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Conditional Cash Lotteries Increase
COVID-19 Vaccination Rates
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aUniversity of California, Santa Cruz
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Abstract

Conditional cash lotteries (CCLs) provide people with opportunities to win monetary
prizes only if they make specific behavioral changes. We conduct a case study of Ohio’s
Vax-A-Million initiative, the first CCL targeting COVID-19 vaccinations. Forming a
synthetic control from other states, we find that Ohio’s incentive scheme increases
the vaccinated share of state population by 1.5 percent (0.7 pp), costing sixty-eight
dollars per person persuaded to vaccinate. We show this causes significant reductions
in COVID-19, preventing at least one infection for every six vaccinations that the
lottery had successfully encouraged. These findings are promising for similar CCL
public health initiatives.
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1 Introduction

Providing safe and effective COVID-19 vaccines to the public only nine months after declar-
ing the pandemic is a remarkable feat of science and policymaking. Vaccine development is
only the first hurdle, however, because community (herd) immunity requires a large share of
the population to be vaccinated. Overcoming widespread reluctance to vaccinate remains a
significant challenge, especially as “waning vaccine confidence has taken a toll on immuniza-
tion programs across the globe” in recent years (de Figueiredo et al., 2020).

From a decision-making perspective, a person’s choice to (not) be vaccinated boils down
to whether their expected benefit—including altruistic benefit—outweighs their cost of vac-
cination. The United States and other governments have greatly reduced this cost by making
COVID-19 vaccines free of charge, offering free transportation to vaccination sites, and pro-
viding easily accessible facts about the vaccines to smooth any information frictions. Despite
these efforts, many people remain unpersuaded. In Figure 1, we use data from the U.S. Cen-
sus Bureau’s Household Pulse Survey to plot COVID-19 vaccine hesitancy rates by state.1

Although there is considerable heterogeneity, ranging from 7.3 percent hesitancy in Washing-
ton, D.C. to 31.6 percent in Wyoming, it is clear that much of the U.S. population remains
unwilling to vaccinate despite essentially all vaccination costs being eliminated.

Motivated by this hesitancy, a number of states have attempted to nudge people towards
vaccination by also boosting the expected benefits of being vaccinated. The most prominent
form of these incentive schemes, which we refer to as a conditional cash lottery (CCL),
provides people with an exclusive opportunity to win large monetary prizes only if they
have received a COVID-19 vaccine.2 A CCL is similar to a conditional cash transfer in that
both incentives require people to make specific behavioral changes; however, the prize-based
nature of a CCL is an important distinction. Drawing on insights from behavioral economics,
CCLs capitalize on “probability neglect,” a cognitive bias wherein low-probability events are
either neglected entirely or hugely overrated (Sunstein, 2002). Appealing to this behavioral
bias can be particularly useful for public health objectives like vaccinations because CCL
incentives should predominantly encourage people who both under-estimate communicable
disease risks and over-estimate their likelihood of winning a lottery prize.

In this paper, we study the first CCL targeting COVID-19 vaccinations, which Ohio
1Vaccination hesitancy includes responses of “definitely not” and “probably not” as survey respondents’

stated willingness to be vaccinated. Figure 1 uses data from February 17 to May 10, 2021, including all
available vaccine hesitancy data provided by the survey prior to the intervention in Ohio that we study.

2We provide information about each of the state COVID-19 lottery initiatives in Appendix Table A1. In
total, states have committed more than $200 million in CCL prizes for vaccinated individuals to-date.
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Governor Mike DeWine announced on May 12, 2021.3 Run by the state’s Department of
Health, the Vax-A-Million campaign consisted of a weekly drawing each Wednesday from
May 26 through June 23, with each of the five drawings awarding one adult (18+) a prize of
one million dollars and one youth (12-17) a full scholarship to any public college or university
in Ohio. The total program cost was 5.6 million dollars (DeWine, 2021). A free registration
provided entry into all remaining prize drawings, with the entry deadline for the final drawing
ending at midnight on June 20. Importantly, only state residents who had received at least
one dose of a COVID-19 vaccine prior to a drawing were eligible to win.

