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Cameras have become ubiquitous leading to an increase in the amount of video and image

data captured by amateurs and professionals alike. Their ease of deployability makes them a

great sensor for security applications as well. Hence, there is an ever-growing need to efficiently

process and enhance captured image and videos for improving the performance of subsequent

computer vision algorithms or simply for aesthetic reasons. To address this need, we focus on

creating efficient techniques for large scale image and video denoising with varying degrees of

genericity.

We start by introducing a robust patch matching technique that increases the efficacy

of denoising algorithms that build patch-specific filters. We show that using our matching
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criterion in multiple leading denoising algorithms provides additional performance gains over

using default distance metrics. Next, we present a strategy to extend patch-based image denoising

algorithms into a decompressed video denoising paradigm without increasing computational

complexity. We leverage pre-calculated motion vectors present in a compressed video’s bitstream

to establish temporal correspondences, thus keeping the per-frame complexity of the video

denoising algorithm equivalent to that of the corresponding image denoising method. Following

this, we relax the patch-specific constraint on design of denoising filters leading to one of the

fastest algorithms that uses targeted local patch prior.

Recognizing that a targeted patch prior could be a limiting factor for a wide variety of

natural images, we develop an efficient denoising algorithm that uses a Gaussian Mixture Model

(GMM) to model a generic patch prior for image restoration. It is two orders of magnitude faster

than similar methods while providing a very competitive quality-vs-speed operating curve. The

final work presented in this thesis improves upon GMM priors by proposing a more expressive

distribution using Generalized Gaussian Mixture Models (GGMM) patch priors. We circumvent

the prohibitive computational complexity of using GGMM patch priors for image restoration

by introducing asymptotically accurate but computationally efficient approximations to the

bottlenecks encountered in this formulation. Our evaluations indicate that the GGMM prior is

consistently a better fit for modeling image patch distribution and performs better on average in

image denoising task.
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Chapter 1

Introduction

The advances in camera technology and storage has led to an explosive growth in the

amount of images and videos captured for personal and professional uses such as for sharing on

social media sites or security purposes. Quite often, data is captured in poor conditions leading to

degraded images (e.g. blurry, noisy and foggy). The process of recovering the underlying clean

image from its degraded counterpart is collectively known as image restoration. In this thesis, we

will primarily focus on one particular type of restoration called denoising. Denoising algorithms

aim to reconstruct underlying clean signals (images or videos) from observed noisy signals.

1.1 Patch-based image denoising

In the last decade, the field of image denoising has seen tremendous advancements. One

of the innovations that enabled these developments is patch-based denoising. These methods

divide an image into overlapping patches (small subimages of, say, 8×8 pixels) and remove noise

by applying a denoising filter on a patch-by-patch basis. Patch-based denoising methods can be

broadly divided into two classes – internal and external methods. Internal methods are those

algorithms that rely exclusively on the information contained within an image when designing

the denoising filter. Popular methods that fall into this category are non-local means (NLM)
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[7], BM3D [8], k-SVD [9], SAFIR [10], NL-Bayes [11], DDID [12] and LPG-PCA [13]. To

denoise a patch in the noisy image (commonly referred to as a query patch), these methods

rely on information contained in reference patches (i.e. other patches that are similar to the

query patch) within the noisy image itself. Due to this reason, internal methods often suffer

when the noise level in an image is high and also when denoising rare patches due to the lack

of an adequate number of reference patches [14]. To ease these problems, external denoising

methods were developed in order to restore noisy patches using information from outside the

given noisy image. Methods in this category have taken many different approaches for leveraging

external information. For instance, the Expected Patch Log Likelihood (EPLL) algorithm [15]

denoises patches using a Gaussian Mixture Model (GMM) prior learned on an external database

of clean patches. Other methods include learning mapping functions to map noisy input patches to

clean ones using multi-layer perceptrons (MLP) [16], piecewise linear estimators [17, 18], Field

of Experts [19], iPiano [20, 21] and straightforward adaptations of NLM, BM3D and k-SVD

[9, 22, 23].

Recently, Luo et al. [24, 23] proposed a variant of external denoising called targeted

image denoising (TID) that utilizes category-specific external databases. This follows from the

observation that a large generic database does not necessarily contain enough useful information

(and may often contain irrelevant information) needed to denoise the noisy image of a specific

category. Hence, instead of using a generic database, TID obtains reference patches from a

targeted or category-specific database that contains images relevant to the noisy image. For

example, while denoising a face image, a targeted database is made up of patches from other face

images whereas while processing a license plate image a targeted database will be constructed

using license plate images only. This approach of using targeted databases tailored to particular

domains and tasks can be viewed in a similar category as a straightforward adaptation of task-

driven image processing methods [25].

In this thesis, I will mainly focus on external denoising algorithms and its targeted database
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variant. In the first part of my work, I will consider algorithms that perform the best with targeted

databases. In the later part, the focus will be shifted to those that are effective even with generic

databases. Please note that generic and targeted are relative terms – a category-specific database

may not be considered targeted if the category exhibits a wide variety (e.g. types of domestic

animals). For the purposes of this thesis, a database is called targeted when the images share

very similar content with only subtle changes in scale and pose (e.g. close-up images of U.S.

automobile license plates). Also, external denoising algorithms that use generic databases can

be easily adapted to targeted paradigm by replacing generic database of patches with targeted

databases.

1.2 Role of priors in denoising

A prior is the knowledge that one has about the problem that is being solved, a priori or

beforehand. Priors on natural images play an important role in image denoising (and in general

image restoration, as well). They have a direct effect on the existence and the quality of the

solutions in denoising and other ill-posed restoration scenarios. Early image priors were designed

to preserve local statistics that are commonly found in natural images. Total variation constraint is

one such prior that encourages solutions consisting of piece-wise constant regions in images [26].

Buades et al. [27] demonstrated the superiority of a non-local prior using the observation that

images often contain repeating patterns, albeit at a distance. This property commonly referred to

as non-local self-similarity, is the prior used in the famous non-local means algorithm (NLM) [27].

Non-local self-similarity combined with sparse or low-rank constraint is the basis for successful

algorithms such as BM3D [28], LPG-PCA [29], etc. These priors are effective but they do not

use any side-information other than the content of a single image, i.e., the given noisy image.

In contrast, recent research demonstrated that powerful priors can be realized by learning

a model for image patch distributions [19, 30, 15, 17, 31, 32, 33, 34, 35]. These learned priors
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provided excellent performance improvements by allowing a way to incorporate information

contained in large external datasets. Just like any other machine learning applications, the field of

learned priors consists of a vast array of different strategies. It ranges from lazy learning methods

where there is no training involved (similar to k-nearest neighbors), to learning a generative

model or a discriminative model and, more recently, to deep learning-based approaches. These

innovations have inadvertently led to improvements in denoising quality yielding state-of-the-

art performances. However, their improvements are obtained at the expense of computational

complexity and general algorithmic efficiency leading to algorithms that are impractical for large

scale image restoration applications. In this thesis, we systematically address the shortcomings of

the existing patch-based denoising algorithms that use learned patch priors in an effort to improve

their efficacy and computational efficiency.

1.3 Thesis overview

Chapter 2 provides a brief background on the concepts covered in this dissertation such as

image degradation and restoration, patch-based denoising and patch priors.

Chapter 3 introduces a robust patch matching strategy that can be used to gain more

from algorithms that use database of patches for designing denoising filters (lazy learning). The

performance of these algorithms are closely tied to the selection of reference patches. Hence,

we present a new matching criterion that lends robustness to the patch matching stage of image

denoising algorithms. We show that using our matching criterion in multiple leading denoising

algorithms provides additional performance gains over using default distance metrics. This work

is not constrained by demands of computational complexity. The sole focus of this effort is to

explore the power of patch matching on algorithms that use external domain specific databases.

Chapter 4 demonstrates that motion vectors contained in compressed video streams

can be utilized to extend patch-based image processing algorithms to video denoising without
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adding computational complexity. We leverage pre-calculated motion vectors present in a

compressed video’s bitstream to establish temporal correspondences, thus keeping the per-frame

complexity of the video denoising algorithm equivalent to that of the corresponding image

denoising method. The main lesson learned over the course of this work is that although optical

flow was the gold standard for finding temporal correspondences, a coarser but readily available

approximation obtained from motion vectors provided incredible computational savings while

providing comparable quality.

It was also clear that the speed and efficiency of the underlying image processing algorithm

is paramount. A powerful but slow denoising algorithm can never be used for large scale

applications or video denoising. For instance, in Chapter 4 we extend TID [24, 23] to video

denoising. The new video denoising algorithm provided very good performance, but was not

practically viable due to its high computational demands during runtime. We needed algorithms

that can effectively find high quality solutions and are extremely efficient during runtime.

To this end, in Chapter 5, Chapter 6 and Chapter 7, we depart from lazy learning paradigm

to using progressively powerful priors that are trained using patch datasets. These approaches

yearn to minimize the complexity of calculations during runtime by pre-calculating (when

possible) and/or introducing novel approximations in place of time-consuming steps.

Specifically, in Chapter 5 we introduce a new external denoising algorithm that utilizes

pre-learned transformations to accelerate filter calculations during runtime. By moving compu-

tationally demanding steps to an offline learning stage, the proposed approach finds a balance

between processing speed and obtaining high quality denoising estimates. We show that the

proposed approach is extremely effective when the transformations are learned using a targeted

database. It provides comparable denoising performance while being orders of magnitude faster

than TID [24, 23], the state-of-the-art targeted denoising method.

Targeted denoising works extremely well when denoising images that have a clear category

or domain, for e.g. face images, license plates etc. However, if a targeted database is unavailable
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due to wide variations in a category or domain mismatch, targeted denoising can lead to sub-

optimal over-smoothed results. To alleviate this issue, it is also necessary to have denoising

algorithms that can work well with generic databases. For this purpose, we conducted an

exhaustive complexity analysis of EPLL algorithm which is the current state-of-the-art algorithm.

As is the case with TID, although very effective in denoising, its high runtime complexity makes

EPLL ill-suited for most practical applications. In Chapter 6, we propose three approximations to

the original EPLL algorithm and achieve dramatic speed-up of two orders of magnitude over it

while incurring a negligible drop in the restored image quality.

Further analysis of GMM patch prior, revealed that patch distributions are not necessarily

Gaussian in all directions and therefore a GMM is not an optimal choice. To address this issue, in

Chapter 7 we introduce a new algorithm in the EPLL framework that uses a generalized Gaussian

mixture model (GGMM) patch prior. We show that the proposed fully flexible GGMM prior

captures the underlying distribution of patches better than a GMM. However, the non-Gaussianity

of its components presents major challenges in its application to the computationally intensive

process of image restoration. In this chapter, we provide asymptotically accurate approximations

and computational recipes for fast evaluation of bottleneck steps, so that using EPLL with a

GGMM prior on an image with more than tens of thousands of patches is computationally viable.
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Chapter 2

Background

Image processing is a subset of signal processing where the input and output are digital

images. The type of image processing that takes a corrupted image as input and outputs an

estimate of the underlying clean image is called image restoration. The corruptions in image

can be caused during the image formation process due to a myriad of factors such as the blur

introduced by atmospheric condition, camera lens, motion of the object, sensor limitations and

noise. This degradation process can be simplified as follows:

Real scene
(u)

//

Atmosphere
Motion

Lens
(H )

// Discretization
(D)

//
⊕

//
Digital image

(v)

Noise
(w)

OO

or mathematically,

v = DH u+w (2.1)

where u and v are the original scene and uncorrupted image captured by the imaging system, H

represents the blur, D models the discretization operation and w the additive noise. The additive
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noise w constitutes different types of disturbances that can be attributed to lighting conditions

(shot noise), sensor limitations (electronic noise) and storage procedure (quantization noise), to

name a few. Admittedly, all of these disturbances may not be additive in nature, however they

can be reliably approximated by additive Gaussian noise using variance stabilization transforms

[36]. Therefore, in majority of the image processing literature, w is modeled as an additive

white Gaussian noise (AWGN). Additionally, for ease of notation, the degradation operations

are usually combined and denoted by a single linear operator A , i.e., DH u = Au. In this thesis,

we will follow this convention along with the AWGN assumption for w. Accordingly, image

restoration can be defined as the problem of estimating an image u ∈ RN (N is the number of

pixels) from noisy linear observations v ∈ RM given by:

v = Au+w (2.2)

where A : RN→RM is the linear degradation operator and w∈RM is a noise component assumed

to be white and Gaussian. Typical examples for operator A are: identity matrix (for denoising),

a low pass filter (for deconvolution), a masking operator (for inpainting), or a projection on a

random subspace (for compressive sensing).

The rest of this chapter provides short overview of the topics that are pertinent to problems

investigated in this dissertation.

2.1 Image denoising

In this thesis, we will focus on one particular type of restoration called image denoising

where A is the identity matrix. We will also assume that the variance of the AWGN is known a

priori. Hence, the degradation model can be written as:

v = u+w (2.3)
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where u, v and w belongs to RN and w is white Gaussian noise with known variance σ2.

The reasons for this simplification are multi-fold. In image restoration, in addition to the

challenges of a standard denoising problem, there is an additional challenge presented by the

need for inversion of the degradation operator. This additional step makes the problem heavily

ill-posed which requires additional constraints or assumptions which can be collectively called as

the prior. As explained earlier, image denoising problems also benefit from better prior models.

For this reason, designing better prior models for improving denoising solutions will lead to better

solutions for image restoration as well. Hence, we use the simplified denoising framework as the

testbed to develop better general image restoration methods.

Below, we discuss the two denoising strategies utilized by the algorithms in this thesis.

2.2 From patch-wise to whole image denoising

There are different strategies for performing patch-based image denoising. One of the

main approaches can be termed patch-wise denoising, where each patch of a given noisy image v

is restored independently. A patch-wise denoising approach can be summarized as follows:

1. Extract overlapping patches,{y1, ...,yN}, from a given noisy image v,

yk = Pkv (2.4)

where Pk : RN → RP is a linear operator extracting a patch with P pixels centered at the

pixel with location k.

2. After patch extraction, apply denoising procedure on each patch by solving the following

optimization problem for each patch.

{
x̂k←− argmin

xk∈RP

1
2
||xk− yk||2 +λ f (xk)

}
k=1,...,N

(2.5)
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where yk = Pkv and xk = Pku are the pixel vectors formed from the k-th patch of size
√

P×
√

P extracted from the noisy image and latent clean image, respectively, x̂k is the

denoised estimate, f (·) is a regularizer and λ is the regularization constant.

3. After denoising each patch, the whole image estimate is obtained by replacing the patch

estimates back in the image grid (reverse of patch extraction) and averaging the overlapping

areas,

û = ∑
k

wkP t
k x̂k (2.6)

where û is the denoised image estimate, P t
k performs the complementary operation to patch

extraction by placing the input as the k-th patch in the image grid and wk is the weight of

the k-th patch during averaging (i.e., wk =
1
P for uniform weighting).

4. The above steps can iterated, if necessary. That is, after obtaining an estimate for the

underlying clean image, the above steps can be repeated by setting v = û.

This procedure simply focuses on denoising individual patches with the underlying assumption

that the aggregation of the resulting denoised estimates of all patches will lead to a global estimate

(whole image) that is close to the underlying clean image. Patch-wise denoising strategy is

utilized by a number of successful algorithms such as BM3D [28], LPG-PCA [13], and TID

[24, 23].

However, without a constraint on the appearance of the global estimate (whole image),

extending the patch-wise strategy to general restoration problems is non-trivial. Also, in this

setting, the patch aggregation step with or without uniform weights is a heuristic that needs

special attention for each iteration of the algorithm.

An alternative approach is to include a term in the optimization problem to ensure that the
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resulting global estimate is close to the noisy input image.

argmin
x∈Rn

1
2
||u− v||2 +λ

N

∑
i=1

f (Piu) (2.7)

where x is the clean image, y is the noisy image, Pi is the patch extractor operator that extracts

the i-th patch and f (·) is a patch-wise function. This formulation is what we call whole-image

denoising. The first term in Equation (2.7) ensures that the estimated image as a whole closely

resembles the original noisy image. The second term is a patch-wise denoising function and is

usually interpreted as a prior on underlying clean patches. Under a Bayesian formulation, the

first term is the negative log-likelihood assuming Gaussian noise, and therefore, the patch-wise

function can be expressed as f (Piu) =− log p(Piu), where p(.) is the a priori probability density

function.

Unlike the patch-wise strategy (Equation (2.5)), the whole-image denoising formulation

can be easily extended to general restoration problems by simply incorporating A in the first term.

argmin
x∈Rn

1
2
||Au− v||2 +λ

N

∑
i=1

f (Piu) (2.8)

Also, the whole image formulation problems of eq. (2.7) and eq. (2.8) are usually solved

using alternating minimization strategies. Under these schemes, the process of iterating for

progressively better estimates and patch aggregation become natural steps in the minimization

procedure rather than heuristic strategies as in the patch-wise formulation.

In this thesis, we will start with the state-of-the-art patch-wise algorithm (chapters 3-4),

then proceed to whole-image formulation in favor of its genericity (chapters 5-7).
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2.3 Overview of patch priors

In this section, we will provide a quick overview of patch priors that have been used in

image restoration. For brevity of expressions, we will drop the patch subscript and denote Piu = x

for the rest of this section.

Whitening priors

A popular attempt in designing patch priors considers a whitening transform W ∈ RP×P,

i.e., an orthogonal transform that decorrelates entries of x. Typically, the transform W can

be chosen by principal component analysis on a dataset of clean patches [37], or based on

some prior knowledge, e.g., by assuming decorrelations in the Fourier or wavelet domain [38].

Considering decorrelated and independent transform coefficients allows for the prior distribution

to be separable in the transformed domain (i.e., with independent marginals). Early works

on wavelet representations of images (e.g., Mallat, 1989 [38] and Moulin and Liu, 1999 [39])

suggested modeling such coefficients by a zero-mean generalized Gaussian distribution (GGD)

of the form

p(x) ∝ exp(−ρ
ν||Wx||νν) (2.9)

where ρ > 0 and ν > 0. Here, choosing 1 < ν 6 2 models each coefficient by a bell shape

distribution with small tails (the Gaussian distribution for ν = 2), see first row on Figure 2.1(a-b).

Image patches are thus assumed to be concentrated on a convex cluster (an ellipsoid for ν = 2),

see second row on Figure 2.1(a-b). If this prior is used in eq. (2.7), the regularization parameter λ

is equivalent to ρν and as ρ increases the coefficients tend to get closer and closer to zero. This

leads to diminishing edge features which yields over-smoothed images.

To circumvent this issue and preserve edges, ν 6 1 is considered. It corresponds to

modeling each coefficient by a distribution with a peak at zero (non-differentiability) and large
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Figure 2.1: Illustrations of zero-mean generalized Gaussian distributions for different values of
the shape parameter ν. From left to right: ν = 2, 1.5, 1, .3. Top: one-dimensional versions with
variance λ = 2. Bottom: iso-contours of the two-dimensional versions with W being a rotation
matrix .

tails, see first row on Figure 2.1(c-d). Image patches are thus assumed to be spread on an

union of orthogonal subspaces aligned with the directions of the rows of W , see second row

on Figure 2.1(c-d). Under this scheme, most coefficients are set to zero (sparsity) with a few

non-zero coefficients, preserving edges and resulting in sharper images.

Synthesis sparse priors

More recent works have shown that the distribution of clean image patches can be

better modeled by assuming they are sparse combinations of the columns of a redundant and

overcomplete dictionary D ∈ RP×Q, Q> P (i.e., composed of linearly dependent atoms). This is

typically achieved with undecimated (a.k.a, shift-invariant) wavelets [40, 41] or, more generally,

frames [42, 43]. A dictionary can also be learned on a large dataset of clean patches with the
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Figure 2.2: Illustrations of the iso-lines of (a-d) four two-dimensional priors based on sparse
analysis regularization with 0 < ν < 2 and a dictionary Ω ∈ R4×2 with four directions. From
left to right: the shape parameter varies respectively as ν = 2, 1.5, 1, .3.

k-SVD algorithm [30]. This is to suggest that the coefficients of an image are spread on a union of

non-orthogonal subspaces aligned with the columns of D, see Figure 2.2. The so-called synthesis

regularization framework [44], applied to image patches in [45, 46], corresponds to the following

choice of prior distribution

p(x) ∝ exp(−ρ
ν||α̂||νν) where {α̂ = argmin

α

||x−Dα||νν}, (2.10)

where ρ > 0 and ν> 0. Similar to the whitening framework, choosing ν6 1 enforces sparsity

without penalizing large non-zero coefficients.

Analysis sparse priors

Alternatively, the distribution of clean images can also be captured by modeling the

correlations of its patches with the rows of a redundant dictionary Ω ∈RQ×P that does not require

to span the set of clean images (Ω can be rank deficient). This is the case with the Total-Variation

model [26] that considers the gradient of an image Ω = ∇, and any type of filter bank analysis.

Similar to the synthesis framework, the dictionary can also be learned on a large dataset of clean

patches with the analysis k-SVD algorithm [47]. This suggests that the correlations of an image
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Figure 2.3: Illustrations of the iso-lines of (a-c) three two-dimensional zero-mean Gaussian
distributions and (d) their mixture with weights 1/2, 1/3 and 1/6 respectively.

are spread on a union of non-orthogonal subspaces aligned with the rows of Ω. The analysis

regularization framework [44], corresponds to the following choice of prior

p(x) ∝ exp(−ρ
ν||Ωx||νν) (2.11)

where ρ > 0 and ν > 0. Again, choosing ν 6 1 enforces correlations to be mostly zeros – co-

sparsity – and a few large non-zero correlations. A difficulty with such an approach is to cope

with the non-injectivity of Ω.

GMM priors

Rather than modeling clean patches as spread on a union of non-orthogonal sub-spaces,

an alternative is to consider a union of ellipsoids (called clusters). To this end, the authors of

[17, 15] suggested using a zero-mean Gaussian mixture model (GMM) prior, that, for any patch

x ∈ RP, is given by

p(x) =
K

∑
k=1

wkNP(x;0P,Σk) (2.12)
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where K is the number of components, wk > 0 are weights such that ∑k wk=1, and NP(0P,Σk)

denotes the multi-variate Gaussian distribution with zero-mean and covariance Σk ∈ RP×P. An

illustration of a GMM and its components is given in Figure 2.3. The hyper-parameters wk

and Σk can be learned using the Expectation Maximization algorithm [48] on a large dataset of

clean patches [15]. Last but not least, when K = 1, this approach is equivalent to the whitening

approach with ρW = Σ
−1/2
1 and ν = 2.

Note that the overview given here is mainly to provide a background for the methods

covered in this thesis and is far from being exhaustive. Beyond the four aforementioned priors,

many other image and patch priors have been proposed in the literature, including Gaussian

scale mixtures [49], Fields-of-Experts [19], Total Generalized Variation [50] and Student mixture

models [34] to just cite a few that we have omitted.

In the following chapters, we will use patch priors that are extensions and constrained

versions of analysis priors and GMM prior before introducing a new generalized Gaussian mixture

model (GGMM) patch prior. First, in Chapter 3, we introduce a noise-robust patch matching

strategy taking inspiration from recommendation systems. We demonstrate that by improving

patch matching, we can extract better performance from the state-of-the-art patch-wise algorithms

that use patch-specific (localized) whitening and analysis priors.
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Chapter 3

Patch Matching for Image Denoising Using

Neighborhood-based Collaborative

Filtering

3.1 Introduction

In patch-based denoising, the overall denoising performance is significantly influenced by

how similar the reference patches are to the underlying clean patch – i.e. the patch from the clean

image corresponding to the patch being denoised, prior to noise corruption. The main difficulty

of this scenario is that the clean image is not known a priori. Therefore, patch matching has to be

carried out using query patches from the noisy image or an imperfect estimate of the clean image.

This usually results in the retrieval of a non-ideal set of reference patches, which, in turn, leads to

subpar denoising results. We illustrate this problem by comparing the denoising performances

obtained by conducting patch matching using query patches from the noisy image versus its

clean version. The results of this simple experiment are shown in Figure 3.1. This example

shows the effect of patch matching on denoising performance. In this example, we attempt to
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(a) original image (b) noisy image (c) TID (d) TID-ideal

Figure 3.1: Sub-optimal patch matching leads to sub-optimal results: Original clean image (a)
is corrupted with Gaussian noise (σ = 80/255). The noisy image (b) is then denoised using the
Targeted Image Denoising [23] algorithm with reference patches found from an external text
database. Figures (c) and (d) show the denoising results when the query patches are taken from
the noisy image and the clean image, respectively. Please note that in practical situations, the
clean image is not known a priori.

denoise a text image corrupted by heavy Gaussian noise (σ = 80/255) using the state-of-the-art

patch-based denoising algorithm called Targeted Image Denoising (TID) algorithm [24, 23]. In

the first case, reference patches are found using query patches from the noisy image whereas in

the second case, patches from the underlying clean image are used during patch matching. The

rest of the denoising algorithm is kept unchanged in both cases, and the corresponding denoising

results are shown in Figures 3.1(c) and 3.1(d), respectively. It can be observed that the denoising

performance achieved in the second case is superior when compared to the first case.

In practical situations, the clean image is not known a priori, and the second case shown

in our toy example is not plausible. We show the result of this ideal scenario for demonstration

purposes only. It points to an opportunity to improve the performance of patch-based denoising

algorithms by improving the robustness of the patch matching step.

In this chapter, we propose a new way to find better reference patches based on k-nearest

neighbor collaborative filtering (kNN-CF), which enables robust patch matching. The novelty of

our work is twofold. First, we approach the problem of finding similar patches as a collaborative

filtering (recommendation system) problem in order to provide robustness to noise. Second, we

show how our method is an effective framework to seamlessly combine information from patches

internal to the noisy image (internal denoising) and those from an external database of clean
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patches (external denoising).

This chapter is organized as follows: In Section 3.2, we briefly review popular patch-based

denoising algorithms, including the recently introduced Targeted Image Denoising (TID) [23]

algorithm, and provide a quick background on nearest neighbor collaborative filtering, which is

the basis of the proposed method. We present the proposed patch matching scheme in Section 3.3.

Our experimental results are detailed in Section 3.4, followed by a discussion in Section 3.5 and

conclusion in Section 3.6.

3.2 Background

3.2.1 Targeted Database and Targeted Image Denoising

TID is an external denoising algorithm that utilizes a targeted database for denoising an

image. A targeted database, as mentioned earlier, contains patches that are relevant to the noisy

image of interest and is shown to be better than a generic database [23]. In addition to providing

more relevant reference patches, using a class- or domain-specific database allows the size of the

database to remain smaller and leads to better computational speeds during denoising.

Algorithm 1 provides an overview of the TID algorithm. The reference patches are

concatenated to form the data matrix P, which is then used to calculate a denoising filter by

solving a group sparsity minimization problem and using a localized Bayesian prior. Please refer

to [23] for a detailed explanation and derivation. Note that the TID filter is strongly influenced by

the reference patches since they are used both in TID’s transformation (U) and its shrinkage (Λ)

operations.
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Algorithm 1 Targeted Image Denoising [23]
INPUT: Query patch (q)
Database of clean patches (D)
Noise variance (σ2)
OUTPUT: Denoised patch (p̂)
1. Find n patches p1, p2, . . . pn from the database that are similar to q
2. Form data matrix:

P = [p1, p2, . . . pn]

3. Form weight matrix:

W =
1
α

diag{w1,w2, . . . ,wn}

where wi = exp
(
−‖q−pi‖2

h2

)
for some user-tunable bandwidth parameter h, and α is a normal-

ization parameter so that the weights add up to 1.
4. Compute the eigen-decomposition:

[U,S] = eig
(
PWPT)

5. Compute the shrinkage matrix:

Λ =
(
diag

(
S+σ

2I
))−1

diag(S)

6. Denoise q: p̂ = UΛUT q

3.2.2 BM3D and Its Collaborative Filtering

BM3D [8] is a transform-domain denoising procedure that attenuates noise by enhancing

group sparsity through collaboratively filtering patch groups. Patch groups are formed by finding

similar patches (reference patches) and stacking them to produce three dimensional stacks. This

3D stack of similar patches (group) is filtered jointly to produce individual denoised patch

estimates of each member of the group. The joint filtering, which involves 3D group linear

transformation, coefficient shrinkage, and 3D inverse transformation is called collaborative

filtering in the BM3D procedure. This is a fundamentally different approach than the procedure

termed collaborative filtering in recommendation systems, which is the basis for our approach. We

provide a more detailed explanation of recommendation system collaborative filtering technique

in Section 3.2.6.
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Algorithm 2 BM3D [8]
INPUT: Query patch (q)
Database of clean patches (D)
Noise variance (σ2)
OUTPUT: Denoised patch (p̂)
1. Find n patches p1, p2, . . . pn from the database that are similar to q
2. Stack them together to form 3D matrix
3. Apply a 3D transform on the 3D patch stack (e.g. 3D-DCT)
4. Perform coefficient shrinkage in the 3D transform domain (e.g. thresholding/wiener filtering)
5. Apply inverse 3D transform to obtain p̂

3.2.3 External BM3D

External BM3D [24, 23] is a variation of BM3D where the reference patches to produce

3D stacks are obtained from an external database. BM3D is a two-stage procedure where the

algorithms used in both the stages are almost identical to each other except for one step. The

general outline of the core algorithm constituting external BM3D is shown in Algorithm 2. The

only difference between the first and second stages of BM3D is in the coefficient shrinkage step

(step 4 in Algorithm 2). In stage one, coefficient shrinkage is carried out via hard thresholding,

whereas in stage two, Wiener filtering is applied to accomplish the same. The output of stage one

is used as an oracle for Wiener filtering in the second stage.

Unlike TID, the impact of reference patches has no effect on determining the transfor-

mation or the shrinkage procedure. That is, BM3D uses a predetermined transformation and

shrinkage procedure. However, the reference patches constituting the 3D stack of patches under-

going 3D transformation do have an impact on the values of the transform domain coefficients,

hence, they play a role in overall denoising.

