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ABSTRACT

Object-based co-localization of fluorescent signals allows the assessment of interactions between two (or more)
biological entities using spatial information. It relies on object identification with high accuracy to separate
fluorescent signals from the background. Object detectors using convolutional neural networks (CNN) with
annotated training samples could facilitate the process by detecting and counting fluorescent-labeled cells from
fluorescence photomicrographs. However, datasets containing segmented annotations of colocalized cells are
generally not available, and creating a new dataset with delineated masks is label-intensive. Also, the co-
localization coefficient is often not used as a component during training with the CNN model. Yet, it may aid
with localizing and detecting objects during training and testing. In this work, we propose to address these
issues by using a quantification coefficient for co-localization called Manders overlapping coefficient (MOC)1 as
a single-layer branch in a CNN. Fully convolutional one-state (FCOS)2 with a Resnet101 backbone served as
the network to evaluate the effectiveness of the novel branch to assist with bounding box prediction. Training
data were sourced from lab curated fluorescence images of neurons from the rat hippocampus, piriform cortex,
somatosensory cortex, and amygdala. Results suggest that using modified FCOS with MOC outperformed the
original FCOS model for accuracy in detecting fluorescence signals by 1.1% in mean average precision (mAP).
The model could be downloaded from https://github.com/Alphafrey946/Colocalization-MOC.

Keywords: Co-localization, Deep learning, Fluorescence microscopy,High-content screening, Object Detection,
Pattern recognition and classification

1. INTRODUCTION

Fluorescence microscopy has been extensively used in biomedical research for decades and is often considered
a gold standard method for studying cellular and subcellular anatomy and function. Commonly, multiple fluo-
rescent probes are used to identify specific cellular or subcellular targets via the coincident expression of more
than one target molecule. Interpretation of whether different molecules occur at the same spatial location (i.e
co-localization) is critical for evaluating the chemical regulation of biological systems and the site of action.3

To quantify the co-localization, the object molecules are first identified, and then spatial analysis among these
detected objects is performed using either co-occurrence or correlation analysis.4,5 On one hand, however,
object-based methods heavily rely on separating objects from the background, either manually or automatically.
Manual delineation of cell segmentation for identifying co-localization events within a field of view is labor-
intensive, requires domain knowledge, and is susceptible to observer subjectivity and inter-observer variation.6

Automated methods used thresholds and filters to separate objects from the background. The performances of
those method are heavily depending on image quality and those methods are sensitive to background noise.7–9

For certain in vitro biomarkers, most current methods would yield poor results.
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To address these challenges, segmentation based convolutional neural networks (CNN) has been proposed
for object detection of cells.10 However, detailed pixel-level labels still require annotation effort for preparing
training datasets.6 By comparison, weakly supervised object detection with weak annotations, such as using
bounding boxes11,12 and points,13,14 do not need a large amount of pixel-wise segmentation data and reduces the
required annotation effort for preparing training datasets. In the training phase, the performance of bounding
box regression can be improved by either a better network design,15 or a new branch for extracting reliable local
features.16

In this work, we treated object-based co-localization analysis as an object detection task utilizing a CNN
model. Bounding boxes were generated from point annotations created by a domain expert, thereby reducing
the annotation burden for training the CNN model. First, fluorescence microscopy images were separated into
individual wavelength channels and then overlaid on images taken at different wavelength channels to create
combinations. In our datasets, fluorescent images of DAPI stained nuclei were overlaid with fluorescent images
of NeuN immunoreactivity, a biomarker of neurons, and 3-nitrotyrosine (3-NT), a well-established marker of
oxidative damage. Each point annotation served as the center for a corresponding bounding box annotation,
which were defined as the coordinates of the rectangular border surrounding one colocalized cell, shown in Fig.
1. We propose a single-layer branch using Manders coefficient to measure the degree of co-occurrence, which
calculate the spatial overlap between detected fluorophores, as defined in Eq. 1. Our approach provides more
local information for bounding box localization and improves detection accuracy.

The main contributions of this paper are summarized as:

• Introducing fluorescent labeled cell co-occurrence information as a single-layer branch to help filtering of
bounding boxes determined to be low-quality, in order to improve detection accuracy.

