amount used for RRBS input 

(ng) 
Normalized yield per 1 mL 

(ng) 

NC.P.001 NP 0.0001 WBC 1000 1.0 12.31 
NC.P.002 NP 0.0010 WBC 1000 1.0 13.65 
NC.P.003 NP 0.0001 WBC 1000 1.0 22.60 
NC.P.005 NP 0.0313 WBC 1000 1.0 6.55 
NC.P.006 NP 0.0000 Liver 1000 1.0 6.22 
NC.P.007 NP 0.0002 WBC 1000 1.0 10.29 
NC.P.008 NP 0.0000 Lung 1000 1.0 5.92 
NC.P.009 NP 0.0078 Lung 1000 1.0 8.55 
NC.P.012 NP 0.0010 WBC 1000 1.0 8.15 
NC.P.013 NP 0.0313 WBC 1000 1.0 8.40 
NC.P.014 NP 0.0000 WBC 1000 1.0 7.85 
NC.P.015 NP 0.0002 WBC 1000 1.0 5.90 
NC.P.016 NP 0.0002 WBC 1000 1.0 7.00 
NC.P.017 NP 0.0001 WBC 1000 1.0 6.30 
NC.P.018 NP 0.0000 WBC 1000 1.0 9.45 
NC.P.019 NP 0.0039 WBC 1000 1.0 5.25 
NC.P.020 NP 0.0078 WBC 1000 1.0 6.40 
NC.P.021 NP 0.0010 WBC 1000 1.0 10.25 
NC.P.022 NP 0.0010 Spleen 1000 1.0 9.00 
NC.P.023 NP 0.0078 WBC 1000 1.0 7.65 
NC.P.024 NP 0.0078 WBC 1000 1.0 7.00 
NC.P.025 NP 0.0001 WBC 1000 1.0 4.15 
NC.P.026 NP 0.0002 Liver 1000 1.0 3.60 
NC.P.027 NP 0.0000 Spleen 1000 1.0 6.20 
NC.P.029 NP 0.0000 WBC 1000 1.0 5.45 
NC.P.030 NP 0.0143 WBC 1000 1.0 4.95 
NC.P.031 NP 0.0125 WBC 1500 10.0 14.66 
NC.P.032 NP 0.0144 WBC 1400 10.0 11.55 
NC.P.033 NP 0.0324 WBC 1500 10.0 13.80 
NC.P.034 NP 0.0255 WBC 1500 10.0 175.00 
NC.P.035 NP 0.0315 WBC 1250 10.0 12.74 
NC.P.036 NP 0.0197 WBC 1500 10.0 15.54 
NC.P.037 NP 0.0506 WBC 1400 10.0 13.76 
NC.P.038 NP 0.0212 WBC 1100 10.0 35.73 
NC.P.039 NP 0.0165 WBC 1350 10.0 20.60 
NC.P.040 NP 0.0181 WBC 950 10.0 15.60 
NC.P.041 NP 0.0140 WBC 1200 10.0 33.25 
NC.P.043 NP 0.0053 WBC 1150 10.0 9.60 
NC.P.044 NP 0.0186 WBC 1350 10.0 20.96 
NC.P.045 NP 0.0011 WBC 1300 10.0 119.31 
NC.P.046 NP 0.0148 WBC 1350 10.0 12.33 
NC.P.047 NP 0.0065 WBC 800 10.0 27.71 
NC.P.048 NP 0.0444 WBC 1000 10.0 24.84 
NC.P.049 NP 0.0004 WBC 1100 10.0 15.38 
NC.P.050 NP 0.0080 WBC 850 10.0 18.99 
NC.P.051 NP 0.0190 WBC 1350 10.0 15.11 
NC.P.052 NP 0.0130 WBC 1100 10.0 16.64 
NC.P.053 NP 0.0053 WBC 1450 10.0 23.38 
NC.P.054 NP 0.0076 WBC 1050 10.0 28.23 
NC.P.055 NP 0.0088 WBC 1450 10.0 19.74 
NC.P.056 NP 0.0051 WBC 1300 10.0 47.31 
NC.P.057 NP 0.0478 WBC 1300 10.0 74.54 
NC.P.058 NP 0.0014 WBC 1300 9.9 327.69 
NC.P.059 NP 0.0013 WBC 1350 10.0 12.29 
NC.P.060 NP 0.0421 WBC 1150 10.0 24.31 
NC.P.061 NP 0.0180 WBC 1400 10.0 31.50 
NC.P.062 NP 0.0019 WBC 1300 10.0 48.46 
NC.P.063 NP 0.0226 WBC 1350 10.0 50.00 
NC.P.064 NP 0.0215 WBC 1350 10.0 41.11 
NC.P.065 NP 0.0053 WBC 1200 9.9 8.20 
NC.P.066 NP 0.0079 WBC 1300 10.0 70.85 
NC.P.067 NP 0.0049 WBC 1350 10.0 25.78 
NC.P.068 NP 0.0075 WBC 1350 10.0 9.47 
NC.P.069 NP 0.0081 WBC 1350 10.0 8.11 
NC.P.070 NP 0.0086 WBC 1350 10.0 13.27 
NC.P.071 NP 0.0045 WBC 1350 10.0 16.00 
NC.P.072 NP 0.0059 WBC 1200 10.0 17.83 
NC.P.073 NP 0.0174 WBC 1450 10.0 24.41 
NC.P.074 NP 0.0025 WBC 1250 10.0 24.72 
NC.P.075 NP 0.0073 Lung 1300 10.0 70.38 
NC.P.076 NP 0.0151 WBC 1450 10.0 17.44 
NC.P.077 NP 0.0031 WBC 1400 10.0 10.65 
NC.P.078 NP 0.0323 WBC 1300 10.0 10.73 
NC.P.079 NP 0.0422 WBC 1250 10.0 11.28 
NC.P.080 NP 0.0192 WBC 1400 10.0 14.0 
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Figure 4-11. Estimated tumor fraction in plasma correlated with the normalized yield of DNA 
extraction from plasma 

Plasma yields were from normal controls, lung cancer patients, and colorectal cancer patients. 

 Recent studies30,31,99 have demonstrated that epigenetic information imbedded in 

cfDNA has the potential for predicting a tumor’s tissue of origin. Consistently, we found 

that tissue-of-origin derived methylation haplotypes were the most abundant fraction in 

cancer plasma (Table 4-4). Here we asked whether a MHL-based framework and a set 

of targets derived from whole genome data would allow us to predict tissue-of-origin with 

quantifiable sensitivity and specificity, which is crucial for future clinical applications. We 

compiled 43 WGBS and RRBS data sets for 10 human normal tissues that have high 

cancer incident rate, and identified a set of 2,880 tissue-specific MHBs as the 

candidates. We then used these tissue-specific MHBs or subsets to predict the tissue-of-

origin for the cancer plasma sample. Although we found a large number of tissue-of-

origin specific MHBs that have low MHL in normal plasma (Figure 4-12a), the multiclass 

prediction based on random forest yielded very limited power, most likely due to the high 

diversity of the tissue classes (N=10). We then adopted an alternative approach by 

counting the total number of tissue-specific MHBs in the plasma samples and comparing 
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with all other tissues, in order to infer the most probable tissue-of-origin. At the cutoff of 

minimal 10 tissue-specific methylated haplotypes per tissue type, we observed an 

average 90% accuracy for mapping a data set from the primary tissue to its tissue type 

(Figure 4-12b). We then applied this method to the full set of plasma data from 59 

cancer patients and 75 normal individuals, and achieved an average prediction accuracy 

of 82.8%, 88.5%, 91.2% for the plasma from colorectal cancer, lung cancer, and control 

plasma samples, respectively, with 5-fold cross-validation (Figure 4-12c, Figure 4-13). 

For the incorrectly classified samples, we noticed that 4 out of 5 colorectal cancer 

plasma were from metastatic colorectal cancer patients while the fifth was in fact tubular 

adenoma. In the case of lung cancer, one misclassified sample came from a patient with 

benign fibrous tissue.  Taken together, we demonstrated for the first time that both tumor 

load and tissue of origin can be quantitatively characterized by methylation haplotype 

analysis of cell free DNA in plasma. 
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Figure 4-12. MHL-based prediction of cancer tissue of origin from plasma DNA 

(a) Detection of tissue-specific MHL in the plasma of patients with cancer but not in plasma or 

whole blood from healthy individuals. Tissue-specific MHLs were visible in corresponding tissue 

and plasma samples from patients with cancer, indicating the feasibility for tissue-of-origin 

mapping. (b) Identification of informative MHBs for tissue prediction, using training data included 

in the WGBS and RRBS data sets from reference tissues, number of replicates shown in 

parentheses. The color key indicates the tissue-of-origin mapping accuracy (ACC). (c) Application 

of the prediction model to plasma samples from patients with colorectal cancer (n = 30) or lung 

cancer (n = 29) and from healthy individuals (n = 75)  

 

 

Figure 4-13. Distribution of tissue-specific MHBs counts in human plasma samples. 

Color bar represents the number of tissue specific MHBs (for each respective tissue) over the 

MHL threshold in each plasma sample. 



83 

 

 

Discussion 

 Here we extended a well-established concept in population genetics, linkage 

disequilibrium, to the analysis of co-methylated CpG patterns. Although the 

mathematical representations are identical, there are two key differences. First, 

traditional linkage disequilibrium was defined on human individuals in a population, 

whereas in this study the analysis was performed on the diploid genome of individual 

cells in a heterogeneous cell population. Second, linkage disequilibrium in human 

populations depends on the mutation rate, frequency of meiotic recombination, effective 

population size and demographic history. The LD level decays typically over the range of 

hundreds of kilobases to megabases. In contrast, CpG co-methylation depends on DNA 

methyltransferases and demethylases, which tend to have much lower processivity (if 

any), and, in the case of hemi-methyltransferases, much lower fidelity than DNA 

polymerases100. Therefore, methylation LD decays over much shorter distance (in tens 

to hundreds of bases), with the exception of imprinting regions. Even if longer-read-

sequencing methods were used, we did not expect a radical change of the block-like 

pattern presented in this work, which is supported by another recent study86. 

