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a b s t r a c t 

This paper deals with the flow of solid/liquid mixtures through long-distance pipelines. Such flows can be 

destabilized by the formation of local plugs which may impede or even block the flow. Plugs may develop 

at the interface between regions of different mean concentration. The driving force for the development 

of such plugs is the existence of local gradients of the axial flux of solids. 

A mathematical model is developed which describes this mode of plug formation in slurry pipelines. 

Several assumptions and approximations enable us to reduce the 3D continuity equation of the solid 

particles to an effective 1D-equation that contains a concentration-dependent flux function. The latter 

equation is solved numerically. 

Illustrative calculations lead to the conclusion that the accumulation of material in a plug does not con- 

tinue without limit but instead levels off at values that are pumpable under most practical conditions, 

provided that a certain margin of overdesign is in place. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Pipelines transporting a mixture of finely ground solids and liq-

id (“slurry”) are used in the mining industry to move minerals

uch as coal and metal ores from remote mining locations to in-

tallations (power plants, refining plants) where they are first sep-

rated from the carrier fluid and then further processed. In opera-

ional practice these slurry pipelines occasionally suffer from plug

ormation. Such events are often ascribed to bad design or mal-

peration. However, plugging incidents have occasionally been re-

orted when none of the latter causal factors play a role. 

In the nineteen-fifties, Wasp and Cook (1960) analysed a num-

er of plugging incidents relating to a 108-miles long pipeline

ransporting coal slurry from mines in southern Ohio to Lake Erie

n Northern Ohio. A condition for smooth transport is that the flow

elocity in the pipeline exceeds a critical value, so that the flow

urbulence is sufficient to keep even the coarsest particles in sus-

ension. Wasp and Cook’s analysis revealed that even when this

ondition was satisfied there were occurrences of plugging. The

henomenon described by Wasp and Cook can be explained as fol-

ows. Consider a slurry pipeline; assume that along its central axis

here is an abrupt decrease of the solids concentration in the di-
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ection of the flow (see Fig. 1 ). Envisage a cylindrical volume ele-

ent along a short length of the pipe axis that covers the entire

ipe cross-section and that straddles the zone of the concentration

ump. As will be demonstrated later, the flux of solids into the vol-

me element at the upflow face might exceed the outflow from the

pposite end. Assume now that the volume element moves with

he average velocity of the flow. Given enough time, the accumula-

ion of solid material inside the volume element could in principle

roceed to the point where the plug becomes unpumpable. 

By which mechanism could such an initial concentration drop

long the pipe axis come about? Although the spontaneous cre-

tion of concentration gradients (during steady operation) as a re-

ult of random fluctuations can never be ruled out completely,

here are far more probable causal mechanisms relating to oper-

tional factors. For example: if the pipeline is laid out in hilly ter-

ain with substantial elevation differences, accidental or intentional

hutdowns or slowdowns could lead to massive demixing of the

olid particles and the carrier liquid, with heavier material accu-

ulating in the valleys and lighter zones at the higher elevations.

estarting such a pipeline implies operation in a mode where sub-

tantial concentration differences might exist along the pipe axis. 

In the next section, a mathematical model is formulated that

escribes the dynamics at the interface between a dilute and a

ense zone, as shown in Fig. 1 . The starting point for this devel-

pment is the 3D continuity equation for the solid particles in the

owing solids/fluid mixture. Several assumptions and approxima-

ions enable us to reduce the 3D continuity equation of the solid

http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.12.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijmulflow
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijmultiphaseflow.2016.12.005&domain=pdf
mailto:rsamsonjvlk@gmail.com
mailto:biello@math.ucdavis.edu
http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.12.005
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Fig. 1. Sketch of a slurry pipeline with a longitudinal concentration gradient. 
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particles to an effective 1D-equation. In Section 3 , the solution of

this equation is reviewed. In Section 4 , the results and the most

important practical consequences of the model are summarized. A

somewhat similar 1D equation was derived by van Rhee and Tal-

mon in the context of dredging applications (see van Rhee and Tal-

mon (2010) ). 

