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Microglia influence immune
responses and restrict neurologic
disease in response to central
nervous system infection by a
neurotropic murine coronavirus
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Intracranial (i.c.) inoculation of susceptible mice with a glial-tropic strain of mouse

hepatitis virus (JHMV), a murine coronavirus, results in an acute encephalomyelitis

followed by viral persistence in white matter tracts accompanied by chronic

neuroinflammation and demyelination. Microglia serve numerous functions

including maintenance of the healthy central nervous system (CNS) and are

among the first responders to injury or infection. More recently, studies have

demonstrated that microglia aid in tailoring innate and adaptive immune

responses following infection by neurotropic viruses including flaviviruses,

herpesviruses, and picornaviruses. These findings have emphasized an important

role for microglia in host defense against these viral pathogens. In addition,

microglia are also critical in optimizing immune-mediated control of JHMV

replication within the CNS while restricting the severity of demyelination and

enhancing remyelination. This review will highlight our current understanding of

the molecular and cellular mechanisms by which microglia aid in host defense,

limit neurologic disease, and promote repair following CNS infection by a

neurotropic murine coronavirus.
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1 Introduction

The Coronaviridae family is composed of large (26–32 kb), enveloped, single-stranded
RNA viruses in the order Nidovirales (Bergmann et al., 2006; Gorbalenya et al., 2006) that are
classified into groups based on shared sequencing homologies and serologic cross-reactivity
(Bergmann et al., 2006; Gorbalenya et al., 2006). Their naming dates to the 1960s when
McIntosh et al. (1967) isolated infectious bronchitis virus (IBV)-like virions from the upper
respiratory tracts of patients with common colds. When electron micrographs of avian IBV
and the newly isolated human strains were compared, the “club- or pear-shaped” projections
on their viral coats showed strikingly similar characteristics, which ultimately led to
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grouping these viruses together with the coronavirus family name,
based on the Latin root, “corona,” for their crown-like appearance
(Tyrrell and Myint, 1996).

The neuroattenuated John Howard Mueller (JHM) strain of
mouse hepatitis virus (JHMV) is a well-characterized laboratory
strain that can cause severe encephalomyelitis and demyelination
in adult mice (Cheever et al., 1949; Fleming et al., 1986). Infection
of susceptible mice with JHMV has proven to be an effective mouse
model for studying various immunologic and pathologic features
associated with viral-induced neurologic disease. Following a
sublethal intracranial (i.c.) infection with JHMV, virus rapidly
infects and replicates within ependymal cells lining the lateral
ventricles (Wang et al., 1992; Lane et al., 1998). Within 24-h, JHMV
rapidly spreads and penetrates further into the parenchyma where
astrocytes, oligodendrocytes, and microglia are targets of infection,
while neurons are relatively spared (Fleming et al., 1986; Wang
et al., 1992). Viral titers within the brain peak between days 5
and 7 post-infection (p.i.) and decline below levels of detection
by plaque assay (∼100 PFU/g tissue) between 10 and 14 days
p.i. Sterilizing immunity is incomplete, as viral antigen and RNA
are capable of persisting within the CNS (Marten et al., 2000),
and this is associated with chronic neuroinflammation leading to
an immune-mediated demyelinating disease, which is mediated
by inflammatory T cells and myeloid cells (Perlman et al., 1999;
Wu and Perlman, 1999; Wu et al., 2000; Glass et al., 2001, 2004;
Liu et al., 2001c; Dufour et al., 2002; Pewe and Perlman, 2002;
Pewe et al., 2002; Kim and Perlman, 2005; Bergmann et al.,
2006; Sariol et al., 2020). More recently, roles for microglia in
both demyelination and remyelination in JHMV-infected mice
have been implicated (Wheeler et al., 2018; Mangale et al., 2020;
Sariol et al., 2020). Due to the clinical and histologic similarities
to the human demyelinating disease, multiple sclerosis (MS), the
JHMV model of viral-induced neurologic disease is considered
a relevant pre-clinical model of MS (Lane and Buchmeier, 1997;
Bergmann et al., 2006).

