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At large scales, particulate suspensions flow like homogeneous viscous liquids, but at
the particle scale, the role of the local heterogeneity brought by the particles cannot be
neglected. The volume fraction also matters; in dense suspensions, particulate effects
can be felt across distances much larger than the particle diameter. Therefore, whether a
suspension should behave as a homogeneous or heterogeneous fluid is a matter of scale.
Here, we consider the canonical situation of the pinch-off of suspension drops to study
the behavior of suspensions at different scales. Initially, the filament of suspension thins
down like a homogeneous liquid until reaching a critical thickness at which the thinning
accelerates. Eventually, a region devoid of particles appears, and the breakup occurs
similarly to a homogeneous viscous liquid. Although this problem have been studied
for almost 20 y, the role of heterogeneity in the acceleration of the pinch-off is still not
understood. We show that the onset of heterogeneity corresponds to the dislocation of
the suspensions where local fluctuations in particle concentration increase. We derive
scaling laws for the dynamics in the heterogeneous regime and develop a model to
predict the coherence length at which the discrete nature of the particles appears, and
we demonstrate that this length depends both on the particle size and on the volume
fraction of the suspension. We extend this approach to polydisperse suspensions. Our
work sheds light on the mesoscopic scale below which starts the heterogeneous regime
and a continuum approach is not valid anymore.

pinch-off | suspensions | interface | singularity | heterogeneity

Suspensions are ambivalent fluids. Depending on the length scale at which they flow,
they can be considered homogeneous or heterogeneous. At length scales much larger
than the particle size, a suspension behaves like an effective viscous liquid whose viscosity
η(φ) increases with the volume fraction of particles φ (1). However, below a certain
length scale, fluctuations of particle concentration can strongly influence the flow, and the
heterogeneous nature of the particles plays a crucial role. This change of scale naturally
occurs during the breaking of a liquid into droplets; as a drop detaches from a nozzle,
the neck that binds the drop to the nozzle thins down and eventually vanishes (2–4). In
the capillary regime, the thickness of this liquid neck h(t) may undergo different self-
similar regimes (5). If the flow is capillary inertial, h(t)∼ (γ/ρ)1/3(tc − t)2/3; if the
flow is capillary viscous, h(t)∼ γ(tc − t)/η. The neck finally breaks up in a finite-time
singularity at time tc.

In practical applications, the atomized fluids can be suspensions containing dispersed
particles. For example, in inkjet printing (6, 7), biofluids printing (8), and spray-painting,
the fluids contain solid objects that may be rigid (pigments) or not (cells) as well as
polymers and other solutes. Therefore, as a liquid neck of such complex fluids thins down,
its thickness successively goes through the length scales of each component. This reveals the
heterogeneous nature of the fluid; the aforementioned self-similar regimes disappear and
make way for thinning regimes that are specific of the components. A well-known example
is the thinning of a thread of dilute polymer solution (9); initially, the liquid neck thins
down like an inviscid Newtonian fluid, following the power law h(t)∝ (tc − t)2/3. At a
certain point, the polymer starts interacting with the flow, and the thickness h(t) decreases
exponentially with time. Adding solid particles to the polymer solution does not result in a
new thinning regime, but it significantly changes the threshold from one regime to another
(10).

Understandably, the complexity of the problem drastically increases with the number
of components because it implies an increase of the number of length scales. Also, each
kind of component (particles, polymers, cells, etc.) may exist in a range of sizes. To allow
for a physical insight, we must narrow the focus to a single kind of component. Therefore,
in order to isolate the viscous effects in the pinch-off of complex fluid drops, we investigate
non-Brownian, neutrally buoyant particles dispersed in a viscous liquid.

The seminal work of Furbank and Morris (11) on the pinch-off of suspension drops
revealed a two-step mechanism. The particles are initially homogeneously distributed in
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the neck. Then, when the neck has thinned down to a few particle
diameters, the particle volume fraction φ fluctuates. It was later
shown that the homogeneous regime is similar to the thinning of
a viscous liquid of matching viscosity (12, 13). At some point, the
velocity profile in the neck becomes discontinuous (14), and the
thinning accelerates (15). This transition from the homogeneous
regime to the heterogeneous regime during the generation of
suspension drops occurs at a critical thickness that increases with
the particle diameter d but that is not necessarily of the same order
of magnitude (12). After some time, the neck becomes thinner
than the particle diameter and reduces to the interstitial liquid
(16). For bidisperse suspensions, the transition depends on the
relative fraction of each size of particles; the more large particles
there are, the earlier the heterogeneous regime is (17).

Past studies have suggested that the heterogeneous regime
observed may be due to shear thickening (18, 19) or to jamming in
the neck (20). However, these explanations are incompatible with
the dilute and semidilute cases, in which even one single particle
is sufficient to trigger the acceleration of the pinch-off (14). It
was reported that concentration fluctuations were amplified by
the curvature gradient at the neck (21). Unfortunately, capillary
effects alone cannot explain why the heterogeneous regime starts
at thicknesses much larger than the particle diameter (12, 22).
Accordingly, the present study aims to unify the different descrip-
tions of suspension drop pinch-off and to clarify the role of solid
heterogeneities on drop formation.