Nonetheless, these short and punctuated blocks capture discrete entities of epigenetic 

regulation in individual cells that are widespread in the human genome. This 

phenomenon can be harnessed to improve the robustness and sensitivity of DNA 

methylation analysis, such as the deconvolution of data from heterogeneous samples 

including cfDNA. 

While we demonstrated a superior power of MHL over single-CpG methylation 

level or average methylation level in classification and deconvolution, the accuracy is 

slightly less than what has been reported on the deconvolution of blood cell types. One 

major difference is that each reference tissue type itself is a mixture of multiple cell types 
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that might share various degrees of similarity with another reference tissue type. 

Furthermore, most solid tissues also contain blood vessels and blood cells. Given such 

background signals, the accuracy that we achieved is very promising, and will be further 

improved once reference methylomes of pure adult cell types are available. 

Practically, the amount of cell-free DNA per patient is rather limited, typically in 

the range of tens to hundreds of nanogram. We used 1 to 10 ng per patient for the sc-

RRBS experiment. Considering the material losses during bisulfite conversation and 

library preparation, as well as the sequencing depth, there were most likely no more than 

30 genome equivalents in each data set. Our data set is rather sparse, especially when 

the fraction of tumor DNA is low. Hence the chance of finding cancer-specific 

methylation haplotypes in a specific region consistently across many samples is low. 

This is likely the reason that marker sets selected based on random forest has limited 

sensitivity and specificity. However, epigenetic abnormalities tend to be more 

widespread across the genome (compared with somatic mutations), and hence we were 

able to integrate the sparse coverage across many loci to achieve very accurate 

prediction by direct counting of methylated haplotypes with the appropriate tissue-

specific features. Further technical improvements on sample preparation and library 

construction, combined with larger sets of patient and normal plasma, will undoubtedly 

increase the coverage and further improve the specificity and sensitivity to the level 

required for clinical diagnosis.  

Methods 

Processing of human normal tissues 

 Ten human primary normal tissues were purchased from BioChain.  

Approximately 200 ng of genomic DNA from ten human primary tissues in the volume of 

50 µL was fragmented into an average size of 400 bp in a Covaris micro TUBE with 
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Covaris E210 ultrasonicator.  Fragmented genomic DNA was converted into Illumina 

paired-end sequencing libraries using KAPA Library Preparation kit (KAPA Biosystems) 

following manufacturer’s instruction with modifications. After end-repair and dA-tailing, 

ligation with methylated adapters was performed at 20 ºC for 15 min in the presence of 

10-fold molar excess of Illumina methylated adapters (Illumina).  The ligation mixture 

was purified with an equal volume of Agencourt AMPure XP beads (Beckman Coulter) 

and eluted with 23 µL of 10mM Tris-HCl, pH8.5. Next, 20 µL of adaptor ligated DNA was 

bisulfite converted using EZ DNA Methylation-Lightning kit (Zymo Research) following 

manufacturer’s protocol and eluted with 30 µL of 10mM Tris-HCl, pH8.5. Bisulfite 

converted DNAs were amplified using iQ SYBR Green Supermix (Bio-Rad) with 200 nM 

each of PCR primer PE1.0 and multiplexing PCR primer for 10 cycles in 100 µL total 

volume. PCR products were purified with 0.8X volume of Agencourt AMPure XP beads 

(Beckman Coulter) and eluted with 50 µL of 10mM Tris-HCl, pH8.5, pooled in equimolar 

ratios, and size selected using 6% TBE gels for 400-600 bp. The concentration of 

sequencing libraries was quantified by qPCR using KAPA Library Quantification kit 

(KAPA Biosystems). Libraries were sequenced on HiSeq2500 for PE 100 cycles.  

Processing of patient tumor tissues.  

 Cancer tissue and plasma samples were collected from UCSD Moores Cancer 

Center. Clinical information, gender, age and TNM staging, on the patients was limited 

because the samples were de-identified. Informed consent was obtained from all 

subjects. All the samples are diagnosis to corresponding cancers according to the World 

Health Organization classification criteria. 88.4% samples were derived from Caucasian 

population while 6.8% and 3.3% samples were from Asian and African population (detail 

see Table 4-8). Genomic DNAs were extracted from 20-50 mg of primary tumor tissues 

from lung, colon and pancreatic cancer patients using DNeasy Blood and Tissue kit 
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(QIAGEN) following the manufacturer’s instruction and eluted in 400 µL of AE buffer 

(QIAGEN). The concentration and quality of genomic DNA were assessed by Qubit 

dsDNA HS Assay kit (Life Technologies) and NanoDrop (Thermo Scientific), 

respectively. To generate RRBS sequencing libraries, 100 ng of gDNA were digested 

with 20 U of MspI (Thermoscientific) in 1X Tango buffer (Thermoscientific) and 1 ng of 

unmethylated lambda DNA (Promega) in order to assess for bisulfite conversion rate in 

30µL total volume for 3 h at 37 ºC and heat inactivated at 65 ºC for 20 min. Next, 5U of 

Klenow fragment, exo- (Thermoscientifc) and a mixture of dATP, dGTP, and dCTP (New 

England Biolabs) were added to MspI-digested DNAs for a final concentration of 1 mM, 

0.1 mM, and 0.1 mM for dATP, dGTP, and dCTP, respectively in 32 µL for end-repair 

and dA-tailing. The mixture was mixed and incubated at 30 ºC for 20 min, 37 ºC for 20 

min, and heat inactivated at 75 ºC for 10 min. dA-tailed DNA was purified with 2X 

volume of Agencourt AMPure XP beads (Beckman Coulter) and resuspended dA-tailed 

DNA with 20 µL nuclease-free water without discarding the magnetic beads. dA-tailed 

DNAs were then ligated to methylated adaptors in 30 µL total volume containing 30 U of 

T4 DNA ligase, HC (Thermoscientific), 1X Ligation buffer (Thermoscientific), and 500 nM 

individual TruSeq multiplexing methylated adaptors (Illumina). The ligation mixture was 

mixed well and incubated at 16 ºC for 20 h, heat inactivated at 65 ºC for 20 min, purified 

by adding 60 µL of PEG 8000/5M NaCl buffer (Teknova) to adaptor ligated DNA and 

bead mixture, and eluted in 20 µL of nuclease-free water. Next, the adaptor ligated DNA 

were bisulfite converted using the MethylCode Bisulfite Conversion kit (Life 

Technologies) following manufacturer’s protocol and eluted in 35 µL of Elution buffer 

(Life Technologies). Bisulfite treated DNAs were amplified using 5 U of PfuTurboCX 

(Agilent Technologies) and 300 nM each of TruS_F and TruS_R primers for 14 cycles in 

100 µL total volume. PCR products were purified with an equal volume of Agencourt 
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AMPure XP beads (Beckman Coulter) and eluted with 50 µL of 10mM Tris-HCl, pH8.5, 

pooled in equimolar ratios, and size selected using 6% TBE gels for 150-400 bp. The 

concentration of sequencing libraries was quantified by qPCR using KAPA Library 

Quantification kit (KAPA Biosystems). Libraries were sequenced on Illumina HiSeq2500 

for PE 100 cycles. 

Processing of plasma samples 

 Normal plasma samples were obtained from UCSD Shirley Eye center. 

Information such as gender and age was limited because the samples were de-

identified. Informed consent was obtained from all subjects. Plasma samples from 

patients were processed using the QIAamp Circulating Nucleic Acid Kit (Qiagen) to 

extract circulating DNA. The DNA extracted from plasma were then concentrated using 

ethanol precipitation and eluted in 15 μL nuclease-free water. Next, 1-10 ng of DNA 

were digested with 10 U of MspI (Thermoscientific), 1X Tango buffer (Thermoscientific), 

and 10 pg of unmethylated lambda DNA (New England Biolabs) as control for ~13 h at 

37 ºC, then heat inactivated at 65 ºC for 20 min. Next, 5 U of Klenow fragment, exo- 

(Thermoscientifc) and a mixture of dATP, dGTP, and dCTP (New England Biolabs) were 

added for a final concentration of 1 mM, 0.1 mM, and 0.1 mM for dATP, dGTP, and 

dCTP respectively. The mixture was gently vortexed, and incubated at 30 ºC for 20 min, 

37 ºC for 20 min, and finally 75 ºC for 10 min. To perform adaptor ligation, the dA-tailed 

DNA were added to a 5 μL mixture of 1X Tango buffer, 30 U of T4 DNA Ligase, HC 

(Thermoscientific), 2.5 mM ATP, and 500 nM individual TruSeq multiplexing methylated 

adaptors. The combined mixture was gently vortexed, incubated at 16 ºC for ~20 h, then 

heat inactivated at 65 ºC for 20 min. The ligation mixture was purified using Agencourt 

AMPure XP beads (Beckman Coulter), and eluted in 20 μL of nuclease-free water. The 

ligated products were then bisulfite converted using the MethylCode Bisulfite Conversion 
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kit (Life Technologies). Two rounds of amplification were performed after bisulfite 

conversion. The first round was using PfuTurboCX (Agilent Technologies) for 12 cycles 

in 50 μL total volume, then the second round was performed using Phusion HotStart 

Flex (New England Biolabs) master mix for 9 cycles in 50 μL total volume. Final PCR 

products were purified, pooled in equimolar ratios, and size selected using 

polyacrylamide gels for 150-400 bp. Libraries were sequenced on both Illumina MiSeq 

and HiSeq2500 for PE 100 cycles. 