2. Mathematical model 

Our starting point is the equation of conservation of mass of

the solid particles in the fluid. Assume that the solid particles are

subdivided into a discrete number of size classes. Each size class

i (i = 1 , 2 , . . . , n ) , obeys a mass conservation law of the form 

∂ C i 
∂t 

+ 

�
 ∇ · ( � u C i − ν �

 ∇ C i ) = 0 . (1)

Here, C i is the fractional concentration of solids of size class i ( C i 
will be expressed in terms of concentration by volume rather than

by weight), � u is the flow velocity vector, ν is a diffusivity parame-

ter and t is time. The coordinate system is so chosen that the pipe

axis is along the x -axis and the vertical direction is along the z -

axis. The axial component of the velocity vector, u x , is assumed

to be a given function of the radial pipe coordinate (orthogonal to

the pipe axis), to be specified later on (see Eq. 12 ). The radial and

azimuthal components of the velocity field will be shown to be

inconsequential in the present model (see Appendix A ). The dif-

fusivity parameter ν is assumed to be dictated by the turbulence

of the flow and it is also assumed to be a given constant (see

Appendix B ). 

Eq. 1 is now integrated over the pipe cross-section. A cross-

sectionally averaged concentration c i is defined which only de-

pends on x and t : 

c i (x, t) = 

1 

A 

∫ 
C i ( � r , t) d A ≡ 1 

πR 

2 

∫ R 

0 

rd r 

∫ 2 π

0 

d θ C i (x, r, θ, t) . (2)

Here, r and θ are radial and azimuthal pipe coordinates and R is

the pipe radius. 

Without further simplifications, the cross-sectional averaging

would turn the 3D-PDE Eq. 1 into a complicated 3D-integro-

differential equation which would hardly be of any practical use.

By the introduction of a number of physically plausible assump-

tions however, Eq. 1 can be turned into a much simpler 1D-PDE

depending only on x and t . The first and most crucial simplifica-

tion is the following one: ∫ 
u x C i dA ≈

∫ 
u x γi dA, (3)

where γ i is the solution of an ordinary DE 

w i �i (c) γi + ν
∂ γi 

∂z 
= 0 , (4)

c = 

∑ n 
i =1 c i , w i is the single-particle settling velocity and �i ( c ) is a

function (to be specified later; see Eq. 27 ) that describes the influ-

ence that particles have on each other’s settling velocity through

steric hindrance. Eq. 4 is supplemented by the auxiliary condition

that 

(1 /A ) 

∫ 
γi dA = c i . (5)
he physical meaning of this approximation is as follows. In Eq. 3 ,

e effectively replace C i (a function of x, r, θ , t ) in the integral

ernel by γ i (a function of z alone). The concentration function

i is determined by the condition that there is no net transport

f material in the vertical direction ( Eq. 4 ). Downward convective

uxes (settling) and upward diffusive fluxes (turbulent mixing) are

ssumed to be balanced everywhere in the pipe and at all times.

his implies that if a concentration gradient is transported along

he pipe axis, then at each point x along the axis, instantaneously a

ituation of local equilibrium in the z-direction is established such

hat Eq. 4 holds true. The condition Eq. 5 ensures that at each

oint x and at each time t , the average values of γ i and of C i are

qual. 

If the z -dependence of �i is ignored, then Eq. 4 can be easily

olved: 

i /c i = a i exp [ −k i z/R ] , (6)

here 

 i = k i (c) = Rw i �i (c) /ν (7)

nd a i is determined by Eq. 5 : 

 /a i = (1 /A ) 

∫ 
exp [ −k i z/R ] dA . (8)

s will be shown later (see Appendix B ), in many cases of practical

nterest the following inequality holds: 

 i � 1 . (9)

his can be used to expand a i and γ i in powers of k i : 

 i = 1 − k 2 i / 8 + O(k 4 i ) (10)

nd 

i /c i = 1 − k i z/R + k 2 i [ (1 / 2)(z/R ) 2 − (1 / 8) ] + O(k 3 i ) . (11)

n reality, the vertical distribution of solid material is more com-

licated than suggested by Eqs. 6 and 11 (for more details on

his point, see e.g. Barnard and Binnie (1963) , Karabelas (1977) ,

aushal and Tomita (2002) and Kaushal and Tomita (2013) ). 