The transition to a heterogeneous regime where the particles
impact the dynamics beyond a simple increase in viscosity is not
specific to the pinch-off of suspension drop. Such behavior has
also been reported for other flows of suspensions, dip coating (23,
24), inclined plane (22), drop impact and sheet spreading (26),
jet of suspensions (27), or spreading of a contact line (28). In all
of these situations, the suspensions are found to behave either like
homogeneous viscous liquids or like heterogeneous media. The
passage from one regime to another occurs at a specific length
scale, which can be much larger than the particle diameter d and
depends on the volume fraction φ and d . In Discussion, we use
the results of the pinch-off dynamics to conceptualize the onset of
heterogeneity in free surface flows of suspensions.

We study the pinch-off of drops of suspensions: first, monodis-
perse and then, polydisperse. By considering the stability of a
concentration fluctuation at the neck, we identify a specific thin-
ning regime that we call the dislocation of the suspension. We
derive scaling laws that describe this accelerated regime and its
duration; these scaling laws match experiments conducted with
a wide range of particle diameters and volume fractions up to
φ= 50% and are applicable to monodisperse and polydisperse
suspensions. Moreover, applying this approach to results from the
literature (13, 18, 19, 29) enables a global vision of the pinch-off
mechanisms of drops of non-Brownian suspensions.

Thinning Dynamics

Fig. 1 shows examples of the pinch-off of drops with the pure
silicone oil, further used as interstitial liquid, and suspensions of
particles of diameter d = 140μm and increasing volume fractions
φ= 2%, φ= 20%, and φ= 50%. The influence of the diameter
of the particles composing the suspension is also illustrated for
a volume fraction of φ= 50% and particles of diameters 20
and 250-μm. In the absence of particles (i.e., for the interstitial
fluid only), the pinch-off dynamics illustrated in Fig. 1A shows
that the neck that binds the drop to the nozzle thins down as
gravity and capillary pressure pull on it and stretches into a long
filament. Eventually, the thinning accelerates in the region where

A

B

C

D

E

F

h(t)

Fig. 1. Time series of the pinch-off of drops of (A) interstitial liquid (silicone
oil, no particles); (B) φ = 2%, (C) φ = 20%, and (D) φ = 50% of d = 140μm
particles; (E) φ = 50% of d = 20μm particles; and (F) φ = 50% of d = 250μm
particles. The nozzle has an outer diameter of 2.75 mm and serves as a scale
bar (Movies S1–S6 and SI Appendix).

this filament connects to the nozzle, leading to the breakup of the
filament.

The initial thinning dynamics of the particulate suspensions
is similar to the pure Newtonian liquid, although the dynamics
is much slower due to the increase in viscosity induced by the
presence of particles. In the dilute regime, φ= 2% shown in
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Fig. 1B, the neck stretches into a slender filament, similarly to
the pure liquid case, but this filament is eventually disturbed by
the particles. Each particle trapped in the filament leads to the
formation of a satellite drop, typically when the thickness of the
filament is comparable with the particle size. The satellite drops are
separated by viscous filaments that thin down with an associated
dynamics similar to the pure liquid case. At moderate volume
fraction (e.g., φ= 20% illustrated in Fig. 1C ), the particles begin
to slightly deform the liquid–air interface before they are pulled
apart. Eventually, a thin filament free of particles connects the
drop to the rest of the liquid at the nozzle. The resulting long
filament of interstitial liquid is much thinner than the particle size
and free of particles.

For dense suspensions, here φ= 50% in Fig. 1 D–F, the neck
breaks faster, and the pinch-off dynamics depends on the particle
diameter. For the 20-μm particles, illustrated in Fig. 1E, the neck
stretches significantly, but its shape is very different from the pure
liquid case. The thinning dynamics with large particles is highly
accelerated, as illustrated with the 250-μm particles shown in
Fig. 1F. In all three dense cases shown here, the penultimate
picture reveals a very short time during which the neck is made
of interstitial liquid only. However, the length of this filament
without particles is much shorter than the one observed for smaller
volume fractions. Another significant difference during the pinch-
off dynamics is the location where the breakup occurs. Indeed,
the viscous liquid always breaks up near the nozzle at the top
of the filament, whereas all suspensions break farther away from
the nozzle, especially for small particles. Also, the thinning of
suspensions is a localized phenomenon as shown by image cross-
correlation that enables us to estimate the distance over which
the velocity profile evolves (SI Appendix). We find the velocity
gradient to be negligible outside the volume h3 around the
neck (14).

At each time step, we extract the thickness of the neck at the
thinnest point h (Fig. 1A). The pinch-off of the neck occurs at
a finite-time t = tc, and we thus consider the time to pinch-off,
tc − t . Fig. 2A reports the thinning dynamics h(t) = f (tc − t)
of suspensions of 140-μm particles of volume fractions φ ranging
from 2% (purple) to 50% (yellow) in real time in Fig. 2A and in
rescaled time in Fig. 2B. In all plots, the time elapses from right to
left. For comparison, we reported in black the thinning dynamics
of the pure liquid without particles.

For the most dilute suspensions (φ= 2%; in purple), the
dynamics is barely distinguishable from that of the pure liquid.
The difference appears as soon as the volume fraction is larger
than 10%, where the thinning dynamics observed is slower. More
generally, the larger the volume fraction φ of the suspension, the
longer the thinning is, and the later the pinch-off is. However,
the shape of the thinning dynamics also changes with the vol-
ume fraction. For the most concentrated suspensions used here
(φ= 50%; in yellow), the dynamics is slower but continuously
accelerated. Thus, the thinning of the suspension is not simply
faster but intrinsically different and driven by a different physical
mechanism.