We evaluate how Ohio’s CCL treatment affects COVID-19 vaccinations and infections
by comparing how these outcomes change over time in Ohio relative to a Synthetic Ohio
constructed from a weighted average of other states. To obtain this counterfactual, we
employ the ridge augmented synthetic control method (SCM) developed by Ben-Michael
et al. (2021), which improves on the pioneering SCM work of Abadie and Gardeazabal
(2003) and Abadie et al. (2010). Whereas the classic SCM forces all unit weights to be non-
negative, potentially yielding a poor pre-treatment fit of the model, the ridge augmented
version allows for negative weights by modifying the synthetic control estimation via a ridge
regression outcome model. The ridge regularization parameter penalizes the distance from
classic SCM weights, so this approach cleverly de-biases the synthetic control estimates while
also minimizing extrapolation from untreated states’ convex hull. It additionally allows for
incorporating pre-treatment covariates to further improve the model fit.4

Our study uses daily state-level data primarily from the U.S. Department of Health and
Human Services and the Centers for Disease Control and Prevention (CDC). Our outcomes
are COVID-19 vaccinations, COVID-19 cases (positive tests), and COVID-19-related in-
tensive care unit (ICU) patient-days. Because state populations vary and our outcomes of
interest grow monotonically over time (e.g. the total count of vaccinated people), we specify
each dependent variable cumulatively as a ratio to state population (e.g. the vaccinated

3It is almost a fluke that Ohio was the first government to implement a CCL. Of course, most policies are
not implemented at random, but Ohio, which had been plagued with a high rate of vaccine hesitancy from
the outset of the pandemic, also had the distinction of being the first state to close schools for in-person
learning. The combination of these two details may have motivated the state to be willing to take a radical
approach to boost vaccination rates, as described by Ohio Governor DeWine in a NYT op-ed in May 2021:
“In mid-April, vaccine supply in Ohio started exceeding demand. There was a striking — and scary —drop
in vaccinations. People were tired. They wanted their lives back. The vaccines were our pathway out, yet
fewer and fewer were getting them. Every day I asked my staff, ‘What else can we do?’ ... My chief adviser
... hesitantly suggested the idea of a lottery. She almost didn’t mention it because of its seeming absurdity.
‘This is kind of a wacky idea, but ...’ ” (DeWine, 2021).

4As we discuss and show below, our empirical findings are robust to instead using the classic synthetic
control model, to including no covariates, and to a large variety of alternative model specifications.
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share of state population). We also incorporate several covariates that capture residential,
political, behavioral, and supply-side factors related to accessibility of or preferences about
the vaccines. Our study period spans from February 19, 2021, the earliest comprehensive
data on vaccinations, to July 18, 2021, 28 days after Ohio’s lottery entry ended.

We find an increase in COVID-19 vaccinations in Ohio that begins almost immediately
after the Vax-A-Million announcement and persists past the final prize drawing. Relative to
the synthetic control, the program causes a 0.7 percentage points (1.5 percent) increase in
the share of state population receiving at least a first dose of a COVID-19 vaccine by the
program’s end date, with most of this effect occurring within two weeks of the announcement.
In levels, this amounts to about 82,000 people who were persuaded to vaccinate by the CCL
incentive, implying an average program cost of 68 dollars per “complier.” For context, this
cost-per-complier is less than the 80 dollars in direct costs that the federal government pays
a healthcare provider to fully vaccinate one person (U.S. CMS, 2021).