2 Microglia

Microglia are the brain’s resident immune cells, comprising
approximately 5–12% of all cells found in the brain, and, together
with perivascular, choroid plexus, and meningeal macrophages,
comprise the macrophage compartment of the CNS. Originally
presumed to be “resting,” microglia in the healthy adult brain are
highly dynamic, surveying the entire brain parenchyma every 24 h.
In this “surveying” state, microglia exhibit a ramified morphology
and serve to support neuronal function and health via physical
interactions and a vast repertoire of released signaling molecules
and enzymes (Nimmerjahn et al., 2005; Kierdorf and Prinz, 2017;
Hume et al., 2019). Recent research indicates that these cells have
a long lifespan, sustain their population through self-renewal, and
display molecular and transcriptional diversity based on location
within the CNS (Reu et al., 2017; Masuda et al., 2019; Zhan et al.,
2019). When faced with infections, aging, or injuries, microglia
adapt in terms of transcription, morphology, and function; changes
that are typically beneficial or vital for recovery (Hammond
et al., 2019; Mathys et al., 2019). In acute inflammatory events,
the pro-inflammatory response resolves and microglia continue

their surveillance of the brain parenchyma, returning to brain
homeostasis. However, in response to injury or infection, the
equilibrium between microglial surveillance and activation can be
disturbed, creating a chronic neuroinflammatory state that can lead
to tissue damage. Beyond their immune roles, it’s now understood
that microglia play other roles in the homeostatic and developing
brain (Salter Michael and Beggs, 2014; Li and Barres, 2018; Prinz
et al., 2019). These findings have occurred across a backdrop of
increasingly elegant methodological advances including single cell
analyses (Hammond et al., 2019; Li et al., 2019; Masuda et al., 2019),
microglial ablation paradigms (Elmore et al., 2014; Bruttger et al.,
2015; Han et al., 2017, 2019; Green et al., 2020), and in vivo imaging
techniques (Nimmerjahn et al., 2005; Miyamoto et al., 2016; Liu
et al., 2019; Stowell et al., 2019), that together have characterized
the dynamic influence microglia have on virtually all major CNS
cell-types over the lifespan of an organism.

We recently employed scRNAseq on flow-sorted CD45+ cells
enriched from the CNS of JHMV-infected mice at defined times
to better understand these processes. We chose to examine
brains during peak innate (day 3 p.i.) and adaptive (day 7 p.i.)
responses, and spinal cords to evaluate immune cell responses
during chronic demyelination (day 21 p.i.) (Syage et al., 2020).
Downstream analysis of processed data on cells isolated from
brains and spinal cords of control and infected mice at days 3, 7,
and 21 p.i., revealed 22 unique clusters (Figure 1A). With regard
to the four microglia subsets (MG1, MG2, MG3, and Cycling
MG), each had unique transcriptional signatures enabling grouping
into specific subsets, further enforcing the notion that microglia
exhibit dynamic responses following JHMV infection of the CNS
(Figure 1B).

Examination of innate anti-viral immune responses by
microglia following JHMV infection revealed increased interferon
alpha (IFN-α) responses. This observation was accompanied by
increased expression of transcripts encoding anti-viral response
factors including Myd88, Rsad2 (Viperin), and Tmem173 (STING)
that were enriched in distinct subpopulations of microglia
(Figures 2A, B). Expression of anti-viral effector responses at
early stages of JHMV infection appear regulated within different
subpopulations of microglia and this may reflect response to
viral infection within discrete anatomic locations within the brain
and/or exposure to type I interferons that can affect expression of
anti-viral transcripts.

Viral replication peaks between 5 and 7 days p.i., and this is
accompanied by a robust inflammatory response within the CNS.
At the same time, there is a decline in viral replication that is
associated with infiltration of virus-specific CD4+ and CD8+ T cells
expressing IFN-γ and perforin (Bergmann et al., 2004). Microglia
are responsive to IFN-γ signaling (Figure 3A), which enhances
expression of MHC class I-associated transcripts (Figure 3B) and
MHC class II-associated transcripts (Figure 3C). Temporal analysis
of these transcripts in microglia show very low expression in
uninfected mice that gradually increases by day 3 p.i. and is
dramatically elevated by days 7 and 21 p.i (Figures 3B, C). JHMV
infection invokes expression of T cell chemoattractant chemokines,
CXCL9 and CXCL10, that attract activated T and B lymphocytes
into the CNS via binding to the receptor CXCR3; this is central in
promoting an effective host defense by controlling viral replication
(Liu et al., 2001a,b,c; Phares et al., 2013). While astrocytes are
important sources of both CXCL19 and CXCL10 in response to
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FIGURE 1