Bonnoit et al. (12) have shown that down to a certain neck
thickness, a particulate suspension behaves like a homogeneous
liquid of matching viscosity. In addition, the thinning dynamics
of the suspension can be rescaled onto the dynamics of another
viscous liquid (17). The method consists of stretching the time
to pinch-off by a factor αη and shifting it by the duration Δt ,
thus changing tc − t to αη(tc − t) + Δt . For each suspension
used in this study, we compute the values of αη and Δt so that
the early thinning dynamics of the suspension collapses onto the
dynamics of the interstitial liquid. Fig. 2B shows the rescaled
thinning dynamics obtained with this method when varying the
particle volume fraction φ. Once the proper rescaling is applied,
the thinning dynamics for suspensions of varying volume fraction
collapses onto that of a homogeneous fluid, and the two dynamics
match down to a critical thickness h�, which depends on the
particle size and the volume fraction. When the neck becomes
thinner than h�, the thinning of the suspension accelerates and
becomes faster than for the equivalent liquid, as can be seen in
Fig. 2B.

The specific dynamics of the suspension when h < h� is itself
divided into two regimes, as illustrated in logarithmic scale in
Fig. 2C for a suspension of volume fraction φ= 40% and particle
size d = 140μm. Below the critical thickness h�, there are two
well-defined regimes, each captured by a different power law
h(t)∼ (tc − t)α. The latest regime, in which h decreases linearly
with time, is the viscous-capillary regime known for the pinch-off
of viscous liquids (30, 31). The experiments reveal that there are
no particles in the neck anymore at this time. The experimental
thinning rate in this case is h(t)/(tc − t) = 0.08m × s−1, and
the theoretical thinning rate (30) is 0.0304γ/ηf = 0.066m × s−1

A B C

Fig. 2. (A) Thinning dynamics of suspensions of 140-μm particles dispersed in silicone oil at various volume fractions φ (colored symbols). The black symbols
represent the dynamics of the interstitial fluid (φ = 0). (B) Thinning dynamics in rescaled time. For each suspension, the time to pinch-off tc − t is shifted and
stretched into αη(tc − t) + Δt, so that the dynamics overlaps with that of the interstitial fluid in the early thinning regime. The dynamics of the suspensions
deviate from the interstitial liquid and accelerate at the critical thickness h = h�, represented by the horizontal dashed lines for volume fractions φ = 20, 30, 45,
and 50%. (C) Thinning dynamics in logarithmic scale for φ = 40% and d = 140μm. The neck undergoes three successive thinning regimes: (I) the homogeneous
liquid regime; (II) the dislocation, where h(t) ∼ (tc − t)1/2; and (III) the interstitial regime, where h(t) ∼ tc − t, similarly to a viscous liquid.

PNAS 2022 Vol. 119 No. 13 e2120893119 https://doi.org/10.1073/pnas.2120893119 3 of 9

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120893119/-/DCSupplemental
https://doi.org/10.1073/pnas.2120893119


(ηf denotes the viscosity of the interstitial fluid), which is slightly
smaller but in good agreement with our measurement. Therefore,
we can define a threshold thickness, h ′, below which particles do
not influence the detachment of the drop anymore. The existence
of the two thresholds h� and h ′ leads to the definition of three
regimes, shown in Fig. 2C : (I) for h(t)> h� , an equivalent liquid
regime, in which the suspension behaves like a homogeneous liq-
uid of matching viscosity; (II) for h ′ < h(t)< h� , a dislocation
regime, during which the heterogeneity of the suspension plays
a crucial role; and (III) for h(t)< h ′, the interstitial regime, in
which the neck is devoid of particles and the thinning is simply
the thinning of the interstitial regime. Also, the transition from
(I) to (II) corresponds to a change in the evolution of the shape of
the drop; for h > h� , the whole drop deforms, and for h < h� ,
only the neck does (SI Appendix). The entry into the dislocation
regime marks the onset of heterogeneity, where the discrete nature
of the particles affects the dynamics beyond simply increasing the
macroscopic viscosity.

Onset of Heterogeneity

Thinning Dynamics. Deforming a dense suspension leads to the
rearrangement of the particles, which causes dissipation. The
local volume fraction of particles remains constant if the particles
are simply sliding or rolling along each other and fluctuates if

they move away or toward each other. We hypothesize that the
detachment of a suspension drop accelerates because particles start
moving away from each other in the vicinity of the neck and
refer to this phenomenon as the dislocation of the suspension
ligament. The word dislocation is not to be taken in its meaning
of defect in a lattice, for there is no order in the suspension, but
is to be taken in its etymological meaning of sudden separation.
The dislocation mechanism begins when pulling particles apart
becomes energetically favorable compared with rearranging them.
In other words, dislocation is the growth of local fluctuations of
the particle volume fraction.