3.2.4 External LPG-PCA

LPG-PCA [13] was originally introduced as an internal denoising algorithm that uses

principal component analysis and local pixel grouping to efficiently remove noise from a noise-

corrupted image. In LPG-PCA, local pixel grouping is attained by finding patches that are similar
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Algorithm 3 LPG-PCA [13]
INPUT: Query patch (q)
Database of clean patches (D)
Noise variance (σ2)
OUTPUT: Denoised patch (p̂)
1. Find patches p1, p2, . . . pn from the database that are similar to q
2. Apply PCA transform and perform shrinkage
3. Inverse PCA transform to obtain denoised patch p̂

to the query patch via a patch matching procedure within a local window of the noisy image. By

obtaining patches from an external database instead of the given noisy image in its local pixel

grouping stage, LPG-PCA can be easily modified to become an external denoising algorithm

[23]. The procedural outline for external-LPG-PCA is shown in Algorithm 3. Like BM3D, this

algorithm is also applied twice with an updated noise variance estimated from the first stage

output.

Due to its reliance on principal component analysis, reference patches have a more direct

impact on the denoising filter than the BM3D scenario. The quality of the reference patches

affect the transformation matrix obtained during PCA, which is applied to the pixel groups during

denoising. However, the patches do not have as much of an impact on the shrinkage step as they

have in the TID filter.

3.2.5 Patch Matching

As observed, the first step of all of these patch-based denoising algorithms is to find

reference patches given a query patch. In general, the reference patches are obtained by selecting

the nearest neighbors of a query patch q using the Euclidean distance.

Given that the denoising filters are modeled using the reference patches (in varying

degrees), it is imperative that the performance of these algorithms relies on the selection of good

reference patches. However, finding reference patches using a noisy query patch leads to less

than ideal matches, which in turn degrades the denoising performance.
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Hence, the proposed approach aims to add robustness to the patch matching stage and

retrieve a better set of reference patches, even when the query patches are not clean. Instead of

solely trusting the matching patches retrieved using a noisy query patch, we pose patch matching

as a recommendation system problem and incorporate suggestions from a set of patches known

to be similar to the query patch (selection of this set of close neighbors is explained in detail in

Section 3.3.2). By substituting the proposed CF-based patch matching in place of the standard

patch matching scheme (Step 1 in Algorithms 1, 2, and 3), we will demonstrate that CF-based

methods provide better reference patches, leading to improved denoising results.

We will demonstrate the effectiveness of our new CF-based patch matching scheme by

using it in conjunction with the TID algorithm and external versions of BM3D and LPG-PCA.

We will also compare our results with conventional internal denoising algorithms, such as BM3D

and NLM, since they are widely accepted benchmarks for patch-based denoising algorithms.

3.2.6 Neighborhood-based Collaborative Filtering

Here, we provide a brief review of neighborhood-based collaborative filtering from which

we derive the proposed patch matching criterion. Collaborative filtering (CF) is a popular

recommender system approach that predicts a given user’s preference by aggregating other users’

preferences [51, 52, 53, 54, 55]. In particular, nearest neighbor-based collaborative filtering

(NN-CF) method predicts the unknown rating of an active user a by combining the ratings from

users most similar to a. More formally, user a’s rating of an item i, pai, is predicted using the

ratings from user a’s nearest neighbors as shown below:

pai = r̄a +α ∑
u∈N (a)

w(a,u)(rui− r̄u) (3.1)

where r̄a and r̄u are the mean ratings given by users a and u respectively, rui is the rating given by

user u to item i, N (a) is the set of neighbors of user a, w(a,u) is the weight given to user u by
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user a based on their similarity, and α is a normalization factor so that the weights sum to 1, i.e.

α = 1/ [∑u w(a,u)].

In the above definition, the terms user and item are used in the most general sense. For

instance, in social media settings, a user could be a member of a social media platform and the

items recommended could be other members who share similar interests. Similarly, in a patch

matching scenario, we propose to use this approach to recommend reference patches to a noisy

query patch as detailed in the following section.

3.3 Proposed Method

The matching criterion we propose is largely inspired by the recommendation system

algorithms, specifically the neighborhood-based collaborative filtering. In order to use collabora-

tive filtering for patch matching, we make the following substitutions to the NN-CF formulation

presented in Section 3.2.6:

• Active user→ Query patch

• Other users→ Other patches of the noisy image (internal patches)

• Items→ Clean patches in the external database (external patches)

• Rating given by user u to item i→ Distance between patch u and patch i

In addition, we will substitute the set of users similar to the active user [N (a) in eq.(3.1)] with a

set of patches that we will refer to as the close neighbors of the query patch.
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3.3.1 Patch Matching Criterion

Incorporating the substitutions detailed above, the matching criterion for a query patch, q,

to a patch in the database, j, is given by

d̂q j = dq j +α ∑
u∈N (q)

w(q,u) du j, (3.2)

where d∗ j is the distance between patches ∗ and j, N (q) is the set of close neighbors of q, w(q,u)

is the weight based on the closeness of patch q and patch u, and d̂q j is the corrected dissimilarity

measure that is used to compare patches q and j. In the above equation, we have set the bias

of the query patch (similar to the r̄a in eq. (3.1)) to be equal to the distance between the query

patch q and patch j, dq j. The bias term for close neighbors is set to zero, leading to the following

criterion: for a patch to be selected as a reference patch, it not only has to be similar to the query

patch but also to the close neighbors of the query patch. This added constraint gives more control

and robustness in the matching stage.

3.3.2 Finding the Set of Close Neighbors

We define close neighbors as the patches that share close similarities (domain or content)

with the query patch. Ideally, these are the patches that we know are similar to the query (e.g.

sparse neighborhood graph). In most practical cases, this prior knowledge may not be available.

Hence, in this work, we consider the following two ways of choosing the set of close neighbors

that are expected to be most similar to the query patch:

1. From external database (Ext-CF): This approach is illustrated in Figure 3.2(a) and outlined

in Algorithm 4. Given a noisy query patch, we use its nearest neighbors from the external

clean database as close neighbors. This is the same as in the case of external denoising

approaches but differs in the number of neighbors selected. For a regular patch-based
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(a) CF using external close neighbors (b) CF using internal close neighbors

Figure 3.2: Collaborative filtering using close neighbors: Query patch is indicated with a red
box. Its close neighbors are denoted by red arrows, and reference patches recommended by
close neighbors are shown in purple.

Algorithm 4 Patch Matching using Ext-CF
INPUT: Query patch (q)
Database of clean patches (D)
Number of reference patches (n)
Number of close neighbors (m << n)
OUTPUT: Set of reference patches ({p1, ...pn})
1. Find the set of close neighbors N (q): The m nearest neighbors of q from the external
database using the default distance measure (e.g. Euclidean)
2. Get the set of recommended patches from close neighbors
3. Obtain n patches from the set of recommendations that are closest to q based on the modified
distance measure defined in eq. (3.2)

external denoising scenario, the number of reference patches chosen is an order of magni-

tude higher than the the number of close neighbors selected in our approach (i.e. < 10).

Our assumption is that the set of immediate neighbors (say, 3 nearest neighbors) of the

query patch is not significantly altered by noise and will stay the same in both clean and

noisy situations. Based on the substitutions detailed earlier in this section, this method

can be thought of as an example of item-oriented collaborative filtering [55], i.e. making

recommendations based on other items known to be rated highly by the active user.

2. From noisy image (Int-CF): In this approach, as illustrated in Figure 3.2(b) and Algorithm

5, the close neighbors of the query patch are selected from the noisy image itself. Here,

the closeness comes from the domain similarity since the patches are all from the same

image, therefore sharing the same noise characteristics, image scale, lighting, etc. When

the close neighbors are selected from the noisy image itself, the reference patches from the
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Algorithm 5 Patch Matching using Int-CF
INPUT: Query patch (q)
Database of clean patches (D)
Number of reference patches (n)
Number of close neighbors (m << n)
Noisy image (I)
OUTPUT: Set of reference patches ({p1, ...pn})
1. Find the set of close neighbors N (q): The m nearest neighbors of q from the noisy image
using the default distance measure (e.g. Euclidean)
2. Get the set of recommended patches from close neighbors
3. Obtain n patches from the set of recommendations that are closest to q based on the modified
distance measure defined in eq. (3.2)

external database are forced to be close to both the query patch and other patches in the

noisy image that look similar to the query patch. This allows for seamlessly combining

the strengths of both internal and external denoising. In terms of CF analogy, this is

similar to the user-oriented version of neighborhood-based collaborative filtering [51]

where recommendations are made based on other users similar to the active user.

3.3.3 Choice of Weights

In collaborative filtering, the ratings of the neighbors are weighted according to their

similarities to the active user. Similarly, the term w(q,u) in equation 3.2 weighs the distance

between patch j and close neighbor u to control u’s contribution to the matching criterion. For

this work, we have opted for a simple weighting scheme where the weight w(q,u) is set to 1 if

and only if u is a close neighbor of q [54]. That is,

w(q,u) =

 1 if u is a close neighbor of q

0 otherwise
(3.3)

Although we have used the 0-1 weighting scheme for simplicity, it is also possible to use other

weighting schemes, such as Pearson Correlation Coefficient, or to learn the weights from the data

itself [56].
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3.4 Experimental Results

The denoising experiments are conducted on two scenarios: text image denoising and

face image denoising. As noted earlier, we use external denoising algorithms, such as TID,

external-BM3D, and external-LPG-PCA, that use default patch matching using only the query

patch as our baselines and evaluate the improvement that CF-based patch matching approaches

provide. The baselines using the default patch matching is denoted as “Reg” in the results. For

comparison, we also provide the best-case denoising results of these approaches – i.e. when the

underlying clean patch is used for patch matching (assuming the ground truth image is known).

This is referred to as “Ideal” in our results and uses the regular patch matching as well. In

addition to the external denoising methods, we also compare our results to the internal denoising

algorithms BM3D and NLM. The internal denoising methods are indicated as iBM3D and iNLM

in our results summary.

The results obtained from using our proposed patch matching criteria are listed as “Ext-CF”

and “Int-CF” in the result tables, where “Ext” and “Int” represent the source from which the close

neighbors of the query patch were chosen. Specifically, “Int-CF” uses patches from the noisy

image as its close neighbors during the collaborative filtering step while “Ext-CF” selects the

close neighbors from the external database.

The TID algorithm can be used iteratively by using the output of the previous iteration

during the patch matching stage. That is, patches from the denoised image obtained after the

first iteration of TID are used as the query patches in the second iteration. In our results, the first

and second iterations of TID are denoted as “Stage 1” and “Stage 2,” respectively. The same

procedure is followed for external-BM3D and external-LPG-PCA. For brevity, we directly show

the results obtained at the end of the second stage of these algorithms.
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Algorithm parameters

In all experiments, the size of the patches used is set to 8×8; the number of reference

patches (n) is fixed at 40, and Euclidean metric is used to measure patch-wise (dis)similarity.

For the CF-based methods, the number of close neighbors is set to 3. From the set of patches

suggested by the close neighbors (which includes the close neighbors themselves and has no

duplicates), the dissimilarity measure given in eq. (3.2) is used to find the final set of 40 nearest

neighbors of the query patch. These parameters can be easily tailored based on the noise level

and image categories. However, we have kept them constant throughout all our experiments for

ease of comparison.

We used the default parameters for iBM3D as suggested in the implementation provided

by its authors1. For iNLM and Int-CF, internal reference patches are selected from local search

windows of size 101×101. The details of the targeted external databases consisting of clean text

and face patches will be discussed in respective sections below.

3.4.1 Text Denoising

In the first set of experiments, a text image is denoised using an external database

containing other similar but not identical text images. The images in this case are simple binary

images with a clean white background and black text. The database images are from completely

unrelated sources and vary in font styles and sizes. Some examples from the text image dataset are

shown in Figure 3.3. Tables 3.1 and 3.2 summarize the results of the text denoising experiments.

Table 3.1 shows that Ext-CF and Int-CF patch matching schemes improve the performance of both

stages of the TID algorithm. Ext-CF leads to the best PSNR values under high noise scenarios by

leveraging the external close neighbors, while Int-CF gives the highest SSIM measures since it

uses information internal to the given image as well as information from the external database.

Table 3.2 indicates that Ext-CF patch matching improves the denoising performance of
1http://www.cs.tut.fi/~foi/GCF-BM3D/
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(a) (b) (c) (d) (e)

Figure 3.3: Sample images from text image dataset [23]. The denoising experiments are
conducted on noise corrupted versions of image 5.2(a). Five different realizations of Gaussian
noise are used for each noise variance. The images 5.2(b)–5.2(e) are four examples out of nine
clean text images that constitute the external database.

Table 3.1: Text image results: Average PSNR (in DB) and SSIM measures obtained from TID
algorithm using CF-based patch matching. Results that are better than the respective baselines
are shown in bold. Ideal case results are not included in the comparison.

TID: Stage One TID: Stage Two With Gnd Truth

Baseline Proposed Baseline Proposed Best case

σ× 255 iBM3D iNLM Reg Ext-CF Int-CF Reg Ext-CF Int-CF Ideal

PSNR: 20 28.09 24.24 31.71 31.51 31.73 32.13 31.75 32.09 32.26
30 24.83 21.15 30.60 30.68 30.72 31.27 31.02 31.29 31.58
40 22.37 19.26 28.55 28.95 28.84 29.58 29.68 29.71 30.19
50 20.60 18.08 26.56 27.24 26.98 27.97 28.29 28.14 28.95
60 19.32 17.29 24.78 25.62 25.29 26.56 26.96 26.78 27.99
70 18.36 16.64 23.16 24.04 23.76 25.25 25.72 25.46 27.28
80 17.60 16.01 21.74 22.43 22.33 23.98 24.29 24.18 26.73

SSIM: 20 0.9827 0.7777 0.9812 0.9806 0.9850 0.9934 0.9930 0.9940 0.9947
30 0.9622 0.6968 0.9626 0.9633 0.9707 0.9896 0.9897 0.9913 0.9934
40 0.9310 0.6411 0.9384 0.9409 0.9510 0.9825 0.9830 0.9859 0.9907
50 0.8838 0.5996 0.9087 0.9145 0.9259 0.9717 0.9733 0.9779 0.9878
60 0.8417 0.5643 0.8726 0.8852 0.8979 0.9575 0.9605 0.9680 0.9849
70 0.8015 0.5309 0.8288 0.8514 0.8623 0.9368 0.9422 0.9533 0.9823
80 0.7635 0.4980 0.7854 0.8097 0.8210 0.9110 0.9103 0.9315 0.9801
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(a) Original (b) Noisy (σ = 80
255 ) (c) iBM3D (17.52, 0.7571) (d) iNLM (16.00, 0.4944)

(e) eBM3D+baseline
(21.80, 0.8812)

(f) eBM3D+Ext-CF
(22.21, 0.8752)

(g) eBM3D+Int-CF
(21.50, 0.8827)

(h) eBM3D+Ideal
(26.40, 0.9466)

(i) eLPG-PCA+baseline
(22.17, 0.7944)

(j) eLPG-PCA+Ext-CF
(22.76, 0.8040)

(k) eLPG-PCA+Int-CF
(22.22, 0.7973)

(l) eLPG-PCA+Ideal
(24.17, 0.8304)

(m) TID+baseline
(23.92, 0.9119)

(n) TID+Ext-CF
(24.38, 0.9135)

(o) TID+Int-CF
(23.95, 0.9284)

(p) TID+Ideal
(26.77, 0.9798)

Figure 3.4: Visual and objective comparison of denoising performance of a text image. Patch
matching criterion used is indicated after the "+" sign. The objective evaluation metrics of each
case is shown in parenthesis in (PSNR, SSIM) format.
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Table 3.2: Text image results: Average PSNR (in DB) and SSIM measures obtained from
external-BM3D and external-LPG-PCA using CF-based patch matching. Results that are better
than the respective baselines are shown in bold. Ideal case results are not included in the
comparison.

External-BM3D External-LPG-PCA

Baseline Proposed Best case Baseline Proposed Best case

σ× 255 iBM3D iNLM Reg Ext-CF Int-CF Ideal Reg Ext-CF Int-CF Ideal

PSNR: 20 28.09 24.24 28.79 28.85 28.74 31.14 32.70 32.53 32.69 32.94
30 24.83 21.15 27.00 27.08 26.78 29.51 30.27 30.23 30.27 30.61
40 22.37 19.26 25.74 25.87 25.37 28.50 28.18 28.30 28.25 28.77
50 20.60 18.08 24.71 24.79 24.17 27.78 26.40 26.63 26.45 27.27
60 19.32 17.29 23.74 23.90 23.11 27.22 24.84 25.18 24.91 26.02
70 18.36 16.64 22.90 23.01 22.25 26.75 23.48 23.82 23.57 25.03
80 17.60 16.01 21.94 22.07 21.35 26.35 22.25 22.58 22.26 24.17

SSIM: 20 0.9827 0.7777 0.9563 0.9567 0.9572 0.9662 0.9689 0.9718 0.9703 0.9765
30 0.9622 0.6968 0.9467 0.9476 0.9470 0.9588 0.9435 0.9473 0.9438 0.9553
40 0.9310 0.6411 0.9384 0.9397 0.9379 0.9546 0.9153 0.9186 0.9178 0.9303
50 0.8838 0.5996 0.9294 0.9297 0.9270 0.9520 0.8845 0.8923 0.8883 0.9083
60 0.8417 0.5643 0.9175 0.9195 0.9149 0.9501 0.8538 0.8644 0.8555 0.8814
70 0.8015 0.5309 0.9049 0.9036 0.9016 0.9486 0.8208 0.8319 0.8268 0.8570
80 0.7635 0.4980 0.8841 0.8780 0.8846 0.9473 0.7903 0.8010 0.7956 0.8359

external-LPG-PCA and external-BM3D. The other proposed approach, Int-CF, improves the

baseline version of LPG-PCA consistently as well.

In Figure 3.4, we display the denoised images from one of the high noise settings for

visual comparison. Visually and objectively, the methods that use the proposed patch matching

schemes yield better denoising results compared to their respective baseline methods.

3.4.2 Face Image Denoising

Face image denoising is an example of a setting where the database images and the image

to be denoised are not a perfect match. In this setting, we denoise a face image with a database of

face images of other people. This setting also displays variations in lighting, contrast, gender, etc.

Some examples demonstrating the diversity of the image dataset are shown in Figure 3.5. For our

experiments, we randomly picked five images and added Gaussian noise. These noisy images

were then denoised using an external database consisting of ninety face images from different

individuals.
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(a) (b) (c) (d) (e)

Figure 3.5: Sample images from FEI face image dataset [57]. The image 5.3(a) is one of five
test images used in our experiments. The rest of the images, 5.3(b)–5.3(e), are four examples
out of ninety clean images that constitute the clean external database. All face images in our
experiments have a size of 90×65.

The denoising results obtained from this dataset are presented in Tables 3.3 and 3.4. In

this experiment, since the image to be denoised does not closely match the database images, the

Int-CF results are improved compared to other methods, including those obtained from Ext-CF.

This can be attributed to the power of combining both internal and external information while

denoising an image. Since the external database is different from the image to be denoised, it is

important to leverage as much information as possible from the internal image to find the best

matching patches. Figure 3.6 shows the denoising results of one of our test images. Our patch

matching schemes yield comparable visual quality to the baseline algorithms while giving higher

PSNR and SSIM values.

3.5 Discussion

Currently, patch-based denoising algorithms use standard metrics for patch matching that

are not robust to noise. In the absence of a robust matching scheme, the patches retrieved using

the noise-corrupted query patch hinders the overall denoising process. We have introduced a

patch matching scheme where a query patch takes suggestions from other close neighbors. This

collaborative approach to finding similar patches lends a degree of robustness to noise that a

single pairwise distance fails to provide.
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Table 3.3: FEI face dataset results: Average PSNR (in DB) and SSIM measures obtained
from TID algorithm using CF-based patch matching. Results that are better than the respective
baselines are shown in bold. Ideal case results are not included in the comparison.

TID: Stage One TID: Stage Two With Gnd Truth

Baseline Proposed Baseline Proposed Best case

σ× 255 iBM3D iNLM Reg Ext-CF Int-CF Reg Ext-CF Int-CF Ideal

PSNR: 20 31.38 26.67 31.65 31.62 31.75 32.06 31.80 31.99 34.16
30 29.45 24.98 29.64 29.54 29.79 30.40 30.22 30.42 33.74
40 27.53 23.26 27.37 27.27 27.57 28.52 28.44 28.61 33.46
50 26.88 21.94 25.89 25.75 26.06 27.30 27.14 27.36 33.46
60 25.80 20.62 24.59 24.36 24.76 25.94 25.85 26.06 33.33
70 25.23 19.53 23.52 23.30 23.70 25.08 24.94 25.23 33.41
80 24.43 18.59 22.73 22.48 22.88 24.30 24.11 24.39 33.42

SSIM: 20 0.9028 0.7258 0.8976 0.9003 0.9028 0.9143 0.9099 0.9142 0.9495
30 0.8601 0.6305 0.8412 0.8440 0.8506 0.8772 0.8738 0.8796 0.9448
40 0.8118 0.5239 0.7622 0.7615 0.7719 0.8264 0.8261 0.8310 0.9433
50 0.7921 0.4464 0.6955 0.6941 0.7072 0.7818 0.7755 0.7889 0.9428
60 0.7599 0.3780 0.6470 0.6387 0.6582 0.7407 0.7386 0.7483 0.9431
70 0.7217 0.3177 0.5821 0.5750 0.5935 0.6852 0.6795 0.6964 0.9423
80 0.7123 0.2751 0.5555 0.5464 0.5666 0.6716 0.6639 0.6816 0.9428

Table 3.4: FEI face dataset results: Average PSNR (in DB) and SSIM measures obtained
from external-BM3D and external-LPG-PCA using CF-based patch matching. Results that are
better than the respective baselines are shown in bold. Ideal case results are not included in the
comparison.

External-BM3D External-LPG-PCA

Baseline Proposed Best case Baseline Proposed Best case

σ× 255 iBM3D iNLM Reg Ext-CF Int-CF Ideal Reg Ext-CF Int-CF Ideal

PSNR: 20 31.38 26.67 31.62 31.46 31.44 35.86 31.70 31.49 31.63 33.39
30 29.45 24.98 30.00 29.81 29.88 34.75 29.80 29.61 29.79 31.81
40 27.53 23.26 28.36 28.17 28.34 34.05 27.70 27.47 27.77 30.04
50 26.88 21.94 27.16 27.03 27.14 33.56 26.23 25.87 26.25 28.69
60 25.80 20.62 25.98 25.81 25.98 33.17 24.73 24.47 24.87 27.47
70 25.23 19.53 25.14 24.97 25.21 32.90 23.57 23.10 23.71 26.28
80 24.43 18.59 24.40 24.20 24.45 32.56 22.76 22.23 22.88 25.20

SSIM: 20 0.9028 0.7258 0.9060 0.9026 0.9025 0.9595 0.9006 0.8945 0.9003 0.9265
30 0.8601 0.6305 0.8693 0.8655 0.8679 0.9497 0.8492 0.8441 0.8503 0.8898
40 0.8118 0.5239 0.8241 0.8197 0.8250 0.9421 0.7813 0.7670 0.7836 0.8434
50 0.7921 0.4464 0.7796 0.7734 0.7843 0.9365 0.7196 0.6973 0.7201 0.7994
60 0.7599 0.3780 0.7479 0.7415 0.7531 0.9321 0.6651 0.6402 0.6691 0.7637
70 0.7217 0.3177 0.6952 0.6852 0.7048 0.9272 0.5919 0.5709 0.5981 0.7077
80 0.7123 0.2751 0.6811 0.6740 0.6916 0.9240 0.5605 0.5303 0.5709 0.6720
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(a) Original (b) Noisy
(σ = 40

255 )
(c) iBM3D

(27.79, 0.8130)
(d) iNLM

(23.22, 0.5194)

(e)
eBM3D+baseline
(29.37, 0.8477)

(f)
eBM3D+Ext-CF
(29.17, 0.8422)

(g)
eBM3D+Int-CF
(29.44, 0.8451)

(h) eBM3D+Ideal
(35.41, 0.9496)

(i) eLPG-
PCA+baseline
(28.57, 0.8117)

(j) eLPG-
PCA+Ext-CF

(28.38, 0.7992)

(k) eLPG-
PCA+Int-CF

(28.77, 0.8251)

(l)
eLPG-PCA+Ideal

(31.25, 0.8741)

(m) TID+baseline
(29.49, 0.8526)

(n) TID+Ext-CF
(29.46, 0.8539)

(o) TID+Int-CF
(29.68, 0.8579)

(p) TID+Ideal
(35.10, 0.9541)

Figure 3.6: Visual and objective comparison of denoising performance of a face image. Patch
matching criterion used is indicated after the "+" sign. The objective evaluation metrics of each
case is shown in parenthesis in (PSNR, SSIM) format.
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Our results indicate that using CF-based patch matching schemes are effective in noisy

scenarios. The most convincing evidence is the improvement they provide in the first stage of

TID when using the noisy query patch for patch matching.

The performance boosts of LPG-PCA and BM3D under the new patch matching schemes

are lower than TID. This is due to the difference in roles of the reference patches in the respective

denoising filters. In TID, reference patches contribute to both the transformation and shrinkage

filters. Whereas, in LPG-PCA reference patches contribute to the transformation matrix, and in

BM3D, their effect is more indirect (via the transform domain coefficients). The more dependent

a denoising filter is on the reference patches, the more pronounced is the effect of patch matching

on its performance.

Int-CF, the approach of consulting internal close neighbors before conducting a patch

matching on the external database, provides a novel way to leverage both internal and external

patch information, thus, seamlessly combining the internal and external denoising. It could be

argued that, in contrast to Int-CF, a straightforward way to combine internal and external denoising

is to directly combine patches from the noisy image and the external database while designing

denoising filters. However, this strategy will not be successful. The algorithms presented in

this work, such as TID and LPG-PCA, design their denoising filters in a data-adaptive manner.

Therefore, any noise in the set of reference patches can be detrimental to their performance. Thus,

using purely external patches is a much better solution than directly combining external and

internal patches. The addition of noisy patches in the external BM3D will also degrade the quality

of the denoising filter but to a lesser degree. In short, the performance improvements obtained by

Int-CF patch matching over the default matching strategy demonstrates its ability to successfully

fuse information from both internal and external patches.

Finally, Ext-CF can be leveraged to quickly narrow down the search space in a large

external database. By using an appropriately indexed large database with all the pairwise distances

precalculated, Ext-CF allows us to focus on only those patches in the database that are nearest

36



neighbors of the close neighbors. A thorough evaluation of the speed-up versus performance

obtained through this approach is one of the directions of future research.

3.6 Conclusion

In this chapter, we present a novel patch matching criterion taking inspiration from

neighborhood-based collaborative filtering approaches. We demonstrate the effectiveness of the

new patch matching scheme by applying it to denoising images from two different categories

displaying different levels of ease and complexity. Our experiments show that the collaborative

filtering-based patch matching improves the performance of state-of-the-art patch-based denoising

algorithms by picking better reference patches.

In the next chapter, we will demonstrate a strategy to efficiently leverage temporal

correspondences between patches to extend patch-based TID to video denoising.
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Chapter 4

Targeted Video Denoising for

Decompressed Videos

4.1 Introduction

Patch-based denoising algorithms such as non-local means (NLM) [58] and BM3D [59],

originally introduced to denoise images, have been successfully adapted for video denoising

[60, 61, 62]. These approaches assume that images (or videos) contain repeated structures which

promises the existence of mutually similar patches within an image/video. For image denoising,

similar patches are obtained by searching a 2D neighborhood around the pixel (or patch) being

processed. However, for videos, a 3D region around a patch involving its spatial and temporal

neighborhoods is searched to find similar patches [60, 61, 62, 63]. Since the similar patches

used during denoising are obtained from within an image (or video), these methods fall into a

category known as internal denoising algorithms. Although very efffective, internal denoising

approaches do have some limitations when denoising rare patches [64, 65] and when operating

under high noise scenarios. Rare patch effect is nominally alleviated in videos by using patches

from multiple frames. However, since similar patches are selected from within the noisy video,

38



the limitations that arise under high noise scenarios still remain a challenge.

In the case of image denoising, researchers have shown that these issues can be ameliorated

by using external denoising algorithms where similar patches are obtained from a large external

database of clean patches [66, 67, 68, 69]. Recently, Luo et al. [70, 71] argued for the use of

a targeted database that incorporated prior knowledge about the scene in an image instead of

using large generic databases. Their method, known as targeted image denoising (TID), achieved

impressive gains in denoising performance by using targeted databases over state-of-the-art

internal denoising algorithms like NLM and BM3D, and other external denoising algorithms that

use generic databases [70, 71].

In this chapter, our focus is on denoising decompressed videos corrupted during transmis-

sion. To this end, we adapt TID algorithm to perform video denoising, thus incorporating the

advantages of the state-of-the-art external denoising into the video denoising domain. Temporal

information contained in a video sequence is leveraged by re-purposing the motion vectors

available in a compressed video to establish correspondences between patches in neighboring

frames. We evaluate the extended TID algorithm on multiple decompressed video sequences

and show that our adaptation makes the already powerful denoising filter more suited for video

denoising with virtually no added overhead.

Contributions: The contributions of this work are as follows. First, we extend the state-

of-the-art TID algorithm to video denoising paradigm. Second, we avoid introducing additional

complexity per frame while finding the temporal neighborhood by using the sparse motion vectors

extracted from the bitstream of the compressed video. Use of sparse motion vectors instead of

dense optical flow or predictive block matching keeps the per-frame complexity of the video

denoising algorithm the same as that of the underlying image denoising algorithm with only

minor reduction in denoising performance.
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4.2 Related Work

4.2.1 Establishing temporal coherence in video denoising

A critical step in adapting an image denoising algorithm to videos is exploiting the

temporal coherency among video frames while searching for similar patches. Taking advantage

of this similarity between consecutive frames has been key to the success of existing patch-based

video denoising algorithms [60, 61, 63, 62, 72, 73, 74]. Temporal coherence was loosely enforced

in the original NLM extension [60] by simply searching for patches in a 3D spatio-temporal

volume centered around the query patch. Some researchers have argued that explicit motion

estimation using optical flow to incorporate temporal coherence provides better results for real-

world videos [61, 74]. Video extension of BM3D [62] avoids explicit motion estimation. It uses

a predictive-search block matching scheme that searches for similar patches in spatio-temporal

volumes that are adapted based on the query patch (data-adaptive). All these approaches of

involving the temporal domain adds more complexity to the denoising process. For compressed

videos, we show that this added complexity can be avoided by re-using the already available

motion vectors present in the bitstream of the compressed video.