A further approximation is the assumption that the axial ve-

ocity u x ( r ) obeys a “similarity-law”-type dependence on the radial

ipe coordinate: 

 x (r) = ū + u 

∗F (r/R ) , (12)

here 

¯
 = (1 /A ) 

∫ 
u x (r) dA , (13)

nd u ∗ is a suitably chosen root-mean-square velocity fluctuation

arameter. This law is generally accepted for single-phase turbu-

ent pipe flow (see Tennekes and Lumley (1972) ), but it is not quite

ight for slurries, where gravitational settling breaks the axial sym-

etry of the flow. For very dense slurries however, the degree of

ertical inhomogeneity of the solids is relatively minor and there-

ore the deviations from axial symmetry in the velocity profile may

e ignored. 

From Eqs. 11 through 13 we obtain 

(1 /A ) 

∫ 
u x γi dA = ū c i − εk 2 i u 

∗c i , (14)

here 

= (−1 / 2) 

∫ 1 

0 

x 3 F (x ) dx . (15)

he dimensionless number ε is shown to be positive in

ppendix B . 

We now return to the cross-sectional integration of Eq. 1 . It can

e shown that the only term of the � ∇ · ( . . . ) -term in Eq. 1 that sur-

ives the cross-sectional integration is the axial term; i.e. the radial
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nd the azimuthal terms are eliminated by the integration. The

anishing of the latter terms is a consequence of the divergence

heorem, the continuity of the flux-function in the angular direc-

ion and the no-flux boundary condition through the pipe surface.

athematical details are given in Appendix A . 

The resulting equation is 

∂ c i 
∂t 

+ 

∂ 

∂x 

[
ū c i − εk 2 i u 

∗c i − ν
∂ c i 
∂x 

]
= 0 . (16) 

t is convenient to apply one further coordinate transformation: 

 

∗ = (B/ν) (x − ū t ) and t ∗ = (B 

2 /ν) t , (17)

here 

 = εu 

∗(Rw 1 /ν) 2 . (18)

his allows us to rewrite Eq. 16 as follows: 

∂ c i 
∂ t ∗

+ 

∂ f i 
∂ x ∗

= 

∂ 2 c i 
∂ x ∗2 

, (19) 

here 

f i = − βi �
2 
i (c) c i , (20)

nd 

i = (w i /w 1 ) 
2 . (21)

ith this coordinate transformation, the origin of the x ∗-

oordinate moves along the pipe axis with the average velocity of

he flow. Moreover, the diffusivity parameter ν has dropped out of

he equation as an explicit parameter; instead, it appears as a scal-

ng parameter in the definition of the new coordinates x ∗ and t ∗,

endering them dimensionless. 

If the particle size classes are chosen in order of decreasing size,

t follows that the β ’s are in order of diminishing magnitude and

re all ≤ 1. 

Eq. 19 still needs initial and boundary conditions. In the calcu-

ations in the next sections, the following auxiliary conditions are

sed 

 i (x ∗, t ∗ = 0) = c 0 i (x ∗) = 

[
c iL if x < 0 

c iR if x > 0 

(22)

nd 

lim 

 

∗→ −∞ 

c i (x ∗, t ∗) = c iL , (23) 

lim 

 

∗→ + ∞ 

c i (x ∗, t ∗) = c iR , (24) 

 iL/R = χi c L/R for all size classes i, (25) 

n 
 

i =1 

χi = 1 , (26) 

here the χ i ’s are mass fractions of solids of size class i . 

Eq. 19 is the central result of this paper. It is a 1D approx-

mation of the 3D continuity equation. It is a very well known

quation in many branches of science, in particular in com-

ressible gas dynamics and in chromatography, see Courant and

riedrichs (1948) and Aris and Amundson (1973) . Notable features

f Eq. 19 are: 

• It is a system of equations where the coupling between the

members i = 1 , 2 , . . . , n is effected by the settling function �i ( c )

with c = 

∑ n 
i =1 c i . 

• It is a non-linear system, where the non-linearity arises from
the settling function �i ( c ). i  
The special features of this system, to be discussed below, are

bsent when there is only one single size class or when �i ( c ) is

imply a constant. The function �i ( c ) is assumed to be a monoton-

cally decreasing function of c : 

i (c) = (1 − c) αi , (27)

mplying that the settling rate of the solid particles decreases as

he concentration increases; for further details, see Section 3.2 . 