scRNAseq analysis of CD45+ cells within the CNS of JHMV-infected mice. C57BL/6 mice were infected i.c. with JHMV and brains collected at days 3
and 7 p.i. and spinal cords collected at day 21 p.i. (A) UMAP plot showing aggregate data of the immune landscape in brains and spinal cords of
uninfected (control) and infected mice at 3, 7, and 21 days p.i. with JHMV revealing 22 distinct cell clusters (5–6 mice pooled per group).
(B) Heatmap showing top 5 differentially expressed transcripts between heterogeneous subpopulations of microglia. Each heatmap is generated
with subset data from microglia populations and isolated from all other clusters outside of what is shown in each individual map. Data are
aggregated from uninfected (control) and infected at days 3, 7, and 21 p.i. Columns represent the different clusters, and rows represent expression of
transcripts. Figures derived from Syage et al. (2020).

CNS infection by JHMV (Lane et al., 1998; Liu et al., 2001a;
Phares et al., 2013), microglia subsets also express these transcripts
within the brain at days 3 and 7 p.i. but to a lesser extent within
the spinal cord at day 21 p.i (Figure 3D; Syage et al., 2020).
We interpret these findings to indicate that microglia exert an
important role in host defense following JHMV infection during
acute disease by aiding in attracting virus-specific T cells into the
CNS and subsequently presenting viral antigen. During chronic
immune-mediated demyelinating disease, microglia may play a
more subordinate role to astrocytes and monocyte/macrophages
with regards to expressing T cell chemoattractants.

We have also determined that commensals aid in host defense
following JHMV infection of the CNS through enhancing microglia
function (Brown et al., 2019). Germfree mice or animals that receive
antibiotics are unable to control JHMV replication within the brain
during acute disease. The impaired ability of virus-specific T cells
in germfree mice to control viral replication was not due to T
cell-intrinsic defects but was the result of deficient MHC class
II expression on microglia. Moreover, oral administration of toll-
like receptor (TLR) to JHMV-infected mice limited the severity of
clinical disease, and this correlated with increased MHC class II
expression on microglia and efficient control of viral replication
within the brains. Further work revealed that signaling through
TLR4 is important in the homeostatic activation of microglia,
as targeted genetic disruption of Tlr4 within microglia leads to
increased viral-induced clinical disease (Brown et al., 2019). These
findings demonstrate that gut immune-stimulatory products can
influence microglia function to prevent CNS damage following
viral infection.

By day 21 p.i., JHMV persists within the spinal cords
of surviving mice, and this is associated with ongoing

neuroinflammation and demyelination in which inflammatory T
cells and monocytes/macrophages contribute to white matter
damage (Wu and Perlman, 1999; Wu et al., 2000; Glass
et al., 2004). Microglia express transcripts encoding genes
associated with demyelination including Apolipoprotein E (Apoe),
Transmembrane glycoprotein NMB (Gpnmb), Osteopontin (Spp1),
and Triggering receptor expressed on myeloid cells 2 (Trem2)
(Chabas et al., 2001; Ulrich and Holtzman, 2016; Hendrickx et al.,
2017; Krasemann et al., 2017; Figure 4A). Under non-disease
conditions, microglia function to maintain tissue homeostasis
and have also been shown to be important in maintaining
overall myelin health through regulation of myelin growth as
well as preservation of myelin integrity (Yin et al., 2017; Amor
et al., 2022; McNamara et al., 2023). Following JHMV-induced
demyelination, microglia subsets express transcripts encoding
markers associated with remyelination, including cystatin F
(Cst7) (Ma et al., 2011; Shimizu et al., 2017), insulin-like growth
factor 1 (Igf1) (Ye et al., 2002; Wlodarczyk et al., 2017), and
lipoprotein lipase (Lpl) (Bruce et al., 2018; Figure 4B). The
highest levels of expression for Cst7, Igf1, and Lpl occurred
within the spinal cord at day 21 p.i. Additionally, microglia
express transcripts associated with phagocytosis of myelin debris
at both days 14 and 21 p.i. and electron micrographs show
microglia containing phagocytosed myelin and axonal debris at
day 21 p.i. (Sariol et al., 2020), a function that is essential for
remyelination to occur. These findings support the notion that
microglia may either directly or indirectly influence remyelination
within the spinal cord by contributing to expression of genes
encoding proteins that regulate oligodendrocyte precursor
cell (OPC) survival and maturation (Lloyd and Miron, 2019;
Lloyd et al., 2019).
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FIGURE 2