To describe the dislocation regime, we consider a liquid film of
thickness a between two portions of suspension, which represents
the local fluctuation of concentration in the neck. The viscosity
of the suspension is denoted η; the viscosity of the interstitial
liquid is denoted ηf. Pulling the two portions apart at the velocity
ȧ dissipates the power ηfh

4ȧ2/a3 (Materials and Methods). We
assume that during the dislocation regime, a is of the order of
magnitude of the particle diameter so that a ∼ d . By balancing
the power associated with the capillary forces γh2/(tc − t) and
the power associated with the viscous dissipation, we obtain the
scaling law for the thinning dynamics in the dislocation regime:

h(t)∼ (tc − t)1/2
√

γ

ηf
d . [1]

A B

C D

Fig. 3. Critical thickness (A) at the transition between the equivalent fluid regime (I) and the dislocation regime (II), h�, and (B) at the transition between
the dislocation regime (II) and the interstitial regime (III), h′, as a function of the volume fraction φ for monodisperse suspensions. (C) h� /d and (D) h′/d
plotted following the predictions given by Eqs. 2 and 3, respectively. The different symbols represent different particle sizes, and the big diamonds represent
experiments conducted with PEG. In C and D, the colors represent the volume fraction from dilute (2%; purple) to dense (50%; yellow), and the lines have a
slope of one.
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Eq. 1 describes the evolution of the thickness of the neck as the
capillary pressure makes particles move away from each other and
captures well the dynamics in the regime (II) shown in Fig. 2C. We
systematically observed this scaling law in all of our experiments
for suspensions with volume fractionφ≥ 20%. For dilute-enough
suspensions, there is a range of volume fractions in which the
thinning of the neck shifts directly from the equivalent regime
(I) to the interstitial regime (III). Therefore, the dislocation of
the suspension only occurs for concentrated-enough suspensions,
and the corresponding minimum volume fraction ranges from less
than 2% for 20-μm particles to 20% for 500-μm particles.

Transitions between the Different Thinning Regimes. Fig. 3A
reports the evolution of the critical thickness h� at the transition
between the equivalent fluid regime (I) and the dislocation regime
(II) when varying the volume fraction φ for monodisperse suspen-
sions with different particle diameters. The thickness h� increases
both with φ and d . Indeed, the larger the particles, the larger
the thickness h� is, and the denser the suspensions, the larger h�

is. Interestingly, the heterogeneities brought by the particles start
occurring at a much larger length scale than the particle diameter.
The critical thickness of the transition between the dislocation
regime (II) and the interstitial regime (III), h ′, depends on the
particle diameter d but not significantly on the volume fraction,
as illustrated in Fig. 3B. This observation is consistent with the
concept of dislocation since h� marks the onset of heterogeneity
when the suspension begins to dislocate, whereas h ′ marks the end
of dislocation when the suspension in the neck is so dilute that it
cannot be considered a suspension anymore.

Eq. 1 provides a prediction of the critical thickness h� as a
function of the properties of the suspension. Assuming that before
dislocation, the dynamics results from the balance between gravity
and the effective viscosity of the suspension, the relevant timescale
in the equivalent liquid regime (I) is given by t� = η/(ρ g h� ).
By combining this viscous–gravitational timescale with Eq. 1,
we obtain h� /d ∼ ηr

1/3 (�c/d)
2/3, where �c =

√
γ/(ρg) is the

capillary length (1.5 mm for the silicone oil used here). We
estimate the relative viscosity of the suspension ηr (φ) = η(φ)/ηf

using the Maron–Pierce correlation (32), ηr (φ) = (1− φ/φc)
−2,

with φc � 57.8% for the suspensions used here (17). Finally, we
obtain the evolution of the critical thickness at the dislocation
regime:

h�

d
∼
(
�c

d

)2/3 (
1− φ

φc

)−2/3

. [2]

Fig. 3C compares the rescaled dislocation threshold h� /d

with the quantity (�c/d)
2/3(1− φ/φc)

−2/3, which includes the
two input parameters of our experiments: the particle diameter
d and the volume fraction φ. We report in Fig. 3C the experi-
mental results for all monodisperse suspensions considered in this
study. The experimental results collapse onto a master line, which
matches Eq. 2 with the prefactor 0.6. The prediction only fails
for very dilute suspensions of large particles, shown by the purple
points in the lower left of Fig. 3C. In this case, the concept of
dislocation becomes irrelevant since there are not enough particles
in the neck to consider it as homogenous even during the early
stage of the pinch-off. The observation that this approach fails
only in this most extreme situation emphasizes the robustness of
the model, despite the rough assumptions made previously.

The excellent agreement between our experiments and the
model demonstrates that the acceleration of the thinning for
dense-enough suspensions is indeed induced by the dislocation
at the neck. Changing the solvent viscosity and wetting prop-
erties from 0.12 Pa×s (silicone oil) to 2.6 Pa×s [poly(ethylene

glycol-ran-propylene glycol) monobutyl ether (PEG)] (diamonds
in Fig. 3C ) does not affect the collapse of the data and the
agreement between the model and the experiments. We were also
able to extract the value h� from recent experiments performed
by Moon et al. (13), which provided the thinning dynamics for
suspensions of 10-μm particles. The model presented in this paper
also captures their experimental data (SI Appendix).

Similarly to Eq. 2, we can derive the threshold h ′ between the
dislocation regime (II) and the interstitial regime (III). The typical
timescale at this transition is given by t ′ ∼ ηf/(ρgh

′). Combining
this timescale with Eq. 1 yields

h ′

d
∼
(
�c

d

)2/3

. [3]

The corresponding experimental measurements of h ′ plotted
with respect to (�c/d)

2/3 for different monodisperse suspensions
are reported in Fig. 3D. Once again, we obtain an excellent
agreement between the model of Eq. 3 and the experimental
results. The collapse of the data onto the proposed law provides a
second proof that the acceleration of the thinning is caused by the
dislocation. Similar to what was observed for h� , the prediction
for h ′ fails for very dilute suspensions of large particles. In these
cases, it is notable that h� and h ′ are very close and smaller than
the particle size d . This means that the thinning switches directly
from the equivalent regime to the interstitial regime. Indeed, since
not enough particles are present in the neck, there is no dislocation
mechanism.