In turn, we find that this heightened level of vaccination subsequently reduces the spread
and impact of COVID-19 within the state. Using the same framework, we estimate that
Ohio’s program reduces case volumes by around 125 per 100,000 population (1.3 percent) and
COVID-19-related ICU patient-days by around 41 per 100,000 population (2.6 percent) by
the end of our study period. In aggregate, these estimates correspond to nearly 15,000 cases
and 5,000 ICU patient-days prevented (approximately 335 patients). Moreover, because of
the exponential nature of disease transmission, these estimates are likely to greatly understate
the total longer-run reductions relative to counterfactual.5

Inference is almost always the most challenging aspect of using a synthetic control
method, given that there is only a single treated unit. Following Abadie et al. (2010),
many SCM studies resort to a form of cross-sectional permutation inference by estimating
“placebo effects” for untreated units—comparing the ratio of the post-treatment root mean
squared prediction error (RMSPE) and pre-treatment RMSPE of each of these estimates to
that for the treated unit. We also conduct this RMSPE-based inference, finding strong sup-
port for Ohio’s candidacy as an outlier among placebo-treated states. However, as Abadie
(2021) discusses, this approach suffers from some “complications,” most notably that it only
“reduces to classical randomization inference when the intervention is randomly assigned, a
rather improbable setting.” In our study context, this condition is equivalent to the assump-
tion that Ohio is a randomly-selected state to have implemented the first CCL for COVID-19

5We do not attempt to model the long-run effective reproduction number of infections prevented. Such an
exercise is complicated because of new genetic variants of SARS-CoV-2 and because the basic reproduction
number (R0) for compliers encouraged by the incentive likely differs from that of the broader population.
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vaccinations, which—as supported by Figure 1 above—is unlikely to be the case.
Fortunately, substantial progress has been made recently in the econometrics and statis-

tics literature pertaining to inference for the SCM. These modern approaches extend the
conformal prediction techniques of Vovk et al. (2005) to leverage the pre-treatment time se-
ries variation of the treated unit and synthetic control, rather than relying on cross-sectional
comparisons. For this study, we primarily conduct inference for our estimates using the
conformal inference method developed by Chernozhukov et al. (2021) and applied to the
ridge augmented SCM by Ben-Michael et al. (2021). Conformal inference operates by ex-
tending the estimation period to include post-treatment observations, re-estimating the unit
weights using this extended period, and then testing whether the estimated treatment effect
using these adjusted weights “conforms” with that estimated using the original unit weights.
The key assumption for this approach is that, under the null hypothesis, the distribution of
differences between the treated unit and control unit is stationary over time. We provide
support for this assumption below.

Our paper makes several contributions to the health economics literature. Most directly,
we provide one of the only examinations of a large-scale conditional cash lottery. Although
lottery-based incentives have been used conceptually for over sixty years to encourage be-
havior change related to public health (British Medical Journal, 1957), the limited empirical
evidence is somewhat mixed and focuses primarily on smaller interventions in clinical trials
or field experiments.6 Moran et al. (1996) find that a lottery-based gift card incentive is less
effective than an educational brochure at encouraging influenza vaccinations. Volpp et al.
(2008a,b) test small CCL incentives for losing weight and for anticoagulant drug adherence,
finding success in encouraging behavioral change. Thirumurthy et al. (2016) show that offer-
ing lottery prizes does not increase voluntary medical circumcision by men in Kenya. In two
recent field experiments, Goette and Stutzer (2020) find that blood donors in Switzerland are
more likely to donate again when offered a lottery ticket and Björkman Nyqvist et al. (2018)
find that a CCL for safer sexual behavior in Lesotho reduces HIV incidence. Additionally,
this latter study demonstrates that lottery-based incentives primarily appeal to individuals
with greater risk tolerance, further supporting a mechanism of probability neglect.

Several concurrent research studies also examine aspects of Ohio’s Vax-A-Million pro-
gram. Walkey et al. (2021) conduct an interrupted time series study of Ohio versus the
United States during the few weeks surrounding the lottery announcement, concluding that

6A larger related literature examines conditional cash transfers for public health objectives including
vaccinations (e.g. Barham and Maluccio, 2009; Campos-Mercade et al., 2021; Chang et al., 2021). As noted
above, the uncertainty in CCLs is a key distinction.