NGS read mapping 

 WGBS and RRBS data were processed in similar fashions. We first trimmed all 

PE or SE fastq files using trim-galore version 0.3.3 to remove low quality bases and 

biased read positions. Next, the reads were encoded to map to a three-letter genome via 

conversion of all C to T or G to A if the read appears to be from the reverse complement 

strand. Then the reads were mapped using BWA mem version 0.7.5a, with the options “-

B2 -c1000” to both the Watson and Crick converted genomes. The alignments with 

mapping quality scores of less than 5 were discarded and only reads with a higher best 

mapping quality score in either Watson or Crick were kept. Finally, the encoded read 

sequences were replaced by the original read sequences in the final BAM files. 

Overlapping pair end reads were also clipped with bamUtils clipOverlap function.  

Identification of methylation haplotype blocks 

 Human genome was split into non-overlapping “sequenceable and mappable” 

segments using a set of in-house generated WGBS data from 10 tissues of a 25-year 

adult male donor. Mapped reads from WGBS data sets were converted into methylation 

haplotypes within each segment. Methylation linkage disequilibrium was calculated on 

the combined methylation haplotypes. We then partitioned each segment into 
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methylation haplotype blocks (MHBs). MHBs were defined as the genomic region in 

which the r2 value of two adjacent CpG sites is no less than 0.5.  

High methylation linkage regions defined based on ENCODE and TCGA data. 

 We collected RRBS data from the ENCODE project (downloaded from UCSC 

Genome Browser) and HM450K data from the TCGA project. Pearson correlation 

coefficient were calculated between adjacent CpG sites across all samples. The Takai 

and Jones's sliding-window algorithm101 was used to identify blocks of highly correlated 

methylation. We set a 100-base window in the beginning of genomic position and move 

the window to the downstream when there are least 2 probes in the window. Calculate 

the total probes in extended regions until the last window does not meet the criteria. The 

regions covering at least 4 probes were defined as CpG dense regions, and the average 

Pearson correlation coefficients among all the probes in cancer and normal samples 

were calculated respectively. Simulation analysis to investigate the relationship between 

LD at the single-read level and correlation coefficients of average 5mC between two 

CpG sites were performed based on random sampling of 10 different methylation 

haplotypes from each of the 1000 individuals. 

Enrichment analysis of methylation haplotype blocks for known functional 

elements 

 Enrichment analysis was performed by random sampling as previously 

described102. Genomic regions with same number (147,888), fragment length distribution 

and CpG ratios were randomly sampled within the mappeable regions (genomic regions 

beyond CRG mappability blacklisted regions and non-cover regions in our WGBS 

dataset), and repeated 1,000,000 times. Statistical significance was estimated based on 

empirical p-value (P). Fold changes (enrichment factors) were calculated as the ratios of 

observation over expectation. Exon, intron, 5-UTR, 3-UTR were collected UCSC 
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database. Enhancer definition was based on Andersson et al. 70, super enhancer was 

derived by Hnisz et al.103 and promoter regions were based on the definition by Thurman 

et al.71. All the genomic coordinates were based on GRCh37/hg19.  

Calculating methylation haplotype load 

 We defined a methylated haplotype load (MHL) for each candidate region, which 

is the normalized fraction of methylated haplotypes at different length: 

Eq. 4-1 MHL = ∑ CDEDF9 ×H(IJD)∑ CDEDF9  

Eq. 4-2  wL = i 
 

Where l is the length of haplotypes, P(MHL) is the fraction of fully successive methylated 

CpGs with i loci. For a haplotype of length L, we considered all the sub-strings with 

length from 1 to L in this calculation. wL is the weight for i-locus haplotype. Options for 

weights are wL = i or wL = i/ to favor the contribution of longer haplotypes. In the present 

study, wL = i was applied.  

 Following the concept of Shannon entropy H(x), methylation entropy (ME) for 

haplotype variable in specific genome region were calculated with the following formula:  

Eq. 4-3 H(x) = − ∑ P(x) × log/ P(x)SL	
  

Eq. 4-4 ME = − 
U ∑ P(HL) × log/ P(HL)VL	
  

Eq. 4-5 P(HL) = WDX  

 For a genome region with b CpG loci and n methylation haplotype, P(HL) 

represents the probability of observing methylation haplotype HL, which can be 

calculated by dividing the number of reads carrying this haplotype by the total reads in 

this genomic region. ME is bounded between 0 and 1, and can be directly compared 

across different regions genome-wide and across multiple samples. Methylation entropy 

were widely used in the measurement of variability of DNA methylation in specific 

genome regions104.  
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Epi-polymorphism105 was calculated as: 

Eq. 4-6 ppoly = 1 − ∑ PL/VL	
  

where PL is the frequency of epi-allele i the population (with 16 potential epialleles 

representing all possible methylation states of the set of four CpGs). 

Developmental germ layers and tissue specific MHBs.  

 To investigate the germ layer and tissue specific MHBs, group specific index 

(GSI, see below) was defined. An empirical threshold GSI>0.6 was used define layer 

and tissue specific MHBs. Layer specific MHBs were selected again to show the ability 

to distinguish different development layers. Tissue specific MHBs were further used for 

tissue mapping and cancer diagnosis.  

Eq. 4-7 GSI = ∑ 
; E`a7bcde(f)gE`a7(cdehij)kfF9 V;
  

n indicates the number of the groups. MHL(j) denotes the average of MHL of jmW group.  

MHL(max) denotes the average of MHL of highest methylated group.  

Genome-wide methylation haplotype load matrix analysis 

 Methylation haplotype load was calculated for all MHBs on each sample. The 

MHBs with top 15% MHL were included in the heatmap to investigate the tissue 

relationship. The Euclidean distance and Ward.D aggregation were used in the heatmap 

plot. PCA was conducted with default setting of the corresponding R packages. Before 

the PCA analysis, raw data were quantile normalized within same tissue/cell groups. 

Standardization (scale) and batch effect elimination (the Combat algorithm106) were also 

applied to decrease the random noise. MAF and IMF were extracted from BAM files with 

customized PileOMeth (https://github.com/dpryan79/PileOMeth). Differential MHL 

analysis between cancer plasma and normal plasma were based on two-tailed Student's 
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t-test or Wilcoxon rank sum test. Correction for multiple testing was based on false 

discovery rate (FDR). Statistic variations were estimated among different groups and 

therefore one-way ANOVA analysis could be conducted.  

Simulation and real-data deconvolution analysis 

 Deconvolution analysis was performed on simulated and experimental datasets. 

The deconvolution references were constructed on data from human normal primary 

tissues, whole blood (WB), colorectal cancer tissues (CCT) and lung cancer tissues 

(LCT). For the simulation analysis, methylation haplotypes from CCT and WB were 

randomly mixed to generate a series of synthetic data sets with CCT factions ranging 

from 0.1% to 50%.  We then plotted the expected and observed CCT factions. Although 

MHL is a non-linear metrics, when mixing CCT and WB, we found the deconvolution 

result is accurate with log-transform (median root-mean-square-error < 5%), which is 

within the acceptable region of the deconvolution method107  when the contribution of 

colorectal fraction is less than 20%. Tissue specific MHBs were selected features for 

deconvolution based on non-negative decomposition with quadratic 

programming31,107,108. MHL values were log-transformed before deconvolution.   

Highly methylated haplotype in cancer plasma and normal tissues 

 Highly methylated haplotype (HMH) was defined as the methylation haplotype 

that have at least 2 methylated CpGs in the haplotype. Cancer-associated highly 

methylated haplotypes (caHMH) were the ones only found in cancer plasma samples but 

absence in any of the normal plasma samples and normal tissues. For the analysis of 

matched tumor-plasma data from the same individuals, caHMHs were the HMHs present 

in both the cancer plasma and the matched primary cancer tissues, but absence in all 

normal samples. In the analysis of plasma samples with no matched primary tumor 
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tissue, we identified caHMHs by subtracting HMHs found in cancer plasma with those 

present in all normal tissues and all normal plasma samples.  

Simulation of MHL in plasma mixture and comparison between MHL and 5mC in the 

plasma mixture 

 In evaluating caHMHs as potential markers for non-invasive diagnosis, we 

hypothesized that cfDNA in plasma is a mixture of DNA fragments from cancer cells and 

WB cells at different ratios (cancer DNA fragment from 0.1% to 50%). We created 

synthetic mixtures by random sampling of haplotypes in the Group II regions from cancer 

and WB data sets at different ratios, and repeated 1,000 times to empirically determined 

the mean and variance of MHL and 5mC levels at different fractions of cancer DNA. 

Once an empirical “standard curve” was constructed, we then used it to estimate the 

fraction cancer DNA in the plasma samples. In addition, we assessed the relationship 

between estimated cfDNA fraction and log-transformed normalized plasma cfDNA yield 

by linear regression. Signal-to-noise ratio to MHL and 5mC was conducted with the 

1,000-time sampling procedure and then the average estimated tumor fraction as well as 

the variation (standard deviation) were recorded and the ratio was calculated to measure 

the performance of the metric.  

Cancer tissue-of-origin analysis with plasma DNA.  

