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Bifurcation analysis of an agent-based model for predator–prey interactions

C. Colona,b,d,∗, D. Claessenb,c, M. Ghila,b,e

aLaboratoire de Meteorologie Dynamique, Ecole Normale Supérieure, F-75230 Paris Cedex 05, France
bEnvironmental Research and Teaching Institute, Ecole Normale Supérieure, F-75230 Paris Cedex 05, France

cInstitut de Biologie de l’Ecole Normale Supérieure (CNRS UMR 8197, INSERM U1024), Ecole Normale Supérieure, 46 rue d’Ulm, 75005 Paris,
France

dApplied Mathematics Department, Ecole Polytechnique, Route de Saclay, 91128 Palaiseau, France
eDepartment of Atmospheric and Oceanic Sciences, University of California at Los Angeles, Los Angeles, CA 90095-1565, USA

Abstract

The Rosenzweig-MacArthur model is a set of ordinary differential equations (ODEs) that provides an aggregate

description of the dynamics of a predator–prey system. When including an Allee effect on the prey, this model

exhibits bistability and contains a pitchfork bifurcation, a Hopf bifurcation and a heteroclinic bifurcation. We develop

an agent-based model (ABM) on a two-dimensional, square lattice that encompasses the key assumptions of the

aggregate model. Although the two modelling approaches – ODE and ABM – differ, both models exhibit similar

bifurcation patterns. The ABM model’s behaviour is richer and it is analysed using advanced statistical methods.

In particular, singular spectrum analysis is used to robustly locate the transition between apparently random, small-

amplitude fluctuations around a fixed point and stable, large-amplitude oscillations. Critical slowing down of model

trajectories anticipates the heteroclinic bifurcation. Systematic comparison between the ABM and the ODE models’

behaviour helps one understand the predator–prey system better; it provides guidance in model exploration and allows

one to draw more robust conclusions on the nature of predator–prey interactions.

Keywords:

ODE, Hopf bifurcation, heteroclinic bifurcation, time series analysis, singular spectrum analysis, critical transition,

early-warning signals

1. Introduction and motivation1

Ecologists are more and more frequently asked to make predictions about the potential effects of specific changes2

to an ecosystem or a community of species. This demand is particularly vivid in the context of climate change3

(Lavergne et al., 2010; Valladares et al., 2014) or resource management. It especially applies when anthropic har-4

vesting is at play, as in fisheries (Lindegren et al., 2010), or when biological factors might disturb an established5

community of species, as in cases of non-endemic species invading an ecosystem (Crowl et al., 2008). Understanding6
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these consequences is also relevant when the driver of changes is internal, in particular through evolutionary processes7

(Ferrière, 2009).8

Whether the engine of change is external or internal, analysing the consequences requires a comprehensive un-9

derstanding of the community dynamics. Achieving such an understanding has proven to be a challenging task.10

Observational and experimental data show that an ecological system composed of only two interacting species can11

exhibit non-trivial dynamics, such as bistability and oscillations (e.g., Fussmann et al., 2000). The importance of12

non-linear mechanisms in leading to such dynamics has motivated theoretical work on simple models to characterise13

the dynamical regimes, identify and circumscribe basins of attraction, and locate bifurcations or regime shifts. To do14

so, ecologists have borrowed mathematical concepts and tools from other disciplines and tried a variety of modelling15

techniques, especially using systems of ordinary differential equations (ODEs).16

A recent innovation is the development of agent-based models (ABMs), also called individual-based models in the17

ecological literature. ABMs simulate systems described by the rules of interaction among autonomous individuals.18

According to DeAngelis and Mooij (2005), some scholars view ABMs as exploratory tools that extend classical19

aggregate models, whereas others suggest that ABMs provide a methodological basis on which to build a novel20

research paradigm (Grimm et al., 1999; Grimm and Railsback, 2005). In the field of population dynamics, ABMs21

have helped investigate the role of local interactions (Mccauley et al., 1993) and spatial dynamics (Dieckmann et al.,22

2000); they are also being increasingly employed to study evolutionary dynamics (Łomnicki, 1999; Gras et al., 2009).23

Can ABMs help the understanding of community dynamics? How can their use complement the classic ODE24

approach? In climate sciences, it has been proposed to advance knowledge by moving across a hierarchy of models of25

the same class of phenomena (Schneider and Dickinson, 1974; Ghil, 2001; Dijkstra and Ghil, 2005). This hierarchy26

ranges from low-resolution ‘toy’ models, which help understand the general behaviour of the system, all the way to27

very detailed ‘realistic’ models, which may be used for real-time forecasting of weather or climate. Moving up the28

hierarchy implies adding mechanisms and improving resolution, which often comes at the cost of losing analytical29

tractability and insight. Detailed models have to be integrated numerically, and analysing their outputs may require30

complex statistical manipulations. Going back and forth between different levels allows one to test the robustness of31

the conclusions and guide fruitful improvements of the models at each level of the hierarchy.32

The hierarchical modelling approach could be insightfully applied to study the dynamics of communities and even33

ecosystems. It would thus appear that classical ODE systems, such as the Lotka-Voltera equations, are toy models34

— in the hierarchical modelling terminology (Ghil, 2001) — whereas the ABM framework is more appropriate for35

developing detailed models. ABMs can be seen as more realistic, since agents often correspond to observable organ-36

isms (Bonabeau, 2002). Contrasting the results of different models has already allowed ecologists to point out some37

mechanisms that a single-model approach may overlook, such as the influence of spatial distribution and localized38

interactions (Donalson and Nisbet, 1999; Durrett and Levin, 1994), of physiological structure (De Roos and Persson,39

2005) and of heterogeneity (Hastings, 1990). In particular, Dieckmann et al. (2000) pointed out instances in which the40

dynamics of mean-field models differ from the ABMs they derive from, and proposed new mathematical methods to41
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integrate the spatially distributed aspects of ABMs into ODEs, such as moment methods (Law and Dieckmann, 2000)42

or pair-wise approximations (van Baalen, 2000).43

In this paper, we illustrate the hierarchical modelling approach by revisiting a classical predator–prey system and44

comparing the dynamical behaviour of an ABM with that of an ODE model. The guiding thread of this comparison45

is to determine whether the two models’ bifurcation patterns — which summarise the key features of a system’s46

dynamics — are qualitatively similar, even though each model is built upon distinct and complementary principles.47

The key components of ODE models are the macro-level feedback mechanisms. Individuals, as distinct entities, do48

not play any role per se. The dynamics results from the relative abundance of each population, expressed through the49

principle of ‘mass-action’. In ABMs, the system-level dynamics results from the micro-level actions of autonomous50

individuals. They follow rules, but their effective actions depend on local contingencies. In addition, agents may have51

only limited information on the system they are embedded in. Grimm and Railsback (2005) argue that reproducing52

results of a classical ODE model with ABMs often led to the design of models that are incomplete, not robust, and53

therefore lacking in interest.54

In this paper, we do not aim to reproduce the outputs of an ODE model with an ABM, neither do we want to55

perform any quantitative comparison. Our objective is to establish whether the behaviour patterns of the two models56

are in qualitative agreement, i.e., whether the solution types — bistable, oscillatory and irregular — are in one-57

to-one correspondence, including the transitions between these regimes of behaviour, as long as the two models,58

while conceptually different, rely on the same key assumptions about the system under scrutiny. In addition, we59

are interested to find out — provided there is a good correspondence in regime types and bifurcations between the60

aggregate ODE model and the ABM — whether ideas on early warning that were developed for ODE models Scheffer61

et al. (2009) can help formulate such early warnings for ABMs.62

The qualitative comparison between our ODE model and the ABM is carried out by computing the correspond-63

ing bifurcation diagrams of the two models. To do this, we need to locate the bifurcation points in our ABM. The64

identification of attractors has not been the main emphasis of ecological ABM studies, which tend to focus instead65

on the emergence of spatial patterns (Grimm and Railsback, 2005; Railsback and Grimm, 2011). Analysing attractor66

types and the transitions between them as significant model parameters change — i.e., studying the models’ bifurca-67

tions — is quite helpful in understanding regime shifts. These shifts are crucial ecological phenomena and applying68

bifurcation-theoretical methods to ABM studies thus follows the call of Scholl (2001) to tighten connections between69

agent-based modelling and dynamical systems theory. In particular, we propose and apply a method to detect the70

transition between regular oscillations and irregular fluctuations around a steady state.71