4.2.2 Targeted Image Denoising

As explained in earlier chapters, TID designs data-adaptive optimal denoising filters

maximally utilizing the information contained in patches in the given targeted database. First,

TID retrieves clean patches similar to the noisy patch under consideration (query patch). Then,

the retrieved similar patches are used to learn an optimal denoising filter by solving a group

sparsity minimization problem and using a localized Bayesian prior. Please refer to [71] for a

detailed explanation and derivation of the TID filter.

The data-adaptive nature of the TID denoising filter makes selection of similar patches

from the database very important. We improve the efficacy of TID on videos by leveraging
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Algorithm 6 Targeted Video Denoising
INPUT: Query patch (q), Motion vectors (vX ,vy), Database of clean patches (D), Noise variance
(σ2)
OUTPUT: Denoised patch (p̂)
1. Obtain the temporal neighbors of the query patch q based on motion vectors (e.g. qt±1)
2. Find n reference patches p1, p2, . . . pn from the database using q and its temporal neighbors
3. Form data matrix by concatenating patches retrieved using q and using its temporal neighbors
(qt±1)

P =
[
Pt−1,Pt,Pt+1]= [p1, p2, . . . pn]

4. Form weight matrix: W = 1
α

diag{w1,w2, . . . ,wn}
where wi = exp

(
−‖q−pi‖2

h2

)
, h is user-tunable bandwidth parameter and α is normalization

parameter so that the weights add up to 1.
5. Perform eigen-decomposition: [U,S] = eig

(
PWPT)

6. Perform shrinkage: Λ =
(
diag

(
S+σ2I

))−1 diag(S)
7. Denoise q: p̂ = UΛUT q

temporal coherence between video frames during patch matching.

As assumed by Luo et al. [70, 71], we also assume that a targeted database is given.

Choosing an appropriate database can be a challenging problem in itself and is out of the scope

of this study. However, please note that in the absence of a targeted database, a very large generic

database of clean patches can be used without any change to the underlying algorithm.

4.3 Targeted Video Denoising

Let v(i) and u(i) be the observed video signal and original signal, respectively, at the

spatio-temporal index i = (x,y, t). Here, we consider the case where the noise signal η(i) is i.i.d.

Gaussian with zero mean and variance σ2. That is, v(i) = u(i)+η(i), where η(i) ∼ N (0,σ2).

The variance σ2 is assumed to be known a priori.

An outline of the extension of TID for videos, Targeted Video Denoising (TVD) algorithm,

is shown in Algorithm 6. For the remainder of this section we provide detailed explanation of the

modifications made to the original TID algorithm.

We start our adaptation of TID by establishing and identifying temporal correspondences
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Figure 4.1: Performance comparison on Miss America sequence (First 60 frames): Per-frame
PSNR comparison of the proposed TVD algorithm (‘∗’ marker) with the VBM3D algorithm (‘◦’
marker) for different noise levels. For reference, results obtained using the original TID applied
on a per-frame basis with no temporal assistance is also shown (‘�’ marker).

Figure 4.2: Frame 5 of the Miss America sequence: Visual comparison of a frame corrupted
by AWGN of σ = 30 (top left), the original frame (top right), the VBM3D result (bottom left)
and the output of the proposed method (bottom right)

between patches in consecutive frames (step 1 of algorithm 6). Previously, temporal correspon-

dence between patches of a frame and its neighboring frames were calculated using optical flow

[61] or data-adaptive predictive-search block matching [62] or block matching in a non-adaptive

fixed window [60]. These methods add considerable overhead since these operations are carried

out for each video frame. To circumvent this problem we propose using motion vectors that are

available in a compressed video stream, which are generated during video compression.

Video compression schemes such as MPEG-4 rely heavily on motion estimation to exploit

the high spatial and temporal redundancy present in consecutive frames of a video. The estimated

motion vectors are used to perform motion-compensated frame differencing to obtain better

compression of information contained in videos. Compressed video contains frames that fall
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Figure 4.3: Performance comparison on Coastguard sequence (First 60 frames): Per-frame
PSNR comparison of the proposed TVD algorithm (‘∗’ marker) with the VBM3D algorithm (‘◦’
marker) for different noise levels. For reference, results obtained using the original TID applied
on a per-frame basis with no temporal assistance is also shown (‘�’ marker).
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Figure 4.4: Performance comparison on Diving sequence (55 frames): Per-frame PSNR com-
parison of the proposed TVD algorithm (‘∗’ marker) with the VBM3D algorithm (‘◦’ marker)
for different noise levels. For reference, results obtained using the original TID applied on a
per-frame basis with no temporal assistance is also shown (‘�’ marker).

into three different picture types: P, B and I frames. The P frames use data from previous frame

and have motion vectors that relate the current frame to its previous frame. Likewise, the B

frames use data from both its previous and next frames and hence have motion vectors in both

temporal directions. Since these motion vectors are encoded in compressed video representations,

they can be accessed during decompression with no additional cost. We propose using these

motion vectors to identify the temporal neighbors of patches in P and B frames. The I frames are

intra-coded and not dependent on past or future frames. They are similar to static images, with

no motion vector information. These frames can be either denoised as an image without using

temporal information or subjected to optical flow calculation.

Unlike the dense optical flow, which is defined for all pixels, motion vectors used in a

video compression scheme are usually sparse and are defined per-macroblock instead of per-pixel

– e.g. a single motion vector for each 16x16 block. Therefore, every pixel in a macroblock has

the same motion vector. Although these coarse motion fields may not capture the true motion of

every single pixel of a frame, they provide a good approximation and can be easily incorporated
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into the denoising pipeline with no additional complexity.

After establishing a temporal correspondence between pixels of consecutive frames, each

patch can be associated to its counterpart in temporal directions using the motion vectors of its

central pixel. This patch correspondence is then used during patch matching as follows (steps 2-3

of algorithm 6): let the set of patches retrieved from the targeted database using the query patch q

of frame t be Pt and the sets retrieved using q’s temporal neighbors (qt±1) at time t−1 and t +1

be Pt−1 and Pt+1 respectively. Then, the data matrix P =
[
Pt−1,Pt,Pt+1]; that is, the data matrix

used to design the denoising filter is formed by taking the union of the sets of similar patches

retrieved using q and all of its temporal neighbors. In addition to providing a certain degree of

temporal consistency, this augmentation utilizing patch correspondence also provides robustness

to random noise.

The rest of the denoising algorithm (steps 4-7 of algorithm 6) identical to the original

TID algorithm [70, 71].

4.4 Experimental Results

We tested our algorithm on three grayscale videos with different characteristics. For our

first set of experiments we use the well-known “Miss America" and “Coastguard" benchmark

sequences. Miss America is a fairly static scene featuring small movements, whereas Coastguard

features object movement and tracking. The third video sequence tested is footage of a diver

(video # 007) taken from the UCF sports action dataset [75, 76]. The test sequences were created

by adding varying amounts of Gaussian noise to the clean video frames.

Targeted database: We assume that either three noise-free images (frames) from the long

video or video of the same setting captured on a different occasion are available. For example,

three images shot while a surveillance video is being recorded which are sent or saved for offline

enhancement of the video in the future. With this application scenario in mind, we use the Miss
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America and Coastguard sequences to demonstrate the efficacy of TVD under the more ideal

of these two scenarios. That is, for these videos, the targeted database was created using three

random frames from their respective clean videos. We use the diving sequence to demonstrate

a more realistic scenario where a targeted database is created using an earlier video shot in a

similar setting. In particular, for the diving video (video # 007), we use a different video featuring

a different diver as the targeted database (video # 005 from UCF sports). This is a more realistic

setting where we have access to clean videos that are similar but different from the noisy video.

To minimize the database size for the diving sequence, we pick a moving window of three frames

from video # 005 to be the targeted database.

Parameter settings: We use the same parameter settings for all the experiments. The

targeted video denoising algorithm is run twice where the result from the first iteration is used for

finding similar patches in the second iteration. The patch size is set to 8x8 pixels. We retrieve

a total of 120 similar patches from the database for every noisy patch (n = 120). Therefore,

if a query patch has only one temporal neighbor then both of them will be used to retrieve 60

reference patches each. We compare our results with the state-of-the-art VBM3D algorithm [62].

We use the VBM3D implementation from the BM3D website (http://www.cs.tut.fi/ foi/GCF-

BM3D/). For all the experiments, we used the default parameters except for the temporal window

size which is set to 3 (by default this is set to 9 in the VBM3D package). To demonstrate the

improvement obtained using temporal correspondences, we also compare our results obtained

from TID algorithm, with n = 120, applied on a per-frame basis without using any temporal

knowledge.

The Miss America sequence is of QCIF resolution (144x180). The per-frame denoising

results obtained on this video sequence are shown in Figure 4.1. Qualitatively and quantitatively,

the proposed algorithm clearly outperforms VBM3D and TID on enhancing this video in all

the noise settings we tested. TVD achieves a global PSNR (calculated on the whole sequence)

improvement of around 2.4-3.1 dB and global SSIM improvement of 0.04-0.1 over VBM3D. For
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visual comparison, one of the frames from the σ = 30 noise setting is shown in Figure 4.2.

The Coastguard video contains moving objects and also features egomotion due to the

camera tracking a moving boat. The resolution of this video is 144x176 pixels. The per-frame

comparison of the PSNR values obtained after denoising this sequence with TVD, TID and

VBM3D are presented in Figure 4.3. The spikes in the performance curves of the proposed

algorithm and TID are due to the location of the frames used as the targeted database. However,

this advantage is canceled out in the high noise scenarios (e.g. σ = 50) because of the difficulty in

finding true matches using severely corrupted patches. The global PSNR improvements shown by

TVD over VBM3D range from 0.8-1.6 dB (∆global-SSIM = 0.04-0.09) as the noise is increased

from σ = 20 to 50.

We downsampled the diving sequence from the UCF sports action dataset [75, 76] from a

spatial resolution of 404x720 to 101x180. Both the testing sequence and the database sequence

have 55 frames each. The per-frame denoising results obtained on this video sequence are

presented in Figure 4.4. Under the low noise setting (σ = 20), although TVD has a slightly higher

global SSIM than VBM3D (0.003), global PSNR of VBM3D is better than TVD by 1.1 dB. More

importantly, the proposed approach outperforms VBM3D for higher noise settings with σ≥ 30

yielding global PSNR improvements of 0.4-1.2 dB (∆global-SSIM = 0.02-0.07).

Runtime: The proposed TVD algorithm has the same runtime complexity as TID since the

extraction of motion vectors does not add any noticeable overhead. Our current implementation

of TID denoising algorithm takes approximately 60s per frame in the diving sequence (101x180).

The runtimes of TID and TVD can be optimized by using large-scale approximate nearest

neighbor algorithms for patch matching such as the RIANN [77] or PatchTable [78] algorithms.
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4.5 Conclusion

We have introduced a patch-based video denoising algorithm by extending the TID al-

gorithm [71, 70]. In order to take advantage of the similarity among video frames in a temporal

neighborhood, we augmented the localized Bayesian prior of TID with temporal coherency prior.

Using the motion vectors present in the compressed bitstream, we denoise decompressed videos

with no added complexity. Our results demonstrate that targeted video denoising consistently out-

performs its image processing counterpart, TID, and the state-of-the-art internal video denoising

algorithm VBM3D in mid- and high-noise conditions.

Even though the video extension does not overburden the runtime complexity, the underly-

ing image processing algorithm, TID, takes around one minute per frame of size 101×180. This

is prohibitively slow and cannot be used for large scale applications such as video processing.

Therefore, next chapter tackles the problem of designing a fast but competent denoising algorithm.
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Chapter 5

Fast external denoising using pre-learned

transformations

5.1 Introduction

External denoising algorithms alleviate the shortcomings of internal methods such as

difficulty in handling high noise level and rare patches [14]. However, external (both generic and

targeted) methods are either slower to converge to an acceptable solution or are computationally

expensive than internal methods. EPLL [15] is one of the most popular external denoising

algorithms but it is slow to produce a good quality solution requiring many iterations with heavily

overlapped patches. Additionally, in each iteration of EPLL, one has to calculate the patch

log-likelihood of the patch under the learned GMM prior. This involves calculating Mahalanobis

distance using the covariance matrices of each mixture component which is computationally more

complex than calculating Euclidean distances. The TID filter produces a higher quality image

within 2-3 iterations but is computationally expensive. Depending on the size of the image and

the database used, TID processing time is usually orders of magnitude slower than EPLL. These

issues make these successful external denoising methods unsuitable for processing videos and
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large images.

In this chapter, we propose a fast external denoising algorithm that we refer to as FED.

This algorithm is efficient during runtime and can be trained with ease and flexibility.

5.2 Background and Related Work

The proposed approach falls under the external denoising category. An external denoising

algorithm uses information from outside the noisy image when estimating the denoising filter. In

this section we provide a brief overview of two external denoising algorithms that inspired the

development of our method.

5.2.1 Targeted Image Denoising Filter

TID designs optimal denoising filters for each noisy patch in the image by utilizing the

given targeted database maximally. To this end, for each noisy patch, TID retrieves clean patches

similar to the noisy patch and obtains an optimal denoising filter for it by solving a group sparsity

minimization problem and using a localized Bayesian prior [23].

The data-adaptive nature of TID makes it very effective. However, designing a new filter

for each patch during runtime can lead to excessive computational complexity as the size of the

noisy image increases. The complexity of TID is also dependent on the size of the database and

the number of similar patches used for designing the filter. This makes TID unsuitable for large

images and videos.

5.2.2 Expected Patch Log Likelihood

Expected Patch Log Likelihood (EPLL) [15] is another successful external denoising

algorithm. EPLL models the patch priors using Gaussian Mixture Models from an external

database of generic patches. These learned patch priors are used to denoise images efficiently.
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This simple yet powerful algorithm has been shown to outperform both internal denoising

algorithms such as BM3D [8] and external denoising algorithms such as external-NLM. The

proposed method is similar to the EPLL algorithm, however the denoising filter proposed in this

paper is more powerful when a targeted database is available.

5.2.3 Generic vs. targeted database of patches

As metioned above, TID uses an external database composed of patches from images

that are visually similar to the noisy image that are being denoised. Such a database that closely

resembles the characteristics of the test (noisy) image is referred to as the targeted database.

Whereas, the Gaussian Mixture Models in the original EPLL study is learned from a large

database of patches (2×106 patches) taken from images in the Berkeley Segmentation Database

[79]. A patch database that contains patches from a wide range of images from various domains

is termed a generic database. In general, using a targeted database is better than relying on a

generic database.

Choosing an appropriate database with relevant images can be a challenging problem in

itself and is an active research area. This direction of research requires a thorough evaluation

of recent developments in image retrieval and grouping algorithms such as deep learning for

image retrieval [80] and web scale photo clustering [81]. However, a careful evaluation of

database construction methods is out of the scope of this study and we leave it for future work.

Although our algorithm is designed to be used with a targeted database, we also include results

from experiments using a generic database to give the reader an idea of the performance of our

algorithm in this unideal setting.
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5.3 Proposed Method

In this section, we describe the proposed denoising approach. It is based on a whole image

denoising formulation that is regularized by targeted patch-based denoising estimate. First, let us

define a model for the noisy image as y = x+η ∈ RN where η is the i.i.d. Gaussian noise with

zero-mean and variance σ2, i.e., η∼N (0,σ2IN). Let us also define a patch extractor operator

Pi ∈ Rd×N that extracts i-th patch from x, i.e., Pix ∈ Rd is a d-dimensional vector obtained by

lexicographic ordering of
√

d×
√

d patch extracted from the image x.

5.3.1 Whole image denoising

Given a noisy image y, the noise variance σ2, and a set of targeted image patches A∈Rd× k

of k patches, we propose to optimize the following cost function to estimate the underlying clean

image, x.

min
x,{zi}

1
2σ2‖x− y‖2

2 +
β

2

[
N

∑
i=1
‖Pix−Azi‖2

2 +λ‖zi‖2
2

]
(5.1)

The above formulation ensures that the estimated image as a whole closely resembles the original

noisy image y (first term), and the individual patches of the estimated image can be expressed as

a linear combination of the patches in the patch-matrix A with minimum error. The optimization

parameter β controls the relative contribution of the patch-by-patch reconstruction strategy of the

second term to our overall goal of denoising the whole image, and the parameter λ ensures the

existence of feasible solutions for the set of coefficient vectors {zi|i = 1 . . .N}.

The solution for the minimization in eq. (5.1) can be carried out by alternating between:

1. Fixing x and finding optimal set of {zi} using the assumption that zi’s are mutually inde-

pendent.

2. Fixing {zi} and solving for x.
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We defer the details of the first of these two steps (finding optimal {zi}) to Section 5.3.2 below.

Assuming we have the optimal solutions for all coefficient vectors {zi|i = 1 . . .N}, we will first

discuss solving for the optimal x.

Fixing all {zi} and solving for optimal x leads to

x̂ =

(
1

σ2 IN +β

N

∑
i=1

PT
i Pi

)−1(
1

σ2 y+β

N

∑
i=1

PT
i Azi

)
(5.2)

where the matrix PT
i performs the complementary operation of Pi of placing a patch back as

the i-th patch of the image, and ∑
N
i=1 PT

i Pi counts the number of estimates obtained for each

pixel in the image. Therefore, the solution of the whole image denoising shown in eq. (5.2) is

simply a weighted average of the given noisy image and the image estimate obtained by denoising

individual patches independently.

5.3.2 Patch denoising

We now focus on the solution for optimal {zi} obtained by fixing x. The optimal zi can be

found by solving the following minimization problem for each i separately:

min
zi
‖Pix−Azi‖2

2 +λ‖zi‖2
2 (5.3)

Here, the second term is added for regularization purposes and to ensure a unique solution. The

solution of eq. (5.3) has a closed-form expression which leads to estimate Aẑi as:

Aẑi = A
(
AT A+λIk

)−1
AT Pix (5.4)
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If we let (U ,D,V ) be the singular value decomposition (SVD) of A = UDV T , then eq. (5.4)

simplifies to:

Aẑi =U
D2

D2 +λId
UT Pix (5.5)

where the division must be read as an element-wise division of diagonal elements. By noticing

that AAT =UD2UT , then we can rewrite eq. (5.5) as:

Aẑi =U
S

S+λId
UT︸ ︷︷ ︸

Denoising Filter

Pix︸︷︷︸
Patch

(5.6)

where U and S are obtained via the eigen-decomposition of AAT . Repeating the above steps for

all i = {1 . . .N} will provide denoised estimates for all of the patches in a given noisy image.

Here, the parameter λ is chosen such that it is proportional to the noise variance in y (which is

assumed to be known a priori.)

Proposed choice for A matrix

Note that in eq. (5.3), we have opted for an `2 constraint over an `1 constraint to facilitate

a closed form solution to our optimization problem. This choice is driven to ensure computational

efficiency. However, the `2-norm does not promote sparsity and hence the reconstruction accuracy

depends heavily on the quality and relevance of patches in matrix A. Therefore, it is not ideal to use

the entire targeted database in place of A. A valid alternate option is to set matrix A = [p1, . . . , pm]

where p1:m are the m closest neighbors of Pix. According to Luo et al. [23], this option leads to

the optimal usage of the provided external database and will yield a filter similar to the TID filter

[24, 23] (the main difference being the absence of the whole image denoising part in TID). On

the contrary, it adds an undesirable amount of computational complexity during runtime.

To alleviate these issues, we propose to find a set of anchor patches, {a1 . . .ak}, to
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represent the entire targeted database. If the targeted database can be clustered in k groups,

then each anchor patch can be thought of as the representative of one of these clusters. Then,

a patch dictionary is created for each of the anchor patches using their respective m nearest

neighbors. By taking the eigenvalue decompositions of these k patch matrices, we can calculate

the corresponding U i and Si matrices, for all i ∈ 1 . . .k. During runtime, a noisy query patch,

q, can be denoised using U i and Si that correspond to the anchor patch, ai, that is most similar

to q. Since the anchor points are independent of the noisy image, finding anchor patches and

calculating their corresponding denoising filters can be carried out off-line; thus avoiding delays

during runtime.

In practice, the fidelity of the data matrix A can be improved by introducing weight matrix,

i.e, by replacing A with AW 1/2 [24, 23]. Here the weight matrix W = 1
α

diag{w1,w2, . . . ,wn}

where wi = exp
(
−‖a−pi‖2

h2

)
for some user-tunable bandwidth parameter h, and α is a normaliza-

tion parameter so that the weights add up to 1. This modification also diminishes the adverse

effect of irrelevant neighbors (that are far away from the anchor patches) on the learned denoising

filters. Matrices U and S are obtained off-line from the eigen-decomposition of AWAT .

5.3.3 Offline training and iterations

Thanks to anchor patches, the process of designing denoising filters is decoupled from the

actual denoising step. This enables us to split the proposed algorithm into an off-line training

stage and online denoising stage. The proposed denoising algorithm is summarized in Algorithm

7.

For best results, each query patch should be matched to an anchor patch that most closely

resembles the underlying clean patch. Since at first, the matching is carried out with noisy patch

itself, it is recommended that the runtime algorithm is repeated for more than one iteration. Each

subsequent iteration uses patches from the previous image estimate to find anchor patches and

performs the whole image denoising with progressively larger values of β in eq. (5.2).
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Algorithm 7 Fast External Denoising

TRAINING PHASE (Offline)
Input:

D: Patch database
k: No. of anchors,
m: Max no. of neighbors,
h: bandwidth parameter

Output:
a1 . . .ak: Anchor patches
{(U1,S1) . . .}: Eigen-decomposition

1: Find k anchor patches from D . k-means clustering
2: for each ai ∈ {a1 . . .ak} do
3: Find m nearest neighbors from D→ (p1 . . . pm)
4: Form matrix A = [p1 . . . pm]

5: Form weights: W = 1
α

diag{w1, . . . ,wm} where w j = exp
(
−‖ai−p j‖2

h2

)
and α = Σ jw j.

6: Compute eigen-decomposition of weighted matrix:

[U i,Si] = eig
(
AWAT)

7: return {a1 . . .ak} and {(U1,S1) . . .(Uk,Sk)}

DENOISING PHASE (runtime)
Input:

y: noisy image
σ2: noise variance
a1 . . .ak: Anchor patches
{(U1,S1) . . .}: Eigen-decomposition

Output:
x̂: Denoised image estimate

1: for each noisy patch, q ∈ y, do
2: Find the index i of the closest patch ai to q
3: Compute the shrinkage matrix:

Λ =
(
diag

(
Si +σ

2Id
))−1

diag(Si)

4: Perform patch denoising p̂ =U iΛUT
i q

5: Perform whole image denoising using eq. (5.2)
6: return denoised image x̂
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5.4 Experimental Results

We present denoising results on three grayscale image datasets containing text images,

face images and license plate images, respectively. We compare the performance of the proposed

approach against leading fast denoising algorithms in both internal and external denoising

categories. To represent the internal denoising category, we choose BM3D [8] as it is the

fastest and most popular internal denoising algorithm. For external denoising, we compare the

performance with EPLL [15] trained on both generic and targeted priors. We also compare our

results with TID to demonstrate the trade-off between speed-up vs. quality achieved by the

proposed method. We tested these algorithms in low-, mid- and high-noise settings by varying

the variance (σ2) of the additive Gaussian noise from
( 20

255

)2
to
( 80

255

)2
.

Algorithm settings and parameters

In all of our experiments, the size of the patches used is set to 8×8 and Euclidean metric is

used to measure patch-wise (dis)similarity. For BM3D1 and EPLL2, we used the implementations

provided by their respective authors.

The proposed algorithm is repeated for 3 iterations with a patch overlap of 4, 6 and 7

pixels in the first, second and third iterations, respectively (i.e. stride lengths Ns = [4,2,1]). For

EPLL and BM3D, we use the default parameters and number of iterations prescribed by the

original authors in their corresponding implementations. In the cases of EPLL and TID, we also

show the results obtained and time taken by these algorithms when the patch overlap parameter

and the number of iterations are matched to FED. For the three-iterations-EPLL, a 200 component

GMM is learned on the targeted database (tar-EPLL3) and the parameters λ and β that gave

the best performance on the validation sets were selected. These corresponded to λ = N
σ2 and

β = 1
σ2 [1,4,16].

1BM3D: http://www.cs.tut.fi/~foi/GCF-BM3D/
2EPLL: https://people.csail.mit.edu/danielzoran/epllcode.zip

56



16 32 64 128 256 1024

22

23

24

Figure 5.1: The effect of size of patch matrix, number of anchors, and weighting of the patch
matrix

FED parameter selection: number of anchors, size of A matrix and weighting

We use k-means clustering algorithm to identify a pre-determined number (k) of anchor

patches from the database. Other methods relying on dictionary learning [82, 83] or high

dimensional regression trees [84] can also be used for finding anchor patches from the database.

For simplicity, we chose to cluster the database into k clusters and use the means of each cluster

as our anchor patches. The number of anchor patches k is a parameter that can be set via cross

validation.

Once the anchor patches are identified, the next parameter that we have to set is the

number of neighbors (m) for each anchor patch. The chosen neighbors form the respective data

matrices Ai for the anchors ai. As mentioned above, we can weigh each neighbor selected for
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(a) (b) (c) (d) (e)

Figure 5.2: Sample images from text image dataset [23]. Experiments are conducted on noise
corrupted versions of image 5.2(a). The images 5.2(b)–5.2(e) are four examples out of nine
clean text images that are used as the targeted database.

(a) (b) (c) (d) (e)

Figure 5.3: Sample images from face image dataset [57]. Figure 5.3(a) shows one of ten test
images that were used in our experiments. The images 5.3(b)–5.3(e) are four examples out of
80 face images that make up the targeted database.

forming the A matrix with a weight based on its similarity to its corresponding anchor patch.

Figure 5.1 illustrates the average denoising performance obtained on the validation datasets

of text, face and license image datasets with varying number of anchor patches (k), the effect of

the weighting and different number of neighbors (m) included in an anchor’s A matrix. The bar

graph shows the variations in performance when k is set to 5000 and m is varied from 16 to 1024

and the h = [0.2,0.6,0.9] in the weighting matrix (used in AWAT ) or with no weighting. For

brevity, we only display the best results obtained for k = 200 and k = 1000 with above mentioned

values of m and h. For the three datasets with targeted databases, the best average PSNR is

obtained when k = 5000, m = 128 and h = 0.6.

In the following, we will present the denoising results and discuss the characteristics of

the datasets we used.
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Table 5.1: Comparison of average PSNR, SSIM and time taken by each of the algorithms to
denoise a text image of size 107×104 pixels. The speed-up is calculated with respect to the
proposed FED algorithm.

σ× 255
BM3D EPLL tar-EPLL tar-EPLL3 TID FED

2 iterations 5 iterations 5 iterations 3 iterations 3 iterations 3 iterations
Ns = [6,4] Ns = [1] Ns = [1] Ns = [4,2,1] Ns = [4,2,1] Ns = [4,2,1]

PSNR: 20 28.64 28.04 30.38 29.92 39.37 35.65
40 23.14 22.95 25.51 24.96 33.00 31.95
60 19.27 20.07 22.67 22.09 29.31 28.80
80 17.59 18.27 20.80 20.11 26.52 25.92

SSIM: 20 0.9856 0.9796 0.9910 0.9878 0.9966 0.9950
40 0.9434 0.9303 0.9704 0.9533 0.9850 0.9843
60 0.8392 0.8705 0.9368 0.9053 0.9645 0.9607
80 0.7583 0.7920 0.8873 0.8282 0.9229 0.9053

Time (seconds): - 0.12s 7.06s 6.83s 1.55s 2273.01s 1.39s
Speed up: - ×0.08 ×5.09 ×4.91 ×1.12 ×1635.26 ×1.00

Table 5.2: Same as Table 5.1 but for 10 face images of size 90×65 from FEI face dataset [57].

σ× 255
BM3D EPLL tar-EPLL tar-EPLL3 TID FED

2 iterations 5 iterations 5 iterations 3 iterations 3 iterations 3 iterations
Ns = [6,4] Ns = [1] Ns = [1] Ns = [4,2,1] Ns = [4,2,1] Ns = [4,2,1]

PSNR: 20 31.37 31.40 31.99 31.15 32.26 32.11
40 27.63 27.86 28.32 27.09 28.51 28.20
60 25.70 25.68 26.08 24.67 26.09 25.60
80 24.37 24.29 24.56 23.00 24.27 23.73

SSIM: 20 0.9054 0.9048 0.9160 0.8860 0.9201 0.9164
40 0.8176 0.8136 0.8283 0.7554 0.8273 0.8094
60 0.7576 0.7477 0.7612 0.6381 0.7524 0.7193
80 0.6973 0.6859 0.6964 0.5483 0.6741 0.6288

Time (seconds): - 0.05 2.74 2.73 0.87 878.20 0.71
Speed up: - ×0.07 ×3.84 ×3.83 ×1.23 ×1236.90 ×1.00

5.4.1 Text denoising

Text image dataset [23] contains images cropped from documents. These images have a

clean white background with black text and display simple edge structures and almost no texture.

The test image to be denoised and database images vary in font styles and sizes. Some examples

from the text image dataset are shown in Figure 5.2. Out of 14 images in our dataset, the targeted

database is created using nine images, four are used as a validation set and one image is used

for testing. Since the denoising experiments reported for this dataset are conducted on only one

59



(a) Original (b) Noisy (σ = 30
255 ) (c) BM3D

(28.96, 0.8572)
(d) EPLL

(28.82, 0.8518)

(e) tar-EPLL
(29.18, 0.8652)

(f) tar-EPLL3
(28.42, 0.8311)

(g) TID
(29.17, 0.8608)

(h) FED
(28.98, 0.8533)

Figure 5.4: Visual and objective comparison of denoising performance of a face image. The
objective evaluation metrics of each case is shown in parenthesis in (PSNR, SSIM) format.