 Tissue specific methylation haplotype blocks (tsMHBs) were identified by a 2-

tailed t-test with FDR correction. Additional statistical analyses with MHL were also 

conducted by 2-tailed t-test unless stated explicitly. CRC plasma and LC plasma 

prediction evaluation were applied by random forecast therefore the test and validation 

sample were independent. Tissue-of-origin prediction was performed using a tsMHBs 

counting strategy, in which the tissue-of-origin of the plasma were assigned to the 

reference group with the maximum number of tsMHB fragments (assignment by 
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maximum likelihood). Specifically, in the first stage, the tissue-specific MHBs were 

identified with WGBS and RRBS datasets from solid tissues in the training samples. 

tsMHBs (each tissue have ~ 300 MHBs) were identified with the cutoff GSI> 0.1. In the 

second stage, the predictions were validated with our own RRBS dataset that included 

30 colorectal cancer plasma, 29 lung cancer plasma and 75 normal plasma samples. In 

the test dataset, we separated the samples into 5 parts so that 5-fold cross-validation 

could be applied to estimate the stability of the prediction, and the number of tissue-

specific MHB features were iterating from 50 to 300. The minimum number of features 

was selected when the accuracy for cancer plasma is higher than 0.8 and the accuracy 

for normal plasma is higher than 0.9 since we require high specificity in clinical 

applications. The selected number of features were used in the remaining samples to 

measure the accuracy of tissue-mapping. The variations of sensitivity, specificity, and 

accuracy in different subsets of 5-fold cross-variation were low (training dataset standard 

deviation<0.04 while testing dataset standard deviation<0.14) 
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Supplementary Tables 

Table 4-7. WGBS datasets information and mapping statistics 

Sample Source Tissue type Tissue 
Total mapped 
reads 

Ave. 
depth of 
coverage 

Genomic 
overage 

N37-Cerebellum (CRBL) This study  normal tissue Cerebellum 96,004,220 3.81 85.82% 
N37-Colon This study  normal tissue Colon 86,362,732 3.49 84.27% 
N37-Frontal lobe(FL) This study  normal tissue Frontal lobe 73,138,777 3.06 81.55% 
N37-Heart This study  normal tissue Heart 73,609,833 3.08 81.30% 
N37-Small intestine(SI) This study  normal tissue Small intestine 84,071,507 3.41 83.91% 
N37-Liver This study  normal tissue Liver 92,657,701 3.70 85.74% 
N37-Lung This study  normal tissue Lung 89,779,805 3.61 85.03% 
N37-Skeletal muscle(SM) This study  normal tissue Skeletal muscle 105,158,705 4.11 87.52% 
N37-Pancreas This study  normal tissue Pancreas 108,799,699 4.39 84.28% 
N37-Stomach This study  normal tissue Stomach 82,811,557 3.47 80.86% 
methylC-seq_h1+bmp4_r1 PMCID:PMC3786220 stem cells and progenitors embryonic stem cells derived 508,320,946 14.43 92.69% 
methylC-seq_h1+bmp4_r2 PMCID:PMC3786220 stem cells and progenitors embryonic stem cells derived 596,457,521 17.02 93.65% 
methylC-seq_h1-msc_r1 PMCID:PMC3786220 stem cells and progenitors embryonic stem cells derived 544,860,203 19.74 92.13% 
methylC-seq_h1-msc_r2 PMCID:PMC3786220 stem cells and progenitors embryonic stem cells derived 235,582,915 10.18 77.19% 
methylC-seq_h1-npc_r1 PMCID:PMC3786220 stem cells and progenitors embryonic stem cells derived 717,247,821 19.55 93.53% 
methylC-seq_h1-npc_r2 PMCID:PMC3786220 stem cells and progenitors embryonic stem cells derived 636,750,674 18.16 92.97% 
methylC-seq_h1_mesendoderm_r1 PMCID:PMC3786220 stem cells and progenitors embryonic stem cells derived 586,720,277 20.23 94.10% 
methylC-seq_h1_mesendoderm_r2 PMCID:PMC3786220 stem cells and progenitors embryonic stem cells derived 337,751,553 11.78 93.44% 
methylC-seq_h1_r1 PMCID:PMC3786220 stem cells and progenitors embryonic stem cells derived 496,854,703 11.75 92.45% 
methylC-seq_h1_r2 PMCID:PMC3786220 stem cells and progenitors embryonic stem cells derived 548,343,316 16.09 93.96% 
Centenarian PMID:22689993 normal tissue white blood cells 437,865,307 13.88 93.19% 
Middle-age PMID:22689993 normal tissue white blood cells 436,803,766 13.89 93.10% 
New-born PMID:22689993 normal tissue white blood cells 446,752,526 14.14 93.34% 
Colon_primary_tumor PMID:23925113 primary tumor tissue primary colon tumor 930,844,352 30.26 88.49% 
HCT116 PMID:25239471 cell line colon cancer cell line 313,233,043 8.12 92.45% 
STL001BL-01 Roadmap Epigenetics  normal tissue Bladder 2,225,282,265 78.25 92.13% 
STL001FT-01 Roadmap Epigenetics  normal tissue Fat 807,909,068 28.38 91.51% 
STL001GA-01 Roadmap Epigenetics  normal tissue Gastric 866,472,335 30.44 91.62% 
STL001LG-01 Roadmap Epigenetics  normal tissue Lung 782,767,450 27.71 91.51% 
STL001LV-01 Roadmap Epigenetics  normal tissue Heart 1,824,013,758 64.39 92.00% 
STL001PO-01 Roadmap Epigenetics  normal tissue Muscle 756,086,418 26.53 91.46% 
STL001RV-01 Roadmap Epigenetics  normal tissue Heart 708,173,343 25.18 91.38% 
STL001SB-01 Roadmap Epigenetics  normal tissue Intestine 1,987,847,032 69.53 92.15% 
STL001SG-01 Roadmap Epigenetics  normal tissue Colon 2,119,821,939 74.72 92.13% 
STL001SX-01 Roadmap Epigenetics  normal tissue Spleen 1,041,390,267 36.66 91.69% 
STL001TH-01 Roadmap Epigenetics  normal tissue Thymus 1,861,688,106 65.81 92.02% 
STL002AD-01 Roadmap Epigenetics  normal tissue Kidney 951,581,565 33.76 91.17% 
STL002AO-01 Roadmap Epigenetics  normal tissue Vessel 697,441,452 24.63 90.97% 
STL002EG-01 Roadmap Epigenetics  normal tissue Esophagus 868,051,856 30.79 91.53% 
STL002FT-01 Roadmap Epigenetics  normal tissue Fat 1,004,247,873 35.60 91.20% 
STL002GA-01 Roadmap Epigenetics  normal tissue Gastric 762,365,245 26.91 91.04% 
STL002LG-01 Roadmap Epigenetics  normal tissue Lung 2,115,617,666 74.69 91.70% 
STL002OV-01 Roadmap Epigenetics  normal tissue Ovary 2,129,375,638 75.65 91.59% 
STL002PA-01 Roadmap Epigenetics  normal tissue Pancreas 844,006,942 29.73 91.11% 
STL002PO-01 Roadmap Epigenetics  normal tissue Muscle 866,606,093 30.54 91.14% 
STL002SB-01 Roadmap Epigenetics  normal tissue Intestine 563,351,692 21.55 84.93% 
STL002SX-01 Roadmap Epigenetics  normal tissue Spleen 953,725,789 33.63 91.21% 
STL003AD-01 Roadmap Epigenetics  normal tissue Kidney 2,033,812,621 71.71 92.03% 
STL003AO-01 Roadmap Epigenetics  normal tissue Vessel 3,216,930,660 112.34 92.32% 
STL003EG-01 Roadmap Epigenetics  normal tissue Esophagus 2,317,477,506 81.45 92.18% 
STL003FT-01 Roadmap Epigenetics  normal tissue Fat 1,866,543,974 65.41 92.03% 
STL003GA-01 Roadmap Epigenetics  normal tissue Gastric 2,225,019,266 77.85 92.11% 
STL003LV-01 Roadmap Epigenetics  normal tissue Heart 1,990,945,522 70.05 92.08% 
STL003PA-01 Roadmap Epigenetics  normal tissue Pancreas 1,762,389,162 62.11 92.04% 
STL003PO-01 Roadmap Epigenetics  normal tissue Muscle 2,296,688,359 81.23 92.09% 
STL003RA-01 Roadmap Epigenetics  normal tissue Heart 2,185,892,032 77.39 92.09% 
STL003RV-01 Roadmap Epigenetics  normal tissue Heart 2,056,445,884 72.16 92.09% 
STL003SB-01 Roadmap Epigenetics  normal tissue Intestine 790,000,067 28.13 91.47% 
STL003SG-01 Roadmap Epigenetics  normal tissue Colon 1,833,299,005 65.18 91.97% 
STL003SX-01 Roadmap Epigenetics  normal tissue Spleen 2,029,659,484 72.04 91.09% 
STL011LI-01 Roadmap Epigenetics  normal tissue Liver 1,101,355,323 39.08 91.76% 
SRX381569_tumor_colon PMID:26813288 primary tumor tissue CRC tumor 1,046,795,688 32.55 86.00% 
SRX381716_adenocarcinoma_lung PMID:26813288 cancer cell line H1437 530,779,493 16.99 85.88% 
SRX381719_squamous_cell_tumor_lung PMID:26813288 cancer cell line H157 502,645,425 16.31 83.24% 
SRX381722_small_cell_tumor_lung PMID:26813288 cancer cell line H1672 548,938,720 15.83 90.10% 
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Table 4-8. ENCODE RRBS dataset information 

Sample ID Project 

Tissue of origin 
prediction 
training Tissue type Tissue 

ENCFF000LUQ ENCODE Project Yes normal tissue Brain 
ENCFF000LUU ENCODE Project Yes normal tissue Brain 
ENCFF000LVA ENCODE Project Yes normal tissue Kidney 
ENCFF000LVB ENCODE Project Yes normal tissue Kidney 
ENCFF000LVJ ENCODE Project Yes normal tissue Liver 
ENCFF000LVN ENCODE Project Yes normal tissue Liver 
ENCFF000LVO ENCODE Project Yes normal tissue Lung 
ENCFF000LVR ENCODE Project Yes normal tissue Lung 
ENCFF000LVU ENCODE Project Yes normal tissue Pancreas 
ENCFF000LVW ENCODE Project Yes normal tissue Pancreas 
ENCFF000LWS ENCODE Project Yes normal tissue Stomach 
ENCFF000LWW ENCODE Project Yes normal tissue Stomach 
ENCFF000LVI ENCODE Project Yes normal tissue White blood cells 
ENCFF000LVK ENCODE Project Yes normal tissue White blood cells 
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Table 4-9. Clinical characteristics of cancer patient samples 
ID Tissue Description Race 