In section 2.1, we present the behaviour of a classical ODE model of predator–prey systems: the Rosenzweig-72

McArthur model with strong Allee effect on the prey. In section 2.2, we formulate an ABM in which the key mech-73

anisms that enter the aggregate model emerge spontaneously; these mechanisms include the functional response and74

the Allee effect. We then define, in section 2.4, the experimental protocol of the simulations and explain the methods75

we use to analyse the resulting ABM model.76
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In section 3, we present the results and compare the bifurcation diagrams obtained for the two models, while77

focussing on the Hopf bifurcation in section 3.2 and on the heteroclinic one in section 3.3. In section 4, we explore78

early-warning signals for the global transitions and test them when endogenous processes or exogenous forcing modify79

slowly the model parameters. Finally, we discuss the methodological implications of our work within ABM studies.80

2. Models and methodology81

2.1. The aggregate model and its behaviour82

We study the Rosenzweig-McArthur model with strong Allee effect on the prey. Boukal et al. (2007) analysed83

how the ‘route to collapse’ featured in Rosenzweig-McArthur models is influenced by the addition of either a weak84

or a strong Allee effect, and by the sigmoidicity of the functional response. The system’s collapse occurs through85

a global bifurcation, characterised by an heteroclinic orbit (van Voorn et al., 2007). Wang et al. (2011) performed a86

rigorous analysis of the model, and focussed on the existence and uniqueness of limit cycles after the Hopf bifurcation.87

González-Olivares et al. (2006) performed a similar analysis with an Holling type III functional response.88

Let X denote the prey population and Y the predator population. The dynamics is governed by the following two89

coupled ODEs:90

dX
dt

= rX(1 −
X
K

)(X − A) − α
X

X + S
Y , (1a)

dY
dt

= ρα
X

X + S
Y − dY . (1b)

This model has seven parameters, whose definitions and values are listed in Table 1. We will also use Z(t) =91

(X(t),Y(t)) to denote the state of our two-species ecosystem as a function of time t.92

Table 1: Summary of the parameters used in the ODE model

Parameter Definition Value

r Prey’s maximal growth rate 1

K Prey’s carrying capacity 1

A Prey’s Allee effect threshold 0.1

α Predator’s attack rate 1

S Predator’s half saturation constant 0.4

ρ Predators’ conversion rate 0 ≤ ρ ≤ 1

d Predator’s death rate 0.4

The model’s dynamics can be summarised in a two-dimensional regime diagram usually plotted in the (d, A)-93

plane; see, for instance, González-Olivares et al. (2006); Boukal et al. (2007) and van Voorn et al. (2007). We choose94
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ρ instead of d, which leads to a very similar diagram, plotted here as Fig. 1. The regime boundaries between regions95

(1) and (2) and between regions (2) and (3) were obtained analytically. The location of the boundary between regions96

(3) and (4) was identified numerically, using continuation methods (Dhooge et al., 2003) to track the growth and97

collapse of the limit cycle.98

0.50 0.55 0.60 0.65 0.70 0.75 0.80
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(1) ext. or 
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 steady state coex.

(3) ext. or
oscillatory coex.

(4) ext.

Figure 1: Regime diagram of the aggregate model. The dashed line corresponds to the section along which the bifurcation diagram in Fig. 3 is

calculated. ‘Ext.’ stands for extinction, ‘coex.’ for coexistence.

In region (4) of the figure, there is only one attractor, which is a fixed point, and all orbits converge to the origin.99

Predators overexploit prey, whose density sinks below the Allee effect threshold. The prey go extinct, followed by the100

predators.101

In the three other regions, the system is bistable: the state diagrams (not shown) exhibit two basins of attraction102

whose common boundary is a smooth separatrix, cf. Fig. 2a below. In the portion of the phase plane located above103

the separatrix — i.e., at more abundant predator population — the system behaves as in region (4).104

To understand better the dynamics below the separatrix in Fig. 2a, we calculated the bifurcation diagram shown in105

Fig. 3 with respect to the parameter ρ, at A = 0.1 (dashed line in Fig. 1).106

Four types of behaviour are observed:107

• Prey-only: for ρ < 0.56, (X = K , 0,Y = 0) is an attractor. The predators are not efficient enough and go108

extinct; the prey, freed from predation, fill the carrying capacity; see region (1) of Fig. 1.109

• Steady-state coexistence: when ρ exceeds 0.56, the non-trivial steady state (X = K,Y = 0) changes from being a110

stable node, or sink, to being a saddle, and a new attracting fixed point PS emerges: the two populations coexist111

at steady densities; see region (2) in the figure.112

• Oscillatory coexistence: at ρ = 0.65, the new, stable fixed point undergoes a Hopf bifurcation and an attracting113

limit cycle emerges. The two populations coexist with periodic densities; see region (3).114
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• Extinction: as ρ increases further, the period and amplitude of the oscillations continue to increase until the115

limit cycle merges with the separatrix and becomes an heteroclinic orbit linking the two saddle points (K, 0)116

and (A, 0). This global bifurcation provokes the collapse of the bistability, and the system reaches region (4);117

see Fig. 2b.118

To understand the nature of the bifurcation at ρ = 0.56, denoted by ‘BP’ in Fig. 3, requires a second look at119

the ODE system (1). In fact, the predator equation (1b) is invariant under a change of Y into −Y . While negative120

populations are not realistic, this mirror symmetry implies that BP is a pitchfork bifurcation, with transfer of stability121

from the prey-only fixed point (K, 0) to the new stable fixed point with non-zero predator population, Y , 0.122
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Figure 2: Phase plane of the aggregate model with (a) ρ = 0.61 and (b) ρ = 0.6808. The solid curves correspond to the invariant manifolds of the

saddle points (A, 0) and (K, 0), indicated by open circles. In panel (a), the stable manifold of (A, 0) is a separatrix that forms the mutual boundary

of two regions. In either one of the two regions, all the trajectories — illustrated by one dashed curve in either region — converge to a fixed point,

namely the origin and PS, respectively; the latter two are indicated by a filled circle each. In panel (b), the unstable manifold of (K, 0) coincides

with the stable manifold of (A, 0), thus forming a heteroclinic connection between the two saddles.
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2.2. ABM model formulation123

The model description follows the Overview, Design concepts, Details (ODD) protocol of Grimm et al. (2006,124

2010).125

Purpose126

The purpose of the model is to understand how the dynamics of a simple predator–prey system varies according127

to the predator’s mean conversion rate.128

Entities, state variables, and scales129

Agents are of two types: predators and prey. Each agent is characterised by a specific identity number. The130

agent-level state variables are their two spatial coordinates.131

Agents evolve on a two-dimensional, square lattice L2, whose boundary conditions are periodic, with no apriori132

limit on the number of agents that can be located in a cell; see section 2.3 for the choice of the lattice parameter133

values. One time step represents one week and simulations were run for 1000 weeks, i.e. about 19 years.134

Process overview and scheduling135

At each time step, agents apply a set of rules, whose outcomes depend on random variables and on the local136

environments, defined as the cell where the agent stands and the eight surrounding cells. One time step corresponds137

to the implementation of eight modules. First, prey follow the sequence move, reproduce and die. Then predators138

act in the following order: move, hunt, reproduce, die and migrate. Within each module, the order between agents is139

random and updating is asynchronous.140

Design concepts141

Emergence. The model was formulated so that the emergent behaviour of both population matches the key assump-142

tions of the Rosenzweig-MacArthur model with Allee effect on the prey, cf. section 2.1; namely we expect the prey143

to exhibit logistic growth and a strong Allee effect, while the predator should collectively exhibit a Holling type II144

functional response.145

Sensing. Each agent can sense the presence of other agents in their local environment.146