4



Ohio’s program does not increase vaccination rates. However, Ohio’s vaccination rates track
poorly with national rates during the pre-treatment period—a factor motivating our syn-
thetic control identification strategy. Lang et al. (2021) use the classic SCM to study how
Ohio’s program affects the share of fully vaccinated residents, finding no effect. This null
effect could be because lottery eligibility only required a single dose rather than full vac-
cination. In addition, their study stops at the final lottery drawing, weeks before many
lottery-eligible participants could have obtained a second dose of a vaccine series, which
require 21 or 28 day gaps between doses. Finally, Brehm et al. (2021) use county-level data
from Ohio, Indiana, Michigan, and Pennsylvania to conduct pooled SCM and state-border
difference-in-differences estimations of how Ohio’s program affects the number of of first dose
vaccinations during the treatment period. The study finds an effect on vaccinations that is
very similar in magnitude to that we show here.

To our knowledge, we provide the only evidence about how Ohio’s CCL initiative ulti-
mately affects COVID-19 infections and hospitalizations, through a mechanism of increased
vaccinations. We believe this is a critically important dimension for evaluating this novel
policy instrument because it facilitates conducting a cost-benefit analysis of what has ap-
peared, at least initially, to be a controversial program (Buchanan, 2021). Collectively, our
estimates indicate that—by nine weeks after the announcement of the program—Ohio’s CCL
prevents at least one COVID-19 infection for every six vaccinations that the lottery success-
fully encourages and prevents at least one ICU patient-day for every 17 vaccinations that
it encourages. As noted above, these effects are only growing stronger over time due to
the exponential nature of disease transmission. Based on Di Fusco et al.’s (2021) values for
COVID-19-associated ICU expenses, our estimates imply a reduction in hospital charges of
around 66 million dollars, a social benefit that is an order of magnitude larger than the 5.6
million dollar cost of the program. Thus, even without including any other short- or long-
run benefits from reducing COVID-19 incidence, Ohio’s CCL program passes an economic
cost-benefit analysis with flying colors.

With these findings, we also contribute to the literature evaluating how COVID-19 vac-
cination rates affect community infections. We provide evidence specific to the subset of
the population that is persuaded to vaccinate only by a lottery-based financial incentive, in
contrast to evidence from vaccinations of people motivated by altruistic reasons or seeking
self-protection from the virus. Against a backdrop of increasing hesitancy globally towards
vaccinations, this distinction could be quite valuable for public health policymakers. In-
spired by Ohio’s approach, at least nineteen other state governments have followed suit with
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their own “vaccination lotteries,” with substantial heterogeneity in programmatic design.
We leave it to future research to provide further insights about what, specifically, serves as
the optimal form of conditional cash lottery to encourage COVID-19 vaccinations.

2 Methods

Our primary empirical strategy to estimate the effects of Ohio’s lottery incentive treatment
is the ridge augmented synthetic control method (Ben-Michael et al., 2021). At its core, this
approach compares outcomes in Ohio to outcomes in other states over time. As we show
below, Ohio’s vaccination rates do not track closely with overall rates in the United States
even in the weeks before the Vax-A-Million program announcement, such that a simple
average across other states serves as a poor counterfactual. By using the synthetic control
method (SCM) to form a weighted average of the untreated states, we obtain a much better
counterfactual for Ohio. Here, we provide only a basic illustration of the method, referring
interested readers to Ben-Michael et al. (2021) and Abadie (2021) for additional details.