CRC.001 Colon poorly differentiated adenocarcinoma, consistent with recurrent colonic adenocarcinoma Caucasian 
CRC.002 Colon metastatic malignant hemangiopericytoma/malignant solitary fibrous tumor Caucasian 

CRC.003 Colon 
sigmoid colon, rectum, and anus, resection. recurrent invasive moderately- to poorly- 
differentiated Caucasian 

CRC.004 Colon metastatic adenocarcinoma. Caucasian 
CRC.005 Colon metastatic mucinous adenocarcinoma. Caucasian 
CRC.006 Colon metastatic moderately-differentiated adenocarcinoma with mucinous features. Caucasian 
CRC.007 Colon adenocarcinoma Caucasian 
CRC.008 Colon metastatic moderately-differentiated adenocarcinoma with municous features Caucasian 
CRC.009 Colon adenocarcinoma with municous features, moderately differentiated, pt4an2b Caucasian 
CRC.010 Colon mucinous adenocarcinoma, moderately differentiated Caucasian 
CRC.011 Colon metastatic adenocarcinoma/primary-colon adenocarcinoma Caucasian 

CRC.012 Colon 
invasive adenocarcinoma, moderately differentiated, two synchronous primary tumors, 
pt3n1c Black 

CRC.013 Colon colonic mucosa with no diagnostic alteration.-negative for dysplasia or malignancy Caucasian 
CRC.014 Colon metastatic adenocarcinoma with mucin production Asian 

CRC.015 Colon 
colonic mucosa with ulcer, granulation tissue, and polarizable foreignmaterial with 
associated iron, see comment.-no malignancy identified Caucasian 

CRC.016 Colon metastatic moderately differentiated adenocarcinoma, consistent withcolonic origin. Caucasian 
CRC.017 Colon moderately differentiated colorectal adenocarcinoma  Caucasian 
CRC.018 Colon adenocarcinoma with mucinous features, moderately differentiated, pt4an2b Caucasian 
CRC.019 Colon metastatic adenocarcinoma  Caucasian 
CRC.020 Colon Recurrent metastatic colon cancer Caucasian 
CRC.021 Colon moderately-differentiated adenocarcinoma Caucasian 
CRC.022 Colon tubular adenoma Caucasian 
CRC.023 Colon moderately differentiated adenocarcinoma (rectosigmoid) Caucasian 

CRC.024 Colon 
residual/recurrent adenocarcinoma, morphologically consistent with colorectal 
primar(abdominal wall) Caucasian 

CRC.025 Colon residual invasive moderately differentiated adenocarcinoma Caucasian 
CRC.026 Colon invasive moderately differentiated colonic adenocarcinoma Caucasian 

CRC.027 Colon 
focal invasive adenocarcinoma, arising in a background of tubular 
adenoma with high-grade dysplasia Caucasian 

CRC.028 Colon metastatic moderately differentiated adenocarcinoma consistent with colorectal origin Caucasian 
CRC.029 Colon Metastatic rectosigmoid colon cancer to the liver Caucasian 
CRC.030 Colon metastatic adenocarcinoma Caucasian 
LC.001 Lung invasive moderately differentiated adenocarcinoma, pt26n0 Asian 
LC.002 Lung poorly differentiated squamous cell carcinoma. consistent with pt2n0mx, stage ib Caucasian 
LC.003 Lung Carcinoid tumor of lung Caucasian 
LC.004 Lung squamous cell carcinoma, clear cell variant, moderately differentiated Caucasian 
LC.005 Lung squamous cell carcinoma, pt1bn0 Caucasian 

LC.006 Lung 
adenocarcinoma, mix subtype, including 60% bronchioalveolar carcinoma, mucinous 
subtype with 40% invasive carcinoma, acinar and papillary subtypes Caucasian 

LC.007 Lung invasive squamous carcinoma, moderately differentiated, consistent with pt1n0mx Caucasian 
LC.008 Lung invasive adenocarcinoma, poorly differentiated Caucasian 
LC.009 Lung non-small-cell carcinoma Caucasian 
LC.010 Lung poorly differentiated carcinoma, possibly adenoscc Caucasian 
LC.011 Lung squamous cell carcinoma poorly differentiated, pt3n0 Caucasian 
LC.012 Lung adenocarcinoma Caucasian 

LC.013 Lung 
well-differentiated neuroendocrine tumor arising in a background of neuroendocrine 
hyperplasia + tumorlets Caucasian 

LC.014 Lung 
invasive adenocarcinoma, moderately to poorly differentiated, 
  pt2an0 Caucasian 

LC.015 Lung cryptococcal pulmonary infection Caucasian 

LC.016 Lung adenocarcinoma 

Black or 
African 
American 

LC.017 Lung adenocarcinoma, acinar predominant, moderately differentiated Caucasian 
LC.018 Lung adenocarcinoma Caucasian 
LC.019 Lung adenocarcinoma, moderately differentiated Caucasian 
LC.020 Lung moderately differentiated non-small cell adenocarcinoma Asian 
LC.021 Lung squamous cell carcinoma Caucasian 
LC.022 Lung non-small cell lung carcinoma; stage iiia  Caucasian 
LC.023 Lung adenocarcinmoa Caucasian 
LC.025 Lung adenocarcinoma, mixed acinar and solid types, moderately differentiated Asian 
LC.026 Lung non-small cell carcinoma Caucasian 
LC.027 Lung adenocarcinom lung  Caucasian 
LC.028 Lung adenocarcinoma, poorly differentiated, pt2n0mx, stage 1b Caucasian 

LC.029 Lung lung cancer (egfr mutation e746-a750 dels mutation in exon 19) 

Black or 
African 
American 

LC.030 Lung lung adenocarcinoma. Caucasian 
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Introduction 

 Previous works in characterizing DNA methylation in cancer samples have 

discovered higher intrasample variability amongst cancer samples of the sample types57.  

In a recent study on 104 patients with primary chronic lymphocytic leukemias, local 

disordered DNA methylation78 was discovered and higher disorder in promoters was 

further associated with decreased survival in these patients.  These studies supports 

what have been suggested that there could be very few positively selected methylation 

changes in tumorigenesis and the general stochasticity of cancer methylome is a feature 

of cancer being associated with a plastic and stemlike epigenetic state109 .  From a 

biomarker development perspective then, most differentially methylated regions found 

between cancer and normal tissues are too stochastic to be good biomarker candidates.   

In the previous chapter, we identified cancer associated highly methylated 

haplotypes belonging in methylation haplotype block regions as potential biomarkers for 

cancer detection in cell free DNA.  This was not surprising since many studies have 

demonstrated that regions of frequent hypermethylation can be identified in cancer 

samples110.  A recent study showed that loss of hydroxymethylation and subsequent 

gain of methylation in the gene bodies characterizes kidney tumorigenesis11.  We 

hypothesized that cancer development could also be characterized by formation of 

methylation haplotype blocks within regions of hypermethylation in cancer and loss of 

hydroxymethylation could be one mechanism associated with the formation of these 

blocks.  

 In this chapter, we extended MHB identification to 107 WGBS datasets and 19 

TAB-seq datasets.  Next, we performed integrated analysis with arrays datasets to 

validate the MHBs followed by integrated analysis of multiple types of datasets to 

demonstrate the enrichment of MHBs at frequently hypermethylated regions in different 
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types of cancer, 5hmC marked regions in primary colon cancer tissues111 and TET2 

bound regions in HCT116 (colon cancer cell line)111 and TET3 bound regions in 

HEK393T (human embryonic kidney cell line)112.  Finally, we associated the MHB 

regions with DMRs of kidney tumorigenesis. 

Results 

Identification of an expanded set of MHBs from 107 WGBS 

 We collected 107 WGBS datasets, 61 of these were previous used in MHB 

identification (Chapter 4), and 46 additional datasets were as follows:  22 samples 

representing cancer cells and normal tissues from Heyn et al. 201689, 5 additional brain 

tissue and normal colon samples from Ziller et al. 201374, 4 primary normal and cancer 

kidney tissue samples from Chen et al. 201611, 15 normal blood subtypes and fetal 

tissues from the Roadmap Epigenomics project84.  We applied the MHB finding 

algorithm to the combined dataset with ~20.9 billion haplotype informative reads.  Unlike 

previously (Chapter 4), this set utilized haplotype reads with minimum 2 CpGs while 

previously a minimum of 4 CpGs was required for haplotype reads.  We then applied a 

looser threshold of 0.3 linkage disequilibrium r2 for MHBs (instead of 0.5 previously) due 

to the greater heterogeneity in this dataset and this resulted in 295,772 total MHBs.  The 

expanded set of MHBs overlapped with 48% of the previous 147,888 MHBs.  The loss of 

a majority of previous MHBs were probably due to increased heterogeneity (from ~0.711 

to ~ 20.9 billion usable reads) or due to additional signals from 5hmCs in brain tissues 

(we added 8 brain tissue samples).  The average methylation levels within these blocks 

are within 0 to 1, with bimodal peaks at 0.1 and 0.9 (Figure 5-1a). The average linkage 

disequilibrium was not less than 0.3 and has a peak around 0.4 (r2) (Figure 5-1b).  The 

fraction of discordant read was low, with a peak at 0.2 (Figure 5-1c).   
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To validate these expanded MHBs, we subset to CpGs from the Infinium 

HM450K assay. The adjacent CpG pairs within MHBs is significantly higher in linkage 

disequilibrium than the adjacent CpG pairs outside of MHBs (Figure 5-1d).  Strong 

correlation between adjacent CpGs is necessary for CpGs pairs within MHBs.  As 

expected, the pairwise Pearson’s correlation for adjacent CpGs across 30 glioblastoma10 

and 4 cerebellum41 samples (oxBS-array and BS-array dataset) showed significantly 

higher correlation for CpGs within MHBs than outside for both 5mC and 5hmCs (Figure 

5-1e,f).   