Interactions. Three types of inter-agent interactions are explicitly modelled. First, prey interact directly through147

mating: two prey located in the same local environment can give birth to an offspring. Second, prey interact indirectly148

through density-dependence: mating cannot occur if the number of prey in the local environment exceeds a threshold.149

Third, predators and prey interact through hunting: predators can hunt the prey located in their local environment.150

7



0.4 0.5 0.6 0.7 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Prey

ρ

X
Ho

BP

He

0.4 0.5 0.6 0.7 0.8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Predator

ρ

Y

Ho

BP

He

Figure 3: Bifurcation diagram Z = Z(ρ) of the ODE model with respect to the parameter ρ, for A = 0.1; all the other parameters have the values

in Table 1. (a) For the prey population X = X(ρ); and (b) for the predator population Y = Y(ρ). Solid lines represent stable equilibria, dotted lines

unstable equilibria. The prey-only fixed point (X = K,Y = 0) undergoes a one-sided pitchfork bifurcation, constrained by the positivity of Y , and

is denoted in the figure by BP, for branching point; see text for details. This bifurcation from a single to two fixed points is followed by a Hopf

bifurcation (Ho), with the dashed lines indicating the extrema of the limit cycles. The vertical dashed line represents the location of the next, global

bifurcation, via the birth of a heteroclinic orbit (He); see Fig. 2 (b).

Stochasticity. Many processes involve stochasticity. First, there is spatial stochasticity: The movement of each agent151

is a two-dimensional random walk on L2. and each new offspring, prey and predator alike, is assigned to a random152

location. Next, behaviour is stochastic: Most actions, including breeding, dying, hunting, are probabilistic; specific-153

ally, they are realised if a random variable, generally drawn from a uniform distribution between 0 and 1, exceeds a154

threshold value.155

Observation. The main data analysed are the prey and predator populations as a function of time, X(t) and Y(t),156

respectively.157
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Initialisation158

The model is initialised by setting the initial prey and predator populations, X(0) and Y(0), and by assigning each159

agent a random location on the lattice L2. A wide range of initial populations Z(0) = (X(0),Y(0)) was tested during160

preliminary model exploration. For the simulation experiments reported herein, we chose the initial population pair161

(4000, 500), which leads to the most interesting dynamics.162

Input data163

The model does not use input from external models or data files.164

Submodels - prey modules165

Move — prey move to a randomly selected adjacent cell, whether occupied or not.166

Reproduce — When a prey senses at least one other prey in its local environment, and if the local density of prey167

does not exceed a saturation density S , it has a certain probability b to give birth to another prey. This rule gives rise,168

at the population level, to two features of the aggregate model: (i) At high density, reproduction is limited by S , which169

leads to a density-dependent growth rate; and (ii) below a certain density, low mating probabilities lead to extinction.170

The latter phenomenon corresponds to the Allee effect, cf. Fig. 15 in Appendix A. Offspring are assigned to a random171

cell; doing so avoids prey immediately mating with their offspring.172

Die — Each prey dies with probability v.173

Submodels - predator modules174

Move — Predators move to a randomly selected adjacent cell, whether occupied or not.175

Hunt — When a predator senses prey in its local environment, it has a certain chance s to catch and kill them, but176

it cannot, in any event, kill more than N prey at a time. This limited handling capacity gives rise, at the population177

level, to a functional response of type II, cf. Fig. 17 in Appendix A.178

Reproduce – After a successful hunt, a predator has a probability κ to breed a number of offspring equal to the179

number of prey it killed. Like the prey, offspring are randomly located on the lattice. Predators who did not catch any180

prey cannot breed.181

Die — Each predator dies with probability w.182

Migrate — If all predators disappear but prey survive, a predator is added to the lattice; this model feature avoids183

premature disappearance of predators due to purely stochastic phenomena.184

2.3. Choice of parameter values185

The ABM has eight parameters, one more than the ODE model; these eight parameters are defined, and their186

values given, in Table 2. The objective choosing a set of parameters for the ABM is to approximate macro-level187

parameters of the aggregate model with corresponding ratios that emerge from the ABM simulations.188
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We first focus on the Allee effect. In the ODE model, it is characterised by its intensity, measured by the ratio189

A/K = 0.1. In the ABM, for L = 100, b = 1, S = 5, v = 0.05 and Z(0) = (4000, 500), the average prey population in190

the absence of predators is denoted by K̂ and it equals 6080. This K̂ is the emergent carrying capacity, which mirrors191

the explicitly-defined parameter K in the ODEs.192

By carrying out a series of simulations, we also observe that, when the prey population sinks below 520, it is more193

likely to go extinct than to recover, cf. Fig. 15 in Appendix A. Additional experiments based on feedback control194

confirm that this value, denoted Â, is the emergent quantity that corresponds to the Allee effect threshold A; see195

Appendix A for details. We obtain therewith Â/K̂ = 0.086, which is close to A/K = 0.1 from Table 1.196

The functional response, in turn, is characterised in the ODE model by a logistic curve with a half-saturation197

constant S = 0.4. In the ABM, for s = 0.1, M = 3 and w = 0.1, we observe that the average number of prey killed per198

predator plateaus at 0.3 when prey are abundant, i.e. X ≥ 9000. When X = 2750, the average kill rate is 0.15 = 0.30/2,199

which equals the emerging half-saturation constant Ŝ , cf. Fig. 17 in Appendix A. We obtain Ŝ /K̂ = 0.45, which is200

close to S/K = 0.4.201

Table 2: Summary of the parameters used in the ABM model

Parameter Definition Value

L Number of cells along an edge of the square lattice 100

b Prey’s probability to breed when meeting another prey 1

S Prey’s local saturation density 5

v Prey’s probability to die 0.05

s Predator’s probability to succeed in hunting 0.1

N Predator’s handling saturation 3

κ Predator’s mean conversion rate 0.21 ≤ κ ≤ 0.7

w Predator’s probability to die 0.1

2.4. Numerical experiments and analysis methods202

We choose the predator’s mean conversion rate κ as the bifurcation parameter. For each value of κ between 0.21203

and 0.70, in steps of 0.01, we run the model 100 times and monitor the prey population X(t) and predator population204

Y(t). Each run differs by the realisation of its random choices in agent actions and lasts for Tf = 1000 time steps, i.e.205

1000 weeks ' 19 years. We obtain a set of 50×100 = 5000 time series X(κ)
i (t) and Y (κ)

i (t), with κ = 0.21, 0.22, . . . , 0.70;206

i = 1, 2, . . . , 100; and t = 1, 2, . . . , 1000. To characterise the dynamics and identify threshold values, we carried out207

a series of statistical analyses on this output. To deal only with statistically stationary data, we dropped the first 400208

points of each time series, so our data set has 5000 × 600 = 3 000 000 points.209

First, for each value of κ, we compute the probability distributions of the corresponding run X(κ) and Y (κ), and210

derive the proportion of runs in which prey go extinct (extinction), predators go extinct (prey-only), or both populations211
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coexist (coexistence). Second, the time series in which the two species coexist were analysed using spectral methods.212

A few examples of such time series are displayed in Fig. 4.213
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Figure 4: Time series of the prey population X(κ)(t) and the predator population Y (κ)(t), shown as the upper and lower curves, respectively. Five

simulations with κ = 0.41; and (b) five simulations with κ = 0.57. In each panel, one of the simulations is shown as the heavy solid curve, the other

four as light solid. The fluctuations in panel (a) are more irregular and have smaller amplitudes than those in panel (b). The use of statistical and

spectral methods helps locate the transition between these two regime types.