For panel data on states i across time periods t, denote the outcome variable as yi,t. We
are interested in the treatment effect, τCCL, of a conditional cash lottery on this outcome.
Suppose for simplicity that only Ohio is ever treated and that there is only a single post-
treatment period when t = T . In a potential outcomes framework, we can express Ohio’s
post-treatment outcome as yOhio,T = yCF,T + τCCL, where yCF,T is the counterfactual at time
T . The essence of the SCM is to form this counterfactual for post-treatment Ohio as a
weighted-average of the outcome for untreated states:

yCF,T =
∑

i 6=Ohio

γ̂scm
i yi,T where

∑
i 6=Ohio

γ̂scm
i = 1 and γ̂scm

i ≥ 0 ∀i (1)

The classic SCM determines these γ̂scm
i weights by minimizing the differences between Ohio

and the counterfactual for the outcome in pre-treatment time periods, t < T , as well as
optionally minimizing differences in covariates between Ohio and the counterfactual. Denote
the vector of pre-treatment outcomes and covariates for a state as Xi. In an ideal setting, the
SCM weights would yield a near-perfect counterfactual for Ohio, i.e. XOhio ≈

∑
i 6=Ohio γ̂

scm
i Xi.

In practice, it may not be feasible to determine a set of non-negative weights such that
XOhio ≈

∑
i 6=Ohio γ̂

scm
i Xi, and the synthetic control will yield a poor yCF,T counterfactual.

To improve the quality of the counterfactual, the ridge augmented SCM layers a ridge
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regularized linear model onto the classic SCM:

yCF,T =
∑

i 6=Ohio

γ̂scm
i yi,T +

XOhio −
∑

i 6=Ohio

γ̂scm
i Xi

 · η̂ridge (2)

where η̂ridge are coefficients from a ridge regression of the untreated states’ post-treatment
outcomes yi,T on centered pre-treatment outcomes Xi, with a tuning parameter that limits
the degree of extrapolation from the untreated states’ convex hull. If the quality of the
classic SCM counterfactual is very good, then XOhio −

∑
i 6=Ohio γ̂

scm
i Xi is close to zero and

the ridge augmented SCM is virtually equivalent to the classic SCM. For nontrivial cases,
Ben-Michael et al. (2021) demonstrate how Equation (2) can be expressed as:

yCF,T =
∑

i 6=Ohio

γ̂aug
i yi,T where

∑
i 6=Ohio

γ̂aug
i = 1 (3)

Although γ̂aug
i can take negative values, unlike γ̂scm

i , the method directly penalizes the dis-
tance between the ridge augmented SCM weights and the classic SCM weights using the
tuning parameter.7 Thus, the ridge augmentation de-biases the classic synthetic control es-
timates to improve the quality of the counterfactual for Ohio while also minimizing extrapo-
lation. Empirically, we find that the classic SCM improves the quality of the counterfactual
for Ohio relative to a simple average of untreated states, and the ridge augmented SCM
further improves the quality of the Synthetic Ohio to support causal inference.

3 Data

3.1 Data sources

Our study compiles data from a variety of public sources. Data on COVID-19 vaccina-
tions are provided by the U.S. Centers for Disease Control and Prevention (CDC), which
aggregates information from state and local health departments. Specifically, this dataset
includes the total number of vaccines that have been administered as of each date for each

7We determine this tuning parameter using the cross validation techniques provided in the software pack-
age accompanying Ben-Michael et al. (2021), which draws on insights from Abadie et al. (2015). Specifically,
the tuning parameter λ is selected by computing the leave-one-out cross validation MSE over pre-treatment
time periods: CV (λ) =

∑
t<T (yOhio,t − y(−t)

CF,t)2, where y(−k)
CF,t =

∑
i 6=Ohio γ̂

aug
i(−k)yi,t is the estimate of yCF,t

where time period k is excluded in estimating γ̂aug
i . The algorithm selects the maximal value of λ with MSE

within one standard deviation of the minimal MSE.
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state. These vaccination counts are separated by manufacturer: Janssen (Johnson & John-
son), Moderna, and Pfizer. The daily counts are also separated into first and/or final dose
vaccinations. Although some vaccination data is sparsely available for earlier time periods,
February 19, 2021 is the first date on which all states report comprehensive data, and we use
this date to start the panel used in our analysis. Inspecting the data, there are some clear
inaccuracies in the daily counts of vaccinations—such as a negative amount of vaccines being
administered—anomalies which are also discussed in the CDC’s data documentation.8 Most
of these errors are simply misattribution of some vaccinations to a date the day before or
after the vaccines were actually administered. To correct for these inaccuracies, we smooth
vaccination counts for a small number of state-weeks containing these “outliers” using an
approach that preserves the cumulative vaccination counts for each state in each week but
reduces artificial noise from erroneous data classification.9