• Showing improvement over original state-of-the-art FCOS model using lab curated dataset.

Figure 1. A Representative fluorescence photomicrograph displaying three data channels (red ,green and blue) with a
bounding box (white box) which encloses a potential colocalized candidate.

2. APPROACH

2.1 Detection Network

A fully convolutional one-state (FCOS) object detection network2 was modified with Resnet10117 as the backbone
in this work because of its state-of-the-art efficiency in both time and computation resources.2 We introduced
a single-layer branch in subnets called MOC, in parallel with classification and center-ness branch as shown in
Fig. 2. For fair comparison, we modified the FCOS module implemented from mmdetection18 toolbox and used
the nonmodified version from mmdetection18 as benchmark.
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Figure 2. The network architecture of modified FCOS. Compare to original FCOS network, a new MOC branch (one
layer) is added to the subsets.

2.2 Manders Overlapping Coefficient

A single-layer branch using Manders coefficient is added in parallel with the center-ness and the classification
branch. The co-occurrent signals were measured using Manders coefficient1 within each bounding box instead
of the correlation, which normally uses Pearson’s or Spearman’s coefficient.19 A higher MOC indicates that
channels are highly colocalized. The funcion is

MOC =

∑
(I1 × I2 × ...× In)√∑

(I1)2 ×
∑

(I2)2 × ...×
∑

(In)2
, (1)

where In are the intensity values within the detected bounding boxes that indicate target cell locations at channel
n. The MOC, within the range of 0 to 1, indicates the fraction of colocalizing signal intensity among channels
In, and the degree of co-localization. An advantage of the MOC is that it is not sensitive to differences in signal
intensity due to photobleaching, different imaging setting, or different fluorescent probes.20

MOC is trained with binary cross entropy (BCE) loss during training, then this loss is added to the loss
function proposed from the original FCOS model.2 The new loss function for our modified FCOS module is
defined as

Loss = FL+ α× IOU + β × CE +MOC, (2)

where FL stands for Focal loss, interaction-over-union (IOU) stands for IOU loss, CE stands for Cross Entropy,
and α and β are hyperparameters.2

The MOC is also used to rank the detected bounding boxes during testing. The final ranking score is modified
from multiplying the predicted center-ness with the corresponding classification score2 to

center − ness+MOC

c
× classification. (3)

By our experiments, we found out that 1.5 would be suitable value for c. Such procedure could down weight the
score of bounding boxes containing less overlapping fluorophores. As a result, these bounding boxes with lower
MOC scoring might be filtered out, improving the detection performance.

3. EXPERIMENTS

3.1 Training

A training dataset was generated by our lab.21 Appendix A contains the preparation and data acquisition
methods in detail. Single channel grayscale images of different fluorescent probes were combined into RGB
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images. Image arrangement was as follows: NeuN labeled neurons (red) channel with DAPI stained nuclei (blue)
channel and 3-NT (green) channel. For training purposes, the acquired raw data were cropped and resized to
have their shorter side being 800 and their longer side less or equal to 1333 (800*1333). The dataset, including
4416 images, consisted of approximately 60% training data, 20% validation data, and 20% testing data.

Point annotations were made in the center of each cell determined by a domain expert. Bounding boxes were
generated from the point labels, which served as the center for each individual bounding box for the target cell.
Bounding box size was defined by the average size of the targeted cell (20 µm) multiplied by the fluorescence
micrograph pixel resolution (2.981 pixel/µm). Those bounding boxes were also plotted back on the images for
quality control by a team member.

The network was trained with stochastic gradient descent (SGD), with weight decay of 0.0001 and momentum
of 0.9. The network was trained over 24 epochs with the initial rate of 0.005 with 8 images per batch (4 images per
GPU). After a first warm up epoch, the learning rate is reduced by a factor of 10 at epoch 17 and 23, respectively.
We used the hyper-parameters from the original FCOS paper to make sure the right inference setting was used.2

Since Tian et al. did not test FCOS with fluorescence photomicrograph images from the original paper, we also
compared our result with another state-of-the-art object detection method, FreeAnchor.22 The FreeAnchor was
trained over 24 epochs with 8 images per iteration.