The ABM model was implemented using NetLogo (Wilenski, 1999). The statistical analyses were performed with214

the R package (R Core Team, 2012).215

It is clear from this figure that the behaviour differs widely as a function of parameter value, with κ = 0.41 in216

panel (a) and κ = 0.57 in panel (b). But, because of the stochastic processes that enter agent behaviour, it is difficult217

to identify the structure of the underlying attractor: Are the irregular fluctuations of the simulated time series mere218

random noise around a fixed point, or do they exhibit oscillatory behaviour, which would point to a more complex219

attractor? How can we locate the transition between the two seemingly distinct regimes in Figs. 4a and 4b?220

For each value of κ, we analyse the time series in which the two species coexist using singular spectrum analysis221

(SSA) (Vautard and Ghil, 1989; Vautard et al., 1992; Ghil et al., 2002) and Monte-Carlo SSA (MC-SSA) (Allen222
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and Smith, 1989; Ghil et al., 2002). These methods have been widely used in climate dynamics and other areas,223

including population dynamics (Loeuille and Ghil, 1994). They are presented succintly here and more thoroughly in224

Appendix B.225

SSA decomposes a time series into elementary components that can be classified into trends, oscillatory patterns226

and noise. Each component is associated with an eigenvector and an eigenvalue of the time series’s lag-covariance227

matrix. An oscillation, whether harmonic or anharmonic, is captured by a pair of nearly equal eigenvalues, whose as-228

sociated eigenvectors have the same dominant frequency and are in phase quadrature. Typically, oscillatory behaviour229

can be traced back to deterministic processes that contribute to generate the time series under study (Ghil et al., 2002).230

MC-SSA tests the SSA results against a null hypothesis that is modelled by a simpler, purely stochastic process231

which could have generated it, typically white or red noise. Empirical analyses have shown that ecological time232

series, and in particular population time series, tend to have a ‘red-shifted’ spectrum (Pimm and Redfearn, 1988).233

Consequently, we have chosen to test the time series against the more stringent null hypothesis of red noise.234

We are interested in detecting statistically significant oscillatory patterns and apply MC-SSA to identify pairs of235

eigenvalues at the 5% confidence level or better, as explained in Appendix B. Pairs that survive this test will be called236

significant pairs of eigenvalues (SPEs) and are indicative of oscillations produced by limit cycles, and not by purely237

stochastic effects.238

2.5. Choice of time horizon239

Our objective is to identify our predator-prey system’s dynamical structure, namely the basins of attractions and240

bifurcation points. In this perspective, how satisfactory is our choice of Tf = 1000 weeks? To appraise the ecological241

significance of this time horizon, we evaluate the generation times of the two species, defined as the inverse of the242

respective death rate. We denote these quantities by TC for the predator and by TR for the prey. Since the predator243

death rate is w = 0.1 TC = 10 weeks.244

The death rate of the prey is the sum of the natural death rate v = 0.05 and a predation rate, while the latter245

is the product of the average number of prey killed per predator and of the predator abundance; this relationship is246

represented in Fig. 17 of Appendix A. Since the predator population typically ranges between 0 and 1500, as seen in247

section 3 below, TR varies between 8 and 20 weeks. The interval of 1000 weeks used in our study seems, therefore,248

long enough to capture ecologically significant dynamics, and it suffices in order to avoid the transients due to a choice249

of initial state alone.250

Is this time horizon of 1000 weeks also sufficient in order to account for long-term behaviour? Due to the model’s251

stochastic ingredients, and given long enough simulation intervals, it is quite possible that particular sequences of252

events that are a priori very unlikely will occur and lead trajectories to change basins of attraction. Since there253

is no external input of prey, extinction is the only absolutely inescapable regime, into which all trajectories will254

eventually fall. Focusing on genuinely asymptotic behaviour only would therefore prevent us from identifying the255

basins of attraction and bifurcation points that, according to the ODE model, do seem to play an important role. The256
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ecologically significant dynamics might thus lie in what can be considered, from an asymptotic standpoint, as merely257

very long transients (Hastings, 2004). We carried out additional experiments with Tf = 10 000 weeks ≈ 200 years258

and Tf = 100 000 weeks ≈ 2000 years to assess the robust persistence of each attractor basin identified, along with259

evaluating associated probabilities.260

3. ABM model results261

3.1. Dominant regime and fixed points262

As in the ODE model, if the initial predator population is large compared to the initial prey population, the prey263

will go extinct first, followed by the predators. For smaller initial predator populations, several regimes can occur:264

extinction, prey-only or coexistence, as shown in Fig. 5. As the parameter κ — which measures the reproduction265

efficiency of the predator — increases, two transitions are detected: the first one between 0.35 and 0.36, where the266

dominant regime switches from prey-only to coexistence, and the second one between 0.60 and 0.61, where it changes267

from coexistence to extinction.268

During this second transition, we observe a small peak in the number of occurrences of the prey-only regime. In269

these simulations, the combination of stochastic events with moderate κ values leads to the following scenario: the270

predators deplete the prey population down to a level close to Â, which is insufficient for predator survival, while the271

prey population — being freed from predation and with the help of positive stochastic events — is able to persist.272

For higher κ values, predators deplete the prey population more rapidly, so that it falls well below Â and thus induces273

extinction of both populations.274
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Figure 5: Proportion of ABM runs reaching one of three possible regimes — prey-only (dashed line), coexistence (solid line) or extinction (dotted

line) — as the parameter κ varies, 0.21 ≤ κ ≤ 0.70.

In Fig. 6 we plot, for each κ-value, the distribution of the populations {X(κ)
i (t)} and {Y (κ)

i (t)} over the realisations275

i = 1, . . . , 100, and over the 600-week–long time interval 401 ≤ t ≤ 1000. During the first transition, at κ ' 0.36, the276
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average populations Z
(κ)

= (X
(κ)
,Y

(κ)
) change rather smoothly, whereas the second transition, at κ ' 0.61, is marked277

by a sudden drop in both population averages. Before the collapse, the range of their values increases rather strikingly.278
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Figure 6: Spread in the set of all population values for ABM model runs, for the realizations i = 1, 2, . . . , 100 and the time interval 401 ≤ t ≤ 1000,

as a function of κ. (a) For the prey population {X(κ)
i (t)}; and (b) for the predator population {Y (κ)

i (t)}, at each κ-value. The × symbols indicate the

average values X
(κ)

and Y
(κ)

, respectively, of the distributions of 100 × 600 = 60 000 points at each κ, while the bars indicate the interval between

the 5th and 95th percentiles of this distribution.

In the prey-only steady state, the prey population fluctuates around K̂ = 6080 i.e. around a value that is almost279

12 times the Allee effect threshold. At this level, only a series of extremely high death rates — combined with280

very unlikely spatial distributions that severely limit reproduction — could lead the prey towards extinction. The281

probability of having more than 500 prey dying at once, i.e still a fairly small number that only corresponds to one-282

eleventh of the road to extinction is less than 10−30. This basin of attraction is so deep that, even on geological time283

scales, the prey-only regime can be considered as stable.284

The coexistence regime requires a more thorough examination. The presence of predators creates new opportun-285

ities for adverse stochastic events; still, their probabilities remain extremely low for moderate κ-values. For κ = 0.57,286

additional, 2000-year–long simulations still show that less than 2% of the runs lead to extinction. As we approach the287
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transition at κ ' 0.61, the depth of the basin of attraction decreases and coexistence is less and less likely to persist.288

Had we initially set the duration of the simulations to 2000 years, rather than 200 years, as in Fig. 6, the transition289

value of κ would be 0.59 instead of 0.61. This difference is still quite moderate with respect to the size of the basins of290

attraction, in terms of the parameter κ, as shown in Fig. 5. The robustness of our results upon using longer simulations291

thus validates our more computationally convenient time horizon of 1000 weeks ' 200 years.292