Microglial innate immune response following JHMV infection of the
CNS. (A) Gene set enrichment analysis (GSEA) for IFN-α responses
in microglia at day 3 p.i. from brains of JHMV-infected mice. Area
under the curve represents enrichment of response genes.
Normalized enrichment scores and p-values shown. (B) Data
showing expression of Myd88, Rsad2, and Tmem173 transcripts in
microglia subpopulations as well as overall temporal expression at
defined times p.i. with JHMV. Box plots show interquartile range,
median value (bold horizontal bar), and average expression value
per sample (red dots). ns, not significant, ***p < 0.001,
****p < 0.0001. Images derived from Syage et al. (2020).

3 Pharmacologic ablation of
microglia impacts effective T
cell-mediated control of JHMV
replication within the CNS

The functional roles of microglia in contributing to host defense
in response to CNS infection with neurotropic viruses have been
greatly elucidated by findings demonstrating that mice lacking
colony stimulating factor 1 receptor (Csfr1-/-) lack microglia,
emphasizing the importance of this signaling pathway in microglia
development (Ginhoux et al., 2010). Subsequent studies by Elmore
et al. (2014) showed that blocking CSF1R signaling in adult mice
through administration of CSF1R antagonists leads to > 95%
reduction in microglia, demonstrating that CSF1R is necessary
for microglia survival. More recently, treatment of mice with
PLX5622, a brain penetrant and selective antagonist of the CSF1R

that results in a dramatic reduction in microglia, has helped
elucidate the functional roles of these cells in pre-clinical models
of neurodegenerative disease (Elmore et al., 2014; Dagher et al.,
2015; Acharya et al., 2016; Spangenberg et al., 2019). Wheeler
et al. (2018) were the first to demonstrate that administration
of PLX5622 prior to JHMV-infected mice resulted in increased
mortality, associated with impaired control of viral replication
within the brain during early stages of disease. Increased viral titers
in PLX5622-treated mice were associated with a reduction in MHC
class II expression on monocytes/macrophages similar to findings
by Wheeler et al. (2018). Subsequent studies showed that PLX5622-
mediated ablation of microglia results in increased susceptibility to
West Nile virus (Seitz et al., 2018; Funk and Klein, 2019), Japanese
encephalitis virus (JEV) (Seitz et al., 2018), and Theiler’s murine
encephalomyelitis virus (TMEV) (Waltl et al., 2018; Sanchez et al.,
2019), further supporting a protective role for microglia against
acute viral-induced encephalitis.

Our laboratory depleted microglia via administration of
PLX5622 to mice prior to JHMV-infection to further evaluate
how microglia tailor the immune environment in response to
CNS infection (Mangale et al., 2020). We employed scRNAseq
to better understand how depletion of microglia within the
CNS influenced transcriptional responses by myeloid cells and
infiltrating lymphocytes. Similar to Wheeler et al. (2018), our
findings indicated that depletion of microglia prior to JHMV
infection resulted in increased mortality, associated with higher
viral titers within brains and spinal cords. Expression of type I
interferons (IFN) is a critical first line of defense that limits viral
dissemination, and microglia are considered important sentinel
cells capable of type I IFN expression (Ireland et al., 2008). We
found that ablation of microglia led to increased expression of
IFN-α in both macrophages and dendritic cells, suggesting that
these cells were responding to the overall increased levels of virus
within the CNS. Although we did not examine expression of type
I IFNs in other cells types, it is also reasonable to argue that
resident CNS cells, including neurons and astrocytes, were also
able to respond to elevated levels of virus through production of
type I IFNs (Hwang and Bergmann, 2018, 2019, 2020). There was
not a dramatic change in immune cell infiltration into the CNS
of JHMV-infected, PLX5622-treated mice compared to control
mice, arguing that microglia may not be critical in terms of
impacting neuroinflammation in response to infection. However,
CD4+ T cells from PLX5622-treated mice did exhibit a reduced
activation state, as determined by a reduction in expression of
transcripts encoding Th1-associated transcription factor, Tbet, and
activation markers, Cd69 and Cd44. This overall muted CD4+ T
cell response was associated with a reduction in expression of MHC
class II transcripts and protein by macrophages within the brains
of PLX5622-treated mice. In contrast, there were no differences
in expression of MHC class I expression on macrophages in
PLX5622-treated mice, and expression of both MHC class I and
II transcripts in dendritic cells was not affected. Collectively, these
findings argue that during acute disease, microglia tailor the CNS
microenvironment in response to JHMV infection by influencing
effective host defense mechanisms that enable efficient T cell-
mediated control of viral replication. Presumably, this is done
through secretion of cytokines/chemokines that allow for efficient
expression of MHC class II, promoting effective anti-viral CD4+ T
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FIGURE 3