3.2 Evaluations

Performance was evaluated using standard practice of evaluating object detection.23 Average precision (AP) is
defined as the area under the recall-precision curve for detection precision, given a certain IOU threshold value
between predicted bounding boxes with ground truth. We reported the mean average precision (mAP) value,
which calculated the mean of AP using a range of IOU values. The range of IOU values was from 0.05 to 0.95
with an increment value of 0.05. The AP at IOU value of 0.5 and 0.75, denoted as AP50 and AP75 respectively,
was also determined. Reported results evaluated the performance on training with our dataset using original
FCOS as baseline, and our modified model as comparison.

Table 1. FCOS vs. our modified model (FCOS+MOC) and Free Anchor. S is the size of the shorter side of the image, and
S ×1.66 implies that the image is rescaled such that its longer side cannot exceed 1.66 × S.24 FCOS+MOC outperforms
the original FCOS by 1.1% mAP, 0.3%AP50 and 3.3% AP75 with the same backbone.

Module Backbone Training Size Test Size AP AP50 AP75

FreeAnchor22 X-101 800 ×1.66 800 x 1.66 47.0 87.9 42.6

FCOS2 X-101 (640, 800) ×1.66 800 ×1.66 49.2 90.4 44.7

Our Method X-101 (640, 800) ×1.66 800 ×1.66 50.3 90.7 48.0

4. RESULT

Table 1 shows the improvement in object detection accuracy using our modified model. The mAP, AP50, and
AP75 increased by 1.1%, 0.3%, and 3.3% respectively, compared with the original proposed FCOS model. We
also shows that both FCOS (with and without MOC) outperformed FreeAnchor. Thus, training with the MOC
branch improves the performance using our datasets.

5. CONCLUSION

In this study, fluorescence photomicrographs obtained from our lab were used to train a state-of-the-art object
detection network and used MOC as a subnet branch for cell co-localization analysis. The task of co-localizing
different wavelength fluorescent signals was carried out by deep learning-based object detection using bounding
boxes based on point annotation. We report that training with MOC improved detection performance compared
to the baseline. This approach is promising for improving accuracy in fluorescent signal co-localization tasks. In
the future, we plan to determine whether the MOC can boost the performance on different network architectures
for object detection as well as object counting.
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APPENDIX A. STAINING METHOD AND DATA ACQUISITION

Adult male Long Evans rats were exposed to 10 mg/kg/d chlorpyrifos (CPF, s.c.) or vehicle (10% Ethanol+90%
Neobee M-5) for up to 21 d. A subset of animals were pretreated with the antioxidant Trolox (1 mg/kg/d i.p.)
beginning 5 d prior to and continuing throughout CPF exposure. Brains were collected and sliced into 2 mm thick
coronal sections. Tissue sections were then post-fixed in 4% paraformaldehyde (PFA) for 24 h at 4◦C before being
transferred to 30% sucrose in PBS at 4◦C. Sections were embedded and frozen in Tissue-Plus™ O.C.T. compound,
and cryosectioned into 10 µm thick sections and stored at -80◦C. To perform immunohistochemistry staining,
slides were air-dried at room temperature, washed with PBS, and then placed in sodium citrate buffer (10 mM
C6H5Na3O7 . 2H2O, pH 6.0) and heated for 30 min in a rice cooker for antigen retrieval. Following antigen
retrieval, sections were incubated in blocking buffer [PBS with 10% normal goat serum, 1% bovine serum albumin
and 0.03% Triton X-100] for 1 h at room temperature, and then incubated with primary antibody in blocking
buffer at 4◦C overnight. Primary antibodies included mouse anti-NeuN (1:1000) and rabbit anti-nitrotyrosine (3-
NT, 1:200). Sections were washed in PBS with 0.03% Triton X-100 on the next day before incubated in secondary
antibody in blocking buffer for 2 h at room temperature. Goat-anti mouse IgG1(γ1) conjugated to Alexa Fluor
568 nm (1:1000, A21124, Life Technologies) and goat-anti rabbit Ig conjugated to Alexa Fluor 488 nm (1:500,
Life Technologies A11034) were used to detect anti-NeuN and anti-3-NT, respectively. Fluorescent images were
acquired by the ImageXpress Micro XLS Widefield High-Content Analysis System (Molecular Devices).
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