(a) (b) (c) (d) (e)

Figure 5.5: Sample images from the license plate dataset created from Caltech Cars (1999)
[85]. Figure 5.5(a) shows one of ten test images that were used in our experiments. The images
5.5(b)–5.5(e) show four examples out of 90 images from the targeted database.

image, we average our results over 5 independent trials with different noise realizations for each

noise level. This is a simple setting to show the effect of a near perfect targeted database.

Table 5.1 reports the quantitative results in terms of PSNR and SSIM [86] of the proposed

FED algorithm compared to other competing fast denoising algorithms. FED algorithm trained on
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Table 5.3: Same as Table 5.1 but for 10 license images of average size 44×92 cropped from
the Caltech cars (1999) dataset [85].

σ× 255
BM3D EPLL tar-EPLL tar-EPLL3 TID FED

2 iterations 5 iterations 5 iterations 3 iterations 3 iterations 3 iterations
Ns = [6,4] Ns = [1] Ns = [1] Ns = [4,2,1] Ns = [4,2,1] Ns = [4,2,1]

PSNR: 20 26.15 25.99 26.87 26.55 25.27 25.87
40 21.66 21.86 22.98 22.53 23.11 22.83
60 19.16 19.52 20.70 20.13 21.02 20.89
80 17.68 17.87 18.98 18.32 19.48 19.41

SSIM: 20 0.9330 0.9366 0.9476 0.9432 0.9223 0.9260
40 0.8270 0.8452 0.8803 0.8706 0.8666 0.8640
60 0.6984 0.7306 0.8009 0.7869 0.7885 0.7954
80 0.6022 0.6322 0.7336 0.7102 0.7349 0.7480

Time (seconds): - 0.03 1.74 1.75 0.46 311.97 0.45
Speed up: - ×0.07 ×3.90 ×3.91 ×1.02 ×693.27 ×1.00

(a) Original

(b) Noisy
(σ = 20

255 )
(c) BM3D

(25.77, 0.9497)
(d) EPLL

(25.51, 0.9508)
(e) tar-EPLL
(26.84, 0.9624)

(f) tar-EPLL3
(26.47, 0.9586)

(g) TID
(25.37, 0.9525)

(h) FED
(26.47, 0.9541)

(i) Noisy
(σ = 50

255 )
(j) BM3D

(19.48, 0.7977)
(k) EPLL

(19.64, 0.8295)
(l) tar-EPLL
(21.36, 0.8801)

(m) tar-EPLL3
(20.99, 0.8734)

(n) TID
(22.72, 0.9101)

(o) FED
(21.99, 0.8833)

(p) Noisy
(σ = 80

255 )
(q) BM3D

(17.07, 0.6766)
(r) EPLL

(16.97, 0.6862)
(s) tar-EPLL
(18.72, 0.7885)

(t) tar-EPLL3
(18.26, 0.7826)

(u) TID
(19.43, 0.7840)

(v) FED
(19.81, 0.8183)

Figure 5.6: Visual and objective comparison of denoising performance of the same license
image under different noise levels. The objective evaluation metrics of each case is shown in
parenthesis in (PSNR, SSIM) format.

a targeted database provides much higher PSNR and SSIM than BM3D and EPLL in all the noise

level settings tested. The EPLL algorithm trained on the targeted dataset and run with default

parameters (5 iterations) performed better than generic EPLL. Still, the proposed algorithm
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Table 5.4: Same as Table 5.1 but for 100 test images of size 321× 481 of the BSDS dataset
[79].

σ
×

255

BM3D EPLL EPLL3 FED
2 iters 5 iters 3 iters 3 iters

Ns=[6,4] [1] [4,2,1] [4,2,1]

PSNR: 30 27.57 27.66 26.95 26.87
40 26.30 26.43 25.56 25.30
50 25.45 25.51 24.51 23.95

SSIM: 30 0.7607 0.7717 0.7257 0.7155
40 0.7101 0.7175 0.6494 0.6308
50 0.6704 0.6729 0.5843 0.5532

Time (s): - 1.66s 83.38s 19.34s 8.99s
Speed up: - ×0.18 ×9.27 ×2.15 ×1.00

(a) Original (b) Noisy (σ = 30
255 ) (c) BM3D

(28.59, 0.8300)
(d) EPLL

(28.54, 0.8262)
(e) Generic FED
(27.25, 0.7323)

Figure 5.7: Visual and objective comparison of denoising performance of one of the BSDS
test images using a generic database created from BSDS training set. The objective evaluation
metrics of each case is shown in parenthesis in (PSNR, SSIM) format.

outperformed targeted EPLL consistently by a margin ranging from 5-7 dB in low-,mid- and

high-noise settings. The best performing algorithm on this dataset, the TID algorithm, is three

orders of magnitude slower. The PSNR gains of TID over the proposed FED drop quickly from

5dB for σ = 20
255 to under 1dB for σ = 40

255 . We argue that compromising a small amount of quality

to gain such an enormous speed-up is highly warranted. Note that such computational complexity
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makes TID unsuitable for denoising large images/videos, whereas FED is a natural fit for these

domains.

5.4.2 Face image denoising

Face image denoising experiments were conducted on a subset of images taken from

FEI face dataset [57]. It contains one image per person and has no overlap between the set of

images used as the noisy images (test set), validation set and the targeted database. Out of the 100

images of distinct individuals, we used 10 individuals for creating noisy images, 10 for validation

purposes and the targeted database contained images of a different set of 80 individuals. Since

there is no overlap between the individuals in these different partitions, the images to be denoised

are not a perfect match to the ones used in the targeted database. This setting also displays

variations in lighting, contrast, gender, etc. Some examples from this dataset are shown in Figure

5.3.

The results obtained on the face images are shown in Table 5.2. Quantitatively, FED ob-

tains comparable results as those obtained from BM3D and different versions of EPLL. However,

FED is almost 4 times faster than the better-performing EPLL variants. In addition, a visual

comparison of results obtained on one of the images, shown in Figure 5.4, indicates that FED

algorithm provides a more visually pleasing denoised estimate.

5.4.3 License plate denoising

License plate dataset was created by cropping license plates from the Caltech Cars (1999)

dataset [85]. This dataset was originally collected for testing object category discovery algorithms

and contains images of rear views of cars from Caltech parking lots. Therefore, the license plate

images, which are only a small part of the car images, naturally contain small amounts of noise

and display large variations in lighting and contrast. We include the results from this setting to
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demonstrate the performance of the proposed FED algorithm on realistic settings with targeted

datasets containing similar but not identical images.

Table 5.3 shows the quantitative results obtained on this dataset using the different

denoising algorithms. The PSNR and SSIM values of BM3D and EPLL are better than FED for

almost all noise settings. However, FED does better under the highest noise setting we tested.

Although quantitatively slightly under par, Figure 5.6 indicates that FED results are consistently

better visually than other estimates.

5.4.4 Generic image denoising on BSDS dataset

As a limiting case, we also include the results obtained by FED on a set of generic images

with a generic database. We use the Berkeley Segmentation Dataset (BSDS) [79]. The database

of patches was created by randomly sampling 2 million patches from BSDS training set images.

The denoising experiments are conducted on the BSDS test set consisting of 100 images. The

results reported in Table 5.4 are averaged over all 100 images for each noise setting.

Since FED is designed to work well with targeted databases, as expected, BM3D and

EPLL achieve better PSNR and SSIM measures in this dataset. However, FED results are

comparable and are obtained in one-ninth of the time taken by EPLL. For visual comparison, we

have included the results of one of the test images in Figure 5.7.

5.5 Conclusion

In this chapter, we presented a new external denoising algorithm that is more efficient than

the current state-of-the-art methods. The proposed algorithm is faster during runtime and achieves

better performance when used with targeted databases than EPLL, the current state-of-the-art

efficient external denoising algorithm. It is also orders of magnitude faster than the powerful

state-of-the-art TID algorithm without compromising much in terms of quality. This balance
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between speed and quality was achieved by transferring computationally demanding steps of

designing optimal filters to an offline training step. Specifically, the information from a targeted

database is extracted and stored in pre-learned transformations that are used directly during

runtime. The proposed approach is extremely powerful when the transformation matrices are

learned using a targeted database. However, when trained on a generic dataset the algorithm is

unable to reconstruct texture details leading to over-smoothing, as can be observed in Figure 5.7.

This can be avoided to a limited extent by increasing the number of anchor points so that detailed

texture patches are properly represented. Another approach is using sophisticated algorithms (e.g.

dictionary learning) in place of k-means to identify a more representative set of anchor patches.

Other than increasing the number and representativeness of anchor patches, a more

principled extension that can counter database mismatch is to use a more powerful and expressive

patch prior. To this end, in the next chapter, we seek to improve the runtime efficiency and

accelerate the EPLL algorithm that uses a GMM prior.
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Chapter 6

Accelerating GMM-based patch priors for

image restoration

6.1 Introduction

Patch-based methods form a very popular and successful class of image restoration

techniques. These methods process an image on a patch-by-patch basis where a patch is a small

sub-image (e.g., of 8×8 pixels) that captures both geometric and textural information. Patch-

based algorithms have been at the core of many state-of-the-art results obtained on various image

restoration problems such as denoising, deblurring, super-resolution, defogging, or compression

artifact removal to name a few. In image denoising, patch-based processing became popular after

the success of the Non-Local Means algorithm [7]. Subsequently, continued research efforts

have led to significant algorithmic advancements in this area [82, 8, 15, 37, 25, 17, 11]. Other

inverse problems such as image super-resolution and image deblurring have also benefited from

patch-based models [87, 88, 89, 90, 91, 92].

Among these various patch-based methods, the Expected Patch Log-Likelihood algorithm

(EPLL) [15] deserves a special mention due to its restoration performance and versatility. The
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EPLL introduced an innovative application of Gaussian Mixture Models (GMMs) to capture

the prior distribution of patches in natural images. Note that a similar idea was introduced

concurrently in [17]. The success of this method is evident from the large number of recent works

that extend the original EPLL formulation [93, 46, 94, 95, 96, 97, 33]. However, a persistent

problem of EPLL-based algorithms is their high runtime complexity. For instance, it is orders

of magnitude slower than the well-engineered BM3D image denoising algorithm [8]. However,

extensions of BM3D that perform super-resolution [98] and other inverse problems [99] require

fundamental algorithmic changes, making BM3D far less adaptable than EPLL. Other approaches

that are as versatile as EPLL [100, 20, 101] either lack the algorithmic efficiency of BM3D or the

restoration efficacy of EPLL.

Another class of techniques that arguably offers better runtime performance than EPLL-

based methods (but not BM3D) are those based on deep learning. With the advancements in

computational resources, researchers have attempted to solve some classical inverse problems us-

ing multi-layer perceptrons [16] and deep networks [102, 103, 104]. These methods achieve very

good restoration performance, but are heavily dependent on the amount of training data available

for each degradation scenario. Most of these methods learn filters that are suited to restore a

specific noise level (denoising), blur (deblurring) or upsampling factor (super-resolution), which

makes them less attractive to serve as generic image restoration solutions. More recently, Zhang

et al. [105] demonstrated the use of deep residual networks for general denoising problems,002

single-image super-resolution and compression artifact removal. Unlike earlier deep learning

efforts, their approach can restore images with different noise levels using a single model which

is learned by training on image patches containing a range of degradations. Even in this case,

the underlying deep learning model requires retraining whenever a new degradation scenario

different from those considered during the learning stage is encountered.

More recently, [106] proposed training a single deep network to solve many inverse

problems. This work uses an iterative scheme that alternatively enforces a good fit to the learned
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prior model of natural images (via a projection operator performed by a deep neural network)

and a satisfying fidelity to the data (via the direct model). The projection operator takes the form

of an auto-encoder, trained by an adversarial strategy, that processes 64×64 patches with 1024-

dimensional latent space (i.e., 4 times smaller). This framework shows promise but, in its current

form, requires a very large image database for training. In addition, almost all of the training and

testing in the original publication are conducted on small 64×64 images. Another limitation,

as noted by the authors, is that the regularization parameter that controls the contribution of

prior is fixed during training stage. In other words, regularization parameter cannot be changed

during test time which can be an issue in certain situations. In contrast, our approach needs much

less data during training stage and, during test time, the regularization parameter can be tuned

according to the signal-to-noise ratio of the image being addressed.

Moreover, it is much harder to gain insight into the actual model learned by a deep

architecture compared to a GMM. For this reason, even with the advent of deep learning methods,

flexible algorithms like EPLL that have a transparent formulation remain relevant for image

restoration.

Recently, researchers have tried to improve the speed of EPLL by replacing the most

time-consuming operation in the EPLL algorithm with a machine learning-based technique of

their choice [107, 108]. These methods were successful in accelerating EPLL to an extent but

did not consider tackling all of its bottlenecks. In contrast, our focus is on accelerating EPLL by

proposing algorithmic approximations to all the prospective bottlenecks present in the original

algorithm proposed by Zoran et al. [15]. To this end, we first provide a complete computational

and runtime analysis of EPLL, present a new and efficient implementation of original EPLL

algorithm and then finally propose innovative approximations that lead to a novel algorithm that

is more than 100× faster compared to the efficiently implemented EPLL (and 350× faster than

the runtime obtained by using the original implementation [15]).

Contributions The main contributions of this work are the following. We introduce three
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strategies to accelerate patch-based image restoration algorithms that use a GMM prior. We show

that, when used jointly, they lead to a speed-up of the EPLL algorithm by two orders of magnitude.

Compared to the popular BM3D algorithm, which represents the current state-of-the-art in terms

of speed among CPU-based implementations, the proposed algorithm is almost an order of

magnitude faster. The three strategies introduced in this work are general enough to be applied

individually or in any combination to accelerate other related algorithms. For example, the random

subsampling strategy is a general technique that could be reused in any algorithm that considers

overlapping patches to process images; the flat tail spectrum approximation can accelerate any

method that needs Gaussian log-likelihood or multiple Mahalanobis metric calculations; finally,

the binary search tree for Gaussian matching can be included in any algorithm based on a GMM

prior model and can be easily adapted for vector quantization techniques that use a dictionary.

For reproducibility purposes, we release our software on GitHub along with a few usage

demonstrations (available at https://goo.gl/xjqKUA).

6.2 Expected Patch Log-Likelihood (EPLL)

We consider the problem of estimating an image x ∈ RN (N is the number of pixels) from

noisy linear observations y = Ax+w, where A : RN → RM is a linear operator and w ∈ RM is a

noise component assumed to be white and Gaussian with variance σ2. In a standard denoising

problem A is the identity matrix, but in more general settings, it can account for loss of information

or blurring. Typical examples for operator A are: a low pass filter (for deconvolution), a masking

operator (for inpainting), or a projection on a random subspace (for compressive sensing). To

reduce noise and stabilize the inversion of A , some prior information is used for the estimation of

x. The EPLL introduced by Zoran and Weiss [15] includes this prior information as a model for

the distribution of patches found in natural images. Specifically, the EPLL defines the restored

image as the maximum a posteriori estimate, corresponding to the following minimization
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problem:

argmin
x

P
2σ2 ||Ax− y||2−∑

i∈I
log p(Pix) (6.1)

where I = {1, . . . ,N} is the set of pixel indices, Pi : RN → RP is the linear operator extracting

a patch with P pixels centered at the pixel with location i (typically, P = 8×8), and p(.) is the

a priori probability density function (i.e., the statistical model of noiseless patches in natural

images). While the first term in eq. (6.1) ensures that Ax is close to the observations y (this

term is the negative log-likelihood under the white Gaussian noise assumption), the second term

regularizes the solution x by favoring an image such that all its patches fit the prior model of

patches in natural images. The authors of [15] showed that this prior can be well approximated

(upon removal of the DC component of each patch) using a zero-mean Gaussian Mixture Model

(GMM) with K=200 components, that reads for any patch z ∈ RP, as

p(z) =
K

∑
k=1

wk
1

(2π)P/2|Σk|1/2 exp
(
−1

2
zt

Σ
−1
k z
)
, (6.2)

where the weights wk (such that wk >0 and ∑k wk =1) and the covariance matrices Σk ∈ RP×P

are estimated using the Expectation-Maximization algorithm [48] on a dataset consisting of 2

million “clean” patches extracted from the training set of the Berkeley Segmentation (BSDS)

dataset [109].

Half-quadratic splitting

Problem (6.1) is a large non-convex problem where A couples all unknown pixel values

x and the patch prior is highly non-convex. A classical workaround, known as half-quadratic

splitting [110, 111], is to introduce N auxiliary unknown vectors zi ∈ RP, and consider instead
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Table 6.1: Comparison of the execution time of our implementation of EPLL with and without
proposed accelerations. Experiment conducted on 40 images each of size 481×321 in denoising
setting. Profiling was carried out using MATLAB (R2014b) on a PC with Intel(R) Core(TM)
i7-4790K CPU @4.00GHz and 16 GB RAM. Execution times are reported as average number
of seconds per image (s) and percentage of the total time (%).

Step Without accelerations With the proposed accelerations
(Gaussian selection) 38.27s 95 % 0.21s 67 %
(Patch estimation) 0.95s 2 % 0.04s 13 %
(Patch extraction) 0.43s 1 % 0.02s 6 %
(Patch reprojection) 0.15s 0 % 0.01s 4 %
Others 0.52s 1 % 0.03s 10 %
Total 40.32s 0.31s

Algorithm 8 The five steps of an EPLL iteration [15]

for all i ∈ I
z̃i← Pix̂ (Patch extraction)

k?i ← argmin
16ki6K

logw−2
ki

+ log
∣∣∣Σki+

1
β

IdP

∣∣∣+ z̃t
i

(
Σki+

1
β

IdP

)−1
z̃i (Gaussian selection)

ẑi←
(

Σk?i +
1
β

IdP

)−1
Σk?i z̃i (Patch estimation)

x̃←
(
∑
i∈I

P t
i Pi
)−1

∑
i∈I

P t
i ẑi (Patch reprojection)

x̂←
(
A tA +βσ

2IdN
)−1 (A ty+βσ

2x̃
)

(Image estimation)

the penalized optimization problem that reads, for β > 0, as

argmin
x,z1,...,zN

P
2σ2 ||Ax− y||2 + β

2 ∑
i∈I
||Pix− zi||2−∑

i∈I
log p(zi) . (6.3)

When β→ ∞, the problem (6.3) becomes equivalent to the original problem (6.1). In practice, an

increasing sequence of β is considered, and an alternating optimization scheme is used:

{
ẑi← argmin

zi

β

2
||Pix̂− zi||2− log p(zi)

}
i=1..N

(6.4)

x̂← argmin
x

P
2σ2 ||Ax− y||2 + β

2 ∑
i∈I
||Pix− ẑi||2. (6.5)
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Algorithm

Subproblem (6.5) corresponds to solving a linear inverse problem with a Tikhonov

regularization, and has an explicit solution often referred to as Wiener filtering:

x̂ =

(
A tA +

βσ2

P ∑
i∈I

P t
i Pi

)−1(
A ty+

βσ2

P ∑
i∈I

P t
i ẑi

)
, (6.6)

where P t
i Pi is a diagonal matrix whose i-th diagonal element corresponds to the number of patches

overlapping the pixel of index i. This number is a constant equal to P (assuming proper boundary

conditions are used), which allows to split the computation into two steps Patch reprojection

and Image estimation as shown in Alg. 8. Note that the step Patch reprojection is simply the

average of all overlapping patches. In contrast, subproblem (6.4) cannot be obtained in closed

form as it involves a term with the logarithm of a sum of exponentials. A practical solution

proposed in [15] is to keep only the component k?i maximizing the likelihood for the given patch

assuming it is a zero-mean Gaussian random vector with covariance matrix Σki +
1
β

IdP. With this

approximation, the solution of (6.4) is also given by Wiener filtering, and the resulting algorithm

iterates the steps described in Alg. 8. The authors of [15] found that using T =5 iterations, with

the sequence β = 1
σ2{1,4,8,16,32}, for the initialization x̂ = y, provides relevant solutions in

denoising contexts for a wide range of noise level values σ2.

6.2.1 Complexity via eigenspace implementation

The algorithm summarized in the previous section may reveal cumbersome computations

as it requires performing numerous matrix multiplications and inversions. Nevertheless, as the

matrices Σk are known prior to any calculation, their eigendecomposition can be computed offline

to improve the runtime. If we denote the eigendecomposition (obtained offline) of Σk =UkSkU t
k,

such that Uk ∈ RP×P is unitary and Sk is diagonal with positive diagonal elements ordered in

decreasing order, steps Gaussian selection and Patch estimation can be expressed in the space of
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coefficients c as

{
c̃k

i ←U t
kz̃i

}
k=1..K
i=1..N

O(NKP2) (6.7){
k?i ← argmin

16k6K
ι
k +

P

∑
j=1

(
logν

k
j +

[c̃k
i ]

2
j

νk
j

)}
i=1..N

O(NKP) (6.8){
[ĉi] j← γ

k?i
j [c̃

k?i
i ] j

}
j=1..P
i=1..N

O(NP) (6.9){
ẑi←Uk?i ĉi

}
i=1..N

O(NP2) (6.10)

where [c̃] j denotes the j-th entry of vector c̃, ιk =−2logwk, νk
j = [Sk] j j+

1
β

, and γk
j = [Sk] j j/νk

j

with [Sk] j j the j-th entry on the diagonal of matrix Sk. The complexity of each operation is

indicated on its right and corresponds to the number of operations per iteration of the alternate

optimization scheme. The steps Patch extraction and Patch reprojection share a complexity

of O(NP). Finally, the complexity of step Image estimation depends on the transform A . In

many scenarios of interest, A tA can be diagonalized using a fast transform and the inversion of

A tA +βσ2IdN can be performed efficiently in the transformed domain (since IdN is diagonal in

any orthonormal basis). For instance, it leads to O(N) operations for denoising or inpainting,

and O(N logN) for periodical deconvolutions or super-resolution problems, thanks to the fast

Fourier transform (these are the settings we have adopted in this chapter). If A cannot be easily

diagonalized, this step can be performed using conjugate gradient (CG) method, as done in [15],

at a computational cost that depends on the number of CG iterations (i.e., on the conditioning of

A tA +βσ2IdN). In any case, as shown in the next section, this step has a complexity independent

of P and K and is one of the faster operations in the image restoration problems considered in

this chapter.
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6.2.2 Computation time analysis

In order to uncover the practical computational bottlenecks of EPLL, we have performed

the following computational analysis. To identify clearly which part is time consuming, it is

important to make the algorithm implementation as optimal as possible. Therefore, we refrain

from using the MATLAB code provided by the original authors [15] for speed comparisons. Instead,

we use a MATLAB/C version of EPLL based on the eigenspace implementation described above,

where some steps are written in C language and interfaced using mex functions. This version,

which we refer to as EPLLc, provides results identical to the original implementation while being

2-3 times faster. The execution time of each step for a single run of EPLLc is reported in the

second column of Table 6.1. Reported times fit our complexity analysis and clearly indicate that

the Step Gaussian selection causes significant bottleneck due to O(NP2K) complexity.

In the next section, we propose three independent modifications leading to an algorithm

with a complexity of O(NPr̄ logK/s2) with two constants 16 s2 6 P and 16 r̄ 6 P that control

the accuracy of the approximations introduced. The algorithm, in practice, is more than 100 times

faster as shown by its runtimes reported in the third column.

6.3 Fast EPLL: the three key ingredients

We propose three accelerations based on (i) scanning only a (random) subset of the N

patches, (ii) reducing the number of mixture components matched, and (iii) projecting on a

smaller subspace of the covariance eigenspace. We begin by describing this latter acceleration

strategy in the following paragraph.
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Figure 6.1: Flat tail approximation: (a) with eigenvalues display on linear and (b) logarithmic
scale. The rk = 15 first eigen components explains ρ=95% of the variability.

6.3.1 Speed-up via flat tail spectrum approximation

To avoid computing the P coefficients of the vector c̃k
i in eq. (6.7), we rely on a flat-

tail approximation. The k-th Gaussian model is said to have a flat tail if there exists a rank

rk such that for any j> rk, the eigenvalues are constant: [Sk] j, j =λk. Denoting by Ūk∈RP×rk

(resp. Ūc
k∈RP×rc

k ) the matrix formed by the rk first (resp. rc
k=P−rk last) columns of Uk, we have
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Ūc
k(Ū

c
k)

t = IdP−ŪkŪ
t
k. It follows

(Σk +
1
β

IdP)
−1 = Ūk(S̄k +

1
β

Idrk)
−1Ū t

k +(λk +
1
β
)−1(IdP−ŪkŪ

t
k), (6.11)

(Σk +
1
β

IdP)
−1

Σk = Ūk(S̄k +
1
β

Idrk)
−1S̄kŪ

t
k +λk(λk +

1
β
)−1(IdP−ŪkŪ

t
k), (6.12)

where S̄k ∈ Rrk×rk is the diagonal matrix formed by the rk first rows and columns of Sk. Steps

Gaussian selection and Patch estimation can thus be rewritten as

{
c̃k

i ← Ū t
kz̃i

}
k=1..K
i=1..N

O(NKPr̄) (6.13){
k?i ← argmin

16k6K
ιk + rc

k logν
k
P+
||z̃i||2

νk
P

+
rk

∑
j=1

(
logν

k
j+

[c̃k
i ]

2
j

νk
j
−
[c̃k

i ]
2
j

νk
P

)}
i=1..N

O(NKr̄) (6.14){
[ĉi] j← (γ

k?i
j −γ

k?i
P )
[
c̃k?i

i
]

j

}
j=1..rk?i
i=1..N

O(NPr̄) (6.15){
ẑi← Ūk?i ĉi+γ

k?i
P z̃i

}
i=1..N

O(NPr̄) (6.16)

where νk
P = λk+

1
β

, γk
P = λk/νk

P. As ||z̃i||2 can be computed once for all k, the complexity of

each step is divided by P/r̄, where r̄= 1
K ∑

K
k=1 rk is the average rank after which eigenvalues are

considered constant.

In practice, covariance matrices Σk are not flat-tail but can be approximated by a flat-tail

matrix by replacing the lowest eigenvalues by a constant λk. To obtain a small value of r̄ (hence a

large speed-up), we preserve a fixed proportion ρ∈ (0,1] of the total variability and replace the

smallest eigenvalues accounting for the remaining 1−ρ fraction of the variability by their average

(see Fig. 6.1): rk is the smallest integer such that Tr(S̄k)> ρTr(Sk). Choosing ρ=0.95 means

that 5% of the variability, in the eigendirections associated to the smallest eigenvalues, is assumed

to be evenly spread in these directions. In practice, the choice of ρ=0.95 leads to an average rank

of r̄=19.6 (for P= 8×8) for a small drop of PSNR as shown in Fig. 6.4. Among several other

covariance approximations that we tested, for instance, the one consisting in keeping only the
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Figure 6.2: Balanced search tree: (left) Our obtained search tree (with numbers of nodes for
each level). (right) Four patches well represented by each of the eight nodes along the branch
highlighted in red in the tree. These patches are randomly sampled from the generative model
encoded at each node of the branch (patches on the same column are generated from the same
random seed).

rk first directions, the flat tail approximation provided the best trade-off in terms of acceleration

and restoration quality. The analyses showing the superiority of the proposed approximation over

the more common approach of keeping only the first rk directions, and the effect of ρ on image

quality are included in Appendix A.

6.3.2 Speed-up via a balanced search tree

As shown in Table 6.1, the step Gaussian selection has a complexity of O(NP2K), reduced

to O(NPKr̄) using the flat tail spectrum approximation. This step remains the biggest bottleneck

since each query patch has to be compared to all the K components of the GMM. To make this

step even more efficient, we reduce its complexity using a balanced search tree. As described

below, such a tree can be built offline by adopting a bottom-up strategy that repeatedly collapses

the original GMM to models with fewer components, until the entire model is reduced to a single

Gaussian model.
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We progressively combine the GMM components from one level to form the level above,

by clustering the K components into L < K clusters of similar ones, until the entire model is

reduced to a single component. The similarity between two zero-mean Gaussian models with

covariance Σ1 and Σ2 is measured by the symmetric Kullback-Leibler (KL) divergence

KL(Σ1,Σ2) =
1
2 Tr(Σ−1

2 Σ1 +Σ
−1
1 Σ2−2IdP). (6.17)

Based on this divergence, at each level n, we look for a partition Ωn of the K Gaussian components

into L clusters (with about equal sizes) minimizing the following optimization problem

argmin
Ωn

L

∑
l=1

∑
k1,k2∈Ωn

l

KL(Σk1,Σk1), (6.18)

such that
⋃L

l=1 Ωn
l = [K] and Ωn

l1
∩

l1 6=l2
Ωn

l2
= /0, where Ωn

l is the l-th set of Gaussian components

for the GMM at level n. This clustering problem can be approximately solved using the genetic

algorithm of [112] for the Multiple Traveling Salesmen Problem (MTSP). MTSP is a variation

of the classical Traveling Salesman Problem where several salesmen visit a unique set of cities

and return to their origins, and each city is visited by exactly one salesman. This attempts to

minimize the total distance traveled by all salesmen. Hence, it is similar to our original problem

given in eq. (6.18) where the Gaussian components and the clusters correspond to K cities and L

salesmen, respectively. Given the clustering at level n, the new GMM at level n−1 is obtained by

combining the zero-mean Gaussian components such that, for all 16 l 6 L:

wn−1
l = ∑

k∈Ωn
l

wn
k and Σ

n−1
l =

1
wn−1

l
∑

k∈Ωn
l

wn
kΣ

n
k , (6.19)

where Σ
n
k and wn

k are the corresponding covariance matrix and weight of the k-th Gaussian

component at level n. Following this scheme, the original GMM of K = 200 components is

collapsed into increasingly more compact GMMs with K=64, 32, 16, 8, 4, 2 and 1 components.
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The main advantage of using MTSP compared to classical clustering approaches, is that this

procedure can be adapted easily to enforce approximately equal sized clusters, simply by enforcing

that each salesman visits at least 3 cities for the last level and 2 for the other ones.

We also experimented with other clustering strategies such as the hierarchical kmeans-like

clustering in [113] and hierarchical agglomerative clustering. With no principled way to enforce

even-sized clusters, these approaches, in general, lead to unbalanced trees (with comb structured

branches) which result in large variations in computation times from one image to another.