IFN-γ signaling activates microglia and corresponds with increased expression of MHC class I and II transcripts. (A) Gene set enrichment analysis
(GSEA) for IFN-γ responses in microglia at day 7 p.i. from brains of JHMV-infected mice. Area under the curve represents enrichment of response
genes. Normalized enrichment scores and p-values shown. Box plots showing expression of (B) MHC class I-associated genes, H2-K1 and H2-Q7,
and (C) expression of MHC class II-associated genes, H2-Aa and H2-Eb1, in subpopulations of microglia in control mice and at defined times p.i.
(D) Expression of Cxcl9 and Cxcl10 transcripts in microglia (MG) subsets in control mice and at defined times p.i. Box plots show interquartile range,
median value (bold horizontal bar), and average expression value per sample (red dots). ns, not significant, **p < 0.01, ****p < 0.0001. Images
derived from Syage et al. (2020).

cell responses, which subsequently enhance anti-viral CD8+ T cell
responses.

4 Microglia restrict the severity of
immune-mediated demyelination
and influence remyelination

As part of our studies evaluating how PLX5622 treatment
impacted host defense in response to CNS infection by JHMV,
we also determined how microglia ablation affected the severity
of demyelination. PLX5622 treatment led to increased spinal
cord demyelination compared to control mice (Figures 5A, B).
scRNAseq analysis indicated that the increase in white matter
damage in PLX5622 was associated with increased expression
of transcripts encoding molecules associated with demyelination
including Apoe (Krasemann et al., 2017), Spp1 (Chabas et al.,
2001), and Trem2 (Ulrich and Holtzman, 2016; Krasemann et al.,
2017) in macrophage clusters. In addition, electron microscopy
(EM) revealed impaired remyelination in PLX5622-treated mice
as indicated by an increase in the g-ratio (the ratio of the inner
axonal diameter to the total outer fiber diameter) (Figures 5C, D).
There was a reduction in expression of transcripts associated
with remyelination including Cst7, Igf1, and Lpl in spinal cord
macrophages of PLX5622-treated mice (Figure 5E; Ye et al., 2002;

Ma et al., 2011; Hlavica et al., 2017; Shimizu et al., 2017; Wlodarczyk
et al., 2017; Bruce et al., 2018; Durose et al., 2019). This suggests
that microglia impacted the expression of molecules associated with
both demyelination and remyelination in macrophages.

Determining how targeted ablation of microglia influences the
microenvironment once JHMV-induced demyelination is already
established is another important and clinically relevant question
for potentially treating a number of neurodegenerative diseases.
Elegant studies by Sariol et al. (2020) demonstrated that treatment
with PLX5622 at various times following JHMV resulted in varied
outcomes in host defense, demyelination, and remyelination. For
example, depletion of microglia beginning at day 7 p.i. with
JHMV resulted in worsened clinical disease, associated with
increased demyelination and reduced remyelination, yet CNS
viral titers were not affected when compared to control mice.
Consistently, ablation of microglia during acute disease (day 7
p.i.) led to increased accumulation of extracellular vesiculated
myelin and cellular debris in the spinal cords of PLX5622-
treated mice, combined with demonstrated differential expression
of genes involved in myelin debris clearance. In contrast, PLX5622-
treatment beginning at day 15 p.i. did not affect the severity
of clinical disease nor increase demyelination. Subsequently, we
published findings indicating that PLX5622-mediated depletion
of microglia beginning at day 14 p.i led to an increase in the
severity of demyelination and impaired remyelination compared
to control mice. As well, gene expression analysis revealed that
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FIGURE 4

Microglia contribute to JHMV-induced demyelination and promote remyelination. (A) Expression of transcripts, Apoe, Gpnmb, Spp1, and Trem2, that
are associated with demyelination are elevated in spinal cords at day 21 p.i. in specific subpopulations of microglia in control mice and at defined
times p.i. (B) Expression of remyelination markers, Cst7, Igf1, and Lpl, are also increased in specific subpopulations of microglia in spinal cords at day
21 p.i. with JHMV. Box plots show interquartile range, median value (bold horizontal bar), and average expression value per sample (red dots). ns, not
significant, *p < 0.05, **p < 0.01, ****p < 0.0001. Images derived from Syage et al. (2020).