 

Figure 5-1. Expanded methylation haplotype blocks 

(a) The distribution of average methylation across blocks from 107 WGBS samples. (b) the 

distribution of average linkage disequilibrium (r2) values across blocks. (c) the fraction of 

discordant reads (reads with both methylated and unmethylated CpGs) within blocks. (d) the 

linkage disequilibrium (r2) values for adjacent CpGs within blocks and beyond blocks. (e) the 

Pearson’s correlation for methylation levels of adjacent CpGs within blocks and beyond blocks 

from oxBS-array data. (f) the squared Pearson’s correlation for hydroxymethylation levels of 

adjacent CpGs within blocks and beyond blocks from oxBS-array subtracted from BS-array 

levels. 
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Extension of MHBs identification to TAB-seq datasets 

 We queried TAB-seq datasets for hydroxymethylated haplotype blocks using the 

same approach as the one used for WGBS datasets.  We compiled a total of 19 TAB-

seq datasets comprise of 5 samples represent stem and progenitor cell types (UCSD 

Human Reference Epigenome Mapping Project), 8 are blood subtypes113,114, 2 are 

frontal cortex115 samples, 2 primary kidney tissue11 samples, and 2 primary kidney tumor 

tissue11 samples.  In total we obtained 3.4 billion haplotype informative reads and the 

MHB finding algorithm detected 27,422 hydroxymethylated haplotype blocks (hMHBs).  

The average hydroxymethylation level within these blocks has a peak around 0.05, 

which was less than the average hydroxymethylation level genome wide (Figure 5-2a).  

The average linkage disequilibrium within the blocks was not less than 0.3, and has a 

peak near 0.4 (r2) (Figure 5-2b). The fraction of discordant reads was also very low, with 

a peak less than 0.05 (Figure 5-2c). 

Again to validate these blocks, we subset to CpGs from the Infinium HM450K 

assay. The adjacent CpG pairs within hMHBs is significantly higher in linkage 

disequilibrium than the adjacent CpG pairs outside of MHBs (Figure 5-2d).  The 

pairwise Pearson’s correlation coefficient for adjacent CpGs across showed lower 

correlation for CpGs within hMHBs than outside for 5hmCs from a TAB-array dataset 

with human IPSCs, cardiovascular progenitor cells, neuroprogenitor cells, and human 

dermal fibroblasts (Figure 5-2e).  We looked additionally at the set of 30 glioblastoma 

and 4 cerebellum oxBS-array datasets, and again did not see higher correlation for 

CpGs within hMHBs than outside hMHBs (Figure 5-2f).  It was possible that 5hmC 

levels were too low within hMHBs, perhaps because in these regions there is stronger 

pressure to proceed to demethylation.  Furthermore, we found that only 0.2% of CpGs 

covered by the Infinium HM450K arrays were within hMHBs while 11.7% of CpGs were 



104 

 

 

within MHBs, which make it difficult to validate hMHBs with pairwise correlation 

coefficient. 

 

Figure 5-2. Hydroxymethylation haplotype blocks 

(a) The distribution of average hydroxymethylation across blocks from 19 TAB-seq samples. (b) 

the distribution of average linkage disequilibrium (r2) values across blocks. (c) the fraction of 

discordant reads (reads with both hydroxymethylated and unhydroxymethylated CpGs) within 

blocks. (d) the linkage disequilibrium (r2) values for adjacent CpGs within blocks and beyond 

blocks. (e) the Pearson’s correlation for hydroxymethylation levels of adjacent CpGs within blocks 

and beyond blocks from TAB-array data. (f) the squared Pearson’s correlation for 

hydroxymethylation levels of adjacent CpGs within blocks and beyond blocks from oxBS-array 

subtracted from BS-array levels. 

Regional enrichment analysis  

 Similar to our previous results (Figure 5-3), the expanded MHBs are enriched for 

imprinted genes, variably methylated regions (VMRs), CpG islands, enhancers, 

promoters, CpG island shores, and super-enhancers. They were also depleted at CpG 

island shelves, lamin-associated domains91 (LADs), and large organized chromatin Lys9 

modifications92 (LOCKs).  Not much unlike MHBs, the hMHBs were also enriched at 
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imprinted genes, VMRs, CpG islands, promoters, super-enhancers, and LADs.  But they 

were not enriched for CpG island shores, shelves, and LOCKs.   

 Next, we asked whether the DMRs associated with cancer developments are 

associated with MHBs or hMHBs.  First, we obtained a list of 1,154 CpG positions that 

have been identified as frequently hypermethylated in cancer from seven tissue types110.  

We performed regional enrichment analysis on this set and found a significant 

enrichment of 476 CpGs (permutation p-value =0, enrichment factor = 25.72) for MHBs, 

and a not significant enrichment of 5 CpGs (permutation p-value = 0.058, enrichment 

factor = 2.5) for hMHBs.  We also obtained a merged set of DNA methylation valleys 

(DMVs)13 which were identified from stem and progenitor cells as regions depleted of 

DNA methylation and commonly co-localizes with early developmental genes and genes 

involved in cancer pathways.  Both MHBs and hMHBs were enriched within these 

DMVs, (permutation p-value=0, enrichment factor=12.12; permutation p-value=0, 

enrichment factor=2.84 for MHBs and hMHBs respectively). Since these region sets 

were defined based on analysis of DNA methylation only, it was not unexpected that 

hMHBs observed much less enrichment. However, the strong enrichments of our set of 

MHBs support the potential of MHBs as cancer biomarkers. 

 We also queried hmeDIP data for association with 5hmC peaks in normal colon 

and cancer colon tissues111.  MHBs were significant enriched in 5hmC peaks 

(permutation p-value=0, enrichment factor=2.60; permutation p-value=0, enrichment 

factor=2.79 for normal and tumor colon respectively).  However, hMHBs were depleted 

in 5hmC peaks likely because hMHBs have very low 5hmC levels that could not be 

easily detected by hmeDIP assay (permutation p-value=0, enrichment factor=0.94; 

permutation p-value=0, enrichment factor=0.84 for normal and tumor colon respectively). 
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We also looked for enrichment at TET2 binding peaks for colon cancer cells111 

(HCT116) and TET3 binding peaks for human embryonic kidney cells112 (HEK293T).  

We found significant enrichment of peaks in MHBs for both TET2 and TET3 

(permutation p-value =0, enrichment factor=3.55 and p=0, enrichment factor=4.96 for 

HCT116 and HEK293T respectively).  There was just as strong enrichment of TET 

proteins binding for hMHBs in both cell types (permutation p-value =0, enrichment 

factor=4.39 and permutation p-value =0, enrichment factor=2.52 for HCT116 and 

HEK293T respectively).Thus, it appears that some regions with MHBs formation may 

associate with both 5hmC levels and Tet protein activity. 

 

Figure 5-3. Regional enrichment of blocks 

 

Association of 5hmC loss with MHBs 
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 With the 295,772 MHBs as a starting point, we asked whether the DMRs 

associated with kidney tumorigenesis are associated with MHBs.  We utilized TAB-seq 

and WGBS datasets from a kidney cancer study11 comprised of two paired normal and 

tumor tissues samples to identify regions with loss of 5hmC and gain of 5mC.  We 

identified 95,402 such DMRs and 26,334 of these DMRs overlaps with an MHB. Thus, 

these DMRs have significant overlap of MHBs (permutation p-value=0, enrichment 

factor=1.28).  The kidney cancer study11 also showed that downregulation of IDH1, 

which is a protein that typically generate the 2-ketoglutarate (2-KG) molecules utilized as 

a substrate for TET protein activities, is a mechanism underlying the loss of 5hmC in 

kidney cancer.  In experiments with ectopic overexpression of IDH1, the study showed 

that the level of 5hmC can be restored in kidney cancer cells while also blocking tumor 

invasion in mice xenografts.  Therefore a subset of MHBs are a result of lack of Tet2 

activity that occurs normally in non-cancer tissues.  

Conclusion 

 In this chapter, we investigated the relationship between methylation and 

hydroxymethylation in the context of linked methylation or haplotype blocks.  Through an 

integrated analysis, we found support of MHBs as cancer biomarkers. We further 

discovered an association of 5hmC with MHBs and discovered a set of MHBs that co-

localizes with DMRs in kidney tumorigenesis.   

Methods 

NGS read mapping 

 WGBS and TAB-seq data were processed in similar fashions. We first trimmed 

all PE or SE fastq files using trim-galore version 0.3.3 to remove low quality bases and 

biased read positions. Next, the reads were encoded to map to a three-letter genome via 

conversion of all C to T or G to A if the read appears to be from the reverse complement 
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strand. Then the reads were mapped using BWA mem version 0.7.5a, with the options “-

B2 -c1000” to both the Watson and Crick converted genomes. The alignments with 

mapping quality scores of less than 5 were discarded and only reads with a higher best 

mapping quality score in either Watson or Crick were kept. Finally, the encoded read 

sequences were replaced by the original read sequences in the final BAM files. 

Overlapping pair end reads were also clipped with bamUtils clipOverlap function.  