Polydisperse Suspensions. Monodisperse suspensions character-
ized by a single length scale, the diameter d of the particles,
are valuable to study due to their simplicity. Nevertheless, ac-
tual manufacturing applications or capillary processes primarily
involve polydisperse suspensions. In a polydisperse suspension,
each possible particle size is theoretically a relevant length scale of
the flow. As a first step, we consider the dislocation of bidisperse
suspensions. Bidisperse suspensions contain a volume fraction of
particles φ, split among φS of small particles of diameter dS and φL
of large particles of diameter dL. We introduce the volume ratio of
small particles ξ = φS/φ and the size ratio of particles δ = dL/dS
(33). For all of these suspensions and a volume fraction φ ranging
from 0 to 50%, we observe a thinning dynamic similar to that
of the monodisperse case, with the three successive regimes. The
main difference is that the thresholds of the dislocation regime,
h� and h ′, now depend on the composition parameters, ξ and δ.

Polydisperse suspensions are defined by the size distribution
of their particles, which we can be described through a volume-
averaged particle diameter d̄ . For a bidisperse suspension, this
quantity is d̄ = ξdS + (1− ξ)dL. The choice of the volume-
averaged diameter over the number-averaged diameter will be
justified in the last section. In addition to the particle size dis-
tribution, polydisperse suspensions also differ by their lower vis-
cosity for a given particle volume fraction than a monodisperse
suspension. Indeed, the polydispersity of the particles enables a
more efficient filling of the space, described by a larger value of the
critical volume fraction φc(ξ, δ). The viscosity of a polydisperse
suspension can be computed from the jamming fraction of a
polydisperse sphere packing using the Maron–Pierce correlation
(17, 32), ηr ∼ (1− φ/φc(ξ, δ))

−2, where the critical volume
fraction φc is estimated through the model of Ouchiyama and
Tanaka (34). From there, we compute h� and h ′ using d̄ and
φc(ξ, δ) in Eqs. 2 and 3.

Fig. 4A reports the evolution of h� /d̄ and Fig. 4B reports
the evolution of h ′/d̄ compared with the predictions of Eqs. 2
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A B

Fig. 4. (A) Critical thickness between the equivalent fluid regime (I) and the dislocation regime (II) rescaled by the volume-averaged particle diameter, h� /d̄,
reported following the prediction given by Eq. 2. (B) Critical thickness between the dislocation regime (II) and the interstitial regime (III) rescaled by the particle
diameter, h′/d̄, plotted following the prediction of Eq. 3. In both panels, the black open symbols correspond to the monodisperse suspensions presented in
Fig. 3, with each symbol shape corresponding to a different particle diameter. The colored symbols represent the results for the polydisperse suspensions, with
each symbol corresponding to a couple of particles sizes (in the legend). The colors represent the share of small particles in each suspension ξ from purple for
ξ → 0 (large particle–dominated regime) to yellow for ξ → 1 (small particle–dominated regime). The red crosses represent tridisperse suspensions containing
one-third 20-μm particles, one-third 140-μm particles, and one-third 500-μm particles. For all suspensions, the volume fraction varies from 2 to 50%. The
experiments represented by big diamonds are conducted in PEG, and all the other experiments are performed in silicone oil.

and 3. The colored symbols represent the bidisperse suspensions,
and their color indicates the volume ratio of small particles ξ.
The red crosses represent experiments performed with tridisperse
suspensions composed of one-third 20-μm particles, one-third
140-μm particles, and one-third 500-μm particles and a total
particle volume fraction φ ranging from 2 to 50%. The black open
symbols represent the monodisperse suspensions, already shown
in Fig. 3 C and D. We show all experiments on the same graph
to highlight the universality of our model beyond the simplest
monodisperse case usually considered in the literature.

For polydisperse suspensions, the critical thicknesses defining
the thresholds of the dislocation regime, h� and h ′, collapse onto
the same master line as the monodisperse suspensions. The limita-
tions are the same as in the monodisperse case. More specifically,
dilute suspensions of large particles do not dislocate because there
are too few particles in the neck. The collapse of h ′ vs. d̄ shown
in Fig. 4B is even more apparent. Indeed, using a polydisperse
suspension allows for tuning the volume-average diameter, and
these experiments clarify the dependence of h ′ on the particle
diameter. Therefore, it appears that the dislocation regime only
depends on the size distribution through the volume-averaged
diameter d̄ and the critical volume fraction φc(ξ, δ).