ablating microglia resulted in altered expression of genes associated
with immune cell activation and phagocytosis of myelin debris
(Cheng et al., 2023). Collectively, these findings argue that PLX5622
treatment following JHMV infection does affect the severity of both
demyelination and remyelination. This indicates that microglia
continue to exert an important role in influencing neuropathology
during acute/sub-acute stages of disease, and phagocytosis of
myelin debris specifically by microglia is important in regulating
tissue damage and repair.

5 Human coronaviruses and
neurologic disease

Coronaviruses that have been identified that infect humans
(HCoV’s) include HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-
HKU1, severe acute respiratory syndrome (SARS)-CoV, Middle
East respiratory syndrome (MERS)-CoV, and SARS-CoV-2.
Notably, infection with all of these viruses has been associated
with effects on neurologic function (Morgello, 2020). The four
commonly circulating HCoV’s, 229E, OC43, NL63, and HKU1, are
often referred to as the common cold coronaviruses and account
for approximately 15–20% of seasonal colds and are associated
with mild-to-moderate infections of the upper respiratory tract
(Holmes and Lai, 1996; Perlman et al., 1999; Wang et al., 2020).
Comparatively, SARS-CoV-1, MERS-CoV, and SARS-CoV-2 have
been associated with severe respiratory disease and have prompted
public health emergencies. In addition to severe respiratory

disease following infection with these viruses, CNS invasion
and neuropathology have been reported (Iadecola et al., 2020).
In comparison with SARS-CoV-1 and MERS-CoV, neurologic
symptoms which range in severity are more common following
SARS-CoV-2 infection. Neuropathological findings associated
with SARS-CoV-2 infection include lymphocyte inflammation,
acute hypoxic-ischemic changes, astrogliosis, and spontaneous
hemorrhage (Pleasure et al., 2020; Lou et al., 2021; Maury et al.,
2021; Schwabenland et al., 2021; Stein et al., 2023). In addition,
microglial activation is also commonly detected in COVID-19
patients (Pleasure et al., 2020; Lou et al., 2021; Maury et al.,
2021; Schwabenland et al., 2021; Stein et al., 2023). SARS-CoV-
2 viral RNA and antigen have been detected within the CNS and
cerebral spinal fluid of COVID-19 patients upon post-mortem
analysis. This finding, along with the observation that the virus
is able to infect and replicate within resident cells of the CNS,
supports the view that the virus is neurotropic (Matschke et al.,
2020; Bellon et al., 2021; Olivarria et al., 2022; Proust et al., 2023).
Neurologic symptoms associated with COVID-19 are thought to
occur via a variety of different mechanisms, including endothelial
damage of the blood-brain-barrier (BBB), which is associated with
increased capillary damage (Helms et al., 2020; Magro et al.,
2020). While cytokine storm is considered to be a major cause of
acute respiratory distress syndrome (ARDS) and multiple organ
failure (Chousterman et al., 2017), it also is considered to be
a contributing factor of neurological complications of COVID-
19 (Almutairi et al., 2021; Wang and Perlman, 2022). It has
been observed that patients with more severe COVID-19 have a
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FIGURE 5

The severity of spinal cord demyelination is increased in PLX5622-treated mice. (A) Representative images of H&E/LFB-stained spinal cord sections
showing an increase in severity of demyelination (dashed black lines) in JHMV-infected mice treated with PLX5622 compared to control treated
mice at day 14 (B) Quantification of spinal cord demyelination reveals a significant increase after PLX5622 treatment compared to control-treated
animals at days 14 and 21 p.i. (C) Representative EM images (1200×) from spinal cords from control and PLX5622-treated mice showing normal
myelinated axons (white arrowheads), demyelinated axons (black arrows), and remyelinated axons (blue arrows) at day 21 p.i. (D) Calculation of
g-ratio of control and PLX5622; scatter plot depicting individual g-ratios from lateral white matter columns of control (gray) and PLX5622
(green)-treated mice as a function of axon diameter. (E) t-SNE plots showing decreased expression of transcripts encoding remyelination-associated
markers, Cst7, Igf1, and Lpl in spinal cords of PLX5622-treated mice compared to controls at day 14 p.i. *p < 0.05, **p < 0.01, ****p < 0.0001.
Images derived from Mangale et al. (2020).