Identification of methylation haplotype blocks (MHBs) from WGBS or TAB-seq data 

 Human genome was split into non-overlapping “sequenceable and mappable” 

segments using a set of in-house generated WGBS data from 10 tissues of a 25-year 

adult male donor (same regions as Chapter 4). Mapped reads from WGBS data sets 

were converted into methylation haplotypes at minimum 2 CpG positions in Hg19. 

Methylation linkage disequilibrium was calculated on the combined methylation 

haplotypes for pairs of CpGs using equation 5.1 where Fij is the fraction of total 

haplotypes with methylation patterns i and j for a pair of CpGs.  Possible values for i (first 

position) and j (second position) are ‘either’ (X), ‘unmethylated’ (U) or ‘methylated’ (M). 

We then partitioned each segment into methylation haplotype blocks (MHBs). MHBs 

were defined as the genomic region in which the r2 value of two adjacent CpG sites is no 

less than 0.3 and minimum 3 CpGs.  

Eq. 5-1  

Identification of DMRs in kidney cancer 

 We performed DHMRs identification of kidney cancer TAB-seq datasets using 

cgDMR-miner (https://github.com/dinhdiep/cgDMR-miner).  The TAB-seq dataset was 

comprise of two paired normal and tumor tissue samples.  After DHMRs were identified 

using cgDMR-miner, we calculated the corrected average methylation frequencies for 

p/ =  (qrr − qsrqrs)/
qrsqsrqtsqst
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each segment with BS-seq data from the same two paired normal and tumor tissue 

samples.  The corrected average 5hmC level was calculated using equation 5-2, and the 

corrected average 5mC level was calculated using subtraction of the corrected 5hmC 

level from the BS-seq frequency.  We then generated DHMRs with a minimum 10% loss 

of 5hmC for both pairs from normal to tumor.  We then further required that the same 

region observe a 10% gain of 5mC from normal to tumor in both pairs.  This resulted in 

95,402 DMR regions.   

Eq. 5-2 ℎ�v = *wxyz{-�'|�&-} {~�' − �����(1 − ��#(��#�� p��)) 

Enrichment analysis of methylation haplotype blocks for known functional 

elements 

 Enrichment analysis was performed by random sampling as previously 

described102. Genomic regions with same number and fragment length distribution were 

randomly sampled within the mappable regions (regions in our WGBS dataset), and 

repeated 1,000 times. Statistical significance was estimated based on the number of 

times an equivalent or higher number of overlapping regions were found. Fold changes 

(enrichment factors) were calculated as the ratios of observation over random 

expectation. Enhancer definition was based on Andersson et al.70, super enhancer was 

derived from Hnisz et al.103 and promoter regions were based on the definition by 

Thurman et al.71. All the genomic coordinates were based on GRCh37/hg19.  
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Through an iterative process of utilizing bioinformatics tools to develop better 

assays and utilizing experience with assays development to develop better 

bioinformatics tools, we demonstrated that the integration of bioinformatics with 

experimental biology can greatly advance research in biomarker development.  

We first utilized bioinformatics to identify informative genomic regions that could 

be considered “hotspots” for identifying differentially methylated regions and developed a 

scalable and high throughput method to assay to investigate these regions. Leveraging 

our assay development expertise, we identified the areas in which methylation 

sequencing analysis pipeline could be improved.  This led to the development of a highly 

accurate pipeline with an emphasis towards better accuracy that no other tools can 

provide.  Specifically, we implemented reads trimming to remove sequencing bias, 

adaptor trimming, an alignment approach for longer read lengths with higher specificity, 

and SNP calling on bisulfite reads that helps with sample identification.   

We demonstrated that BSPP is a flexible framework for developing screening 

panels.  For example, panels of “hotspots” probes could be designed for the most 

informative CpGs in each disease context.  Additionally, two technical advantages for 

utilizing BSPP over other targeted approaches are the ability to perform absolute 

molecule counting with the capture probes and higher mappability of the data since only 

regions with unique reads mapping are selected for capture.  One immediate area of 

interest for panel development is for the quantification of 5hmC which are found at only a 

fraction of the 5mC levels.   

We next asked whether novel tools for identifying potential DNA biomarkers can 

be created with more sensitivity for making discoveries from reference data.  This led us 

to develop cgDMR-miner, a bioinformatics tool for identifying differentially methylated 

regions (DMRs) with much better sensitivity on shallow sequencing data than current 
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methods.  Another novelty in our method is the ability identify DMRs from datasets with 

multiple groups that can include ungrouped samples.  From the biomarkers development 

perspective, it is cost effective to be able to identify potential biomarker candidates with 

shallow sequencing datasets in initial screens and validate biomarkers in a larger screen 

with a targeted assay.   

We have only tested cgDMR-miner on bulk libraries but not on extremely low 

input libraries.  Applicability of cgDMR-miner to sorted, 10-30 cells datasets should also 

be investigated.  Low input libraries are susceptible to higher levels of PCR bias, thus, 

questions regarding how tolerance our approach is to various levels of technical noise in 

data such as batch effects and PCR bias need to be answered in future works. 

Lastly, we were also concerned with current limitations in investigating DNA 

methylation when the DNA sample is in small amount such as cell free DNA.  Before, 

only targeted sequencing or whole genome bisulfite sequencing were successfully 

applied to study DNA methylation in cell free DNA30,31,116.  We were the first group to 

apply sc-RRBS to cell free DNA and achieved an apparent enrichment of RRBS targets 

of about 2 folds.  To take advantage of this enrichment of CpG dense regions, we 

developed a bioinformatics approach focused on regions with coordinated methylation of 

nearby CpGs.  This approach relies on the identification of methylation haplotype blocks, 

or CpG regions with highly linked methylation and relies on the application of the 

methylation haplotype load (MHL) metric to capture the pattern of co-methylation on 

single DNA molecules.  With this, we were able to identify hypermethylated regions in 

cancer and detect methylated haplotypes (physical molecules) from these regions in 

patients cell free DNA.   

Future investigation into methylation haplotype blocks could help identify 

mechanisms and contexts that give rise to the blocks.  We also found significant overlap 
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of 5hmC with MHBs, therefore, it is possible that 5hmC signals might confound MHBs 

identification.  oxBS-seq datasets, which provide true 5mC signals, can help resolve this 

issue.  Furthermore, improving sample preparation and library construction on cell free 

DNA could greatly advance the development of a clinical assay using cell free DNA.  

First, due to the fragmented nature of cell free DNA, application of scRRBS protocol to 

cell free DNA only enriched for RRBS targets by two folds whereas on unfragmented 

DNA, the enrichment is typically by at least twenty folds.  One possible solution is to 

perform post amplification capture of library fragments containing targeted regions. 

 In summary, this work have advanced DNA methylation biomarkers 

developments while demonstrating the successful integration of bioinformatics and 

biomolecular techniques. With further application of these tools to the development of 

more specific and robust clinical DNA biomarkers we can begin to diagnose, make 

prognosis, and track human diseases.
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APPENDIX 

Table A-1. List of BSPP primers 

Primer name Primer sequences 
pAP1V61U 5’-G*G*G*TCATATCGGTCACTGTU-3’ 
AP2V6 5’-/5Phos/CACGGGTAGTGTGTATCCTG-3’ 
RE-DpnII-V6 5’-GTGTATCCTGATC-3’ 

AmpF6.4Sol 
5’-
AATGATACGGCGACCACCGAGATCTACACCACTCTCAGATGTTATCGAGGTCCGAC
-3’ 

AmpF6.3NH2 5’-/5AmMC6/CAGATGTTATCGAGGTCCGAC-3’ 
AmpR6.3NH
2 

5’-/5AmMC6/GGAACGATGAGCCTCCAAC-3’ 

PCR_F 5’-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACG CTCTTC-3’ 
PE_t_N2 5’-ACACTCTTTCCCT ACACGACGCTCTTCCGA TCTN*N-3’ 

PE_b_A 5’-/5Phos/AGATCGGAAGAGCGGTTCAGCAGGAATGCCGAG-3’ 

eMIP_CA1_F 5’- TGCCTAGGACCGGATCAACT-3’ 

eMIP_CA1_R 5’- GAGCTTCGGTTCACGCAATG-3’ 

CP-2-FA 5’-GCACGATCCGACGGTAGTGT-3’ 

CP-2-RA 5’-CCGTAATCGGGAAGCTGAAG-3’ 

CA-2-
FA.Indx7Sol 

5’-
CAAGCAGAAGACGGCATACGAGATGATCTGCGGTCTGCCATCCGACGGTAGTGT-3’ 

CA-2-
FA.Indx45Sol 

5’-
CAAGCAGAAGACGGCATACGAGATCGTAGTCGGTCTGCCATCCGACGGTAGTGT-3’ 

CA-2-
FA.Indx76Sol 

5’-
CAAGCAGAAGACGGCATACGAGATAATAGGCGGTCTGCCATCCGACGGTAGTGT-3’ 

CA-2-RA.Sol 5’- AATGATACGGCGACCACCGAGATCTACACGCCTATCGGGAAGCTGAAG-3’ 

Switch.CA-2-
FA.Sol 

5’- AATGATACGGCGACCACCGAGATCTACACGCCTATCCGACGGTAGTGT-3’ 

Switch.CA-2-
RA.Ind7Sol 

5’- 
CAAGCAGAAGACGGCATACGAGATGATCTGCGGTCTGCCATCGGGAAGCTGAAG-
3’ 

Switch.CA-2-
RA.Ind45Sol 

5’- 
CAAGCAGAAGACGGCATACGAGATCGTAGTCGGTCTGCCATCGGGAAGCTGAAG-
3’ 

Switch.CA-2-
RA.Ind76Sol 

5’- 
CAAGCAGAAGACGGCATACGAGATAATAGGCGGTCTGCCATCGGGAAGCTGAAG-
3’ 