Discussion

Coherence Length. A notable feature in the pinch-off of suspen-
sion drops is that the threshold to the heterogeneous regime h�

can be much larger than the diameter of the particles d and also
depends on the volume fraction φ. Indeed, a classical interpreta-
tion of the transition between a homogeneous and heterogeneous
regime is that the equivalent fluid regime stops when the scale
of the flow (here, the neck width h) becomes comparable with
the particle size (11, 15). Such an interpretation would lead to
h� ∼ d , with a proportionality factor of order one. However, our
experiments demonstrate that although for dilute suspensions,
h� is indeed of the order of the particle diameter, it becomes
much larger than d at larger volume fractions. For instance, for
φ= 50%, we measure h� = 1.6mm for 140-μm particles, which

is more than 11 times the diameter of the particles d . With 20-
μm particles, we measure h� = 1.24 mm, 62 times larger than
the particle diameter. More generally, Fig. 3C shows that the
ratio h� /d varies over two orders of magnitude and strongly
depends on the volume fraction. The polydisperse suspensions
exhibit the same trend, as reported in Fig. 4A. Therefore, the
heterogeneous structure of dense suspensions plays a role at a
scale much larger than the particle diameter. A similar feature
has been previously reported for the free surface flow of dense
suspensions on an inclined plane. Indeed, Bonnoit et al. (22)
have defined a mesoscopic length scale that increases with the
volume fraction and diverges at the critical volume transition φc .
The critical thickness h� reported in this study is similar and
corresponds to the limit of the homogeneous regime, at the onset
of heterogeneity. In the present case, this length would also diverge
when φ→ φc.

Physically, the length h� can be seen as the coherence length of
the interactions through which momentum diffuses. As a particle
undergoes a fluctuation of its position, it exerts a force upon its
neighbors through the lubrication film between them. If there are
contacts between particles, they transmit the momentum directly.
Other forces can also act on the particles. For instance, for dilute
suspension, the viscous drag on the particle should also be taken
into account. If the particles are small enough, they will be subject
to Brownian motion and van der Waals forces. The coherence
length can then be seen as the typical length over which a fluctua-
tion will be damped. Therefore, a stress applied on the suspension
will be distributed across a volume defined by the coherence
length. In the present configuration, during the detachment of
the drop, the curvature of the neck generates a capillary pressure
gradient between the neck and the rest of the suspension. The
resulting stress will be distributed across the suspension if the
neck is thicker than the coherence length. However, if the neck
is thinner than the coherence length, a fraction of the suspension
may experience larger local stress, which pulls the particles apart
from each other and leads to the breakup through dislocation.
Therefore, the coherence length here controls the stability of the
suspension against a concentration fluctuation.
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Here, the words fluctuation and coherence length are meant
to suggest an analogy with statistical mechanics, even if it is only
a rough sketch. As the suspension flows, each particle creates a
local disturbance, and one can imagine an ideal state of local
equilibrium where the distance between particles is maximum so
the global dissipation is minimum. Deviations from this ground
state would be caused by the preparation of the suspension and by
the constraints applied on the suspension (shape of the container,
stress, body force). There are similarities with this approach and
the Edwards ensemble (35, 36), in which the volume fraction
of granular media plays the role of energy. For suspensions,
volume fraction is directly linked to the rate of dissipation (by
the viscosity), which is the quantity that should be minimized.

The correlation length also applies to polydisperse suspensions,
although the range of sizes of the particles makes the interactions
between particles more complex. Assuming that the volume of the
lubrication film around a given particle is directly proportional to
the volume of that particle, the lubrication pressure between small
particles and between large particles is of different magnitude.
This explains why h� is relatively much larger for 20-μm particles
than for larger particles (Fig. 2C ). Indeed, for smaller parti-
cles, the relative lubrication pressure between them is stronger,
and therefore, a perturbation may spread further. Therefore, the
coherence length should depend not only on the number of
interactions but also, on the relative force of these interactions.
As a result, the relevant length scale of polydisperse suspensions is
the volume-averaged diameter rather than the number-average di-
ameter. Similarly, the Ouchiyama–Tanaka model (34) with which
we compute φc for the polydisperse suspensions is based on a
volume average of the local volume fraction. Therefore, the pinch-
off dynamics, particularly the transition between the different
regimes, of a polydisperse suspension can be inferred from the
volume-averaged particle diameter and volume-averaged volume
fraction.

Our pinch-off experiments with bidisperse suspensions reveal
that they follow dynamics similar to monodisperse suspensions,
meaning that pinch-off does not filter particles by size. The
dislocation model enables us to understand why; despite the size
difference, the movement of small particle remains strongly cor-
related to that of large particles, and they are not easily separated.
This good agreement of our model with the bidisperse suspensions
enable us to neglect self-filtration (37, 38) as a mechanism for the
accelerated pinch-off.

Two-Particle Interaction. Contrarily to h�, the length h ′ does
not depend much on the volume fractionφ (Fig. 3C ). From a neck
thickness h(t) = h ′ and smaller, the neck reduces to a filament
of interstitial liquid, without any particle in it. Just before this
transition, the neck contains two particles, and the film between
them experiences all of the stress acting on the neck. Thus, h ′ can
be interpreted as the thickness that balances the viscous interaction
between the last two particles of the neck and the driving force of
the thinning (capillarity and the weight of the drop in the present
case).

Multiple Dislocations. Various studies on the pinch-off of sus-
pension have reported qualitatively similar results. In particular,
the pinch-off of suspension drops from other studies should also
be explained by the mechanisms and scaling law presented in this
work (18, 19). In both studies, the thinning of the suspension
was empirically interpreted in terms of non-Newtonian rheology.
We demonstrate in the following that the concept of dislocation
can explain these results without involving a non-Newtonian
rheology.