The central claim of this paper, namely: that plugs could de-

elop at the interface between two zones of different density, pro-

ided that c L > c R can now be clarified by rewriting Eq. 19 in an

pproximate form (where we temporarily ignore diffusive contri-

utions): 

∂ c i 
∂ t ∗

≈ − ∂ f i 
∂ x ∗

≈ − f i (x ∗2 ) − f i (x ∗1 ) 
x ∗

2 
− x ∗

1 

(28) 

ssume that x ∗
2 

> x ∗
1 

and that x ∗
2 

is located in a dilute zone and x ∗
1 

n a dense zone. In the dilute zone, the absolute value of the flux

 f i | will be larger than in the dense zone, on account of Eq. 27 (the

agnitude of f i is dominated by �i rather than by c i ). Since both f ’s

re negative, it follows that ∂ c i / ∂ t 
∗ > 0, i.e. species i accumulates

n the region between x ∗
1 

and x ∗
2 
. (The minus sign in Eq. 20 implies

hat all the fluxes are negative in the ( x ∗, t ∗)-coordinate system). 

. Numerical solution 

.1. Numerical method 

A solution code for Eq. 19 was implemented in Wolfram Math-

matica. No specific solution method (with respect to e.g. explicit

r implicit difference schemes) was dictated; it was left up to the

athematica solver code to select the most efficient scheme. 

The only numerical parameter that sometimes needed some

tweaking” was the Maximum Step Size (MSS). For long integration 

imes, sometimes numerical instabilities would occur that would

ave to be resolved by reducing the MSS. Obviously, this would

ead to longer run times. 

Other than this, there were no special difficulties in obtaining

onverged solutions. 

.2. Estimation of parameters 

The theory presented above contains a number of parameters

hat have to be fixed. Parameters that are related to the size dis-

ribution of the solids particles and their terminal fall velocities in

he fluid are listed in Table 1 . The selected size distribution desig-

ated as 1A is a reasonable (discretized) approximation to particle

ize distributions that are commonly used in coal slurry pipelines

see e.g. the particle size-distribution data given in Wasp and

ook (1960) . The data marked 1B and 1C correspond to - respec-

ively - a coarser and a finer particle size distribution than the one

iven in 1A. 

In the calculation of the settling velocities it was assumed that

he solid particles have a density of 1400 kg/m 

3 and that the car-

ier fluid is water. The correlation for the terminal fall velocity of

olid spherical particles cited in Clift, Grace and Weber (1978) was

sed. 

For the powers αi in the hindered settling function �i (see

q. 27 ), the data in Richardson and Zaki (1954) were used.

ichardson and Zaki (1954) made a thorough study of the sedi-

entation of approx 100 μm sized solid particles in fluids of var-

ous densities and viscosities at various volume fractions of the

olid material. They correlated the measured sedimentation veloc-

ties in the form of the earlier quoted hindered settling function,
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Fig. 2. Total solids concentration ( c = 

∑ n 
i =1 c i ) as a function of the space-like variable x ∗; time t ∗ as parameter. 

Table 1 

Input parameters for the reported model calculations. The index i de- 

notes the size class of the solid particles. The model includes three 

size classes. χ i denotes the mass fraction of solids of size class i. d i is 

the diameter of particles of class i. w i is the (single-particle) terminal 

sedimentation velocity of particles of class i in the fluid. Re i is the 

single-particle sedimentation Reynold’s number d i w i / η, where η is 

the kinematic viscosity of the carrier fluid. αi is the Richardson–Zaki 

parameter related to the hindered settling function �i (see Eqs. 27 

and 29 ) and βi = (w i /w 1 ) 
2 . Three cases are tabulated, corresponding 

to three different particle size distributions. Table 1 A is the base case; 

Table 1 B is a size distribution with larger particles; Table 1 C is a size 

distribution with smaller particles. 

i χ i d i w i Re i αi β i 

(μ m) (mm/s) 

1A 

1 0 .2 600 34 .8 20 .9 3 .284 1 

2 0 .5 300 14 .0 4 .20 3 .855 0 .162 

3 0 .3 75 1 .21 0 .091 4 .650 0 .00122 

1B 

1 0 .2 1200 76 .2 91 .5 2 .833 1 

2 0 .5 600 34 .8 20 .9 3 .284 0 .208 

3 0 .3 150 4 .56 0 .685 4 .400 0 .00358 

1C 

1 0 .2 300 14 .0 4 .20 3 .855 1 

2 0 .5 150 4 .56 0 .685 4 .400 0 .106 

3 0 .3 45 0 .440 0 .0198 4 .650 0 .0 0 0988 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. The maximum concentration of c ( c max ; maximum over x ∗) as a function of 

time t ∗ . 
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Eq. 27 , the coefficient αi being dependent on the Reynolds num-

ber based on the settling velocity of the particle: 