Although they all lead to similar denoising performances, we opted for MTSP based clustering to

build our Gaussian tree in favor of obtaining a stable speed-up profile for our resulting algorithm.

Please refer to Appendix A for timing comparisons of MTSP vs. other tree building strategies.

In Fig. 6.2 we show that the tree obtained using MTSP-based clustering is almost a binary

tree (left) and also display the types of patches it encodes along a given path (right). Such a

balanced tree structure lets one avoid testing each patch against all K components. Instead, a

patch is first compared to the two first nodes in level 1 of the tree, then the branch providing

the smallest cost is followed and the operation is repeated at higher levels until a leaf has been

reached. Using this balanced search tree reduces the complexity of step Gaussian selection to

O(NPr̄ logK).

6.3.3 Speed-up via the restriction to a random subset of patches

The simplest and most effective proposed acceleration consists of subsampling the set I of

N patches to improve the complexity of the four most time-consuming steps, see Table 6.1. One

approach, followed by BM3D [8], consists of restricting the set I to locations on a regular grid with

spacing s ∈ [1,
√

P] pixels in both directions, leading to a reduction of complexity by a factor s2.

We refer to this approach as the regular patch subsampling. A direct consequence is that |I |=N/s2

and the complexity is divided by s2. However, we observed that this strategy consistently creates

blocky artifacts revealing the regularity of the extraction pattern. A random sampling approach,
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(a) Regular patch subsampling at (i0, j0)

(b) Stochastic patch subsampling at (i, j)

Figure 6.3: Illustration of patch subsampling. Instead of extracting all patches, only a subset
of patches is extracted either (a) regularly or (b) with some randomizations. Patches are
represented by 8×8 squares and the red intensity represents the number of patches overlapping
the corresponding pixel.

called "jittering", used in the computer graphics community [114] is preferable to limit this effect.

This procedure ensures that each pixel is covered by at least one patch. The location (i0, j0) of a

point of the grid undergoes a random perturbation, giving a new location (i, j) such that

i0−
⌊√

P−s
2

⌋
6 i6 i0 +

⌊√
P−s
2

⌋
and j0−

⌊√
P−s
2

⌋
6 j 6 j0 +

⌊√
P−s
2

⌋
, (6.20)

where b·c denotes the flooring operation. We found experimentally that independent and uniform

perturbations offered the best performance in terms of PSNR and visual quality against all other

tested strategies. In addition, we also resample these positions at each of the T iterations and

add a (random) global shift to ensure that all pixels have the same expected number of patches
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covering them.

Figure 6.3 illustrates the difference between a regular grid and a jittered grid of period

s=6 for patches of size P=8×8. In both cases, all pixels are covered by at least one patch, but

the stochastic version reveals an irregular pattern.

Nevertheless, when using random subsampling, a major bottleneck occurs when A tA

is not diagonal because the inversion involved in eq. (6.6) cannot be simplified as in Alg. 8.

Using a conjugate gradient is a practical solution but will negate the reduction of complexity

gained by using subsampling. To the best of our knowledge, this is the main reason why patch

subsampling has not been utilized to speed up EPLL. Here, we follow a different path. We opt for

approximating the solution of the original problem (involving all patches) rather than evaluating

the solution of an approximate problem (involving random subsample of patches). More precisely,

we speed up Alg. 8 by replacing the complete set of indices by the random subset of patches. In

this case, step Patch reprojection consists of averaging only this subset of overlapping restored

patches. This novel and nuanced idea avoids additional overhead and attains dramatic complexity

improvements compared to the standard approach. Note that even in the case of some inverse

problems, such as deblurring, super-resolution, inpainting and devignetting, this strategy can still

be used in order to avoid conjugate gradient and maintain a large speed-up.

Experiments conducted on our validation dataset show that this strategy used with s=6

leads to an acceleration of about 36× with less than a 0.2dB drop in PSNR. In comparison, for a

similar drop of PSNR, the regular patch subsampling can only achieve a 9× acceleration with

s=3 (plots included in Appendix A).

6.3.4 Performance analysis

Figure 6.4 shows the image restoration performance and speed-up obtained when the

three ingredients are applied separately or in combination. The results are averaged over 40

images from the test set of BSDS dataset [109] that is set aside for validation purposes. The
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Figure 6.4: (top) Average speed-up and (bottom) average PSNR for our three accelerations, and
all possible combinations of them, on the 40 images of the BSDS validation set.

speed-up is calculated with respect to the EPLLc implementation which is labeled “original” in

Fig. 6.4. Among the three ingredients, random subsampling or jittering (labeled “subsampling”)

leads to the largest speed-up (32×), while the usage of the search tree provides more than 7×

faster processing. The average speed-up obtained when combining all three ingredients is around

179× on our validation set consisting of images of size 481×321, for an average drop of PSNR

less than 0.5dB. Note that most of the runtime gain is achieved by combining binary search tree

and random subsampling (166×), while the flat tail acceleration leads to a modest acceleration

of less than 10%. Nevertheless, we include it in our approach because it introduces another
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parameter (ρ) that addresses the bottleneck presented by the dimensionality (P2) in a unique way.

Adjusting ρ lets a practitioner choose an appropriate operating point suitable for their need in the

speed-vs-quality trade-off space without losing too much in terms of quality.

6.4 Related methods

To the best of our knowledge, there are only two other approaches [107, 108] that have

attempted to accelerate EPLL. Unlike our approach, these methods focus on accelerating only one

of the steps of EPLL namely the Gaussian selection step. Both use machine learning techniques

to reduce its runtime.

In [107], the authors use a binary decision tree to approximate the mapping z̃i 7→ k∗i

performed in step Gaussian selection. At each node k and level n of the tree, the patch z̃i is

confronted with a linear separator in order to decide if the recursion should continue on the left or

right child given by

〈an
k , z̃i〉+bn

k > 0 (6.21)

where (an
k ,b

n
k) are the parameters of the hyperplane for the k-th node at level n. These separators

are trained offline on all pairs of (z̃i,k∗i ) obtained after the first iteration of EPLL for a given β and

noise level σ. Once a leaf has been reached, its index provides a first estimate for the index k∗i . To

reduce errors due to large variations among the neighboring pixels, this method further employs

a Markov random fields on the resulting map of Gaussian components which runs in O(NK)

complexity. Hence, their overall approach reduces the complexity of step Gaussian selection

from O(NKP2) to O(N(PD+K)), where D = 12 is the depth of the learned decision tree.

In [108], the authors approximate the Gaussian selection step, by using a gating (feed-
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Table 6.2: Denoing performance and timing comparison: PSNR, SSIM and execution time on
the BSDS test set (average on 60 images of size 481×321), and on six standard images (each
of size 512×512 and results averaged over 10 independent noise realizations) for the proposed
FEPLL and FEPLL′, EPLL (with timing given for both EPLLm [15] and our EPLLc), BM3D
[8], CSF [100], RoG [108] and DnCNN [115] with 3 different levels of noise.

σ Algo. Berkeley Barbara Boat Couple Fingerprint Lena Mandrill

PSNR/SSIM

5

FEPLL 36.8 /.959 36.9 /.958 36.6 /.930 36.6 /.944 35.4 /.984 38.2 /.941 35.1 /.959
FEPLL′ 37.1 /.962 37.1 /.959 36.7 /.933 36.8 /.946 35.5 /.984 38.3 /.943 35.2 /.960
EPLL 37.3 /.963 37.6 /.962 36.8 /.933 37.3 /.950 36.4 /.987 38.6 /.944 35.2 /.960
RoG 37.1 /.959 36.7 /.954 36.5 /.920 37.2 /.946 36.4 /.987 38.3 /.939 35.1 /.956
BM3D 37.3 /.962 38.3 /.964 37.3 /.939 37.4 /.949 36.5 /.987 38.7 /.944 35.3 /.959
CSF3×3 36.8 /.952 37.0 /.955 36.7 /.929 37.1 /.945 36.2 /.986 38.2 /.938 34.8 /.953
DnCNN 34.5 /.915 35.5 /.937 34.4 /.878 34.5 /.893 32.9 /.968 36.3 /.907 32.3 /.899

20

FEPLL 29.1 /.812 29.0 /.852 30.2 /.802 29.9 /.813 27.6 /.908 32.3 /.863 26.4 /.784
FEPLL′ 29.3 /.831 29.5 /.866 30.3 /.814 30.1 /.825 27.8 /.916 32.4 /.864 26.5 /.802
EPLL 29.5 /.836 29.8 /.872 30.6 /.821 30.4 /.834 28.3 /.924 32.6 /.869 26.7 /.807
RoG 29.4 /.828 28.4 /.838 30.5 /.815 30.3 /.827 28.3 /.922 32.5 /.865 26.5 /.794
BM3D 29.4 /.824 31.7 /.904 30.8 /.824 30.7 /.842 28.8 /.928 33.0 /.876 26.6 /.794
CSF3×3 29.0 /.805 28.3 /.821 30.2 /.802 29.9 /.812 28.0 /.916 31.8 /.837 26.1 /.778
DnCNN 30.0 /.847 31.0 /.896 31.1 /.831 31.0 /.848 28.8 /.930 33.4 /.883 27.0 /.815

60

FEPLL 24.5 /.614 23.6 /.636 25.5 /.644 25.1 /.629 22.2 /.722 27.4 /.742 21.4 /.468
FEPLL′ 24.5 /.620 23.8 /.648 25.5 /.646 25.1 /.636 22.4 /.745 27.3 /.733 21.6 /.499
EPLL 24.8 /.631 24.0 /.660 25.8 /.659 25.4 /.649 22.6 /.755 27.6 /.747 21.7 /.506
RoG 24.6 /.623 23.3 /.626 25.6 /.654 25.2 /.640 22.4 /.739 27.4 /.747 21.5 /.482
BM3D 24.8 /.637 26.3 /.757 25.9 /.671 25.6 /.666 23.8 /.801 28.2 /.778 21.7 /.500
CSF3×3 22.0 /.489 21.4 /.490 22.7 /.502 22.5 /.505 21.2 /.727 23.4 /.511 20.2 /.466
DnCNN 25.3 /.665 24.9 /.717 26.4 /.686 26.0 /.683 23.1 /.781 28.5 /.790 22.1 /.555

Time (in seconds)

FEPLL 0.27 0.38 0.38 0.37 0.36 0.38 0.38
FEPLL′ 0.96 1.28 1.28 1.28 1.26 1.27 1.28
EPLLc 43.82 71.14 71.24 71.31 71.28 71.23 71.31
EPLLm 82.68 145.15 143.68 144.30 144.13 144.15 143.86
RoG 1.16 1.92 1.92 1.93 1.91 1.93 1.92
BM3D 1.60 2.52 2.68 2.59 2.17 2.61 2.64
CSF3×3 0.87 1.09 1.09 1.13 1.09 1.09 1.08
CSFgpu

3×3 0.38 0.39 0.39 0.39 0.39 0.39 0.39
DnCNN 2.09 3.57 3.55 3.60 3.60 3.60 3.61
DnCNNgpu 0.28 0.63 0.63 0.64 0.63 0.64 0.64

forward) network with one hidden layer

z̃i 7→ ι
k+

Q

∑
j=1

(
logν

k
j+ω

k
j(d̃i)

2
j

)
with d̃i =V t z̃i (6.22)
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where Q is the size of the hidden layer. The matrix V ∈ RP×Q encodes the weights of the first

layer, ωk corresponds to the weights of the hidden layer and they are learned discriminatively to

approximate the exact posterior probability:

z̃i 7→ ι
k+

P

∑
j=1

(
logν

k
j+

(c̃k
i )

2
j

νk
j

)
with c̃k

i =U t
kz̃i (6.23)

that we encounter in eq. (6.7) and (6.8). Theoretically, a new network will need to be trained for

each type of degradations, noise levels and choices of β (recall that νk
j = (Sk) j j +

1
β

). However,

the findings of [108] indicate that applying a network learned on clean patches and with 1
β
= 0 is

effective regardless of the type of degradation or the value of β. Their main advantage can be

highlighted by comparing eq. (6.22) and (6.23) where complexity is reduced from O(NKP2) to

O(NQ(K +P)). The authors utilize this benefit by choosing Q = 100.

Unlike these two approaches, our method does not try to learn the Gaussian selection rule

directly (which depends on both the noise level through 1/β and the prior model through the

GMM). Instead, we simply define a hierarchical organization of the covariance matrices Σk. In

other words, while the two other approaches try to infer the posterior probabilities (or directly

the maximum a posteriori), our approach provides an approximation to the prior model. During

runtime, this approximation of the prior is used in the posterior for the Gaussian selection task.

Please note that the value of β does not play a role in determining the prior. This allows us to

use the same search tree independently of the noise level, degradations, etc. Given that the main

advantage of EPLL is that the same model can be used for any type of degradations, it is important

that this property remains true for the accelerated version. Last but not least, the training of our

search tree takes a few minutes while the training steps for the above mentioned approach take

from several hours to a few days [107].

Apart from methods that accelerate EPLL, [33] and [93] are two works that use strategies

sharing similarities to our proposed flat-tail and binary search tree approximations, respectively.
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In [33], the authors use a flat-tail GMM to model distribution of noisy patches. Since the GMM is

learned directly on noisy patches, the constant value of the tail corresponds to the noise variance.

This allows to improve inference when learning on noisy datasets, estimating the noise level,

and retrieving the intrinsic dimension of each cluster. This is different from our approach which

uses GMM priors learned on clean patch and provides flat-tail approximation using mean of least

significant coefficients. In [93], the authors introduce a general data structure called covariance

tree (CovTree). A CovTree is constructed by first building a binary space partition tree on patches

(data points) and patches in each node are then modeled using a Gaussian distribution. While the

resulting tree of Gaussians do share some similarities with our binary search tree, the learning

process is very different. The covariance tree is built directly on data points, our approach is

applied on an already learned GMM. In addition, unlike CovTree, our proposed strategy can

handle any number of components (not just powers of two) and also encodes all parameters of

mixture components including the mixing weights.

In the next section, we show that our proposed accelerations produce restoration results

with comparable quality to competing methods while requiring a smaller amount of time.

6.5 Numerical experiments

In this section, we present the results obtained on various image restoration tasks. Our

experiments were conducted on standard images of size 512×512 such as Barbara, Boat, Couple,

Fingerprint, Lena, Mandrill and on 60 test images of size 481×321 from the Berkeley Segmen-

tation Dataset (BSDS) [109] (the original BSDS test set contains 100 images, the other 40 was

used for validation purposes while setting parameters ρ and s). For denoising, we compare the

performance of our fast EPLL (FEPLL) to the original EPLL algorithm [15] and BM3D [8]. For

the original EPLL, we have included timing results given by our own MATLAB/C implementation

(EPLLc) and the MATLAB implementation provided by the authors (EPLLm). We also compare our
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restoration performance and runtime against other fast restoration methods introduced to achieve

competitive trade-off between runtime efficiency and image quality. These methods include RoG

[108] (a method accelerating EPLL based on feedforward networks described in Sec. 6.4), and

CSF [100] (a fast restoration technique using random field-based architecture).

For deblurring experiments, we additionally compare with field-of-experts (FoE)-based

non-blind deconvolution [20] denoted as iPiano. We contacted the corresponding author of [107]

and got confirmation that the implementation of their algorithm (briefly described in 6.4) is not

publicly available. Due to certain missing technical details, we were unable to reimplement it

faithfully. However, the results reported in [107] indicate that their algorithm performs in par

with BM3D in terms of both PSNR and time. Hence, BM3D results can be used as a faithful

proxy for the expected performance of Wang et al.’s algorithm [107].

To explicitly illustrate the quality vs. runtime tradeoff of FEPLL, we include results

obtained using a slightly slower version of FEPLL referred to as FEPLL′, that does not use the

balanced search tree and uses a flat tail spectrum approximation with ρ = 0.98. Please note that

FEPLL′ is not meant to be better or worse than FEPLL, it is just another version running at a

different PSNR/time tradeoff which allows us to compare our algorithm to others operating in

different playing fields.

Finally, to illustrate the versatility of FEPLL, we also include results for other inverse

problems such as devignetting, super-resolution, and inpainting. Additional results can be found

in Appendix A.

Parameter settings In our experiments, we use patches of size P=8×8, and the GMM

provided by Zoran et al. [15] with K=200 components. The 200-components GMM is progres-

sively collapsed into smaller GMMs with K=64,32,16,8,4,2 and 1, and then all Gaussians of

the tree are modified offline by flat-tail approximations with ρ=0.95. The final estimate for the

restored image is obtained after 5 iterations of our algorithm with β set to λσ−2{1,4,8,16,32}

where λ=min{N−1||A tA ||2F ||A ||
−2
2 ,250σ2}. For denoising, where A is identity, λ=1 which boils
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(a) Reference x
22.1 / .368

(b) Noisy image y

30.6 / .872 (1.68s)

(c) BM3D result x̂

30.6 / .873 (44.88s)

(d) EPLLc result x̂

30.2 / .862 (0.36s)

(e) FEPLL result x̂

Figure 6.5: Illustration of a denoising problem with noise standard deviation σ = 20. Part of:
(a) the original image (b) its noisy version (c-e) denoised results of competitive methods with
PSNR/SSIM and time (inset).

down to the setting used by Zoran et al. [15]. For inverse problems, we found that the initialization

x̂ = (A tA +0.2σ2/λ∇)−1A ty, with ∇ the image Laplacian, provides relevant solutions whatever

the linear operator A and the noise level σ2. While the authors of [15] do not provide any further

direction for setting β and the initialization in general inverse problems, our proposed setting

leads to competitive solutions irrespective of A and σ2. For BM3D [8], EPLLm [15], RoG [108],

CSF [100] and iPiano [20] we use the implementations provided by the original authors and use

the default parameters prescribed by them.

Denoising

Table 6.2 shows the quantitative performances of FEPLL on the denoising task compared

to EPLLm [15], EPLLc (our own MATLAB/C implementation), RoG [108] BM3D [8], CSF [100]

and DnCNN [105]. We evaluate the algorithms under low-, mid- and high-noise settings by using

Gaussian noise of variance 52, 202 and 602, respectively. The result labeled “Berkeley” is an

average over 60 images from the BSDS testing set [109]. All numbers are averages obtained

on 10 independent noise realizations. Figures 6.6 provide graphical representations of these

performances in terms of PSNR/SSIM versus computation time for the BSDS images for the

noise variance setting σ2 = 202. In this figure, we have also included a recent approach based
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Figure 6.6: (a) PSNR and (b) SSIM versus time for different restoration methods in a denoising
problem with noise standard deviation σ = 20. PSNR, SSIM and time are averaged on the 60
BSDS test images, each of size 481×321. Optimal methods tend to be in the top-left corner.
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(a) Reference x / Blur
kernel

24.9 / .624

(b) Blurry image y

31.4 / .891 (0.17∗s)

(c) CSFpw result x̂

32.2 / .910 (1.17s)

(d) RoG result x̂

32.7 / .924 (0.46s)

(e) FEPLL result x̂

Figure 6.7: Illustration of a deblurring problem with noise standard deviation σ = 0.5. Part
of: (a) the original image and the blur kernel (inset), (b) blurry version (c-e) deblurred results
of competitive methods with PSNR/SSIM and time (inset). The ’*’ indicates runtime on GPU
while others are CPU times.

on weighted nuclear norm minimization (WNNM) [116]. On average, FEPLL results are 0.5dB

below regular EPLL and BM3D; however, FEPLL is approximately 7 times faster than BM3D,

170-200 times faster than EPLLc and over 350 times faster than EPLLm. FEPLL outperforms the

faster CSF algorithm in terms of both PSNR and time. In this case, FEPLL is even faster than the

GPU accelerated version of CSF (CSFgpu). Our approach is 4 times faster than RoG with a PSNR

drop of 0.1-0.3dB. Nevertheless, if we slow down FEPLL to FEPLL′, we can easily neutralize

this quality deficit while still being faster than RoG. While DnCNN offers better results, DnCNN

(CPU) is about 10× slower than FEPLL (also CPU). Our FEPLL (CPU) is also slightly faster

than DnCNN (GPU). WNNM offers comparable results to FEPLL’ but is about 500× slower.

Note that these accelerations are obtained purely based on the approximations and no parallel

processing is used. Also, in most cases, a loss of 0.5dB may not affect the visual quality of the

image. To illustrate this, we show a sample image denoised by BM3D, EPLL and FEPLL in

Fig. 6.5.
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Deblurring

Table 6.3 shows the performance of FEPLL when used for deblurring as compared to

RoG [108], iPiano [20] and CSF [100]. Once again, FEPLL uses Alg. 8 with operator A in the

Image estimation step defined by Ax = F −1[F [h]�F [x]], where F is the fast Fourier transform

and F −1 its inverse, � indicates element-wise product and h is the blur kernel. For these

experiments, we use the blur kernel provided by Chen et al. [20] along with their algorithm

implementation. The results under the label “Berkeley” are averaged over 60 images from the

BSDS test dataset [109]. The results labeled “Classic” is averaged over the six standard images

(Barbara, Boat, Couple, Fingerprint, Lena and Mandrill). FEPLL consistently outperforms its

efficient competitors both in terms of quality and runtime. Although the GPU version of CSF

is faster, the restoration quality obtained by CSF is 2-3dB lower than FEPLL. The proposed

algorithm outperforms RoG by 1-1.8dB while running 3 and 5 times faster on “Berkeley” and

“Classic” datasets, respectively.

The superior qualitative performance of FEPLL is demonstrated in Fig. 6.7. For brevity,

we only include the deblurring results obtained from the top competitors of FEPLL algorithm in

terms of both quality and runtime. As observed, FEPLL provides the best quality vs. runtime

efficiency trade-off. In contrast, a deblurring procedure using the regular EPLL is around 350

times slower than FEPLL with the original implementation [15]. Specifically, on the sample

image shown in Fig. 6.7, EPLL provides a qualitatively similar result (not shown in the figure)

with a PSNR of 32.7 dB and SSIM of 0.922 in 142 seconds.

Other inverse problems

Unlike BM3D, EPLL and FEPLL are more versatile and handle a wide range of inverse

problems without any change in formulation. In Fig. 6.8, we show the results obtained by FEPLL

on problems such as (a) devignetting, which involves a progressive loss of intensity, (b) super-

resolution and (c) inpainting. To show the robustness of our method, the input images of size
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Table 6.3: Deblurring performance and timing comparison: PSNR, SSIM and execution time
on the BSDS test set (average of 60 images of size 481×321), and on standard images (average
of 6 images of size 512×512) for the proposed FEPLL and FEPLL′, CSF [100], RoG [108] and
Chen et al.’s [20] method that is called iPiano in their implementation. The blur kernel used is
the one provided in along with iPiano implementation and noise is set to σ = 0.5.

Algo. Berkeley Classic
PSNR/SSIM Time (s) PSNR/SSIM Time (s)

iPiano 29.5 / .824 29.53 29.9 / .848 59.10
CSFpw 30.2 / .875 0.50 (0.14*) 30.5 / 0.870 0.47 (0.14*)
RoG 31.3 / .897 1.19 31.8 / .915 2.07
FEPLL 33.1 / .928 0.40 32.8 / .931 0.46
FEPLL’ 33.2 / .930 1.01 33.0 / .933 1.82

481×321 were degraded with zero-mean Gaussian noise with σ=2. All of the restoration results

were obtained within/under 0.4 seconds and with the same set of parameters explained above (cf.

Parameter settings).

6.6 Conclusion

In this chapter, we accelerate EPLL by a factor greater than 100 with negligible loss of

image quality (less than 0.5dB). This is achieved by combining three independent strategies: a

flat tail approximation, matching via a balanced search tree, and stochastic patch sampling. We

show that the proposed accelerations are effective in denoising and deblurring problems, as well

as in other inverse problems such as super-resolution and devignetting. An important distinction

of the proposed accelerations is their genericity: the accelerated EPLL prior can be applied to

many restoration tasks and various signal-to-noise ratios, in contrast to existing accelerations

based on learning techniques applied to specific conditions (such as image size, noise level, blur

kernel, etc.) and that require an expensive re-training to address a different problem.

Since the speed-up is achieved solely by reducing the algorithmic complexity, we believe

that further inclusion of accelerations based on parallelization and/or GPU implementations will

allow for real-time video processing. Moreover, the acceleration techniques introduced in this

92



11.1 / .662 20.8 / .598 8.31 / .112

36.8 / .972 (0.38s)

(a) devignetting

23.3 / .738 (0.29s)

(b) ×3 super-resolution

27.0 / .905 (0.36s)

(c) 50% inpainting

Figure 6.8: FEPLL on various inverse problems. All inputs contain Gaussian noise with σ = 2.
Top row: (a) the observation in a devignetting problem, (b) the bi-cubic interpolation and the
actual low-resolution size image (inset) in a×3 super-resolution problem and (c) the observation
in an inpainting problem with 50% of missing pixels shown in red. Bottom row: respective
FEPLL results all obtained in less than 0.4s.

work are general strategies that can be used to speed up other image restoration and/or related

machine learning algorithms.

In the next chapter, we investigate the suitability and usability of a class of priors that are

more general than GMM.
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Chapter 7

Image denoising with generalized Gaussian

mixture model patch priors

7.1 Introduction

As we saw in the earlier chapters, priors on natural images play an important role in

image restoration algorithms. Image priors are used to denoise or regularize ill-posed restoration

problems such as deblurring and super-resolution, to name just a few. Early attempts in designing

image priors relied on modeling local pixel gradients with Gibbs distributions [117], Laplacian

distributions (total variation) [26, 118], hyper-Laplacian distribution [111], generalized Gaussian

distribution [119], or Gaussian mixture models [120]. Concurrently, priors have also been

designed by modeling coefficients of an image in a transformed domain using generalized

Gaussian [38, 39, 121, 122] or scaled mixture of Gaussian [49] priors for wavelet or curvelet

coefficients [123]. Alternatively, modeling the distribution of patches of an image (i.e., small

windows usually of size 8×8) has proven to be a powerful solution. In particular, popular patch

techniques rely on non-local self-similarity [27], fields of experts [19], learned patch dictionaries

[30, 45, 47], sparse or low-rank properties of stacks of similar patches [28, 37, 11, 124], patch re-
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occurrence priors [125], or more recently mixture models patch priors [15, 17, 31, 32, 33, 34, 35].

Of these approaches, a successful approach introduced by Zoran and Weiss [15] is to

model patches of clean natural images using Gaussian Mixture Model (GMM) priors. The

agility of this model lies in the fact that a prior learned on clean image patches can be effectively

employed to restore a wide range of inverse problems. It is also easily extendable to include

other constraints such as sparsity or multi-resolution patches [46, 96]. The use of GMMs for

patch priors make these methods computationally tractable and flexible. Although GMM patch

prior is effective and popular, in this article, we argue that a generalized Gaussian mixture model

(GGMM) is a better fit for image patch prior modeling. Compared to a Gaussian model, a

generalized Gaussian distribution (GGD) has an extra degree of freedom controlling the shape of

the distribution and it encompasses Gaussian and Laplacian models.

Beyond image restoration tasks, GGDs have been used in several different fields of image

and signal processing, including watermark detection [126], texture retrieval [122], voice activity

detection [127] and MP3 audio encoding [128], to cite just a few. In these tasks, GGDs are

used to characterize or model the prior distribution of clean signals, for instance, from their

DCT coefficients or frequency subbands for natural images [129, 130, 131, 132] or videos [133],

gradients for X-ray images [119], wavelet coefficients for natural [38, 39, 126], textured [122], or

ultrasound images [134], tangential wavelet coefficients for three-dimensional mesh data [135],

short time windows for speech signals [136] or frequency subbands for speech [127] or audio

signals [128].

In this chapter, we go one step further and use multi-variate GGD with one scale and

one shape parameter per dimension. The superior patch prior modeling capability of such a

GGMM over a GMM is illustrated in Figure 7.1. The figure shows histograms of six orthogonal

1-D projections of subset of clean patches onto the eigenvectors of the covariance matrix of a

single component of the GMM. To illustrate the difference in the shapes (ν) and scales (λ) of

the distributions of each dimension, we have chosen a few projections corresponding to both the
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most and the least significant eigenvalues. It can be seen that GGD is a better fit on the obtained

histograms than a Gaussian model. Additionally, different dimensions of the patch follow a

different GGD (i.e., has a different shape and scale parameter). Hence, it does not suffice to model

all the feature dimensions of a given cluster of patches as Laplacian or Gaussian. Therefore, we

propose to model patch priors as GGMM distributed with a separate shape and scale parameters

for each feature dimension of a GGD component. This differs from the recent related approach in

[35] that considered GGMM where each component has a fixed shape parameter for all directions.

Contributions: The goal of this chapter is to measure the improvements obtained

in image denoising tasks by incorporating a GGMM in EPLL algorithm. Unlike [35], that

incorporates a GGMM prior in a posterior mean estimator based on importance sampling, we

directly extend the maximum a posteriori formulation of Zoran and Weiss [15] for the case of

GGMM priors. While such a GGMM prior has the ability to capture the underlying distribution of

clean patches more closely, we will show that it introduces two major computational challenges

in this case. The first one can be thought of as a classification task in which a noisy patch is

assigned to one of the components of the mixture. The second one corresponds to an estimation

task where a noisy patch is denoised given that it belongs to one of the components of the mixture.

Due to the interaction of the noise distribution with the GGD prior, we first show that these two

tasks lead to a group of one-dimensional integration and optimization problems, respectively.