By examining, in the two panels of Fig. 7, the probability density function (PDF) of the 100 runs × 600 points293

in time of the two simulations at κ = 0.41 vs. κ = 0.57, we can distinguish two distinct coexistence regimes. The294

first regime, in panel (a), is characterised by a well-defined density peak, with lower-density regions falling along a295

negatively slopped line in the (X,Y) phase plane. This regime corresponds to a fixed point, located at the peak of296

the PDF, and the negative correlation between prey and predator, away from the peak, reflects the predominance of a297

top-down regulation (McQueen et al., 1989; Pimm, 1991). The observed negative slope in Fig. 7a is also consistent298

with the ODE model: near the stable fixed point PS associated with the coexistence regime, the flow into PS is tangent299

to a unique characteristic direction, which has a negative slope; the direction is given by the tangent at PS to the300

heteroclinic orbit form the saddle (K, 0); see Fig. 2a.301

The second regime, in Fig. 7b, displays no dominant peaks; here, the prey and predator populations are not302

distributed along a line, but fill a larger area. As we shall see in the next subsection, this regime corresponds to a303

stochastically perturbed limit cycle.304
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Figure 7: Estimation of the two-dimensional probability density function (PDF), obtained from 100 runs with 600 points each. (a) κ = 0.41; and

(b) κ = 0.57. The darker the area, the higher the density; see grey bar for shading values.
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3.2. Hopf bifurcation and limit cycle305

To locate the transition between the two coexistence regimes, we apply MC-SSA to the simulated time series with306

0.35 ≤ κ ≤ 0.61, using a set of lag-window lengths M between 80 and 200 weeks, in increments of 20; see Table307

3. The transition occurs when MC-SSA identifies at least one SPE in more than 50% of the runs. For all values of308

M in the table, the numerical results locate the transition in the interval 0.46 ≤ κ ≤ 0.50. MC-SSA analyses with309

M ≤ 60 weeks (not shown) rarely reject the null hypothesis of red noise, because the period of the actual oscillations310

is larger than M; see Table 4. The transition to a statistically significant SPE is illustrated in Fig. 8 by the statistics of311

the MC-SSA analyses applied to the predator time series with M = 120 weeks.312

Results based on prey time series and on predator time series are consistent. In most simulations, only one SPE313

is detected. The application of MC-SSA thus identifies the emergence of a limit cycle for κ in the transition interval314

[0.46, 0.50]. This transition is equivalent to a Hopf bifurcation. The oscillatory coexistence regime lasts from κ = 0.50315

until the transition to the extinction regime, which occurs at κ ' 0.60.316

Table 3: Location of the Hopf bifurcation

M κ-interval κ-interval

(MCSSA on prey) (MCSSA on predator)

80 [0.49, 0.50] [0.49, 0.50]

100 [0.49, 0.50] [0.49, 0.50]

120 [0.48, 0.49] [0.48, 0.49]

140 [0.47, 0.48] [0.48, 0.49]

160 [0.46, 0.47] [0.46, 0.47]

180 [0.46, 0.47] [0.46, 0.47]

200 [0.46, 0.47] [0.46, 0.47]

Throughout the oscillatory coexistence regime, the average frequency of the limit cycle is f = 0.012 cycle/week,317

i.e. a period of about 83 weeks, cf. Table 4. The choice of M barely impacts the identification of the periods, and the318

results using prey and predator time series are in satisfactory agreement. We do observe a slight bias towards longer319

periods for the prey, though.320

For instance, for M = 120 weeks, in 89% of the runs in which SPEs are detected in both time series, the period321

associated with the prey is identical to the one associated with the predator. But in 86% of the runs in which the322

periods are not equal — and especially when κ is close to the transition interval [0.46, 0.50], the prey time series323

displays a larger period. This difference disappears as κ increases, i.e. as the amplitude of the oscillations increases.324

While this phenomenon has not specifically been addressed here, a method to investigate it in further work is proposed325

in section 4.1.326

In the steady-state regime, the generation times of the predators and the prey, denoted by TC and TR, were 10 weeks327
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and 8–20 weeks, respectively. In the oscillatory coexistence regime, the period of the oscillations varies between 70328

and 94 weeks. This periodicity is consistent with the finding of Murdoch et al. (2002), who established that most329

consumer–resources cycles exceed 4TC + 2TR.330

The transition from steady-state to oscillatory coexistence also becomes apparent when looking at the frequencies331

of the SPEs. We notice in Fig. 9 that the average frequencies of the few SPEs detected before the transition are332

several times higher than the average frequencies of the SPEs detected after the transition. This transition from high333

to low frequencies is also associated with a marked drop in variance. The box-and-whisker diagram (not shown)334

of the frequencies plotted in Fig. 9 shows that the distributions are markedly asymmetric around the transition, for335

0.45 ≤ κ ≤ 0.52, with the mean lying outside the interquartile range.336

The simultaneous jump in period and drop in spread reveals a regime shift between noisy fluctuations around a337

fixed point — in which rapid and irregular oscillations are detected in a minority of runs, with periodicities between338

2 and 20 weeks — and a regular pattern of oscillations with longer periods and larger amplitudes that occur in most339

runs, with periodicities of 70–94 weeks.340
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Figure 8: Proportion of runs for which MC-SSA applied to the predator time series yields at least one SPE; M = 120 weeks. We locate the

transition κ∗ at the point at which the curve crosses the 50% threshold, represented as a dotted line; here 0.48 ≤ κ∗ ≤ 0.49.

3.3. Heteroclinic bifurcation341

In the ABM, we observe a global bifurcation pattern that does resemble the one found in the aggregate model, cf.342

section 2.1, and illustrated in particular in Figs 2b and 3: as the limit cycles grow larger, prey have a higher chance to343

fall below the Allee effect threshold and go extinct, as shown here in Fig. 10. Additional experiments indicate that the344

actual transition takes place for 0.607 ≤ κ ≤ 0.608; above this κ-value, extinction occurs in more than half of the runs.345

This numerically inferred heteroclinic bifurcation shows two further features: a marked increase of the limit346

cycle’s amplitude (Fig. 6), and period (Fig. 11). These features are present in the ODE model as well — as ρ is347

increased, the limit cycle that arises from the Hopf bifurcation expands in size and moves closer to the separatrix.348
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Figure 9: Average frequencies, expressed in cycle per week, associated with the main SPEs detected by MC-SSA on the predator time series for

the same M = 120 weeks as in Fig. 8. Same symbols for average and spread as in Fig. 6. The average frequencies before the transition, i.e. for

κ ' 0.48, are on the average 5 times higher than those after the transition, 0.49 ≤ κ, namely 0.063 and 0.012 weeks−1, respectively.

Table 4: Average periods P in weeks and frequencies f = 1/P in cycles/week that are associated with the main SPEs detected via MC-SSA. The

entries in the table are computed for κ-values at which SPEs are detected for more than 50% of the runs.

M P [weeks] ( f = 1/P) P [weeks] ( f = 1/P)

(SSA on prey) (SSA on predator)

80 86.2 (0.0116) 80.6 (0.0124)

100 87.7 (0.0114) 84.7 (0.0118)

120 89.3 (0.0112) 80.6 (0.0124)

140 90.1 (0.0111) 76.9 (0.0130)

160 88.5 (0.0113) 80.0 (0.0125)

180 90.1 (0.0111) 78.1 (0.0128)

200 89.3 (0.0112) 78.7 (0.0127)

The associated increase in amplitude is clearly apparent in Fig. 3 for both prey and predator, in panels (a) and (b),349

respectively.350

Another consequence is that the trajectories get closer to the two saddle points, (A, 0) and (K, 0). They approach351

each one of them along its stable manifold, and move away along the corresponding unstable manifold. In the vicinity352

of these two saddles, the rate of change becomes exponentially small. Thus, as ρ tends toward the bifurcation point,353

the system increasingly slows down in the vicinity of the two saddles, and so the period tends towards infinity; see354

Fig. 12.355

In the ABM, the average periodicity associated with the SPEs is nearly constant throughout most of the oscillatory356

coexistence domain. When κ exceeds 0.58 and approaches the transition point, the periods get longer and longer; see357
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Figure 10: An ABM simulation that illustrates the model’s global bifurcation from a stable limit cycle to a single fixed point, via a heteroclinic

orbit; in this particular simulation, κ = 0.61, X(0) = 6080 and Y(0) = 0. Along this single trajectory, the color changes from blue to black to red, in

order to highlight the two transient, nearly closed loops, blue and black, before the red segment that terminates in the origin. The larger, black loop

is very similar to the heteroclinic curve of the ODE model in Fig. 2b.
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Figure 11: Box-and-whisker diagram of the frequencies, expressed in cycles per week, associated with the main SPEs detected by MC-SSA on the

predator time series for M = 120 weeks. The bottom and top of the boxes are the first and third quartiles, the heavy horizontal lines inside the boxes

are the medians, and the ends of the whiskers are the extrema. The width of a box is proportional to the square root of the number of observations.