αi = 

{ 

4 . 35 Re −0 . 03 
i 

if 0 . 2 < Re i < 1 

4 . 45 Re −0 . 1 
i 

if 1 < Re i < 500 

(29)

with Re i = d i w i /η, where d i is the diameter of particles of class i,

w i is the (single-particle) terminal sedimentation velocity of parti-

cles of class i and η is the kinematic viscosity of the carrier fluid.

Based on an extrapolation of the Richardson–Zaki data, α → 4.65

as Re → 0. 

3.3. Results and discussion 

The initial axial concentration profile was assumed to be a

sharp step change from c L = 0 . 45 to c R = 0 . 30 . Using the param-

eters specified in Table 1 A, the model was run. Results are shown

in Figs. 2 , 3 and 4 . Fig. 2 clearly shows that an excess of mass ac-

cumulates at the interface and that this excess gradually increases

with time. c max (the maximum value of c over the plotted inter-

val of x ∗) is plotted against time in Fig. 3 . The plot shows that

the density of the plug approaches an asymptote. The maximum

in the excess concentration is seen to be c ∞ 

max ≈ 0 . 50 . Here, c ∞ 

max is

the value of c max ( t ) as t → ∞ . 
The growth of the plug is rather slow. At t ∗ = 50 0 0 (this cor-

esponds to roughly 20 min of real time; see Appendix B.2 ), the

lip at the interface is still hardly perceptible. It takes several hours

or this growth to become substantial: only around t ∗ = 10 5 (cor-

esponding to roughly 7 h) has the plug approached its asymptotic

aximum value. At, say, 1.5 m/s average flow velocity and 7 h of

ow, a distance along the pipe axis of about 35 km would have

een covered. 

The behaviour of the individual size fractions is shown in Fig. 4 .

t is seen that the main culprit for the mass accumulation is the

eaviest size fraction. This stands to reason: that fraction is mainly

esponsible for the vertical inhomogeneity of the concentration

istribution in the pipe cross-section. By contrast, the lightest frac-

ion is very well-behaved (monotonic dependence of c 3 on x ∗),

hile the middle fraction has a profile that is somewhat ambiva-

ent. 

A number of sensitivity tests were performed to establish how

he results are affected by changes in the input parameters. Inves-

igated were: 

• the influence of the values of the left- and rightmost asymptotic

concentrations c L and c R on c max ; refer to Table 2 ; 
• the influence of the particle settling parameters on c max ; the

size of the particles was varied as specified in Tables 1 A, B and

C. 

Table 2 shows the results of the sensitivity study regarding the

nfluence of c L and c R on c max . From Fig. 3 it is clear that the cal-

ulations have to be extended to large values of t ∗ to get accu-

ate data for c max . In general, we aimed at a maximum value of t ∗

 t ∗
f 
) equal to a few times 10 5 . Up to values of t ∗

f 
of about 10 4 , we

ever encountered any numerical instabilities, however at values
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Fig. 4. The concentrations of the individual size classes c i as a function of x ∗ at time t ∗ = 50 0 , 0 0 0 . 

Table 2 

The influence of the values of the left- and rightmost 

asymptotic concentrations c L and c R on c ∞ max . 
c ∞ max = 

c ∞ max − c L . Regarding the significance of the parameters 

t ∗
f 

and MSS, see the body of the text for explanatory re- 

marks. 

c L c R t ∗
f 
∗ 10 −5 MSS c ∞ max 
c ∞ max 

0 .45 0 .40 3 50 0 .471 0 .021 

0 .45 0 .30 5 50 0 .500 0 .050 

0 .45 0 .15 2 5 0 .523 0 .073 

0 .45 0 .05 2 5 0 .528 0 .078 

0 .30 0 .20 4 25 0 .341 0 .041 

0 .30 0 .05 2 5 0 .346 0 .046 

0 .55 0 .40 6 50 0 .588 0 .038 

0 .55 0 .25 3 25 0 .607 0 .057 
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> 10 4 , sometimes instabilities would creep in, especially in

ases where the difference between c L and c R was relatively large.

n such cases we would be obliged to reduce the Maximum Step

ize (MSS; see Table 2 ), obviously at the expense of longer run

imes. Ultimately, the choice of values to use for t ∗
f 

and MSS is

 compromise between accuracy and run time, but in all the re-

orted data on c ∞ 

max , the error is certainly < 0.01 and very probably

 0.003. 