Roché et al. (18) studied the thinning of cornstarch suspensions
in water, with an average particle diameter of 14-μm. For
φ= 37%, they observed a long filament that would eventually
destabilize into “jammed” regions where the strain rate was
zero and “flowing” regions where the thinning continues. They
measured the wavelength between two flowing regions as 700-
μm, although the theory of the Rayleigh–Plateau instability
predicts 7 mm. Applying Eq. 2 to their configuration (d = 14μm,
�c = 2.7 mm for water), we obtain 628-μm< h� < 875μm in
their range of volume fraction (23%< φ < 39%). Thus, if the
length of the neck is much longer than h� when h(t) = h� ,
several dislocations can happen simultaneously, and h� is then
the wavelength of the destabilization. Although the authors
considered the regions not thinning as jammed, it does not
necessarily need to be the case, and the thinning simply continues
where the viscosity is the lowest (i.e., in the dislocating regions).
Pan et al. (19) studied denser suspensions of smaller particles
(1.3μm≤ d ≤ 10μm, with 55%≥ φ≥ 59%). The thinning
dynamics of their aqueous suspensions are similar to those of
our viscous liquids; however, they did not observe dislocation.
In their configuration, the coherence length of their suspensions,
calculated through Eq. 2, is a few millimeters depending on the
jamming fraction. The filament is then always shorter than the
wavelength of the destabilization and is, therefore, stable.
Dislocation of Capillary Bridges. In a recent study, Château
et al. (29) observed the pinching and breakup of capillary bridges
of suspensions. Although their configuration is different from a
pending drop, they also reported a deviation from the homoge-
neous liquid regime but did not provide a model to explain the
variations of h�. The scaling law for the thinning regime (Eq. 1)
matches their data for φ > 20%, whereas a linear law fits better for
φ≤ 20% (SI Appendix). Therefore, it seems that by plotting the
last moments of the dynamics, Château et al. (29) were observing
the interstitial regime for φ≤ 20% and the dislocation regime for
φ > 20%. In the latter case, the interstitial regime may have been
too short to be observed. However, their empirical scaling for h�

differs from ours, probably because the flow is different.

Conclusion

The pinch-off of a drop of particulate suspension undergoes three
regimes: first, the equivalent liquid regime followed by a disloca-
tion regime and finally, the interstitial regime. In the first regime,
the drop of suspension behaves like a drop of a homogeneous
liquid of matching viscosity, and the particles simply rearrange
when the drop deforms; this is the equivalent liquid regime. Below
a certain thickness of the neck, h�, the particles cannot simply
rearrange themselves and start moving away from each other; the
suspension dislocates. Finally, when particles are too far from each
other to interact, the neck reduces to a filament of interstitial
liquid. This is the interstitial regime, identical to the viscous-
capillary regime observed during the pinch-off of a viscous liquid.
This last transition occurs at the thickness h ′, representing the
interaction range between two particles.

The dislocation of the suspension is caused by the amplification
of a fluctuation of local volume fraction. We obtained in this
study a scaling law for this regime, h(t)∼ (tc − t)1/2, as well as
for the critical thicknesses h� and h ′. These predictions captured
all experiments, including those performed with polydisperse
suspensions. The critical length h� translates the balance between
the driving force of the interactions between the particles. This
length corresponds to a coherence length of the suspension under
the stress caused by capillary pressure and the weight of the falling
drop.

PNAS 2022 Vol. 119 No. 13 e2120893119 https://doi.org/10.1073/pnas.2120893119 7 of 9

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2120893119/-/DCSupplemental
https://doi.org/10.1073/pnas.2120893119


Although our experiments considered the detachment of a
drop, the concepts of coherence length and dislocation developed
here go beyond this particular situation and should apply to
other suspension flow. Notably, the flow of suspensions on an
inclined plane exhibits a similar length scale, much larger than
the particle diameter, and defines the threshold from the effective
liquid regime to an intermediate regime (22). Therefore, it appears
that the onset of heterogeneity in the flows of suspensions is
controlled not directly by the size of the particles but by the reach
of the long-range interactions between them.

In conclusion, two length scales that depend on the particle
diameter d and the volume fraction φ characterize the capillary
flow of suspension: the reach of the interactions between two
particles and the coherence length of these interactions across
the suspension. Since the interactions occur because of external
stress, these length scales themselves depend on this applied stress.
Future studies will apply these concepts to other systems involving
suspensions, such as the formation of thin films (23, 24, 25)
and the fragmentation of suspension ligaments and sheets (26).
In addition, beyond polydisperse suspensions, the dislocation
of other kinds of complex suspensions (for example, made of
nonspherical particles, such as fibers, or even active particles)
should be considered. We expect that exploring different flows
will enable a better comprehension of the interactions between
particles that can lead to more predictive manufacturing processes.

Materials and Methods

Particulate Suspensions. The suspensions are made of polystyrene particles
(DynoSeeds from Microbeads) with measured diameters of 21.6 ± 0.9, 80.3
± 5.0, 144.2 ± 8.3, 249.0 ± 4.2, and 578.1 ± 10.1 μm. These particles
are referred to in the article as 80, 140, 250, and 500-μm, respectively. The
roughness of the particles is of order 100 nm (39), and their density is in the
range ρ= 1050 − 1060 kg/m3. The particles are dispersed in a density-
matched interstitial liquid to prevent buoyancy effects. We primarily used AP100
silicone oil (from Sigma Aldrich) of shear viscosityηf = 120 mPa×s and surface
tension γ = 24 ± 2 mN/m at 20 ◦ C, which perfectly wets the particle. We also
conducted experiments with particles dispersed in PEG (Sigma Aldrich), for which
ηf = 2.5 Pa×s and γ = 45 mN/m. The molar weight being as low as 3,900
g/mol, this solvent can be considered Newtonian. For both interstitial liquids used
in this study, the settling time of the particles is much longer than the timescale of
the experiments so that the suspensions can be considered as neutrally buoyant.