There is a marked decrease in the frequencies of the SPEs for κ ≥ 0.58. The results for the prey time series exhibit a similar pattern (not shown).

Fig. 11. After the transition, in the few runs where extinction does not occur, the periods keep on increasing, but at a358

slower pace.359

The occurrence of a slowing down in the ABM is consistent with the ODE model. As predators become more360

efficient, they push the prey towards the Allee effect threshold; see Fig. 13. The fewer prey survive, the slower they361

find partners and repopulate the lattice. More acute depletions of prey lead to larger depletions of predators, whose362

recovery is delayed. This delay allows prey to get closer to the carrying capacity, before predators recover. This cycle363
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Figure 12: Period of the limit cycle of the ODE model, in log scale, as a function of ρ.

repeats until prey fail to recover and go extinct.364
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Figure 13: Box-and-whisker diagram of the average minimum prey abundance during oscillations, as a function of κ. Same conventions as in

Fig. 11. The horizontal dashed line shows the Allee effect threshold Â.

In contrast to the ODE model, though, the period increases more moderately. Because of the discreteness of the365

state variables and the resulting demographic stochasticity stochastic processes, trajectories do not stay on the limit366

cycle along which the asyptotic exponential slowing down occurs. They either move back into the hinterland of the367

coexistence region, where the dynamics is faster, or cross the boundary and fall into extinction. Hence, due to the368

noise in the ABM, the increase in periodicity remains moderate.369

The implications of this slowing-down phenomenon for a potential early warning ahead of the heteroclinic bifurc-370

ation will be discussed in section 4.2.371
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4. Concluding remarks372

4.1. Summary and discussion373

Even simple ecological systems can exhibit complex dynamics. In this paper, we have shown that an approach374

based on a hierarchy of models can be highly effective in exploring such a complex system. At one end of the375

modelling spectrum, ABMs are arguably best adapted for ‘realistic’ modelling, inasmuch as many observed features376

of the individuals that are an ecosystem’s building blocks can be plugged in directly. We argue that ABMs should,377

as much as possible, be developed in conjunction with simpler ‘toy’ models. Doing so facilitates the analysis, allows378

one to compare results, and finally to draw robust conclusions. This back-and-forth between different models is also379

well illustrated by Siekmann (2015) in the case of the dynamics of a two-strain infection process.380

In this paper, we focused on a simple predator–prey system, using a deterministic ODE model and a stochastic381

ABM. Running ABM simulations and analysing their output were computationally intensive and time consuming382

tasks. For instance, the application of MC-SSA required the generation and analysis of 200 surrogate data — 100 for383

the prey time series, and 100 for the predator time series — for each one of the 100 simulations run per ρ value. Given384

the 50 ρ values used, this yields 200 × 100 × 50 = 106 runs.385

Nevertheless, the analysis could be conducted efficiently because it was guided by the existence of a much simpler386

and, in part, analytically tractable ODE model. The process was quite straightforward in this case, since the ABM387

model was built a priori to share certain features of the aggregate model. Still, the striking success of the guidance388

provided by the simpler model suggests that this approach might be of great interest across a richer hierarchy of389

models.390

An interesting addition would be a model of intermediate complexity based on stochastic differential equations391

(SDEs), which combine some of the stochastic features of ABMs with the simple deterministic ones of ODE models.392

Bifurcations of nonlinear SDEs have been studied by Kuehn (2011), and their usefulness in the climate modelling hier-393

archy has been demonstrated by Ghil et al. (2008) and Chekroun and Ghil (2011), among others. In particular, SDEs394

could be used to explore the possible stochastic origin of the bias towards larger periodicities of the prey time series395

observed in Tab. 4. An explanation might be that stochastic perturbations occasionally block the oscillations of the396

prey population, leading to larger average periods. To investigate this hypothesis, one could perturb the deterministic397

aggregate model by adding multiplicative noise — first to one ODE at a time, then to both.398

The guidance provided by the ODE model helped us decide on which parameter to control and which bifurcations399

to expect. But to actually perform the analysis, we needed to carefully design simulation experiments and develop or400

adapt appropriate statistical methodology. Simple tests were used to detect transitions between the main regimes. For401

more challenging tasks, such as the detection of the Hopf bifurcation, we tapped into well-established methods of time402

series analysis. The advanced spectral methods of SSA and its derivatives were used to distinguish large-amplitude,403

regular and stable oscillations from small-amplitude, irregular fluctuations. A statistical test based on a Monte Carlo404

algorithm was used to identify oscillatory patterns that significantly differ, at the 5% level, from a red noise process.405
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Whether applied to the predator or to the prey time series, the analysis indicates a similar location of the Hopf406

bifurcation, which in addition was robust to changes of the window-width. The transition region from steady states to407

oscillatory behaviour was also marked by a sharp decrease in the mean and variance of the oscillations’ frequencies;408

this decrease provides further evidence for a transition from a regime of small, rapid and erratic fluctuations to a regime409

of ample, regular and stable oscillations. MC-SSA thus appears to be well-suited for the detection and analysis of410

oscillatory dynamics in ABM-simulated time series.411

Further methods of time series analysis could be integrated into the toolbox of ABM users. For instance, Kolmogorov412

entropy or Lyapunov exponents could provide further insights into whether a deterministically chaotic process has par-413

ticipated in generating a given time series (Kantz, 1994; Schouten et al., 1994). The application of such observables414

to experimental time series is often hampered by the limited length and accuracy of such series; this impediment does415

not exist for ABM-generated output.416

Time series analysis alone does, however, not take advantage of the modeller’s ability to freely design simulation417

experiments. The application of control-based methods — such as the one used to locate the Allee effect threshold,418

see Appendix A — seems to be a promising approach for the dynamical analysis of ABMs. Besides, Kevrekidis419

and colleagues have developed an ‘equation-free’ approach, in which macroscopic variables and their derivatives are420

obtained from microscopically defined models — such as ABMs — through the systematic implementation of a set421

of appropriately initialised simulations (Kevrekidis et al., 2004). This coarse-graining process enables one to use422

numerical bifurcation methods and it was applied to ABMs describing an epidemiological network (Reppas et al.,423

2010) and a financial market (Siettos et al., 2012).424

Our approach to bifurcation in ABMs conceptually differs from the classic mathematical framework for bifurcation425

analysis in ODEs. In the latter, bifurcations are precisely defined using the same type of mathematical objects as those426

used to build the model. For instance, Hopf bifurcations can be precisely detected through the application of the427

Poincaré-Andronov-Hopf theorem. When needed, numerical methods are employed to compute the local structure of428

the Jacobian matrix and identify a bifurcation. Bifurcations are, in other words, endogenous to the model.429

In this paper we used MC-SSA and defined the Hopf bifurcation as the point at which, in a majority of simulations,430

we observed the emergence of oscillations that are different from a red noise, at a preset significance level. In this431

approach, the analytical method used is as important as the ABM formulation for the analysis of the bifurcations.432