The most prominent trend emerging from Table 2 is that the

eight of the hump 
c ∞ 

max correlates positively with the concen-

ration gap (c L − c R ) . This is not unreasonable: if (c L − c R ) → 0 , the

eight of the hump should also → 0, since in that case there is no

riving force for the formation of the hump. 

An additional test of the theory is a consideration of what hap-

ens when c L is smaller (rather than larger) than c R . Earlier, we

rgued from Eq. 28 that the condition c L > c R implies that mass

hould accumulate at the interface. In the opposite case, if c L < c R ,

e must conclude that a mass deficit should then develop at the

nterface. 

This claim is borne out by calculation: see Fig 5 . Apart from a

ather sharp, deep trough for x ∗ roughly between − 20 0 0 and +
,0 0 0, there is a second rather extended flat minimum in the plot

or x ∗ roughly between − 24,0 0 0 and − 2,0 0 0. The reason for the

xistence of this secondary minimum is not clear. 

Tables 1 B and C show input data relating to larger, respectively

maller solid particles than the ones specified in Table 1 A (the

base case”). Calculations were carried out regarding these two

ew particle size distributions with c L = 0 . 45 and c R = 0 . 30 . Sur-

risingly, it was found that the c ∞ 

max -results for the three cases are

n a remarkably narrow band width: c ∞ 

max = 0 . 498 ± 0 . 003 . 
It would be wrong, however, to conclude that the particle size

istribution (PSD) is irrelevant. Even though the PSD does not af-

ect the value of c ∞ 

max , it does have a huge effect on the time re-

uired to build a plug with this density. The dimensionless time

 

∗ = 10 5 (approximately equal to the time needed to reach the

symptotic level) corresponds to respectively approximately 0.3 h

case 1B: coarse PSD), 7 h (case 1A: base case) and 250 h

case 1C: fine PSD) in the three PSD cases, as demonstrated in

ppendix B.2 ; the three PSD-cases being described in Table 1 . 

In conclusion: although asymptotically the three cases are sim-

lar (as far as the height of the hump is concerned), the establish-

ent of the asymptotic condition proceeds much faster when the

lurry particles are larger. Hence, in industrial practice, the conse-

uences of this type of plug formation may be more dramatic for

oarse than for fine slurries. 

. Conclusions 

Slurry pipelines with long-range longitudinal (along the axis)

oncentration gradients may exhibit surprising behaviour. In cer-

ain situations, these concentration gradients may give rise to local

lugs, containing anomalously high solids densities. Rather than

issolving with time as a result of turbulent mixing, such plugs

ay self-amplify and may become denser in time. 

A mathematical model was developed to describe this phe-

omenon. The model was tested under conditions that are typical

or industrial coal slurry pipelines. It was found that the described

ype of plugs is relatively mild in character. By this, we mean the

ollowing two things. First: the maximal increase in slurry con-

entration inside the plug is usually only a few volume percents.

he exact height of the plug ( 
c ∞ 

max ) is mostly dictated by the

nitial concentration jump ( c L − c R ) between the solids-rich and

he solids-poor part of the concentration profile, as illustrated in

able 2 . A typical maximal increase in solids concentration at the

nterface between the two parts of the profile is 5 vol %. Secondly:

he temporal development of these plugs is generally not very fast.

he rate of plug growth is mostly dictated by the size of the coars-

st particles in the slurry. For a typical coal slurry, the time re-

uired to accumulate several (say, 5) volume % of solids concen-

ration at the plugging interface would take several hours, corre-

ponding to, say, 30–40 km of traversed pipe length. For slurries

hat are considerably coarser than an “average” coal slurry, the ac-

umulation time could be considerably shorter (say, half an hour

r even less than that, rather than several hours), corresponding

o considerably shorter traversed pipe lengths. For coarse slurries,

ully-developed plugs could be present very soon after restart of
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Fig. 5. Development of a mass deficit at the concentration interface for the case that c L < c R . 
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a dormant pipeline. An important learning point of the current

model is that it points at the great importance of careful control

of the top size of the solids particle size distribution. 