more drastic inflammatory immune response (Chen et al., 2020;
Huang et al., 2020), leading to the release of proinflammatory
cytokines (Huang et al., 2020; Ragab et al., 2020; Ye et al.,
2020). Some of these inflammatory markers including IL-6 and
IL-1β are also elevated in animal models (Klein et al., 2021)
and are associated with impaired neurogenesis and hippocampal
dependent memory (Garber et al., 2018; Kong et al., 2019). IL-6
is associated with increased viral loads and disease severity (Chen
et al., 2020, 2021) and has been demonstrated to be involved
in neurodegenerative diseases mediated by neuroinflammation
(Strafella et al., 2020). Increased cytokine levels have also been
seen in patients experiencing pneumonia and hypoxia (Arnaldez
et al., 2020), and hypoxic changes in vitro and in patients have been
associated with neuronal death and loss (Song et al., 2021; Solomon
and Liang, 2022). In addition, evidence of neuronal degeneration
and changes in glial cell morphology are also present in some
hippocampal tissues derived from COVID-19 patients (Bayat et al.,
2022). As indicated above, microglia have been shown to have
distinct roles in host defense and disease in response to infection
of the murine CNS with JHMV; similarly, microglia are suspected
to have some role in neurologic manifestations associated with

COVID-19 as well as long COVID (also called Post-Acute Sequelae
of COVID, PASC) (Schwabenland et al., 2021; Albornoz et al.,
2022; Jeong et al., 2022; Monje and Iwasaki, 2022; Strong, 2023;
Thaweethai et al., 2023; Wei et al., 2023). Moreover, animal models
of SARS-CoV-2 infection have demonstrated microglial activation
and a role in the expression of cytokines/chemokines associated
with neuroinflammation (Munoz-Fontela et al., 2020; Amruta et al.,
2022; Olivarria et al., 2022). Ongoing studies involving COVID-
19 patients as well as pre-clinical animal studies will ultimately
reveal how microglia and other CNS resident cells affect neurologic
disease in SARS-CoV-2-infected individuals.

6 Perspectives

It is now well-recognized that, in addition to serving as the
immune sentinel cell of the brain, microglia exert key roles in
CNS development, tissue homeostasis, and response to both injury
and infection. These diverse roles of microglia have been clearly
revealed within the context of viral infection of the CNS. The JHMV
model of viral-induced encephalomyelitis and immune-mediated
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demyelination has provided important insight with regards to
how microglia influence host defense during acute disease, as
well as how these cells participate in restricting demyelination
and enhancing remyelination. An overview of roles of microglia
in distinct stages of defense and disease in response to JHMV

infection of the CNS is provided in Figure 6. Ongoing studies,
using increasingly sophisticated approaches, are required to gain
additional insight into the molecular mechanisms by which
microglia impact the microenvironment and influence resident
CNS cells and inflammatory cells to effectively respond to viral

FIGURE 6

Roles of microglia in defense, disease, and repair in response to JHMV infection of the CNS. Overview of influence of microglia at defined stages
following CNS infection of the CNS. Microglia aid in defense on at innate and adaptive stages of infection through release of type I interferons along
with other antiviral pathways as well as antigen presentation to virus-specific T cells (Wheeler et al., 2018; Mangale et al., 2020). While these anti-viral
responses help control viral replication, JHMV persists in white matter tracts resulting in chronic inflammation and demyelination. Microglia can
secrete pro-inflammatory cytokines/chemokines that attract inflammatory T cells and myeloid cells that amplify white matter damage yet microglia
may also restrict the severity of demyelination potentially by regulating expression of disease-associated genes in other myeloid cells (Mangale et al.,
2020; Sariol et al., 2020; Syage et al., 2020). In addition, recent evidence supports a role for microglia in restricting the severity of demyelination as
well as promoting remyelination through phagocytosis of myelin debris and secretion of factors that promote OPC recruitment/survival and
maturation into mature myelin-producing oligodendrocytes (Lloyd et al., 2019; Sariol et al., 2020; Syage et al., 2020; Cheng et al., 2023).
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infection and aid in tissue recovery, with the ultimate goal of
identifying unique therapeutic targets that may aid in dampening
disease progression in human demyelinating diseases as well as
individuals infected with human coronaviruses.
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