To assess COVID-19 outcomes, we use data from the CDC for the total cases recorded in
each state by date and we use data from the U.S. Department of Health and Human Services
for the total volume of hospital intensive care unit (ICU) patients with COVID-19 by state-
date. We use an outcome measure of ICU patient-days rather than patient counts because the
data report the daily number of ICU-hospitalized patients, who typically stay multiple days
(an average of 14.7 days per Di Fusco et al. (2021), with substantial heterogeneity). Because
state populations vary and our outcomes of interest grow monotonically over time (e.g. the
total COVID-19 cases recorded), we specify each dependent variable cumulatively as a ratio
to state population (e.g. the total cumulative COVID-19 cases per 100,000 population). We
do so using state population data for 2020 from the U.S. Census Bureau. We do not evaluate
deaths from COVID-19 because this outcome is statistically under-powered—there were a
total of six deaths per 100,000 population in Ohio during the post-treatment period.

Although we also present results from models without covariates, to improve the model
fit we incorporate some pre-treatment state-level covariates related to accessibility of or
preferences about the vaccines. We include population density (Census Bureau) and gross
domestic product per capita (Bureau of Economic Analysis) as rough proxies for variation
across states in the living circumstances and economic activity that could influence vaccine

8Discussion of data anomalies and other data reporting considerations is provided in the CDC’s data docu-
mentation available at www.cdc.gov/coronavirus/2019-ncov/vaccines/distributing/about-vaccine-data.html.

9Specifically, we tag outlier observations using a criterion of daily vaccination volumes being greater than
twice the state’s seven-day moving average, adjusted for state-specific day of the week. For each state-week
containing an outlier, we reallocate the total weekly volume across the days of that week using state-specific
day-of-week weights. This approach leaves total vaccination counts in each state-week unaffected, reallocating
only within state-week. Less than three percent of observations are outliers necessitating these corrections.
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hesitancy, either directly or through the heterogeneous impact of COVID-19 across states
during the pandemic. We include 2020 Republican presidential vote share because political
leaning has been linked to vaccination hesitancy (Ivory et al., 2021). States’ pre-pandemic
influenza vaccination rates for 2019 from the Centers for Medicare and Medicaid Services
are included to capture variation in more general propensities towards vaccination. We use
Google’s Community Mobility Reports indices to capture variation in behavior as reflected
in visits to different types of places during the pre-treatment period.10 Finally, we com-
pute distance measures of state population to vaccination sites using Census Block Group
population centers and the locations of all COVID-19 vaccination sites in the U.S. from
www.vaccinatethestates.com. We use the median distance and 95th percentile distance
of population to vaccination sites to proxy for differences in vaccine accessibility.

3.2 Synthetic Ohio

We use the ridge augmented synthetic control method to determine state unit weights for
Synthetic Ohio. The donor pool includes all states that did not initiate their own lottery
schemes for COVID-19 vaccinations before the end of Ohio’s Vax-A-Million program (i.e.
we exclude states listed in Appendix Table A1, sans Michigan and Missouri). In some of our
robustness checks, we relax this requirement to include all 50 states and Washington, D.C.

Table 1 shows the largest five unit weights for Synthetic Ohio, using an outcome of the
share of state population with any COVID-19 vaccination. Appendix Table A2 shows the full
set of unit weights for Synthetic Ohio, which includes some negative weights as discussed
in the methodology section above. Other than Idaho, the five states that contribute the
most towards Synthetic Ohio are all also located in the Midwest Census Region: Wisconsin,
Kansas, Michigan, and North Dakota. Like Ohio, these five states generally have high levels
of surveyed pre-treatment vaccine hesitancy, shown in Figure 1 discussed above (Michigan,
the apparent exception, has a hesitancy rate of 14.7 percent, just below the bin cutoff).