The bidisperse suspensions are composed of the same interstitial fluid
(silicone oil AP100) and made using a couple of particle sizes (dS, dL) chosen
among (20, 80-μm), (20, 140-μm), (20, 250-μm), (80, 140-μm), and (80, 250-
μm). In these experiments, we also vary the volume fraction of small particles
ξ = φS/(φS + φL). The tridisperse suspensions contains one-third 20-μm
particles, one-third 140-μm particles, and one-third 500-μm particles.

Pinch-Off Experiments. The suspensions are transferred to a syringe and then
manually extruded through a nozzle of outer diameter 2.75 mm (for wetting
liquids, the outer diameter is the relevant length scale). The extrusion is con-

ducted slowly to avoid any inertial effects. The experiments are recorded using
a high-speed camera (Phantom VEO 710) equipped with a macro lens (Nikon
Micro-Nikkor 200-mm AI-S). To resolve perfectly the contour of the drop and the
filament, we place a panel of light emitting diodes (LEDs, from Phlox) behind
the experimental setup. The time evolution of the contour of the drop and the
minimum diameter of the filament h(t) are extracted through custom-made
routines using ImageJ and Python.

Rescaling and Relevant Lengths. To measure h�, we rescale the time as
αη(tc − t) + Δt and find the critical thickness at which the rescaled dynamics
of the suspension deviates from the dynamics of the interstitial liquid. The stretch-
ing parameter αη accounts for the viscosity difference between the suspension
and the Newtonian liquid used for comparison. The time shiftΔt accounts for the
acceleration of the thinning due to the presence of the particles. Previous work at
constant volume fraction φ suggested that αη can be seen as the viscosity ratio
between the suspension and the comparative Newtonian liquid ηr = η/ηf (17).
However, the present study shows that this result does not hold if the difference in
viscosity between the suspensions and the viscous liquid used for comparison is
too large. Althoughαη follows the same divergence as the viscosity, the evolution
of αη over a broad range of volume fraction φ does not quantitatively match the
viscosity of the suspensions measured with a rheometer. The length h� is the
thickness at which the rescaled dynamics of the suspension deviates from that of
the interstitial fluid. We defined it systematically as the point where the thinning
rate dh/dt of the suspension differs by more than 5% from that of the interstitial
liquid. The length h′ (smaller than h�) is defined as the thickness at which the
thinning dynamics of the filament becomes linear (i.e., follows a capillary-viscous
regime).

Dislocation. To describe the dislocation regime, we consider the stretching of
a liquid film of thickness a between two portions of suspension pulled apart at
the velocity ȧ. We estimate the power dissipated in the flow within. Assuming
that the suspension on each side of the film is much more viscous than the
interstitial liquid (ηr � 1), we approximate the flow as that of two plates pulled
apart. The liquid film is then set between two cylindrical plates of diameter h
at positions z = 0 and z = a. By solving the Stokes equation in the lubrication
approximation, we obtain the axial velocity gradient:

∂ur

∂z
= 3

ȧ
a3 r(2z − a). [4]

We integrate the velocity gradient over the volume of the film and obtain the
order of magnitude for the power of viscous dissipation in the neck:

Pdis =

∫∫∫
Ω

ηf

(
∂ur

∂z

)2

dΩ∼ ηf
h4

a3 ȧ2. [5]

Data Availability. All study data are included in the article and/or supporting
information.
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10. V. Thiévenaz, A. Sauret, Pinch-off of viscoelastic particulate suspensions. Phys. Rev. Fluids 6, L062301
(2021).

11. R. J. Furbank, J. F. Morris, An experimental study of particle effects on drop formation. Phys. Fluids 16,
1777–1790 (2004).

12. C. Bonnoit, T. Bertrand, E. Clément, A. Lindner, Accelerated drop detachment in granular suspensions.
Phys. Fluids 24, 043304 (2012).

13. J. Y. Moon, S. J. Lee, K. H. Ahn, S. J. Lee, Filament thinning of silicone oil/poly (methyl methacrylate)
suspensions under extensional flow. Rheol. Acta 54, 705–714 (2015).

14. M. S. van Deen et al., Particles accelerate the detachment of viscous liquids. Rheol. Acta 52, 403–412
(2013).

15. R. J. Furbank, J. F. Morris, Pendant drop thread dynamics of particle-laden liquids. Int. J. Multiph. Flow
33, 448–468 (2007).

16. A. Lindner, J. E. Fiscina, C. Wagner, Single particles accelerate final stages of capillary break-up.
Europhys. Lett. 110, 64002 (2015).

17. V. Thiévenaz, S. Rajesh, A. Sauret, Droplet detachment and pinch-off of bidisperse particulate
suspensions. Soft Matter 17, 6202–6211 (2021).

8 of 9 https://doi.org/10.1073/pnas.2120893119 pnas.org

https://doi.org/10.1073/pnas.2120893119
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