Specifically, for x ∈ R, these problems are of the following forms

∫
R

exp
(
−(t− x)2

2σ2 − |t|
ν

λν
ν

)
dt and argmin

t∈R

(t− x)2

2σ2 +
|t|ν

λν
ν

, (7.1)

for some ν > 0, σ > 0 and λν > 0. In general, they do not admit closed-form solutions but

some particular solutions or approximations have been derived for the estimation/optimization

problem [39, 137]. By contrast, up to our knowledge, little is known for approximating the

classification/integration one (only crude approximations were proposed in [138]).
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Figure 7.1: Histograms of the projection of 200,000 clean patches on 6 eigenvectors j =
1,2,3,4,62 and 63 of the covariance matrix of one component k of the mixture (with weight
wk = 1.3%). The contribution of each clean patch in the histograms is given by its membership
values onto this component k (as obtained during the E-Step of EM). For each histogram, a
generalized Gaussian distribution was adjusted by estimating the parameters λ and ν by moment
estimation (as obtained during the M-Step of our modified EM exposed in Section 7.3.1).
For comparisons, we have also provided illustrations of the best fit obtained with a Gaussian
distribution.
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Our contributions are both theoretical- and application-oriented. The major contribution

of this paper, which is and theoretical in nature, is to develop an accurate approximation for

the classification/integration problem. In particular, we show that our approximation error

vanishes for x→ 0 and x→±∞ when ν = 1, see Theorem 7.4.3 and Theorem 7.4.4. We next

generalize this result for 2
3 < ν < 2 in Theorem 7.4.5 and Theorem 7.4.6. In addition, we

prove that the two problems enjoy some important desired properties in Proposition 7.4.2 and

Proposition 7.5.1. These theoretical results allow the two quantities to be approximated by

functions that can be quickly evaluated in order to be incorporated in fast algorithms. Our last

contribution is experimental and concerns the performance evaluation of the proposed model

in image denoising scenario. For reproducibility, we have released our implementation at

https://bitbucket.org/cdeledalle/ggmm-epll.

Potential impacts beyond image denoising: It is important to note that the two main

contributions presented in this work, namely approximations for classification and estimation

problems, are general techniques that are relevant to a wider area of research problems than image

restoration. In particular, our contributions apply to any problems where (i) the underlying clean

data are modeled by a GGD or a GGMM, whereas (ii) the observed samples are corrupted by

Gaussian noise. They are especially relevant in machine learning scenarios where a GGMM is

trained on clean data but data provided during testing time is noisy. That is, our approximations

can be used to extend the applicability of the aforementioned clean GGD/GGM based approaches

to the less than ideal testing scenario where the data is corrupted by noise. For instance, using

the techniques introduced in this paper, one could directly use the GGD based voice activity

model of [127] into the likelihood ratio test based detector of [139] (which relies on solutions

of the integration problem but was limited to Laplacian distributions). In fact, we suspect that

many studies in signal processing may have limited themselves to Gaussian or Laplacian signal

priors because of the complicated integration problem arising from the intricate interaction of

GGDs with Gaussian noise. In this chapter, we demonstrate that this difficulty can be efficiently
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overcome with our approximations. This leads us to believe that the impact of the approaches

presented in this paper will not only be useful for image restoration but also aid a wider field of

general signal processing applications.

Organization: After explaining the considered patch prior based restoration framework

in Section 7.2, we derive our GGMM based restoration scheme in Section 7.3. The approxima-

tions of the classification and estimation problems are studied in Section 7.4 and Section 7.5,

respectively. Finally, we present numerical experiments and results in Section 7.6.

7.2 Background

In this section we provide a detailed overview of the use of patch-based priors in Expected

Patch Log-Likelihood (EPLL) framework and its usage under GMM priors.

7.2.1 Image restoration with patch based priors

Recall that image restoration is the problem of estimating an image u ∈ RN (N is the

number of pixels) from noisy linear observations v = Au+w, where A : RN → RM is a linear

operator and w ∈ RM is a noise component assumed to be white and Gaussian with variance σ2.

A can account for a variety degradation operators (e.g. blur) but for the purposes of this work

which focuses on image denoising, A is the identity matrix.

To reduce noise and stabilize the inversion of A , some prior information is used for the

estimation of u. Recent techniques [45, 15, 46] include this prior information as a model for the

distribution of patches found in natural clean images. We consider the EPLL framework [15] that

restores an image by maximum a posteriori estimation over all patches, corresponding to the
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following minimization problem:

argmin
u∈Rn

P
2σ2 ||Au− v||2−

N

∑
i=1

log p(Piu) (7.2)

where Pi : RN → RP is the linear operator extracting a patch with P pixels centered at the pixel

with location i (typically, P = 8×8), and p(.) is the a priori probability density function (i.e., the

statistical model of noiseless patches in natural images). Since i scans all of the N pixels of the

image, all patches contribute to the loss and many patches overlap. Allowing for overlapping is

important because otherwise there would appear blocking artifacts. While the first term in eq. (7.2)

ensures that Au is close to the observations v (this term is the negative log-likelihood under the

white Gaussian noise assumption), the second term regularizes the solution u by favoring an

image such that all of its patches fit the prior model of patches in natural images.

Optimization with half-quadratic splitting

Problem (7.2) is a large optimization problem where A couples all unknown pixel values

of u and the patch prior is often chosen non-convex. Our method follow the choice made by EPLL

of using a classical technique, known as half-quadratic splitting [110, 111], that introduces N

auxiliary unknown vectors zi ∈RP, and alternatively consider the penalized optimization problem,

for β > 0, as

argmin
u∈Rn

z1,...,zN∈RP

P
2σ2 ||Au− v||2 + β

2 ∑
i∈I
||Piu− zi||2−∑

i∈I
log p(zi) . (7.3)

When β→ ∞, the problem (7.3) is equivalent to the original problem (7.2). In practice, an

increasing sequence of β is considered, and the optimization is performed by alternating between

the minimization for u and zi. Though little is known about the convergence of this algorithm,

few iterations produce remarkable results, in practice. We follow the EPLL settings prescribed in

100



[15] by performing 5 iterations of this algorithm with parameter β set to 1
σ2{1,4,8,16,32} for

each iteration, respectively. The algorithm is initialized using û = v for the first estimate.

Minimization with respect to u

Considering all zi to be fixed, optimizing (7.3) for u corresponds to solving a linear inverse

problem with a Tikhonov regularization. It has an explicit solution known as the linear minimum

mean square estimator (or often referred to as Wiener filtering) which is obtained as:

û = argmin
u∈Rn

P
2σ2 ||Au− v||2 + β

2 ∑
i∈I
||Piu− ẑi||2

=

(
A tA +

βσ2

P ∑
i∈I

P t
i Pi

)−1(
A tv+

βσ2

P ∑
i∈I

P t
i ẑi

)
, (7.4)

where P t
i Pi is a diagonal matrix whose i-th diagonal element corresponds to the number of patches

overlapping the pixel of index i.

Minimization with respect to zi Considering u to be fixed, optimizing (7.3) for zi leads to:

ẑi← argmin
zi∈RP

β

2
||z̃i− zi||2− log p(zi) where z̃i = Piû , (7.5)

which corresponds to the maximum a posterior (MAP) denoising problem under the patch prior p

of a patch z̃i contaminated by Gaussian noise with variance 1/β. The solution of this optimization

problem strongly depends on the properties of the chosen patch prior.

Our algorithm will follow the exact same procedure as EPLL by alternating between

eq. (7.4)1 and (7.5). In our proposed method, we will be using a generalized Gaussian mixture

model (GGMM) to represent patch prior. The general scheme we will adopt to solve eq. (7.5)

under GGMM prior is inspired from the one proposed by Zoran & Weiss [15] in the simpler case

1Since our study focuses only on denoising, we will consider A = IdN .
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of Gaussian mixture model (GMM) prior. For this reason, we will now introduce this simpler

case of GMM prior before exposing the technical challenges arising from the use of GGMM prior

in Section 7.3.

7.2.2 Patch denoising with GMM priors

The authors of [15, 17] suggested using a zero-mean Gaussian mixture model (GMM)

prior2, that, for any patch z ∈ RP, is given by

p(z) =
K

∑
k=1

wkNP(z;0P,Σk) (7.6)

where K is the number of components, wk > 0 are weights such that ∑k wk=1, and NP(0P,Σk)

denotes the multi-variate Gaussian distribution with zero-mean and covariance Σk ∈ RP×P. A

K-component GMM prior models image patches as being spread over K clusters that have

ellipsoid shapes where each coefficient (of each component) follows a Gaussian distribution, i.e.,

bell-shaped with small tails. In [15], the parameters wk and Σk of the GMM are learned using

the Expectation Maximization algorithm [48] on a dataset of 2 million clean patches of size

8×8 pixels that are randomly extracted from the training images of the Berkeley Segmentation

Database (BSDS) [109]. The GMM learned in [15] has K = 200 zero-mean Gaussian mixture

components.

Due to the multi-modality of the GMM prior, introducing this prior in eq. (7.5) makes the

optimization problem highly non-convex:

ẑ← argmin
z∈RP

β

2
||z̃− z||2− log

[
K

∑
k=1

wkN (z;0P,Σk)

]
. (7.7)

To circumvent this issue, the EPLL framework introduced by Zoran et al. [15] uses an approxima-
2To enforce the zero-mean assumption, patches are first centered on zero, then denoised using eq. (7.5), and,

finally, their initial means are added back. In fact, one can show that it corresponds to modeling p(z− z̄) with a
GMM where z̄ j =

1
P ∑i zi for all 16 j 6 P.
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tion3. In a nutshell, the approximated approach of EPLL provides a way to avoid the intractability

of mixture models, thus making them available to model patch priors [15]. Section 7.2.2 provides

an illustration of the EPLL framework and the steps involved in solving the optimization problem

(7.7) namely:

(i) compute the posterior p(k|z̃)4 of each Gaussian component, k = 1,2 . . .K for the given

noisy patch z̃ with assumed noise variance of 1/β,

(ii) select the component k? that best explains the given patch z̃,

(iii) perform whitening by projecting z̃ over the main directions of that cluster (given by the

eigenvectors of Σk?), and

(iv) apply a linear shrinkage on the coefficients with respect to the noise variance 1/β and the

spread of the cluster (encoded by the eigenvalues).

The details of each of these steps will be discussed in Section 7.3.2 as part of the development of

the proposed model which is more general.

In this chapter, we suggest using a mixture of generalized Gaussian distributions that will

enable image patches to be spread over clusters that are bell shaped in some directions but can be

peaky with large tails in others. While the use of GMM priors leads to piece-wise linear estimator

(PLE) as a function of z (see [17]), our GGMM prior will lead to a piecewise non-linear shrinkage

estimator.
3An alternative investigated in [32] is to replace the MAP denoising problem in (7.5) by the minimum mean

square error (MMSE) estimator (a.k.a., posterior mean). The MMSE estimator is defined as an integration problem
and has a closed-form solution in case of GMM priors. In our experimental scenarios, this estimator did not lead to
significant improvements compared to MAP and we thus did not pursue this idea.

4In [15], this is referred to as “conditional mixing weight”.
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Figure 7.2: Illustration of EPLL framework for image denoising with a GMM prior. A large
collection of (overlapping) patches are first extracted. For each patch, an optimal Gaussian
component is picked based on a measure of discrepancy with the given patch. This Gaussian
component is next used as a prior model to denoise the given patch by linear shrinkage in the
corresponding eigenspace and depending on β. All estimated patches are finally aggregated
together, weighted by β and combined with the original noisy image to produce a first estimate.
The procedure is repeated 5 times with increasing values of β.

7.3 Generalized Gaussian Mixture Models

We aim to learn K orthogonal transforms such that each of them can map a subset (cluster)

of clean patches into independent zero-mean coefficients. Instead of assuming the coefficient

distributions to be bell shaped, we consider that both the scale and the shape of these distributions

may vary from one coordinate to another (within the same transform). Our motivation to assume

such a highly flexible model is based on the observation illustrated in Figure 7.1. Given one of

such transform and its corresponding cluster of patches, we have displayed the histogram of the

patch coefficients for six different coordinates. It can be clearly observed that the shape of the

distribution varies depending on the coordinate. Some of them are peaky with heavy tails, and,

therefore, would not be faithfully captured by a Gaussian distribution, as done in EPLL [15]. By

contrast, some others have a bell shape, and so would not be captured properly by a peaky and

heavy tailed distribution, as done for instance by sparse models [38, 39, 30, 45, 44, 47, 46]. This

shows that one cannot simultaneously decorrelate and sparsify a cluster of clean patches for all
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coordinates. Since some of the coordinates reveal sparsity while some others reveal Gaussianity,

we propose to use a more flexible model that can capture such variations. We propose using a

multi-variate zero-mean generalized Gaussian mixture model (GGMM)

p(z) =
K

∑
k=1

wkG(z;0P,Σk,νk) (7.8)

where K is the number of components and wk > 0 are weights such that ∑k wk=1. The notation

G(0P,Σ,ν) denotes the P-dimensional generalized Gaussian distribution (GGD) with zero-mean,

covariance Σ∈RP×P (symmetric positive definite) and shape parameter ν∈RP, whose expression

is

G(z;0P,Σ,ν) =
K

2|Σν|1/2 exp
[
−||Σ−1/2

ν z||νν
]

with ||x||νν =
P

∑
j=1
|x j|ν j , (7.9)

where K =
P

∏
j=1

ν j

Γ(1/ν j)
and Σ

1/2
ν = Σ

1/2


√

Γ(1/ν1)
Γ(3/ν1)

. . . √
Γ(1/νP)
Γ(3/νP)

 . (7.10)

Denoting the eigen decomposition of matrix Σ by Σ = UΛU t such that U ∈ RP×P is unitary

and Λ = diag(λ1,λ2, . . . ,λP)
2 is diagonal with positive diagonal elements λ2

j , Σ
1/2 in the above

expression is defined as Σ
1/2 =UΛ

1/2 and Σ
−1/2 = Λ

−1/2U t is its inverse.

When ν is a constant vector with all entries equal to ν j = 2, G(0P,Σ,ν) is the multi-variate

Gaussian distribution N (0P,Σ) (as used in EPLL [15]). When all ν j = 1, it is the multi-variate

Laplacian distribution and the subsequent GGMM is a Laplacian Mixture Model (LMM). When

all ν j < 1, it is the multi-variate hyper-Laplacian distribution and the subsequent GGMM is a

hyper-Laplacian Mixture Model (HLMM). Choosing K = 1 with a constant vector ν corresponds

to `ν regularization [44, 47]. But as motivated earlier, unlike classical multivariate GGD models

[123, 140, 35], we allow for the entries of ν to vary from one coordinate j to another. To the best
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of our knowledge, the proposed work is the first one to consider this fully flexible model.

Proposition 7.3.1. The multi-variate zero-mean GGD can be decomposed as

G(z;0P,Σ,ν) =
P

∏
j=1

G((U tz) j;0,λ j,ν j) (7.11)

where, for x =U tz, the distribution of each of its components is given as

G(x;0,λ,ν) =
κ

2λν

exp
[
−
(
|x|
λν

)ν]
where κ =

ν

Γ(1/ν)
and λν = λ

√
Γ(1/ν)

Γ(3/ν)
,

where x 7→ G(x;0,λ,ν) is a real, even, unimodal, bounded and continuous probability density

function. It is also differentiable everywhere except for x = 0 when ν6 1.

The proof follows directly by injecting the eigen decomposition of Σ in (7.9) and basic

properties of x 7→ |x|ν. Proposition 7.3.1 shows that, for each of the K clusters, eq. (7.9), indeed,

models a prior that is separable in a coordinate system obtained by applying the whitening

transform U t . Not only is the prior separable for each coordinate j, but the shape (ν j) and scale

(λ j) of the distribution may vary.

Before detailing the usage of GGMM priors in EPLL framework, we digress briefly to

explain the procedure we used for training such a mixture of generalized Gaussian distributions

where different scale and shape parameters are learned for each feature dimension.

7.3.1 Learning GGMMs

Parameter estimation is carried out using a modified version of the Expectation-Maximization

(EM) algorithm [48]. EM is an iterative algorithm that performs at each iteration two steps, namely
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Expectation step (E-Step) and Maximization stop (M-Step), and is known to monotonically in-

crease the model likelihood and converge to a local optimum. For applying EM to learn a GGMM,

we leverage standard strategies used for parameter estimation for GGD and/or GGMM that

are reported in previous works [38, 141, 133, 132, 128, 136, 123, 142, 140, 143]. Our M-Step

update for the shape parameter ν is inspired from Mallat’s strategy [38] using statistics of the first

absolute and second moments of GGDs. Since this strategy uses the method of moments for ν

instead of maximum likelihood estimation, we refer to this algorithm as modified EM and the

M-Step as Moment step. We also noticed that shape parameters ν < .3 lead to numerical issues

and ν > 2 leads to local minima with several degenerate components. For this reason, at each step,

we impose the constraint that the learned shape parameters satisfy ν ∈ [.3,2]. This observation

is consistent with earlier works that have attempted to learn GGMM shape parameters from

data [144]. Given n training clean patches of size P and an initialization for the K parameters

wk > 0, Σk ∈RP×P and νk ∈RP, for k = 1, . . . ,K, our modified EM algorithm iteratively alternates

between the following two steps:

• Expectation step (E-Step)

– For all components k = 1, . . . ,K and training samples i = 1, . . . ,n, compute:

ξk,i←
wkG(zi;0P,Σk,νk)

∑
K
l=1 wlG(zi;0P,Σl,νl)

.

• Moment step (M-Step)

– For all components k = 1, . . . ,K, update:

wk←
∑

n
i=1 ξk,i

∑
K
l=1 ∑

n
i=1 ξl,i

and Σk←
∑

n
i=1 ξk,izizt

i

∑
n
i=1 ξk,i

.
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– Perform eigen decomposition of Σk:

Σk =UkΛkU t
k where Λk = diag(λk,1,λk,2, . . . ,λk,P)

2 .

– For all components k = 1, . . . ,K and dimensions j = 1, . . . ,P, compute:

χk, j←
∑

n
i=1 ξk,i|(U t

kzi) j|
∑

n
i=1 ξk,i

and (νk) j←Π[.3,2]

[
F−1

(
χ2

k, j

λ2
k, j

)]
.

where Π[a,b][x] = min(max(x,a),b) and F(x) = Γ(2/x)2

Γ(3/x)Γ(1/x) is a monotonic invertible function

that was introduced in [38] (we used a lookup table to perform its inversion as done in [141, 133]).

Note that χ2
k, j and λ2

k, j corresponds to the first absolute and second moments for component k and

dimension j, respectively.

For consistency purposes, we keep the training data and the number of mixture components

in the models the same as that used in the original EPLL algorithm [15]. Specifically, we train

our models on n = 2 million clean patches randomly extracted from Berkeley Segmentation

Dataset (BSDS) [109]. We learn K = 200 zero-mean generalized Gaussian mixture components

from patches of size P = 8×8. We opted for a warm-start training by initializing our GGMM

model with the GMM model from [15] and with initial values of shape parameters as 2. We run

our modified EM algorithm for 100 iterations. As observed in Figure 7.1, the obtained GGMM

models the underlying distributions of a cluster of clean patches much better than a GMM. In

addition, we will see in Section 7.6 that our GGMM estimation did not lead to overfitting as it is

also a better fit than a GMM for unseen clean patches.
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7.3.2 Patch denoising with GGMM priors

We now explain why solving step (7.5) in EPLL is non-trivial when using a GGMM patch

prior. In this case, for a noisy patch z̃ with variance σ2, equation (7.5) becomes

ẑ← argmin
z∈RP

1
2σ2 ||z̃− z||2− log

[
K

∑
k=1

wkG(z;0P,Σk,νk)

]
. (7.12)

As for GMMs, due to the multi-modality of the GGMM prior, this optimization problem is highly

non-convex. To circumvent this issue, we follow the strategy used by EPLL [15] in the specific

case of Gaussian mixture model prior. The idea is to restrict the sum involved in the logarithm in

eq. (7.12) to only one component k?.

If we consider the best k? to be given (the strategy to select the best k? will be discussed

next), then eq. (7.12) is approximated by the following simpler problem

ẑ ← argmin
z∈RP

{
||z̃− z||2

2σ2 − logG(z;0P,Σk?,νk?) =
||z̃− z||2

2σ2 + ||Σ−1/2
νk?

z||νν
}

. (7.13)

The main advantage of this simplified version is that, by virtue of Proposition 7.3.1, the underly-

ing optimization becomes tractable and can be separated into P one-dimensional optimization

problems, as:

ẑ =Uk? x̂ where x̂ j = s(x̃ j;σ,λk?, j,νk?, j) with x̃ =U t
k? z̃ (7.14)

and s(x;σ,λ,ν) = sν

σ,λ(x) ∈ argmin
t∈R

1
2σ2 (x− t)2 +

|t|ν

λν
ν

where λν = λ

√
Γ(1/ν)

Γ(3/ν)
,

(7.15)

where for all k, νk, j = (νk) j and λk, j = (λk) j. While the problem is not necessarily convex, its

solution sν

σ,λ is always uniquely defined almost everywhere (see, Section 7.5). We call this almost

everywhere real function sν

σ,λ : R→ R shrinkage function. When ν = 2, it is a linear function
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that is often referred to as Wiener shrinkage. When ν 6= 2, as we will discuss in Section 7.5, it is

a non-linear shrinkage function that can be computed in closed form for some cases or with some

approximations.

Now, we address the question of finding a strategy for choosing a relevant component

k? to replace the mixture distribution inside the logarithm. The optimal component k? can be

obtained by maximizing the posterior as

k? ∈ argmax
16k6K

p(k | z̃) = argmax
16k6K

wk p(z̃ | k) = argmin
16k6K

− logwk− log p(z̃ | k) (7.16)

where the weights of the GGMM corresponds to the prior probability wk = p(k). We next use

the fact that the patch z̃ (conditioned on k) can be expressed as z̃ = z+n where z and n are two

independent random variables from distributions G(0P,Σk,νk) and N (0P,σ
2IdP) respectively. It

follows that the distribution of z̃ is the convolution of these latter two, and then

− log p(z̃ | k) =− log
∫
RP

G(z̃− z;0P,Σk,νk) ·N (z;0P,σ
2IdP) dz . (7.17)

We next use Proposition 7.3.1 to separate this integration problem into P one-dimensional

integration problems. We obtain

− log p(z̃ | k) =
P

∑
j=1

f ((U t
kz̃) j;σ,λk, j,νk, j) (7.18)

where, for x̃ =U t
kz̃, the integration problem of each of its components reads as

f (x;σ,λ,ν) = f ν

σ,λ(x) =− log
∫
R

G(x− t;0,λ,ν) ·N (t;0,σ2) dt . (7.19)

We call the real function f ν

σ,λ : R→ R the discrepancy function which measures the goodness of

fit of a GGD to the noisy value x. When ν = 2, this function is quadratic with x. For ν 6= 2, as we
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Figure 7.3: Illustration of our extension of EPLL to GGMM priors. The general procedure,
illustrated in the top row, is similar to the original EPLL scheme described in Section 7.2.2
but relies on generalized Gaussian distributions instead of Gaussian distributions. The shape
of the discrepancy function, illustrated in the second row, depends on the given scale and
shape parameters (λ and ν) of the GGD components. In Section 7.4, we will see that it can
be approximated based on six parameters, four of them retrieved from lookup tables (LUTs).
Finally, the shrinkage function, illustrated in the bottom row, can be non-linear and depends on
the selected GGD component. In Section 7.5, we will see that it can be approximated by one
of five predefined parametric functions depending on the range in which the scale parameter ν

lies. The values ν = 1.2 and λ/σ = .25, shown in the bottom row, were chosen for the sake of
illustration.
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will discuss in Section 7.4, it is a non-quadratic function, that can be efficiently approximated

based on an in-depth analysis of its asymptotic behavior.

Figure 7.3 illustrates the details of the patch denoising step under the GGMM-EPLL

framework. It shows that the method relies on fast approximations f̂ ν

σ,λ and ŝν

σ,λ of the discrepancy

and shrinkage functions, respectively.

The next two sections are dedicated to the analysis and approximations of the discrepancy

function f ν

σ,λ and the shrinkage function sν

σ,λ, respectively.

7.4 Discrepancy function: analysis and approximations

From its definition given in eq. (7.19), the discrepancy function reads for ν > 0, σ > 0

and λ > 0, as

f ν

σ,λ(x) =− log
1√
2πσ

ν

2λνΓ(1/ν)
− log

∫
∞

−∞

exp
(
−(x− t)2

2σ2

)
exp
[
−
(
|t|
λν

)ν]
dt . (7.20)

It corresponds to the negative logarithm of the distribution of the sum of a zero-mean generalized

Gaussian and a zero-mean Gaussian random variables. When ν = 2, the generalized Gaussian

random variable becomes Gaussian, and the resulting distribution is also Gaussian with zero-mean

and variance σ2 +λ2, and then

f 2
σ,λ(x) =

1
2

[
log2π+ log(σ2 +λ

2)+
x2

σ2 +λ2

]
. (7.21)

Remark 7.4.1. For ν = 2, a direct consequence of (7.21) is that − log p(z̃ | k) is as an affine

function of the Mahanalobis distance between z̃ and 0P for the covariance matrix Σk +σ2IdP:

− log p(z̃ | k) = 1
2
[
P log2π+ log |Σk +σ

2IdP|+ z̃t(Σk +σ
2IdP)

−1z̃
]
. (7.22)
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When ν = 1, the generalized Gaussian random variable becomes Laplacian, and the distribution

resulting from the convolution also has a closed form which leads to the following discrepancy

function

f 1
σ,λ(x) = log(2

√
2λ)− σ2

λ2 − log
[

e
√

2x
λ erfc

(
x√
2σ

+
σ

λ

)
+ e−

√
2x
λ erfc

(
− x√

2σ
+

σ

λ

)]
,

(7.23)

refer to Appendix B.1 for derivation (note that this expression is given in [139]).

To the best of our knowledge, there are no simple expressions for other values of ν. One

solution proposed by [138] is to express this in terms of the bi-variate Fox-H function [145].

This, rather cumbersome expression, is computationally demanding. In practice, this special

function requires numerical integration techniques over complex lines [146], and is thus difficult

to numerically evaluate it efficiently. Since, in our application, we need to evaluate this function a

large number of times, we cannot utilize this solution.

In [138], the authors have also proposed to approximate this non-trivial distribution by

another GGD. For fixed values of σ, λ and ν, they proposed three different numerical techniques

to estimate its parameters λ′ and ν′ that best approximate either the kurtosis, the tail or the

cumulative distribution function. Based on their approach, the discrepancy function f ν

σ,λ(x) would

thus be a power function of the form |x|ν′ .

In this paper, we show that f ν

σ,λ does, indeed, asymptotically behave as a power function

for small and large values of x, but the exponent can be quite different for these two asymptotics.

We believe that these different behaviors are important to be preserved in our application context.

For this reason, f ν

σ,λ cannot be modeled as a power function through a GGD distribution. Instead,

we provide an alternative solution that is able to capture the correct behavior for both of these

asymptotics, and that also permits fast computation.
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7.4.1 Theoretical analysis

In this section, we perform a thorough theoretical analysis of the discrepancy function,

in order to approximate it accurately. Let us first introduce some basic properties regarding the

discrepancy function.

Proposition 7.4.2. Let ν > 0, σ > 0, λ > 0 and f ν

σ,λ as defined in eq. (7.19). The following

relations hold true

f ν

σ,λ(x) = logσ+ f ν

1,λ/σ
(x/σ) , (reduction)

f ν

σ,λ(x) = f ν

σ,λ(−x) , (even)

|x|> |y| ⇔ f ν

σ,λ(|x|)> f ν

σ,λ(|y|) , (unimodality)

min
x∈R

f ν

σ,λ(x) = f ν

σ,λ(0)>−∞ . (lower bound at 0)

The proofs can be found in Appendix B.2. Based on Proposition 7.4.2, we can now express the

discrepancy function f ν

σ,λ(x) : R→R in terms of a constant γν

λ
and another function ϕν

λ
: R∗+→R,

both of which can be parameterized by only two parameters λ > 0 and ν > 0, as

f ν

σ,λ(x) = logσ+ γ
ν

λ/σ
+

 eϕν

λ/σ
(|x/σ|) if x 6= 0 ,

0 otherwise ,
(7.24)

where ϕ
ν

λ
(x) = log

[
f ν

1,λ(x)− γ
ν

λ

]
and γ

ν

λ
= f ν

1,λ(0) . (7.25)

We call ϕν

λ
the log-discrepancy function.

At this point, let us consider an instructive toy example for the case when ν = 2. In this

case, from eq. (7.21), we can deduce that the log-discrepancy function is a log-linear function
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Figure 7.4: Convolution of two Gaussian distributions. From left to right: the convolution of a
Gaussian distribution with standard deviation λ = 2 with a Gaussian distribution with standard
deviation σ = 1, the corresponding discrepancy function and log-discrepancy function.

(i.e., a linear function of logx)

ϕ
2
λ
(x) = α logx+β , (7.26)

and γ
2
λ
= 1

2

[
log2π+ log(1+λ

2)
]
, (7.27)

where α = 2 and β =− log2− log(1+λ
2) . (7.28)

Here, the slope α = 2 reveals the quadratic behavior of the discrepancy function. Figure 7.4 gives

an illustration of the resulting convolution (a Gaussian distribution), the discrepancy function (a

quadratic function) and the log-discrepancy (a linear function with slope 2). Note that quadratic

metrics are well-known to be non-robust to outliers, which is in complete agreement with the fact

that Gaussian priors have thin tails.

Another example is the case of ν = 1. From eq. (7.23), the log-discrepancy is given by

ϕ
1
λ
(x) = log

[
log
[
2erfc

( 1
λ

)]
− log

[
e
√

2x
λ erfc

(
x√
2
+ 1

λ

)
+ e−

√
2x
λ erfc

(
− x√

2
+ 1

λ

)]]
, (7.29)

and γ
1
λ
=

1
2

log2+ logλ− 1
λ2 − log

[
erfc

( 1
λ

)]
. (7.30)
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Figure 7.5: Convolution of Laplacian with Gaussian. From left to right: the convolution of a
Laplacian distribution with standard deviation λ = 2 with a Gaussian distribution with standard
deviation σ = 1, the corresponding discrepancy function and log-discrepancy function.

Unlike for ν = 2, this function is not log-linear and thus f 1
σ,λ is not a power function. Nevertheless,

as shown by the next two theorems, it is also asymptotically log-linear for small and large values

of x.

Theorem 7.4.3 The function ϕ1
λ

is asymptotically log-linear in the vicinity of 0

ϕ
1
λ
(x)∼

0
α1 logx+β1 , (7.31)

where α1 = 2 and β1 =− logλ+ log

 1√
π

exp
(
− 1

λ2

)
erfc

( 1
λ

) − 1
λ

 . (7.32)

The proof can be found in Appendix B.3.