Since most designers are inclined to incorporate a certain

amount of “slack” in their designs so as to be able to handle mi-

nor increases of pressure drop in their pipelines, it is probable that

they will naturally “design around” the plugging problem. In con-

crete terms this means that if the pipeline is intended to operate

at a maximum solids concentration of, say, 45% by volume, the de-

signer is well advised to base his design not on 45% but on, say

50% by volume, so as to be able to cope with potential short-lived

plugs formed e.g. during pipe startup. 
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Appendix A. Why do the radial and the azimuthal flux 

components drop out of Eq. 19 ? 

Eq. 1 contains a term of the form 

�
 ∇ · �

 � where �
 � = 

�
 u C i − ν �

 ∇ C i . (A.1)

In Eq. 19 , only the axial flux term survives the cross-sectional av-

eraging. What happened to the two other flux terms? 

Denote cylindrical coordinates as ( x, r, θ ) where x is the axial

coordinate, r the radial coordinate and θ the azimuthal (angular)

coordinate. Averaging over the pipe’s cross-section leads to the fol-

lowing integrals: 

I r = 

∫ 2 π

0 

d θ

∫ R 

0 

d r 
∂ (r�r ) 

∂r 
= 

∫ 2 π

0 

dθ ( r�r ) | r= R r=0 

= R 

∫ 2 π

0 

dθ �r (R, θ ) , (A.2)

and 

I θ = 

∫ R 

0 

d r 

∫ 2 π

0 

d θ
∂ �θ

∂θ
= 

∫ R 

0 

dr �θ | θ=2 π
θ=0 

= 

∫ R 

0 

dr [ �θ (r, 2 π) − �θ (r, 0) ] . (A.3)

The vanishing of I θ is easy to understand: if �θ ( r, θ ) is a well-

behaved (continuous) function, �θ ( r , 2 π ) must obviously be equal

to �θ ( r , 0). The vanishing of I r is a little bit trickier. Referring to

A.1 , the term u r C i must be zero at the pipe boundary r = R : there

cannot be any flow perpendicular to the pipe wall. The same argu-

ment holds with respect to the � ∇ C i -term: there cannot be any flow

of (particle) mass out of the pipe wall, hence the radial component

of � ∇ C must vanish at r = R . Hence, I r must vanish. 
i 
ppendix B. Estimation of some physical quantities occurring 

n the theory 

In this appendix we present estimates of a number of quantities

hat are used in the model: 

• the parameter ε (see Eq. 15 ); 
• the diffusivity parameter ν , the parameter B (see Eq. 18 ) and

the relation between dimensionless time t ∗ and physical time t

(see Eq. 17 ); 

nd we provide evidence for: 

• the claim made in Eq. 9 that k i � 1. 

.1. The value of ε

In this Appendix, the parameter ε is calculated for a specific

hoice of the axial velocity profile, namely the so-called “1/7-

rofile” which is a good representation of (single-phase) turbulent

ipe flow; see Bird, Stewart and Lightfoot (1960) : 

 x (y ) = qu 

∗(1 − y ) 1 / 7 where y = r/R. (B.1)

ere, the constant q is related to the ratio ū /u ∗: 

¯
 = (1 /A ) 

∫ 
u x (r) dA = 2 qu 

∗
∫ 1 

0 

y (1 − y ) 1 / 7 dy 

= 2 qu 

∗B (2 , 8 / 7) = 2 qu 

∗ �(2) �(8 / 7) 

�(2 + 8 / 7) 
= (98 / 120) qu 

∗ (B.2)

he beta function B ( a, b ) and the gamma function �( a ) are as

efined in Abramowitz and Stegun (1970) . It follows that q =
(120 / 98) · ( ̄u /u ∗) . In Bird, Stewart and Lightfoot (1960) , an approx-

mate relation (the logarithmic distribution ) is given, linking the ra-

io ū /u ∗ to a turbulent Reynold’s number based on u ∗. From this

elation, we estimate that at a distance of 0.25 m from the pipe

all, in a flow with an average velocity of 1.5 m/s, ū /u ∗ ≈ 30 ,

ence q ≈ 36.7. 