  

* Indicates a phosphorothioate bond 
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Table A-2. Lambda DNA primers for generating control DNA 

Primer ID Primer seq Purpose Direction 
Amplicon 

size 

Lambda_hmC_F CAGGAAGACAGTGCTCATGC 5hmC F 189 

Lambda_hmC_R CCAGCAGGGATTTCTCCTGT 5hmC R  

bisLambda_hmC_F TAGGAAGATAGTGTTTATGT  5hmC F 189 

bisLambda_hmC_R CCAACAAAAATTTCTCCTAT  5hmC R  

Lambda_mC_F TGTTATTCATGTTGCATGGTGC 5mC F 262 

Lambda_mC_R CAGCTGACTTCTTTTCTTTCAC 5mC R  

bisLambda_mC_F TGTTATTTATGTTGTATGGTGT  5mC F 262 

bisLambda_mC_R CAACTAACTTCTTTTCTTTCAC  5mC R  

Lambda_C_F TTGCTCATAGGAGATATGGT C F 277 

Lambda_C_R CTTGCTAACCAATTCCTAGG C R  

bisLambda_C_F TTGTTTATAGGAGATATGGTAGA C F 277 

bisLambda_C_R CTTACTAACCAATTCCTAAA C R  
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Designing bisulfite padlock probes with ppDesigner 

Reference files and dependencies 

1. ppDesigner can be downloaded from http://genome-
tech.ucsd.edu/public/Gen2_BSPP/ppDesigner/ppDesigner.php. 

2. A Mac OS or any other modern Unix-based system is required.  
3. Perl is required. It should already be included in all Unix-based system. 
4. Perl modules, File::Temp and Sort::Array, are required to run ppDesigner and 

can be downloaded from http://www.cpan.org. 
5. BioPerl toolkit is required to run ppDesigner and can be obtained from 

http://www.bioperl.org. 
6. Optional: UNAfold software version 3.8. Using UNAFold will result in a more 

accurate prediction of probe efficiency. It is not required, and it will not change 
the probe sequence. 

7. Genome reference sequences in FASTA format is required and can be 
downloaded from UCSC Genome Browser. These cannot be in the multi-FASTA 
format with multiple chromosomes per file.  

8. Targeted region list in BED format is required to design targets. 
 

Step-by-step 

1. Unzip the ppDesigner software package.  
2. Ensure that individual reference sequences (FASTA) files are placed in a 

common directory. 
3. Convert the target list BED file to a target file in the format required. The file 

should be tab-delimited and have four required columns (1) the unique ID for 
each target region, (2) the FASTA filename, such as chr22 (for chr22.fa), (3) The 
starting position, and (4) The ending position. The final fifth column can be the 
required strand to capture. If strand is not indicated, the program will pick the 
more efficient probes from either strand. An example target file is given in the 
Example folder. 

4. Generate a job file in the format required. An example job file is given in the 
Example folder. All of the parameters must be given. The unafold_path variable 
can be set to ‘NA’ if using_unafold=0. All paths must be full paths. See the Notes 
section for important considerations in choosing parameter values. 

5. Run ppDesigner.pl script as follows. See the README for ppDesigner for 
specific usage instructions. 

/ppDesigner_BSPP_v2.0/src/ppDesigner.pl jobFile.pl > 
Outputs.txt 

6. Run the primer2padlock.pl script as follows. The maxH1H2len is a numerical value 
and should be the same as the H1_plus_H2_len variable from the job file. Indicate 
“array” to generate probes sequences that contain amplification adapters for array 
synthesis of probes.  

/ppDesigner_BSPP_v2.0/src/primer2padlock.pl maxH1H2 len 
[array or empty] < Outputs.txt > probes.seq 
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7. The probe sequences are now ready to be synthesized. It is recommended to 
randomize the order of the sequences so that technical effects such as bad 
quality spots on the arrays will affect probes in a random manner do not appear 
as systematic errors.  

 
Notes 

• The maximum target length must take into consideration the desired sequencing 
platform for the assay. For most applications, a maximum target length of 100bp 
should be sufficient. Longer target lengths will require longer sequencing reads 
or paired-end sequencing to cover the entire targeted region. There is also an 
inverse correlation between the capture efficiency and the target length. 

• The minimum and maximum target length must be close to enable selection of 
specific capture products prior to sequencing. Larger differences will lead to more 
potential non-specific products being sequenced. 

• The maximum number of CpGs in the capture arm should be limited to 0 or 1. 
More CpGs means that more alternative probes must be synthesized to avoid 
capture bias towards methylated or unmethylated targets. The capture efficiency 
of probes can also vary between methylated or unmethylated probes. The 
presence of CH methylation can be negligible in most cell types so we safely 
assume that they are unmethylated. 

• Minimum H1 and H2 lengths lower than 25 should be avoided as this may lead to 
capture sequences with very low melting temperatures that may not be able to 
anneal efficiently. H1 plus H2 length should not be longer than 60 as this will lead 
to higher synthesis cost and potentially more non-specific products.  

• Unique molecular identifiers (UMI) can be attached to padlock probes to allow for 
single molecules counting and removal of clonal read 

 
Performing bisulfite reads analysis with BisReadMapper 

Reference files and dependencies 

1. BisReadMapper can be downloaded from github: 
https://github.com/dinhdiep/BisReadMapper 

2. A Mac OS or any other modern Unix-based system is required. 
3. Perl is required. It should already be included in all Unix-based system. 
4. Trim Galore! is required: 

http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ 
Note that Cutadapt is required also for Trim Galore! 

5. bamUtils is required: http://genome.sph.umich.edu/wiki/BamUtil 
6. One of the four supported aligners: Supported aligners are bowtie2 (version 

bowtie2-2.1.0), bwa (bwa-0.7.5a), SOAP2 (soap2.21release) , LAST (last-458) , 
or GEM (GEM-binaries-Linux-x86_64-core_i3-20130406-045632). 
Note that BWA is recommended for general usage. 

7. Perl module Statistics::LSNoHistory is required for computing the Pearson’s 
correlation between Watson and Crick strands. 

8. Samtools is required: http://samtools.sourceforge.net/ 
9. Genome reference files in FASTA format 
10. Genome reference chromosome sizes file. 
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Step-by-step 

1. Use genomePrep.pl to generate the in-silico bisulfite converted references, C->T 
for Watson, and G->A for Crick strands. Note that bisulfite conversion makes the 
two strands non-complementary. 

2. Use aligner software to create index files from the reference sequence for 
alignment. NOTE: Both strands (*.bis.CT and *.bis.GA) can be concatenated into 
one file and only one index needs to be created so long as the aligner can 
support larger index files. 

3. Use samtools to generate the *.fai file from the reference sequence. 
4. Generate list_fastq_file or a table of the files to be processed. Each column in 

this file represents: 
<sample id> <dir> <read1.fq | read1.fq,read2.fq | *.sam> <phred> <clonal 
method> <adaptor r1 sequence> <adaptor r2 sequence> 

5. Generate the list_paths file 
6. Run MasterBisReadMapper.pl with list_fastq_files and list_paths as inputs. 

 
Identifying differential methylation with cgDMR-miner 

Reference files and dependencies 

1. cgDMR-miner can be downloaded from https://github.com/dinhdiep/cgDMR-
miner 

2. A Mac OS or any other modern Unix-based system is required.  
3. Perl is required. It should already be included in all Unix-based system. 
4. R is required. It can be downloaded from https://www.r-project.org/ 
5. Perl modules, Math::Random, Statistics::LSNoHistory, Statistics::Basic, 

Statistics::Descriptive, are required and can be downloaded from 
http://www.cpan.org. 

6. The following R packages are required and can be downloaded from 
Bioconductor: bsseq, data.table, depmixS4, DNAcopy, entropy, fastseg, 
GenomicRanges, graphics, MASS, methods, mgcv, mhsmm, pryr, 
RColorBrewer.  

7. Reference genome CpG position lists. The genomePrep.pl script from 
BisReadMapper can be used to obtain CpG positions from any reference FASTA 
file, then converted to BED using the following awk command. 

sed ‘s/:/\t/g’ cpg.positions.txt | awk ‘{printf(“%s \t%d\t%d\n”, 
$1, $3-1, $3)}’ > cpg.positions.bed 

Usage 

perl cgDMR-miner.pl samplesInfo cpgBedList minDepth  pValueCutoff 
minEffectSize segmentationMode 

samplesInfo. A tab separated file with three columns and one row per sample, (1) sample name, 

(2) sample id, (3) path to list of methylation frequency files. For each sample a list of methylation 

frequency file must be generated, which is a tab separated table comprised of three columns and 

one row per chromosome: (1) sample name matching samples_info file, (2) path to the specific 
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methylation frequency file, (3) chromosome name. Note that both sample names and sample ids 

should not contain any spaces. See Example. 

cpgBedList. A tab separated file with two columns, (1) chromosome name, (2) path to cpg 

positions bed file. For each chromosome, a bed file containing the CpG positions to be 

considered must be provided. If chromosome bed file is missing, then that chromosome will be 

ignored. Note that chromosome names should not contain any spaces. See Example. 

minDepth. An integer that is the minimum total depth required in each sample for DMR 

summarization. Default is 10. 

pValueCutoff. A floating value [0-1] that is the maximum p-value for DMRs. Default is 0.001 

minEffectSize. a floating value greater or equal to 0 that is the effect size cutoff for DMR calling. 

This is equals to the square root of the test statistic divided by N (total depth of coverage for all 

samples). 

segmentationMode. "HMM" or "CBS". HMM option will utilize 5-states Hidden Markov Model 

while CBS option will utilize circular binary segmentation. I recommend HMM for WGBS data and 

CBS for other genome-wide datasets such as RRBS or capture sequencing data. 

 