Theorem 7.4.4 The function ϕ1
λ

is asymptotically log-linear in the vicinity of +∞

ϕ
1
λ
(x)∼

∞
α2 logx+β2 , (7.33)

where α2 = 1 and β2 =
1
2

log2− logλ . (7.34)

The proof can be found in Appendix B.4.
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Theorem 7.4.3 and Theorem 7.4.4 show that ϕ1
λ

has two different asymptotics that can

be approximated by a log-linear function. Interestingly, the exponent α1 = 2 in the vicinity of

0 shows that the Gaussian distribution involved in the convolution prevails over the Laplacian

distribution and thus, the behavior of f 1
σ,λ is quadratic. Similarly, the exponent α2 = 1 in the

vicinity of +∞ shows that the Laplacian distribution involved in the convolution prevails over

the Gaussian distribution and the behavior of f 1
σ,λ is then linear. These results are supported by

Figure 7.5 which illustrates the resulting convolution, the discrepancy function (eq. (7.23)) and

the log-discrepancy function (eq. (7.29)). Furthermore, the discrepancy function f 1
σ,λ shares a

similar behavior with the well-known Huber loss function [147] (also called smoothed `1), known

to be more robust to outliers. This is again in complete agreement with the fact that Laplacian

priors have heavier tails.

In the case 2
3 < ν < 2, even though ϕν

λ
has no simple closed form expression, the similar

conclusions can be made as a result of the next two theorems.

Theorem 7.4.5 Let ν > 0. The function ϕν

λ
is asymptotically log-linear in the vicinity of 0

ϕ
ν

λ
(x)∼

0
α1 logx+β1 ,

where α1 = 2 and β1 =− log2+ log

1−

∫
∞

−∞

t2e−
t2
2 exp

[
−
(
|t|
λν

)ν]
dt∫

∞

−∞

e−
t2
2 exp

[
−
(
|t|
λν

)ν]
dt

 .

The proof can be found in Appendix B.5.

Theorem 7.4.6 Let 2
3 < ν < 2, then ϕν

λ
is asymptotically log-linear in the vicinity of +∞

ϕ
ν

λ
(x)∼

∞
α2 logx+β2 ,

where α2 = ν and β2 =−ν logλ− ν

2
log

Γ(1/ν)

Γ(3/ν)
.

The proof relies on a result of Berman (1992) [148] and is detailed in Appendix B.6.
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Figure 7.6: Convolution of generalized Gaussian with Gaussian. From left to right: the
convolution of a generalized Gaussian distribution with standard deviation λ = 2 with a Gaussian
distribution with standard deviation σ = 1, the corresponding discrepancy function and log-
discrepancy function. From top to bottom: the GGD has a shape parameter ν = 1.5 and .3,
respectively.
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Remark 7.4.7. For ν > 2, an asymptotic log-linear behavior with α2 = 2 and β2 =− log2 can

be obtained using exactly the same sketch of proof as the one of Theorem 7.4.6.

Remark 7.4.8. For ν = 2, we have ϕ2
λ

is linear, β1 =− log2− log
(
1+λ2) and β2 =− log2−

logλ2, which shows that Theorem 7.4.6 cannot hold true for ν = 2.

Remark 7.4.9. For ν = 1, Theorem 7.4.3 and Theorem 7.4.4 coincide with Theorem 7.4.5 and

Theorem 7.4.6.

Remark 7.4.10. For 0< ν6 2
3 , though we did not succeed in proving it, our numerical simulations

also revealed a log-linear asymptotic behavior for x→∞ in perfect agreement with the expression

of α2 and β2 given in Theorem 7.4.6.

Again, the exponent α1 = 2 in the vicinity of 0 shows that the Gaussian distribution

involved in the convolution prevails over the generalized Gaussian distribution and the behavior

of f ν

σ,λ is then quadratic. Similarly, the exponent α2 = ν in the vicinity of +∞ shows that

the generalized Gaussian distribution involved in the convolution prevails over the Gaussian

distribution and the behavior of f ν

σ,λ is then a power function of the form xν. These results are

supported by Figure 7.6 that illustrates the resulting convolution, the discrepancy function and

the log-discrepancy function for ν = 1.5 and ν = .3. Moreover, the discrepancy function f ν

σ,λ

with ν6 1 shares a similar behavior with well-known robust M-estimator loss functions [149].

In particular, the asymptotic case for ν→ 0 resembles the Tukey’s bisquare loss, known to be

insensitive to outliers. This is again in complete agreement with GGD priors having larger tails as

ν goes to 0.

Figure 7.7 shows the evolution of the log-discrepancy function for various values of ν in

the context of three different signal-to-noise ratios λ/σ (SNR). One can observe that as the SNR

decreases (resp., increases), the left (resp., right) asymptotic behavior starts dominating over the

right (resp., left) asymptotes. In other words, for ν < 2, the intersection of the two asymptotes
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Figure 7.7: Illustrations of the log-discrepancy function for various 0.36 ν6 2 and SNR λ/σ.

goes to +∞ (resp., −∞). Last but not least, for 0 < ν 6 2, the log-discrepancy function ϕν

λ
is

always concave and since α2 6 α1 it is thus upper-bounded by its left and right asymptotes.

From Theorem 7.4.5, Theorem 7.4.6 and Remark 7.4.10, we can now build two asymp-

totic log-linear approximations for ϕν

λ
, with 0 < ν6 2, and subsequently an asymptotic power

approximation for f ν

σ,λ by using the relation (7.24). Next, we explain the approximation process

of the in-between behavior, as well as its efficient evaluation.

7.4.2 Numerical approximation

We now describe the proposed approximation of the discrepancy function f ν

1,λ through an

approximation ϕ̂ν

λ
of the log-discrepancy function as

f̂ ν

1,λ(x) = γ
ν

λ
+ exp ϕ̂

ν

λ
(x) where γ

ν

λ
= f ν

1,λ(0) . (7.35)
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Based on our previous theoretical analysis, a solution preserving the asymptotic, increasing and

concave behaviors of ϕν

1,λ can be defined by making use of the following approximations

ϕ̂
ν

λ
(x) = α1 log |x|+β1−rec(α1 log |x|+β1−α2 log |x|−β2) , (7.36)

where rec is a so-called rectifier function that is positive, increasing, convex and satisfies

lim
x→−∞

rec(x) = 0 and rec(x) ∼
x→∞

x . (7.37)

In this paper, we consider the two following rectifying functions

relu(x) = max(0,x) and softplus(x) = h log
[
1+ exp

(x
h

)]
, h > 0 , (7.38)

as coined respectively in [150] and [151]. Using the function relu (Rectified linear unit) leads

to an approximation ϕ̂ν

λ
that is exactly equal to the asymptotes of ϕν

λ
with a singularity at

their crossing point. In this paper, we will instead use the function softplus as it allows the

approximation of ϕν

λ
to converge smoothly to the asymptotes without singularity. Its behavior is

controlled by the parameter h > 0. The smaller the value of h is, the faster the convergence speed

to the asymptotes.

The parameter h should be chosen such that the approximation error between ϕ̂ν

λ
(x)

and ϕν

λ
(x) is as small as possible. This can be done numerically by first evaluating ϕν

λ
(x) with

integration techniques for a large range of values x, and then selecting the parameter h by least

square. Of course, the optimal value for h depends on the parameter λ and ν.

Figure 7.8 gives an illustration of our approximations of the log-discrepancy and the

corresponding distribution obtained with relu and softplus. On this figure the underlying

functions have been obtained by numerical integration for a large range of value of x. One can

observe that using softplus provides a better approximation than relu.
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Figure 7.8: Illustrations of our approximations of ϕν

λ
and the corresponding underlying posterior

distribution N (0,ν,λ)∗G(0,1) (where ν = .8 and λ = 4). The blue curves have been obtained
by evaluating the convolution using numerical integration techniques for all x. The dashed
curves are obtained using the proposed relu- and softplus-based approximations that have
closed-form expressions.
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Figure 7.9: Lookup tables used to store the values of the parameters γν

λ
, β1, β2 and h for

various .36 ν6 2 and 10−3 6 λ6 103. A regular grid of 100 values has been used for ν and a
logarithmic grid of 100 values has been used for λ. This leads to a total of 10,000 combinations
for each of the four lookup tables.
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Figure 7.10: Illustrations of the shrinkage function for various 0.3 < ν6 2 and SNR λ/σ.

Our approximation for f̂ ν

1,λ(x) is parameterized by six scalar values: γλ
ν, α1, β1, α2, β2

and h that depend only on the original parameters λ and ν. From our previous analysis, we have

that α1 = 2 and α2 = ν. The other parameters are non-linear functions of λ and ν. The parameters

γλ
ν, β1 and β2 require either performing numerical integration or evaluating the special function Γ.

As discussed, the parameter h requires numerical integration for various x and then optimization.

For these reasons, these values cannot be computed during runtime. Instead, we pre-compute

these four parameters offline for 10,000 different combinations of λ and ν values in the intervals

[10−3,103] and [0.3,2], respectively (the choice for this range was motivated in Section 7.3.1).

The resulting values are then stored in four corresponding lookup tables. During runtime, these

parameters are retrieved online by bi-linear extrapolation and interpolation. The four lookup

tables are given in Figure 7.9. We will see in Section 7.6 that using the approximation f̂ ν

1,λ results

in substantial acceleration without significant loss of performance as compared to computing f ν

1,λ

directly by numerical integration during runtime.
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7.5 Shrinkage functions: analysis and approximations

Recall that from its definition given in eq. (7.15), the shrinkage function is defined for

ν > 0, σ > 0 and λ > 0, as

sν

σ,λ(x) ∈ argmin
t∈R

(x− t)2

2σ2 +λ
−ν
ν |t|ν . (7.39)

7.5.1 Theoretical analysis

Except for some particular values of ν (see, Section 7.5.2), Problem (7.39) does not have

explicit solutions. Nevertheless, as shown in [39], Problem (7.39) admits two (not necessarily

distinct) solutions. One of them is implicitly characterized as

sν

σ,λ(x) =

 0 if 0 < ν6 1 and |x|6 τν

λ
,

t? otherwise ,
(7.40)

where t? = x− sign(t?)νσ
2
λ
−ν
ν |t?|ν−1 ,

and τ
ν

λ
=

 (2−ν)(2−2ν)−
1−ν

2−ν (σ2λ−ν
ν )

1
2−ν if ν < 1 ,

σ2λ−1 otherwise (ν = 1) .

The other one is obtained by changing |x| 6 τν

λ
to |x| < τν

λ
in (7.40), and so they coincide for

almost every (x,λ,σ,ν). As discussed in [39], for ν > 1, sν

σ,λ(x) is differentiable, and for ν6 1,

the shrinkage exhibits a threshold τν

λ
that produces sparse solutions. Proposition 7.5.1 summarizes

a few important properties.

Proposition 7.5.1. Let ν > 0, σ > 0, λ > 0 and sν

σ,λ as defined in eq. (7.15). The following
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relations hold true

sν

σ,λ(x) = σsν

1, λ

σ

( x
σ

)
, (reduction)

sν

σ,λ(x) =−sν

σ,λ(−x) , (odd)

sν

σ,λ(x) ∈

 [0,x] if x> 0

[x,0] otherwise
, (shrinkage)

x1 > x2⇔ sν

σ,λ(x1)> sν

σ,λ(x2) , (increasing with x)

λ1 > λ2⇔ sν

σ,λ1
(x)> sν

σ,λ2
(x) , (increasing with λ)

lim
λ

σ
→0

sν

σ,λ(x) = 0 , (kill low SNR)

lim
λ

σ
→+∞

sν

σ,λ(x) = x . (keep high SNR)

The proofs can be found in Appendix B.7. These properties show that sν

σ,λ is indeed a shrinkage

function (non-expansive). It shrinks the input coefficient x according to the model ν and the

modeled signal to noise ratio λ

σ
(SNR). When x is small in comparison to the SNR, it is likely

that its noise component dominates the underlying signal, and is, therefore, shrunk towards 0.

Similarly, when x is large, it will likely be preserved. This is even more likely when ν is small,

since in this case large coefficients are favored by the prior. Illustrations of shrinkage functions

for various SNR and ν are given in Figure 7.10.

7.5.2 Numerical approximations

The shrinkage function sν

σ,λ, implicitly defined in (7.40) does not have a closed form

expression in general. Nevertheless, for fixed values of x, σ, λ, ν, sν

σ,λ(x) can be estimated using

iterative solvers such as Newton descent or Halley’s root-finding method. These approaches
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Table 7.1: Shrinkage function under generalized Gaussian priors

ν Shrinkage sν

σ,λ(x) Remark

< 1
{

x− γxν−1 +O(x2(ν−1)) if |x|> τ
ν

λ

0 otherwise
≈ Hard-thresholding

[39]

1 sign(x)max

(
|x|−

√
2σ2

λ
,0

)
Soft-thresholding

[152]

4/3 x+ γ

(
3

√
ζ− x

2
− 3

√
ζ+ x

2

)
[137]

3/2 sign(x)

(√
γ2 +4|x|− γ

)2

4
[137]

2
λ2

λ2 +σ2 · x Wiener (LMMSE)

with γ = νσ
2
λ
−ν
ν and ζ =

√
x2 +4

(
γ

3

)3
.

converge quite fast and, in practice, reach a satisfying solution within ten iterations. However,

since in our application of interest we need to evaluate this function a large number times, we will

follow a different path in order to reduce computation time (even though we have implemented

this strategy).

As discussed earlier, sν

σ,λ is known in closed form for some values of ν, more precisely:

ν = {1,4/3,3/2,2} (as well as ν = 3 but this is out of the scope of this study), see for instance

[137]. When ν = 2, we retrieve the linear minimum mean square estimator (known in signal

processing as Wiener filtering) and related to Tikhonov regularization and ridge regression. This

shrinkage is linear and the slope of the shrinkage goes from 0 to 1 as the SNR increases (see

Figure 7.10). When ν= 1, the shrinkage is the well-known soft-thresholding [152], corresponding

to the maximum a posteriori estimator under a Laplacian prior. When ν < 1, the authors of [39]
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have shown that (i) the shrinkage admits a threshold with a closed-form expression (given in

eq. (7.40)), and (ii) the shrinkage is approximately equal to hard-thresholding with an error term

that vanishes when |x| → ∞. All these expressions are summarized in Table 7.1.

In order to keep our algorithm as fast as possible, we propose to use the approximation of

the shrinkage given for ν < 1 in [39]. Otherwise, we pick one of the four shrinkage functions

corresponding to ν= {1,4/3,3/2,2} by nearest neighbor on the actual value of ν∈ [1,2]. Though

this approximation may seem coarse compared to the one based on iterative solvers, we did not

observe any significant loss of quality in our numerical experiments (see Section 7.6). Nonetheless,

this alternative leads to 6 times speed-up while evaluating shrinkage.

7.6 Experimental evaluation

In this section we explain the methodology used to evaluate the GGMM model, and

present numerical experiments to compare the performance of the proposed GGMM model over

existing GMM-based image denoising algorithms. To demonstrate the advantage of allowing

for a flexible GGMM model, we also present results using GGMM models with fixed shape

parameters, ν = 1 (Laplacian mixture model) and ν = 0.5 (Hyper-Laplacian mixture model). For

learning Laplacian mixture model (LMM) and hyper-Laplacian mixture model (HLMM), we use

the same procedure as described in Section 7.3.1 but force all shape parameters to be equal to 1

or 0.5, respectively.

Model validation

As discussed in Section 7.3, Figure 7.1 illustrates the validity of our model choices with

histograms of different dimensions of a single patch cluster. It clearly shows the importance of

allowing the shape and scale parameter to vary across dimensions for capturing underlying patch

distributions. Since GGMM (and obviously, GMM) falls into the class of generative models,
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(a) GMM (ν = 2) (b) GGMM (.36 ν6 2) (c) LMM (ν = 1) (d) HLMM (ν = .5)

Figure 7.11: Set of 100 patches, sorted by the norm of their gradient, and generated to be
independently distributed according to (from left to right) a GMM, GGMM, LMM and HLMM.
For ease of visualization, only the top eigendirections corresponding to 80% of the variance
have been chosen. Near-constant patches with variance smaller than 2

P ||Σk||2F have also been
discarded.

one can also assess the expressivity of a model by analyzing the variability of generated patches

and its ability to generate relevant image features (edges, texture elements etc.). This can be

tested by selecting a component k of the GGMM (or GMM) with probability wk and sampling

patches from the GGD (or GD) as described in [153]. Figure 7.11 presents a collage of 100

patches independently generated by this procedure using GMM, GGMM, LMM and HLMM.

As observed, patches generated from GGMM show greater balance between strong/faint edges,

constant patches and subtle textures than the models that use constant shape parameters such as

GGM, LMM and HLMM.

The superiority of our GGMM model over GMM, LMM or HLMM models can also be

illustrated by comparing the log-likelihood (LL) achieved by these models over a set of clean

patches from natural images. Note that, to maintain objectivity, the models have to be tested on

data that is different than the dataset used during training. To this end, we compute the LL of the

four above-mentioned models on all non-overlapping patches of 40 randomly selected images

extracted from BSDS testing set [109], which is a different set than the training images used in

the EM algorithm (parameter estimation/model learning). One can observe that not only GGMM

is a better fit than GMM, LMM and HLMM on average for the 40 images, but it is also a better fit
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Figure 7.12: Average log-likelihood of all non-overlapping patches (with subtracted mean)
of each of the 40 images of our validation subset of the testing BSDS dataset for the GMM,
GGMM, LMM and HLMM. The total average over the 40 images is shown in the last column.

on each single image. Given that GGMM have a larger degree of freedom than GMM, this study

proves that our learning procedure did not fall prey to over-fitting, and that the extra flexibility

provided by GGMM was used to capture relevant and accurate image patterns.

Denoising evaluation

Following the verification of the model, we provide a thorough evaluation of our GGMM

prior in denoising task by comparing its performance against EPLL that uses a GMM prior [15]

and with our LMM and HLMM models explained above. For the ease of comparison, we utilize

the pipeline and settings that was prescribed for the original EPLL [15] algorithm (see Section

7.2.1). To reduce the computation time of all EPLL-based algorithms, we utilize the random

patch overlap procedure introduced by [5]. That is, instead of extracting all patches at each

iteration, a randomly selected but different subset of overlapping patches consisting of only 3%

of all possible patches is processed in each iteration. For the sake of reproducibility of our results,

we have made our MATLAB/MEX-C implementation available online at \ourcodeurl.

The evaluation is carried out on classical images such as Barbara, Cameraman, Hill,

House, Lena and Mandrill, and on 60 images taken from BSDS testing set [109] (the original
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Table 7.2: Image denoising performance comparison of EPLL algorithm with GMM and
GGMM priors. PSNR and SSIM values are obtained on the BSDS test set (average over 60
images), on six standard images corrupted with 5 different levels of noise (average over 10 noise
realizations), and finally an average over these 66 images. BM3D algorithm results are also
included for reference purposes.

σ Algo. BSDS barbara
camera

man hill house lena mandrill Avg.

PSNR

5
BM3D 37.33 38.30 38.28 36.04 39.82 38.70 35.26 37.36
GMM 37.25 37.60 38.07 35.93 38.81 38.49 35.22 37.26
GGMM 37.33 37.73 38.12 35.95 38.94 38.52 35.23 37.33

10
BM3D 33.06 34.95 34.10 31.88 36.69 35.90 30.58 33.15
GMM 33.02 33.65 33.91 31.79 35.56 35.46 30.55 33.06
GGMM 33.10 33.87 34.01 31.81 35.72 35.59 30.58 33.15

20
BM3D 29.38 31.73 30.42 28.56 33.81 33.02 26.60 29.50
GMM 29.36 29.76 30.16 28.46 32.77 32.40 26.60 29.42
GGMM 29.43 30.02 30.24 28.48 33.03 32.59 26.64 29.50

40
BM3D 26.28 27.97 27.16 25.89 30.69 29.81 23.07 26.38
GMM 26.21 26.02 26.93 25.68 29.60 29.18 23.25 26.26
GGMM 26.26 26.17 27.03 25.70 29.89 29.42 23.21 26.32

60
BM3D 24.81 26.31 25.24 24.52 28.74 28.19 21.71 24.90
GMM 24.57 23.95 25.10 24.21 27.53 27.28 21.57 24.61
GGMM 24.64 24.03 25.17 24.25 27.80 27.52 21.50 24.67

SSIM

5
BM3D .9619 .9643 .9613 .9508 .9571 .9436 .9588 .9614
GMM .9626 .9616 .9604 .9511 .9475 .9434 .9597 .9618
GGMM .9628 .9617 .9602 .9507 .9469 .9425 .9593 .9620

10
BM3D .9115 .9410 .9286 .8821 .9215 .9155 .8983 .9117
GMM .9155 .9298 .9307 .8858 .8999 .9107 .9022 .9150
GGMM .9154 .9313 .9309 .8839 .8992 .9112 .9007 .9149

20
BM3D .8236 .9036 .8685 .7789 .8741 .8763 .7943 .8260
GMM .8315 .8687 .8704 .7812 .8596 .8639 .8030 .8324
GGMM .8297 .8715 .8699 .7766 .8629 .8669 .7991 .8308

40
BM3D .7074 .8196 .7954 .6599 .8276 .8143 .6184 .7118
GMM .7054 .7509 .7780 .6496 .8025 .7918 .6341 .7081
GGMM .7018 .7526 .7842 .6430 .8112 .7995 .6192 .7048

60
BM3D .6375 .7581 .7496 .5859 .7956 .7784 .4993 .6427
GMM .6212 .6534 .7174 .5661 .7507 .7350 .5001 .6241
GGMM .6174 .6544 .7266 .5592 .7622 .7438 .4782 .6207
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Table 7.3: Image denoising performance comparison of EPLL algorithm with different priors.
PSNR values are obtained on the BSDS test set (average over 60 images), on six standard images
corrupted with 3 different levels of noise (average over 10 noise realizations), and finally an
average over these 66 images.

σ Algo. BSDS barbara
camera

man hill house lena mandrill Avg.

PSNR

5

GMM 37.25 37.60 38.07 35.93 38.81 38.49 35.22 37.26
LMM 37.31 37.83 38.11 35.89 38.93 38.49 35.18 37.32
HLMM 36.85 37.42 37.66 35.39 38.37 38.08 34.77 36.86
GGMM 37.33 37.73 38.12 35.95 38.94 38.52 35.23 37.33

20

GMM 29.36 29.76 30.16 28.46 32.77 32.40 26.60 29.42
LMM 29.30 30.18 30.04 28.36 33.22 32.72 26.43 29.37
HLMM 28.48 29.28 29.04 27.72 32.50 32.10 25.44 28.56
GGMM 29.43 30.02 30.24 28.48 33.03 32.59 26.64 29.50

60

GMM 24.57 23.95 25.10 24.21 27.53 27.28 21.57 24.61
LMM 24.55 23.94 24.96 24.23 27.91 27.58 21.35 24.59
HLMM 23.95 23.16 23.72 23.84 27.10 26.94 20.67 23.97
GGMM 24.64 24.03 25.17 24.25 27.80 27.52 21.50 24.67

BSDS test data contains 100 images, the other 40 were used for model validation experiments).

All image have been corrupted independently by ten independent realizations of additive white

Gaussian noise with standard deviation σ = 5,10,20,40 and 60 (with pixel values between

[0,255]). The EPLL algorithm using mixture of Gaussian, generalized Gaussian priors are

indicated as GMM and GGMM in Table 7.2. Results obtained with BM3D algorithm [28] are also

included for reference purposes. To stay with the focus of this paper, i.e., on the effect of image

priors on EPLL-based algorithms, BM3D will be excluded from our performance comparison

discussions. The denoising performance of the algorithms are measured in terms of Peak Signal

to Noise Ratio (PSNR) and Structural SIMilarity (SSIM) [154]. As can be observed in Table 7.2,

in general, GGMM prior provides better PSNR performance than the GMM prior. In terms of

SSIM values (shown in the bottom part of Table 7.2), GGMM prior is comparable to GMM. In

order to demonstrate the effect of fixed ν values compared to the more flexible GGMM prior, we

compare the results of GGMM against GMM (ν = 2), Laplacian Mixture Model (GGMM with
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(a) Reference x

22.12 / 0.3679

(b) Noisy y

30.43 / 0.8678

30.43 / 0.8678

30.43 / 0.8678

30.43 / 0.8678

(c) GMM (ν = 2)

30.47 / 0.8686

30.47 / 0.8686

30.47 / 0.8686

30.47 / 0.8686

(d) GGMM (.36 ν6 2)

30.39 / 0.8666

30.39 / 0.8666

30.39 / 0.8666

30.39 / 0.8666

(e) LMM (ν = 1)

28.48 / 0.8522

28.48 / 0.8522

28.48 / 0.8522

28.48 / 0.8522

(f) HLMM (ν = 0.5)

Figure 7.13: Qualitative comparison on Castle: (a) Close in on the image Castle from the BSDS
testing dataset, (b) a noisy version degraded by additive white Gaussian noise with standard
deviation σ = 20 and (c)-(f) results of EPLL under four patch priors: GMM, GGMM, LMM
and HLMM, respectively. PSNR and SSIM are given in the bottom-left corner.
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(a) Reference x

22.14 / 0.3972

(b) Noisy y

30.17 / 0.8690

30.17 / 0.8690

30.17 / 0.8690

30.17 / 0.8690

(c) GMM (ν = 2)

30.28 / 0.8681

30.28 / 0.8681

30.28 / 0.8681

30.28 / 0.8681

(d) GGMM (.36 ν6 2)

30.04 / 0.8578

30.04 / 0.8578

30.04 / 0.8578

30.04 / 0.8578

(e) LMM (ν = 1)

29.05 / 0.8421

29.05 / 0.8421

29.05 / 0.8421

29.05 / 0.8421

(f) HLMM (ν = 0.5)

Figure 7.14: Qualitative comparison on Cameraman: (a) Close in on the standard image
Cameraman. (b) a noisy version degraded by additive white Gaussian noise with standard
deviation σ = 20 and (c)-(f) results of EPLL under four patch priors: GMM, GGMM, LMM
and HLMM, respectively. PSNR and SSIM are given in the bottom-left corner.
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(a) Reference x

22.11 / 0.4764

(b) Noisy y

29.75 / 0.8694

29.75 / 0.8694

29.75 / 0.8694
29.75 / 0.8694

(c) GMM (ν = 2)

30.03 / 0.8729

30.03 / 0.8729

30.03 / 0.8729
30.03 / 0.8729

(d) GGMM (.36 ν6 2)

30.21 / 0.8737

30.21 / 0.8737

30.21 / 0.8737
30.21 / 0.8737

(e) LMM (ν = 1)

29.27 / 0.8495

29.27 / 0.8495

29.27 / 0.8495
29.27 / 0.8495

(f) HLMM (ν = 0.5)

Figure 7.15: Qualitative comparison on Barbara: (a) Close in on the standard image Barbara.
(b) a noisy version degraded by additive white Gaussian noise with standard deviation σ= 20 and
(c)-(f) results of EPLL under four patch priors: GMM, GGMM, LMM and HLMM, respectively.
PSNR and SSIM are given in the bottom-left corner.
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Figure 7.16: Evolution of performance of EPLL with a GGMM, LMM (ν = 1) and a GMM
(ν = 2) under misspecification of the noise standard deviation σ. Performances are measured
in terms of PSNR on the BSDS dataset corrupted by a Gaussian noise with standard deviation
σ = 20. For each of the three priors, EPLL has been run assuming σ was ranging from 15 to 30.

ν = 1) and hyper-Laplacian mixture model (GGMM with ν = 0.5) priors in the same scenarios

for σ = 5,20 and 60. These results are shown in Table 7.3. GGMM prior provides better PSNR

performance on average than the fixed-shape priors. The differences in denoising performance

can also be verified visually in Figure 7.13, Figure 7.14 and Figure 7.15. The denoised images

obtained using GGMM prior show much fewer artifacts as compared to GMM-EPLL results,

in particular in homogeneous regions. On the other hand, GGMM prior is also able to better

preserve textures than LMM and HLMM.

Prior fitness for image denoising

In this work, we have considered non-blind image denoising. That is, the noise standard

deviation is assumed to be known. In this setting, if the restoration model is accurate, one should

ideally achieve optimal restoration performance when using the true degradation. To verify this,

we conducted a denoising task with image corrupted with noise with standard deviation σ = 20.

We used GMM, LMM and GGMM priors in the restoration framework with assumed σ values

ranging from 15 to 30. Figure 7.16 shows the evolution of average restoration performance over
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40 images from BSDS testing set (kept aside for validation, as mentioned above) with varying

noise variances. GGMM prior attains its best performance when the noise variance used in the

restoration model matches with the ground truth σ = 20. In contrast to GGMM, GMM (resp.,

LMM) reaches its best performance at a larger (resp., lower) value of σ than the correct noise

used during degradation. This is because GMM tends to under-smooth clean patches (resp.,

over-smooth) so that a larger (resp., lower) value of σ is required to compensate the mismatch

between the assumed prior and the actual distribution in the restoration model. This indicates that

GGMM is a better option to model distribution of image patches than GMM or LMM.