4.2. Early warnings of a global bifurcation433

Studying a hierarchy of models is also instructive in testing results on critical transitions and their ex-ante detec-434

tion through ‘early-warning signals’. The heteroclinic bifurcation present in both of our models belongs to the class435

of global bifurcations, which are structurally unstable and hence harder to detect numerically (Hale and Koçak, 1991).436

Moreover, Scheffer et al. (2009) and Boettiger et al. (2013) noted, in fact, that the early-warning signals of such bi-437

furcations have been studied relatively little: most early-warning signals proposed in the literature — namely slowing438

down of trajectories, as well as increased variance, autocorrelation and skewness — derive from the properties of the439
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saddle-node bifurcation, which belongs to the class of local bifurcations (Hale and Koçak, 1991).440

In section 3.3 we have seen that, in both models, some key features of the limit cycles change as the system441

approaches the heteroclinc bifurcation. The limit cycles get closer to the boundary of the basin of attraction, their442

amplitudes increase, and the oscillations slow down as a result of approaching the infinite period of the exact hetero-443

clinic orbit.444

This type of period increase differs from the phenomenon known as critical slowing down (CSR) (Wissel, 1984;445

Nes and Scheffer, 2007). The latter refers to the increase of return time after perturbations near a threshold, due to the446

real part of the dominant eigenvalue of a fixed point approaching zero. CSR has been theoretically demonstrated, and447

empirically tested, for a range of local bifurcations, especially for saddle-node bifurcations (Boettiger et al., 2013),448

and it is interpreted as a loss of resilience in the vicinity of a tipping point (Nes and Scheffer, 2007; Dai et al., 2012).449

In the ODE model, after the Hopf bifurcation, the unstable fixed point of region (4) of Fig. 1 becomes more450

repellent as ρ increases, and the geometry of the flow near it changes. As a consequence, trajectories become gradually451

more affected by the specific dynamics that occurs in the vicinity of the two saddle points, (A, 0) and (K, 0). The452

slowing down does not originate from the real part of any eigenvalue vanishing; instead, it is due to a geometrical453

change of the basin of attraction. Another difference with respect to CSR is that this phenomenon is not observed454

through exogenous perturbations, but affects the endogenous dynamics of the system, i.e. the limit cycle. Even455

so, a broad-brush interpretation that is similar to CSR could be proposed, namely, as the parameter ρ — which is456

the conversion rate of the predator — increases, each population, which is periodically perturbed by the other one,457

recovers more and more slowly, i.e. it is less resilient.458

The system as a whole is also less resilient, as it lies closer to the boundary of the basin of attraction, i.e. it is459

more ‘precarious’, in the sense of Walker et al. (2004). This aspect is more adequately captured by the amplitude of460

the limit cycles, to be compared with some known boundaries of the basin, such as the Allee effect threshold.461

The slowing down near the two saddle points is also expected to induce an asymmetry in the distribution of the

population abundance. This asymmetry can be captured by computing the skewness of the probability distribution in

the time series. Guttal and Jayaprakash (2008) have proposed skewness γ as a potential early-warning signal for local

bifurcation: γ is simply a distribution’s third standardised moment, and it measures its degree of asymmetry. Given a

random variable Z, with mean µ and standard deviation σ, skewness γ is defined as

γ = E
[(Z − µ

σ

)]
. (2)

Results presented in Fig. 14 show that, in the ODE model, the asymmetry of both trajectories markedly increases462

as ρ approaches the bifurcation value 0.6801. The system slows down in regions with few predators, and accelerates463

when predators are abundant, so that the oscillations of the predator population is unbalanced towards low values.464

We can show analytically that, due to the strong Allee effect, prey recovery near (A, 0) is much quicker than predator465

recovery near (K, 0). As a consequence, the slowing down near (K, 0) is more marked than the slowing down near466

(A, 0), and the prey distribution tends to be unbalanced towards high values. While Guttal and Jayaprakash (2008)467
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applied skewness to study perturbed trajectories around a fixed point in the vicinity of a local bifurcation, we see in468

Fig. 14a that this measure can also be used for oscillatory regimes approaching a global bifurcation, but for different469

dynamical reasons.470

Skewness results for the ABM differ widely from the ODE ones; see Fig. 14b. Before the transition, which occurs471

for κ ' 0.60, the skewness of predator time series moderately increases in average, but we do not observe a decrease472

for the prey time series. Moreover, the signs of the skewness seem surprising with regards to the ODE results. This473

points out at one major difference between the two models. In the ABM, the mating requirements for prey, which474

is not modelled in the ODE, significantly slows down the systems in the (Â, 0) region. In the ODE, the situation is475

opposite: because of the strong Allee effect, the growth rate of the prey in the (A, 0) region is higher than in the other476

regions. The two models therefore exhibits opposite results.477
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Figure 14: Skewness γ of the predator and prey time series (a) in the ODE model as a function of ρ; and (b) in the ABM model as a function of κ.

In panel (b), the vertical bar represents the interquartile range.

The preceding discussion stresses an interesting slowing down phenomenon, which is different from CSR but, like478

it, also has considerable potential as an early warning signal. Skewness, however, seems to be more ambiguous as a479

signal, since its behaviour differs between the aggregate model and the ABM. This discrepancy allowed us to identify480

rather subtle differences in in the formulation of the two models. By using a hierarchy of models, we are, therewith,481

able to precisely understand the role of each mechanism in the overall dynamics.482
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4.3. Exogenous and endogenous changes of parameter values483

In the ABM, the analyses were carried out for fixed κ-values that are kept constant over the duration of a run.484

This type of analysis can remain valid for rates of change of κ that are slow compared to the characteristic times of485

the system’s endogenous dynamics, i.e. in the ‘adiabatic limit’. We sketch now two possible applications in which κ486

varies with time.487

The simplest application is to add an exogenous rate of change c = const. for κ(t). This scenario could help488

one study the effect of external forcing that varies smoothly on an ecosystem or a community of species. Rising489

temperatures have a direct effect on the metabolism, physiology and phenology of organisms; see for instance Bale490

et al. (2002) for insect herbivores. Exogenously increasing κ can model, for instance, a situation in which rising491

temperatures tend to increase the predators’ reproductive efficiency. We performed additional simulations with κ(0) =492

0.55 and various c-values.493

When c ≤ 10−5κ-unit/week, the results obtained in sections 3 and 4.2 still apply. Both populations go extinct for494

κ ' 0.60, and this extinction is preceded by a marked increase in the amplitudes and periods of the oscillations. For495

higher rates of change, extinction occurs more rapidly and fewer oscillations are observed, but it tends to occur for a496

higher κ-value. For instance, with 10−5 < c ≤ 10−4κ-unit/week, the prey population crosses the Allee effect threshold497

after 17 years, on average, and about ten oscillations are observed. While this number of oscillations suffices in order498

to observe their increase in amplitude, the increase in period cannot be robustly established.499

Another application is to introduce a process which internally modifies κ. We use an evolutionary framework, and500

set κ as the evolving trait. Instead of being exogenous and common to all predators, we turn this parameter into an501

endogenous agent-level variable, that predators hand down to their offspring. The transmission process occurs with502

an additive white noise, characterised by its standard deviation σ. The starting κ-value is set to 0.55 for all predators,503

and the initial prey and predator abundances are set to (2500, 1400), respectively, in the vicinity of the limit cycle.504

In this formulation, the average κ-value of the predator population increases. Predators with higher reproduction505

efficiency always tend to invade, driving the system to extinction, a situation referred to as evolutionary suicide506