Now we tackle the calculation of ε: 

= (−1 / 2) 

∫ 1 

0 

y 3 F (y ) dy = (−1 / 2) 

∫ 1 

0 

y 3 
u x (y ) − ū 

u 

∗ dy 

= (−1 / 2) 

∫ 1 

0 

y 3 
[
q (1 − y ) 1 / 7 − ū / u 

∗]dy 

= (−1 / 2)( ̄u /u 

∗) 

[
(120 / 98) 

∫ 1 

0 

y 3 (1 − y ) 1 / 7 dy − ( 1 / 4) 

]
= (−15) [ (120 / 98) · B (4 , 8 / 7) − (1 / 4) ] 

= (−15)[0 . 2304 . . . − 0 . 25] = +0 . 2939 . . . (B.3)
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.2. The values of ν , B and t ∗

An important parameter in the model is the turbulent diffusiv-

ty ν . It is commonly assumed in the theory of turbulence (see

.g. Tennekes and Lumley (1972) ) that in turbulent pipe flow, ν
an be approximately related to the pipe radius R and the turbu-

ent rms velocity fluctuation u ∗ by ν = ζRu ∗. From the work re-

orted in Barnard and Binnie (1963) , Karabelas (1977) , Kaushal and

omita (2002) and Kaushal and Tomita (2013) , it appears that the

alue ζ = 0 . 25 is an adequate approximation. Assuming that R =
.25 m (i.e. for a pipeline with a diameter of 0.5 m) and u ∗

 0.05 m s −1 , we get ν = 3 . 125 × 10 −3 m 

2 / s . Using Eq. 18 and

 1 = 0 . 0348 m s −1 from Table 1 A, we obtain B = 0.114 m s −1 . From

q. 17 , we then obtain that t (in seconds) ≈ 0.241 t ∗. It follows that

 

∗ = 10 5 corresponds to t ≈ 24,0 0 0 s, or ≈ 6.7 h. 

Note that the ratio between t and t ∗ is sensitively dependent

n the size of the particles; or - more precisely - on the free-

ettling velocity of the coarsest size fraction w 1 (t /t ∗ ∼ w 

−4 
1 

) . For

he coarse particle size-distribution shown in Table 1 B with w 1 =
 . 0762 ms −1 , we have t (in seconds) ≈ 0.01 t ∗, or t ∗ = 10 5 corre-

ponds to t ≈ 1050 s, or ≈ 0.3 h. Conversely, for the fine parti-

le size-distribution shown in Table 1 C with w 1 = 0 . 0140 ms −1 , we

ave t (in seconds) ≈ 9.2 t ∗, or t ∗ = 10 5 corresponds to t ≈ 9.2 ∗10 5 

, or ≈ 255 h. 

A word of caution is in place regarding the reliability of the

ata discussed above. The conversion factor linking real time

 (in seconds) and dimensionless time t ∗ is quite sensitively depen-

ent on the value of ζ , namely: ( t / t ∗ ∼ ζ 5 ). Consequently, relatively

mall variations in ζ can have a large impact on this conversion

actor. From the existing papers on turbulent diffusivity of slur-

ies in pipelines (see Barnard and Binnie (1963) , Karabelas (1977) ,

aushal and Tomita (2002) and Kaushal and Tomita (2013) ), it is

lear that the value of ζ used in the current study is by no means

cast in stone”. This implies a certain degree of uncertainty in our

tatements regarding the time that is needed for plugs to develop

o full maturity. 
.3. Proof that k i � 1 

In order to prove that k i � 1, it suffices to show that this is true

or i = 1 (the coarsest size fraction). Since the size fractions are in

rder of decreasing size, the inequality will certainly hold for the

ner fractions if it is correct for i = 1 . Using Eq. 27 for c = 0 . 45

nd the power α1 = 3 . 284 (see Table 1 ), we calculate �1 = 0 . 14 . It

ollows that k 1 = 0 . 195 . 

We conclude that for rather high concentrations ( c ≈ 0.45), the

nequality holds true for all size fractions. For considerably smaller

oncentrations, the inequality would break down. However, in that

ase, the theory is not very relevant, as the system is then far re-

oved from plugging. 
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