Influence of our approximations

All previous experiments using GGMM patch priors were conducted based on the two

proposed approximations introduced in Section 7.4 and Section 7.5. In Figure 7.17 and Table 7.4,

we provide a quantitative illustration of the speed-ups provided by these approximations and their

effect on denoising performance. Timings were carried out with Matlab 2018a on an Intel(R)

Core(TM) i7-7600U CPU @ 2.80GHz (neither multi-core paralellization nor GPUs acceleration

were used). Figure 7.17a shows the result obtained by calculating original discrepancy function

via numerical integration and the shrinkage function via Halley’s root-finding method. This

makes the denoising process extremely slow and takes 10 hours and 29 minutes for denoising

an image of size 128×128 pixels. The approximated discrepancy function provides 4 orders

of magnitude speed-up with no perceivable drop in performance (Figure 7.17b). In addition,

incorporating the shrinkage approximation provides further acceleration that allows the denoising

to complete in less than 2 seconds with a very minor drop in PSNR/SSIM. As indicated in the

detailed profiles on Table 7.4, the shrinkage approximation provides an acceleration of six-fold

to the shrinkage calculation step itself and leads to an overall speed-up of 1.5 due to the larger

bottleneck caused by discrepancy function calculation. The approximately 23,000× speed-up

realized without any perceivable drop in denoising performance underscores the efficacy of our
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29.49 / 0.877

(a) No approx. (10h 29m)
29.47 / 0.875

(b) Approx. discrepancy (2s54)
29.48 / 0.875

(c) Approx. disc. & shrink. (1s63)

Figure 7.17: Influence of our approximations on denoising performance. Results obtained
by GGMM-EPLL on a 128× 128 cropped image of the BSDS testing dataset damaged by
additive white Gaussian noise with σ = 20. These are obtained respectively by (a) evaluating the
classification and shrinkage problem with numerical solvers (numerical integration and Halley’s
root-finding method), (b) approximating the classification problem only, and (c) approximating
both problems. PSNR and SSIM are given in the bottom-left corner. Running time (averaged on
ten runs) of the overall GGMM-EPLL are indicated on the captions: our accelerations lead to a
speed-up of ×15,000 and ×1.5 respectively.

proposed approximations.

7.7 Conclusions and Discussion

In this work, we suggest using a mixture of generalized Gaussians for modeling the

patch distribution of clean images. We provide a detailed study of the challenges that one

encounters when using a highly flexible GGMM prior for image restoration in place of a more

common GMM prior. We identify the two main bottlenecks in the restoration procedure when

using EPLL and GGMM – namely, the patch classification step and the shrinkage step. One

of the main contributions of this paper, is the thorough theoretical analysis of the classification

problem allowing us to introduce an asymptotically accurate approximation that is computationally

efficient. In order to tackle the shrinkage step, we collate and extend the existing solutions under

GGMM prior.
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Table 7.4: Runtime profiles (averaged over ten runs) of GGMM-EPLL corresponding to the
denoising experiment shown in Figure 7.17. These profiles are obtained respectively by evaluat-
ing the classification and shrinkage problem with numerical solvers (numerical integration and
Halley’s root-finding method), approximating the classification problem only, and approximating
both problems. Profiles are split into discrepancy, shrinkage and patch extration/reprojection.
Speed-up with respect to the no-approximation (first column) are indicated in parenthesis and
major accelerations in green. Percentage of time taken for each step with respect to the overall
execution time (first row), are indicated below each time reading and bottlenecks are indicated
in red.

No approximations Approx. discrepancy Approx. disc. & shrink.

Total 10h 29m 15s 2.54s (×15,000) 1.63s (×23,000)
100% 100% ×1.5−−−→ 100%

Discrepancy 10h 29m 14s 1.44s (×26,000) 1.44s (×26,000)
>99.99% 56.69% 88.34%

Shrinkage 1.08s 1.08s (×1) 0.17s (×6.3)
<0.001% 42.52% 10.43%

Patch extraction
and reprojection

0.02s 0.02s (×1) 0.02s (×1)

<0.001% 0.79% 1.23%

Our numerical experiments indicate that our flexible GGMM patch prior is a better fit

for modeling natural images than GMM and other mixture distributions with constant shape

parameters such as LMM or HLMM. In image denoising tasks, we have shown that using GGMM

priors, often, outperforms GMM when used in the EPLL framework.
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Chapter 8

Conclusion

8.1 Summary of contributions

Due to ubiquitousness cameras and imagery data, there is a constant demand for efficient

restoration algorithms that can post-process and correct for degradations in images and videos

captured in unideal environmental conditions and/or by unideal sensors. Although there are many

solutions proposed for image restoration, the lack of care taken to ensure algorithm scalability

have led to a deluge of powerful algorithms that are computationally non-viable options that will

take tens-hundreds of minutes on standard size images.

In this dissertation, we proposed algorithms that provide competent performance while

being practically feasible for large scale applications. First, we demonstrated that, if runtime

constraints are ignored, state-of-the-art patch-wise denoising filter design strategies can be

improved by incorporating a robust patch matching metric using recommender system principles

and, in case of videos, using temporal correspondences among patches. Following this, for the

sake of algorithm scalability and flexibility, we replace patch-wise formulation with whole image

denoising frameworks and investigate the usage of learned patch priors with progressively better

expressivity and genericity.
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We introduced the FED algorithm which can be thought of as using multiple independent

isotropic Gaussian distributions to represent the patch prior distribution. Due to its simplicity

it has limited expressivity and therefore, the prior has to be learned using a category-specific

(targeted) database. To relax the category specific constraint, next we used the well-known GMM

prior to capture the rich variations that one encounters in a generic patch database. The FEPLL

algorithm utilizes the GMM prior along with novel approximations achieving more than two

orders of magnitude runtime gains compared to the state-of-the-art GMM-based EPLL framework

[15]. We continued this work by using a fully flexible GGMM to model natural image patch

prior with a separate shape and scale parameter for each dimension. We analyzed the challenges

presented by a non-Gaussian prior, and proposed approximate solutions that are asymptotically

accurate and computationally efficient. The successful application of GGMM prior in image

restoration has shed light into many future directions that my dissertation research can be extended

which are briefly discussed below.

8.2 Future work

Given that GGMM is persistently a better prior than GMM (in terms of log-likelihood),

one would expect the GGMM-EPLL to outperform GMM-EPLL consistently, but it falls short of

its expected potential. We postulate that this under-performance is caused by the EPLL strategy

that we use for optimization. That is, even though the GGMM prior may be improving the quality

of the global solution, the half quadratic splitting strategy used in EPLL is not guaranteed to return

a better solution due to the non-convexity of the underlying problem. For this reason, further

research is needed in designing specific optimization strategies for GGMM-EPLL leveraging

the better expressivity of the proposed prior model for denoising and other general restoration

applications.

Another direction of future research can focus on extending this work to employ GGMMs
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or GGDs in other model-based signal processing tasks. Of these tasks, estimating the parameters

of GGMM directly on noisy observations is a problem of particular interest, that could benefit

from our approximations. Learning GMM priors on noisy patches has been shown to be useful in

patch-based image restoration when clean patches are not available a priori, or to further adapt

the model to the specificities of a given noisy image [17, 32, 33]. Another open problem is to

analyze the asymptotic behavior of the minimum mean square estimator (MMSE) shrinkage

with GGD prior, as an alternative to MAP shrinkage. This could be useful to design accurate

approximations for other general inference frameworks. Last but not least, characterizing the

exact asymptotic behaviors of the convolution of two arbitrary GGDs, as investigated in [138], is

still an open question. To the best of our knowledge, our study is the first attempt towards this

goal but in ours one of the GGD is always Gaussian (noise). Extending our study to the general

GGD case (or even specific cases such as Laplacian) is a challenging problem that is of major

interest in signal processing tasks where noise is not Gaussian but instead follows another GGD.
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Appendix A

Additional analysis and results of FEPLL

algorithm

A.1 Flat tail approximation based acceleration

First, we demonstrate the superiority of the proposed flat tail approximation over the

commonly used approach of ignoring the least significant eigendirections. In Supplemental

Figure A.1, we show that the naïve approach of zeroing out (or ignoring) coefficients of the least

significant eigendirections is inferior to the proposed approach of replacing these coefficients by

the mean. Our approach can provide reasonably good performance even for very low values of ρ.

For example, when ρ = 0.20 our approach leads to a PSNR of 27.5 compared to 25.1 obtained by

the zeroing out strategy.

In a second experiment, we analyze the influence of the parameter ρ ∈ (0,1] used in

the flat tail approximation. Supplemental Figure A.2 shows the curve of PSNR as a function

of speed-up for varying values of ρ. This experiment is repeated twice either with or without

enabling the other two accelerations. Visual results highlight that as ρ decreases to zero, residual

noise starts appearing around salient structures. From these experiments, the choice of ρ = 0.95
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Figure A.1: Naïve approach vs. the proposed flat-tail approximation: Comparison between
the naïve approach of zeroing out (ignoring) coefficients of the least significant eigendirections
versus the proposed flat-tail approximation approach of replacing the coefficients with mean.
Performance is compared in terms of PSNR obtained while denoising with different values of ρ

(percent energy captured) used for thresholding singular values.

leads to a good trade-off in terms of speed and visual quality for a drop of PSNR lower than

0.2dB.

A.2 Search tree acceleration

In the second supplementary experiment, we analyze the influence of the clustering

method used to successively collapse the GMM model at a given level into a smaller model

at a lower level. We compare the proposed approach based on Multiple Traveling Salesmen

Problem [112] (MTSP) using the symmetric KL divergence as a semi-metric to a hierarchical

GMM clustering algorithm similar to K-means based on KL divergence as proposed in [113]

and the standard hierarchical agglomerated clustering (HAC) using symmetric KL divergence.

Supplemental Figure A.3 shows that MTSP leads to a well-balanced tree, with a height of 7

(almost a binary tree except for the last level due to 200 mixture components). In comparison,

using [113]’s K-Means inspired algorithm provides a tree of height 7 but is not balanced and

HAC leads to a tree of height 59 with comb structured branches. Please note that a shorter tree is

preferred for a faster Gaussian selection step. The tree built using the proposed MTSP strategy

not only leads to better PSNR/SSIM, but also provides a more stable computation time for all
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(a)
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(c) Noisy (d) ρ = 0.5 (e) ρ = 0.8 (f) ρ = 0.95 (g) ρ = 1

Figure A.2: Influence of the parameter ρ on denoising performance. Top: PSNR as a function
of speed-up for varying values of the proportion ρ used in the flat tail approximation when (a)
no other accelerations are used and (b) the other two accelerations are also used. The parameter
offering the best speed-up for a drop of at most −0.2dB is indicated. Bottom: (c) a noisy image
with σ=20 and (d-g) FEPLL results obtained for increasing value of ρ (includes the other two
accelerations as well).

images of a fixed size (irrespective of content) due to its balanced structure. This is confirmed in

Supplemental Figure A.4 that displays box-plots obtained from computation time statistics based

on five independent runs of the algorithm on 40 different images of the BSDS dataset (all images

have the same size). In contrast to our MTSP based strategy, the trees built using [113]’s method

and HAC strategy lead to computation times that vary drastically depending on the image content.

A.3 Stochastic patch sub-sampling

The last analysis focuses on the influence of the period 16 s6
√

P used in the stochastic

patch sub-sampling. In addition, we also compare against regular sub-sampling. Supplemental
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(a) height: 7 (b) height: 7 (c) height: 59

22.1 / .347 30.4 / .777 (.31s) 30.3 / .768 (.40s) 29.9 / .749 (.46s)

22.1 / .589

(d) Noisy

27.2 / .796 (.30s)

(e) MTSP

27.1 / .783 (.35s)

(f) K-Means

26.8 / .761 (.61s)

(g) HAC

Figure A.3: Influence of clustering techniques on the search tree and the results. (left) Multiple
Traveling Salesmen Problem [112] (MTSP), (center) Hierarchical K-means like clustering pro-
posed in [113] and (right) Hierarchical agglomerated clustering (HAC). (a-c) The corresponding
trees. (d-i) The corresponding results on two denoising problems with σ = 20 involving two
different images of size 481×321. PSNR/SSIM and time are indicated for each result.

Figure A.5 shows the curve of PSNR as a function of speed-up for varying values of s where

P = 8. The experiment has been performed in both cases where either the other two accelerations

are disabled or enabled. Visual results highlight that as s increases to
√

P, blocky artifacts start

appearing especially when using a regular patch sub-sampling. In comparison, the stochastic

sub-sampling leads to competing results even for s =
√

P, which corresponds to a regular grid

that is globally shifted by a random shift at each iteration of FEPLL. These experiments show

that the choice of s=6 leads to good trade-off in terms of speed and visual quality for a PSNR

drop of less than 0.2dB.

147



Figure A.4: Timing scatter obtained over 5 runs for 40 images using Gaussian trees built using
different clustering methods we tested. “MTSP” refers to the Multiple Traveling Salesman
(proposed), “K-Means” is the method introduced by [113] and “HAC” is a simple Hierarchical
agglomerative clustering approach.

A.4 Additional results

Denoising results As the first set of additional results, we provide the visual results

obtained on five of the standard images: Barbara, Boat, Couple, Fingerprint, Lena and Mandrill,

in the setting σ=20. Results are displayed in Supplemental Figure A.6.

Deconvolution results As the second set additional results, we show deconvolution results

for five of testing images from the BSDS dataset [109] with a Gaussian blur setting of 3 pixels

(standard deviation 3) and noise level σ=2. Results are displayed in Supplemental Figure A.7.

Super-resolution results As the last set of additional results, super-resolution results are

given for five of the testing images from the BSDS dataset [109] for super-resolution by a factor of

3 with a noise level of σ=2. Note that the sub-sampling operator also includes a small Gaussian

blur of 0.5 pixels as well as a Kaiser window apodization for anti-aliasing. See Supplemental

Figure A.8.
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(a) without the other accelerations
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28.5
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(b) with the other accelerations

(c) Reference (d) Stochastic s = 2 (e) Stochastic s = 4 (f) Stochastic s = 6 (g) Stochastic s = 8

(h) Noisy (i) Regular s = 2 (j) Regular s = 4 (k) Regular s = 6 (l) Regular s = 8

Figure A.5: Influence of random patch subsampling parameter s on performance. PSNR as a
function of speed-up for varying values of (top) the patch extraction expected period s when (a)
no other accelerations are used and (b) the other two accelerations are also used. Stochastic and
regular sub-sampling are compared. The parameter offering the best speed-up within a drop
of at most −0.2dB is indicated. (c) A reference image, (h) its noisy version with σ = 20 and
results obtained for increasing value of s (including the other two accelerations as well) for (d-g)
the stochastic version and (i-l) the regular version.
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22.1 / .476 29.0 / .854 (0.41s) 29.8 / .873 (82.5s) 31.7 / .904 (3.64s)

22.1 / .423 30.2 / .802 (0.40s) 30.6 / .821 (85.5s) 30.8 / .824 (3.66s)

22.1 / .451 29.9 / .812 (0.40s) 30.4 / .833 (87.0s) 30.7 / .842 (3.68s)

22.1 / .765 27.7 / .909 (0.38s) 28.3 / .924 (84.0s) 28.8 / .929 (2.93s)

22.1 / .340 32.32 / .862 (0.38s) 32.6 / .869 (89.3s) 33.0 / .876 (3.65s)

(a) Reference
22.1 / .620

(b) Noisy

26.4 / .784 (0.42s)

(c) FEPLL

26.7 / .807 (84s)

(d) EPLLc

26.6 / .795 (3.68s)

(e) BM3D

Figure A.6: Denoising results where σ= 20 obtained on five standard images, from top to
bottom: Barbara, Boat, Couple, Fingerprint, Lena and Mandrill.

150



20.1 / .557 22.6 / .676 (0.44s)

24.4 / .658 26.7 / .755 (0.46s)

24.4 / .570 25.6 / .656 (0.43s)

20.9 / .458 23.6 / .617 (0.45s)

(a) Reference image x
25.2 / .609

(b) Blurry image y

27.6 / .697 (0.39s)

(c) Deblurred result x̂

Figure A.7: Illustration of a deblurring problem of a Gaussian convolution of width 3 pixels
with a noise of standard deviation σ = 2. (a) The original high-resolution (HR) image x. (b) The
low-resolution (LR) image y = Ax+w and its bicubic interpolation. (c) The super-resolution
result x̂ obtained by our Fast EPLL.
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22.1 / .585 25.4 / .691 (0.44s)

22.2 / .629 25.1 / .748 (0.45s)

25.5 / .579 27.7 / .664 (0.38s)

21.1 / .568 24.2 / .665 (0.43s)

23.4 / .656 26.1 / .748 (0.43s)

Figure A.8: Illustration of a super-resolution by a factor ×3 with a noise of standard deviation
σ = 2. (a) The original high-resolution (HR) image x. (b) The low-resolution (LR) image
y = Ax+w and its bicubic interpolation. (c) The super-resolution result x̂ obtained by our Fast
EPLL.
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Appendix B

Proofs for Theorems in Chapter 7

B.1 Proof of equation (7.23)

Proof 1 For ν = 1, using Γ(1) = 1 and Γ(3) = 2, we obtain

f 1
σ,λ(x) = log(2

√
πσλ)− log

∫
∞

−∞

e−
t2

2σ2−
√

2|x−t|
λ dt , (B.1)

= log(2
√

πσλ)− log
[

e−
√

2x
λ

∫ x

−∞

e−
t2

2σ2 +
√

2t
λ dt + e

√
2x
λ

∫
∞

x
e−

t2

2σ2−
√

2t
λ dt

]
. (B.2)

Since erf′(t) = 2e−t2
√

π
, it follows that for a > 0 and b > 0

∂
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[
−
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πa
2

e
a

4b2 erf
(
− t√

a
−
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a
2b
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= e−

t2
a −

t
b . (B.3)

Therefore we have with a = 2σ2 and b = λ/
√

2

∫ x
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since lim
t→∞

erf(t) = 1 and erfc(t) = 1− erf(t). Similarly, we get

∫
∞

x
e−

t2

2σ2−
√

2t
λ dt =

−
√

πσe
σ2

λ2

√
2

erfc
(

x√
2σ

+
σ

λ

)
. (B.5)

Plugging these two last expressions in (B.2) and rearranging the terms conclude the proof.

B.2 Proof of Proposition 7.4.2

Proof 2 Starting from the definition of f ν

σ,λ and using the change of variable t→σt, eq. (reduction)

follows as

f ν

σ,λ(x) =− log
∫
R

σ
κ

2λν

exp
[
−
(

σ|t|
λν

)ν] 1√
2πσ
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[
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)ν] 1√
2π

exp
[
−(x/σ− t)2

2

]
dt = logσ+ f ν

1,λ/σ

( x
σ

)
.

(B.6)

Properties (even) and (unimodality) hold since the convolution of two real even unimodal distribu-

tions is even unimodal [155, 156]. Property (lower bound at 0) follows from (even), (unimodality)

and the fact that the convolution of continuous and bounded real functions are continuous and

bounded.

B.3 Proof of Theorem 7.4.3

Lemma B.3.1. Let a > 0 and b > 0. For x in the vicinity of 0, we have

1
2abx

log
[

erfc(ax+b)+ e−4abx erfc(−ax+b)
2erfc(b)

]
=−1+

(
ab− ae−b2

erfc(b)
√

π

)
x+o(x) . (B.7)
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Proof 3 Since erfc′(x) =−2e−x2
√

π
and erfc′′(x) = 2xe−x2

√
π

, using second order Taylor’s expansion

for x in the vicinity of 0, it follows that

erfc(ax+b)∼
0
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x2 , (B.8)

and erfc(−ax+b)∼
0
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x2 . (B.9)

We next make the following deductions
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The left-hand side A(x) of this last equation is then, in the vicinity of x = 0, equals to

A(x) =
1+ e−4abx
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We next use second-order Taylor’s expansion for e−4abx, leading to

A(x) = (1−2abx+4a2b2x2 +o(x2))

(
1+

2a2be−b2

erfc(b)
√

π
x2

)
(B.12)
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By using the second-order Taylor’s expansion of log(1+ x), it follows that

log [A(x)] =−2abx+

(
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erfc(b)
√

π

)
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Dividing both sides by 2abx then concludes the proof,
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Proof 4 (Proof of Theorem 7.4.3) We first rewrite ϕ1
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(x) as
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Next, using Lemma B.3.1 with a = 1/
√

2 and b = 1/λ, it follows that
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where the last equation follows from the first-order Taylor expansion of log(a+ x).

B.4 Proof of Theorem 7.4.4

Lemma B.4.1. Let a > 0 and b > 0. For x in the vicinity of +∞, we have

1
2abx

log
[

erfc(ax+b)+ e−4abx erfc(−ax+b)
2

]
=−2+o(1) . (B.20)

Proof 5 We have lim
x→+∞

erfc(x) = 0 and lim
x→+∞

erfc(−x) = 2, it follows that
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+∞
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where we have used the knowledge that f ∼ g implies that log f ∼ logg.

Proof 6 (Proof of Theorem 7.4.4) By writing ϕ1
λ

as in eq. (B.16) and using Lemma B.4.1 with
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a = 1/
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2 and b = 1/λ, it follows that
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B.5 Proof of Theorem 7.4.5

Proof 7 We first decompose the term exp
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ext using its power series
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For x in the vicinity of 0, we can consider |x|6 1, and then
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Then, Fubini’s theorem applies and we get
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By definition, we have
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Moreover, when k is odd, we have
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Using third-order Taylor expansion of log(1+ x) for x in the vicinity of 0, it follows that
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Finally, using first-order Taylor’s expansion for log(1+ x), we conclude the proof as

ϕ
ν

λ
(x) = log

x2

2

1−

∫
∞

−∞
t2e−

t2
2 exp

[
−
(
|t|
λν

)ν]
dt∫

∞
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e−

t2
2 exp

[
−
(
|t|
λν

)ν]
dt

+o(x)


 , (B.37)

= 2logx− log2+ log

1−

∫
∞

−∞
t2e−

t2
2 exp

[
−
(
|t|
λν

)ν]
dt∫

∞

−∞
e−

t2
2 exp

[
−
(
|t|
λν

)ν]
dt

+o(x) . (B.38)

B.6 Proof of Theorem 7.4.6

We first recall in a lemma, a result extracted from Corollary 3.3 in [148].

Lemma B.6.1 (Berman). Let p and q be differentiable real probability density functions. Define
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for x large enough u(x) = p−1(q(x)) and define v and w as

v(x) =− ∂

∂x
log p(x) and w(x) =− ∂

∂x
logq(x) . (B.39)

Assume v and w are positive continuous function and regularly oscillating, i.e.:

lim
x,x′→∞

x/x′→1

v(x)
v(x′)

= 1 and lim
x,x′→∞

x/x′→1

w(x)
w(x′)

= 1 . (B.40)

Suppose that we have

lim
x→∞

w(x)
v(x)

= 0 and lim
x→∞

u(x)w(x) = +∞ , (B.41)

then, for x→ ∞, we have

log
∫ +∞

−∞

p(x− t)q(t) dt ∼ logq(x) . (B.42)

Proof 8 (Proof of Theorem 7.4.6) Using the definition of the discrepancy function,

f ν

1,λ(x) =− log
∫
R

G(t;0,λ,ν) ·N (x− t;0,1) dt =− log
∫ +∞

−∞

p(x− t)q(t) dt . (B.43)

with q(x) = G(x;0,λ,ν) and p(x) = N (x;0,1). We have

v(x) =− ∂

∂x
log p(x) = 2x and w(x) =− ∂

∂x
logq(x) =

νxν−1

λν
ν

. (B.44)

Remark that v and w are positive continuous, and

lim
x,x′→∞

x/x′→1

v(x)
v(x′)

= lim
x,x′→∞

x/x′→1

x
x′

= 1 and lim
x,x′→∞

x/x′→1

w(x)
w(x′)

= lim
x,x′→∞

x/x′→1

( x
x′

)ν−1
= 1 . (B.45)
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For x > 0 large enough and y > 0 small enough

y = p(x)⇔ y =
1√
2π

exp
(
−x2

2

)
⇔ x =

√
− log(2π)−2logy . (B.46)

Then, from Proposition 7.3.1, we have

u(x)w(x) =
νxν−1

λν
ν

√
− log(2π)−2logq(x) (B.47)

=
νxν−1

λν
ν
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− log(2π)−2log
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(

x
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∼ ν
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2x
3
2 ν−1

λ
3
2 ν

ν

, (B.48)

and thus, as ν > 2
3 , lim

x→∞
u(x)w(x) = ∞. Moreover, for ν < 2, we have

lim
x→∞

w(x)
v(x)

= lim
x→∞

ν

2λν

xν−2 = 0 . (B.49)

It follows that Lemma B.6.1 applies, and then for large x

f ν

1,λ(x)∼− logq(x)∼
(

x
λν

)ν

. (B.50)

Using that λν = λ

√
Γ(1/ν)
Γ(3/ν) , we conclude the proof since

ϕ
ν

λ
(x) = log

[
f ν

1,λ(x)− γ
ν

λ

]
∼ ν logx−ν logλν . (B.51)
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B.7 Proof of Proposition 7.5.1

Proof 9 Starting from the definition of sν

σ,λ and using the change of variable t→σt, eq. (reduction)

follows as

sν

σ,λ(x) = argmin
t∈R

(x− t)2

2σ2 +λ
−ν
ν |t|ν = σargmin

t∈R

(x−σt)2

2σ2 +λ
−ν
ν |σt|ν , (B.52)

= σargmin
t∈R

(x/σ− t)2

2
+(λν/σ)−ν|t|ν = σsν

1,λ/σ
(x/σ) . (B.53)

For eq. (odd), we use the change of variable t→−t

sν

σ,λ(−x) = argmin
t∈R

(−x− t)2

2σ2 +λ
−ν
ν |t|ν =−argmin

t∈R

(−x+ t)2

2σ2 +λ
−ν
ν |t|ν , (B.54)

=−argmin
t∈R

(x− t)2

2σ2 +λ
−ν
ν |t|ν =−sν

σ,λ(x) . (B.55)

We now prove eq. (shrinkage). Let t = sν

σ,λ(x), and since t minimizes the objective, then

λ
−ν
ν |t|ν 6

(x− t)2

2σ2 +λ
−ν
ν |t|ν 6

(x− x)2

2σ2 +λ
−ν
ν |x|ν = λ

−ν
ν |x|ν , (B.56)

which implies that |t|6 |x|. Let x > 0 and assume t = sν

σ,λ(x)< 0. Since t minimizes the objective,

then

(x− t)2

2σ2 +λ
−ν
ν |t|ν 6

(x+ t)2

2σ2 +λ
−ν
ν |t|ν (B.57)

which implies that −xt 6 xt and leads to a contradiction. Then for x > 0, sν

σ,λ(x) ∈ [0,x], which

concludes the proof since sν

σ,λ is odd.

We now prove (increasing with x). Let x1 > x2 and define t1 = sν

σ,λ(x1) and t2 = sν

σ,λ(x2).
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Since t1 and t2 minimize their respective objectives, the following two statements hold

(x1− t1)2

2σ2 +λ
−ν
ν |t1|ν 6

(x1− t2)2

2σ2 +λ
−ν
ν |t2|ν , (B.58)

and
(x2− t2)2

2σ2 +λ
−ν
ν |t2|ν 6

(x2− t1)2

2σ2 +λ
−ν
ν |t1|ν . (B.59)

Summing both inequalities lead to

(x1− t1)2 +(x2− t2)2 6 (x1− t2)2 +(x2− t1)2 , (B.60)

⇒ −2x1t1−2x2t2 6−2x1t2−2x2t1 , (B.61)

⇒ t1(x1− x2)> t2(x1− x2) ⇒ t1 > t2 (since x1 > x2) . (B.62)

We now prove (increasing with λ). Let λ1 > λ2 and define t1 = sν

σ,λ1
(x) and t2 = sν

σ,λ2
(x).

Since t1 and t2 minimize their respective objectives, the following expressions hold

(x− t1)2
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ν,1|t1|
ν 6

(x− t2)2

2σ2 +λ
−ν

ν,1|t2|
ν , (B.63)

and
(x− t2)2

2σ2 +λ
−ν

ν,2|t2|
ν 6

(x− t1)2

2σ2 +λ
−ν

ν,2|t1|
ν . (B.64)

Again, summing both inequalities lead to

λ
−ν

ν,1|t1|
ν +λ

−ν

ν,2|t2|
ν 6 λ

−ν

ν,1|t2|
ν +λ

−ν

ν,2|t1|
ν , (B.65)

⇒ (λ−ν

ν,1−λ
−ν

ν,2)|t1|
ν 6 (λ−ν

ν,1−λ
−ν

ν,2)|t2|
ν , (B.66)

⇒ |t1|ν > |t2|ν (since λ1 > λ2 and ν > 0) . (B.67)

We now prove (keep high SNR). Consider x > 0. Since λ 7→ sν

σ,λ(x) is a monotonic

function and sν

σ,λ(x) ∈ [0,x] for all λ, it converges for λ→ ∞ to a value ω ∈ [0,x]. Assume
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0 < ω < x and let 0 < ε < max(ω,x−ω). By definition of the limit, for λ big enough

0 < ω− ε < t , sν

σ,λ(x)< ω+ ε . (B.68)

It follows that x− t > x− (w+ ε)> 0, and then

(x− (ω+ ε))2

2σ2 +λ
−ν
ν |ω− ε|ν < (x− t)2

2σ2 +λ
−ν
ν |t|ν . (B.69)

Moreover, since ω+ ε 6= x, we have for λ big enough

λ
−ν
ν |x|ν <

(x− (ω+ ε))2

2σ2 +λ
−ν
ν |ω− ε|ν . (B.70)

Combining the two last inequalities shows that

(x− x)2

2σ2 +λ
−ν
ν |x|ν <

(x− t)2

2σ2 +λ
−ν
ν |t|ν , (B.71)

which is in contradiction with the fact that t minimizes the objective. As a consequence, ω = x,

which concludes the proof since sν

σ,λ(x) is odd and satisfies (reduction).

We now prove (kill low SNR). Consider x > 0. Since λ 7→ sν

σ,λ(x) is a monotonic function

and sν

σ,λ(x) ∈ [0,x] for all λ, it converges for λ→ 0+ to a value ω ∈ [0,x]. Assume 0 < ω < x and

let 0 < ε < max(ω,x−ω). Again, we have for λ small enough

(x− (ω+ ε))2

2σ2 +λ
−ν
ν |ω− ε|ν < (x− t)2

2σ2 +λ
−ν
ν |t|ν . (B.72)

Moreover, since ω 6= ε, we have for λ small enough

x2

2σ2 <
(x− (ω+ ε))2

2σ2 +λ
−ν
ν |ω− ε|ν . (B.73)
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Combining the two last inequalities shows that

(x−0)2

2σ2 +λ
−ν
ν |0|ν <

(x− t)2

2σ2 +λ
−ν
ν |t|ν , (B.74)

which is in contradiction with the fact that t minimizes the objective. As a consequence, ω = 0,

which concludes the proof since sν

σ,λ(x) is odd and satisfies (reduction).
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