(Gyllenberg et al., 2002; Ferrière, 2009). With σ = 10−3, and using 100 repetitions, extinction is reached on average507

after 85 years, and the final average κ-value is 0.61, as in Fig. 6. Here the average κ varies linearly in time, although508

some runs exhibit phases of acceleration and deceleration. The amplitude and period of the oscillations increase, as509

expected. Note that in some runs, prey succeed to survive and repopulate the lattice, which corresponds to the small510

peak identified in Fig. 5.511

4.4. Conclusions512

We have built an ABM that reproduces the key mechanisms of the Rosenzweig-McArthur model with strong Allee513

effect on the prey; the mechanisms of interest are the density-dependent growth rate of the prey and the Allee effect on514

it, as well as the Holling type II function response of the predator. The bifurcation analysis of the classic ODE model515

shows that the system can exhibit bistability between extinction and either a prey-alone or a coexistence regime. A516
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Hopf bifurcation divides the coexistence regime into steady-state and oscillatory coexistence. Bistability collapses517

into a single fixed point through a global bifurcation: the limit cycle becomes an heteroclinic orbit and merges with518

the separatrix between the two attractors.519

The ABM displays the same qualitative behaviour as the aggregate model. Early-warning signals of the critical520

transition associated with the heteroclinic orbit include the increase in the amplitude and periodicities of the oscilla-521

tions of both populations.522

The study of the ABM was guided by knowledge of the ODE model’s behaviour. Going back and forth between523

the two models allowed us to identify and describe the role of each mechanism, as well as testing the robustness of524

assumptions about early-warning signals. The solid understanding of the system’s dynamical structure can then be525

used to evaluate the response of the system to parameter changes, whether these changes are exogenous or endogenous.526

The ABM’s bifurcations were detected through the use of of singular spectrum analysis (SSA) and its derivatives.527

We argue that ABM practionners facing noisy and seemingly oscillatory responses may benefit from methods of528

time series analysis. We showed that MC-SSA can reliably detect the transition corresponding to Hopf bifurcation.529

Studying their Lyapunov exponents and the Kolmogorov entropy could also be of interest in assessing the chaotic530

behaviour of an ABM-generated process.531

We further argue that jointly developing models of different level of complexity, from simple ‘toy’ models to532

detailed ‘realistic’ models, is an appropriate approach to study complex ecological systems. Such a hierarchical533

approach can effectively guide single-model exploration, help cross-check results, and derive more robust conclusions.534
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Appendix A. Choice of parameter values541

In this appendix, we illustrate the connection between certain local rules used in our ABM modelling of section 2.2542

and the aggregate properties of our ODE model in section 2.1. Thus Fig. 15 shows that, below a population of X = 520543

the prey is more likely to become extinct than not. To confirm that this value is associated with the Allee effect544

threshold Â, we conducted an additional set of experiments based on feedback control, as suggested by an anonymous545

reviewer.546

In the ODE model, (X = A,Y = 0) is an unstable equilibrium that lies on the X−axis. To locate this point in547

the ABM, we run at each time step — after implementing all the other procedures in the ODD protocol described in548

section 2.2 — a feedback procedure that artificially maintains the prey population at a given value, denoted by XS .549
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Figure 15: Proportion of predator-free runs, Y(0) = 0, in which prey go extinct as a function of the initial number of prey X(0) , 0. The ×

symbols are the outcomes of numerical simulations, the dashed horizontal line indicates the 50% threshold, and the solid line is the result of linear

regression. The two straight lines are used to determine the emerging Allee effect threshold Â.

This procedure performs the following tasks: if X > XS , X − XS prey are randomly removed; conversely, if X < XS ,550

X − XS prey are randomly added. The asymptotic mean value of X − XS , denoted by U(XS ), measures the sign and551

the intensity of the feedback that maintain the prey population at XS . Figure 16 shows that U(XS ) equals zero when552

XS = 520 and that it changes sign at this point: when XS < 520, on average, individuals have to be added to maintain553

the population, while for XS < 520, on average, individuals have to be removed. This result precisely locates the value554

of Â = 520, which leads in turn to the ABM’s emergent Â/K̂ = 0.086 being a good approximation to the aggregate555

model’s pre-defined A/K = 0.1; see section 2.2 for details.556

The effectiveness of this method at identifying the saddle node suggests further explorations of the potential557

applications of control-based approaches for the study of ABMs and their dynamics. It could in particular be employed558

to perform numerical continuation of unstable equilibria or to track periodic solutions, as demonstrated by Barton559

(2013) for physical experiments..560

The intersection of the horizontal dash-dotted line in Fig. 17 with the dotted vertical line at X = 2750 gives the561

ABM’s emerging half-saturation constant Ŝ and, therewith, an emerging Ŝ /K̂ = 0.45, which is close to the aggregate562

model’s S/K = 0.4; see section 2.2 for details.563

Appendix B. Singular spectrum analysis (SSA)564

The SSA methodology involves three basic steps: (1) embedding a time series {X(t) : t = 1, 2, . . . ,N} of length565

N in a vector space of dimension M — for the choice of M, see Vautard et al. (1992) and Ghil et al. (2002); (2)566

computing the M × M lag-covariance matrix CD of the data — see the two different approaches of Broomhead and567
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Figure 17: Average number of prey killed per predator, as a function of prey population X. The horizontal dashed line shows the saturation value of

0.3 that is attained at roughly X = 9000, while the dash-dotted horizontal line corresponds to the half-saturation point at 0.15; the latter is attained

at the value X = 2750, which is indicated by the dotted vertical line.

King (1986) and Vautard and Ghil (1989); and (3) diagonalizing CD:568

ΛD = ET
DCDED; (B.1)

here ΛD = diag(λ1, λ2, . . . λM), with λ1, λ2, . . . λM > 0 the real, positive eigenvalues of the symmetric matrix CD,569

and ED is the M × M matrix having the corresponding eigenvectors Eκ, κ = 1, . . .M, as its columns.570

For each Eκ we construct the time series of length N − M + 1, called the κ-th principal component (PC); this PC571

represents the projection of the original time series on the eigenvector Eκ, also called empirical orthogonal function572

(EOF). Each eigenvalue λκ gives the variance of the corresponding PC; its square root is called a singular value.573
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The Monte Carlo version of SSA (MC-SSA) is used to reliably identify oscillations in a time series (Allen and574

Smith, 1989; Ghil et al., 2002). In MC-SSA, one assumes a simple, random model for the analysed time series,575

referred to as the null hypothesis. We choose an autoregressive process Z(t) of order one, also called a red noise, as576

the null hypothesis. The process Z(t) solves577

Z(t) = a1[Z(t − 1) − Z0] + σξ(t) + Z0, (B.2)

where a1, Z0 and σ are parameters and ξ is a normally distributed white noise of mean 0 and variance 1. For each578

time series X(t), the three parameters of the corresponding Z(t; a1,Z0, σ) are computed by maximum-likehood fitting.579

Next, a Monte Carlo ensemble of surrogate time series is generated from the null hypothesis and SSA is applied to580

the data and to the surrogates, to test whether it is possible to distinguish the original time series from the surrogates.581

Specifically, the M×M lag-covariance matrix of the Monte Carlo ensemble is projected onto the EOFs of the analysed582

time series, and one computes the statistics of the diagonal elements of the projected matrices. If the eigenvalue of a583

specific EOF of the analysed time series is larger than 95% of the corresponding diagonal elements computed from584

the surrogates, then the null hypothesis is rejected with a 95% confidence level.585

Ghil et al. (2002) provide an overview and a comprehensive set of references; see also their free software at586

http://www.atmos.ucla.edu/tcd/ssa/.587
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Strand, E., Souissi, S., Stillman, R. A., Vabø, R., Visser, U., DeAngelis, D. L., 2006. A standard protocol for describing individual-based and635

agent-based models. Ecol. Model. 198 (1-2), 115–126.636

Grimm, V., Berger, U., DeAngelis, D. L., Polhill, J. G., Giske, J., Railsback, S. F., 2010. The ODD protocol: A review and first update. Ecol.637

Model. 221 (23), 2760–2768.638

Grimm, V., Railsback, S. F., 2005. Individual-based Modeling and Ecology. Princeton University Press, Princeton.639
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