Table 2 presents summary statistics for the United States, Ohio, and Synthetic Ohio.
Panel [A] shows shows values for the dependent variables during the pre-treatment time
period(s) indicated. Panel [B] shows values for state covariates during 2019 or 2020, as
indicated, or over the full pre-treatment period of February 19 through May 11, 2021. In
the first row, Ohio’s vaccination rate closely matches that of the U.S. overall as of April

10Google’s Community Mobility Reports provide proxies for movement over time across six categories of
places: retail and recreation, groceries and pharmacies, workplaces, residential, parks, and public transit.
Each index can range from −100 to 100. Google defines these using movement of people’s cell phones to
different places, with the baseline zero-value for each index set during January 3 through February 6, 2020.
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2, 2021. However, the U.S. vaccination rate greatly outpaces Ohio’s during the subsequent
pre-treatment weeks such that, by the May 12 lottery announcement, Ohio’s vaccinated
population share lags the state average by almost four percentage points, a pattern that is
shown even more clearly in the time series graphs presented in the next section. In contrast,
the weighted average vaccination rate of the states that comprise Synthetic Ohio remains
much closer to the rate in Ohio. The remaining rows of Table 2 also show a clear improvement
of the counterfactual by using a synthetic control rather than a simple average of untreated
states. The three outcomes we evaluate and almost all state covariates are (often much)
closer between Ohio and Synthetic Ohio than between Ohio and the United States’ average.

4 Results

We begin our analysis by examining vaccinations. We focus on first dose vaccination rates
rather than fully-vaccinated rates because Ohio’s Vax-A-Million program only required a
single dose of any COVID-19 vaccine for eligibility.11 Although completing a vaccine series
provides more protection against the virus, even a single dose of the Moderna or Pfizer
vaccine has been found to provide substantial immunity (Dagan et al., 2021). Regardless,
as we discuss and show below, there is no difference in the vaccination series follow-up rates
in Ohio from before compared to after the Vax-A-Million program.

Figure 2 plots first dose vaccination rates over time. As shown in Panel (a), there
are virtually no differences between Ohio, Synthetic Ohio, and the entire United States
in the share of vaccinated population until early April. Then, there is a structural break
between Ohio and the rest of the country, with this gap growing over time. In contrast,
the vaccination rate continues to be nearly identical between Ohio and the synthetic control
until Ohio’s conditional cash lottery treatment begins on May 12. This figure highlights
the importance of using the synthetic control method because it shows how poorly a simple
average of other states would serve as a counterfactual to Ohio, despite having had similar
vaccination behavior in earlier months prior to the start of the treatment.12

The magnitude of the difference across time between Ohio’s first-dose vaccination rate
11A single vaccine dose is also the requirement for all other state initiatives shown in Appendix Table A1

other than Massachusetts, which requires full vaccination for eligibility.
12While states had slightly different vaccination eligibility timelines, every adult in the United States

was eligible for a COVID-19 vaccine by no later than April 19, 2021 (Biden, 2021). Another potential
concern is that 12-15 year olds became vaccine-eligible at roughly the same time (May 10) as Ohio’s lottery
announcement (May 12). We address this potential confounding variation in a robustness check in Appendix
Figure A1, where we restrict analysis to adults of age 18 and older. Our results are robust to this restriction.
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and its counterfactual is shown in Panel (b) of Figure 2. The introduction of the lottery
incentive causes an almost immediate increase in vaccination rates in Ohio compared to the
synthetic control—the difference is larger only three days after treatment begins than on any
date over the nearly three months pre-treatment. Following the announcement of the lottery,
the estimated treatment effect increases sharply over the first two weeks before leveling off,
which also coincides with the timing of the first prize drawing. Of more general interest, the
alacrity with which compliers respond suggests that a long treatment window may not be
required to maximize the efficacy of a CCL to change behavior.

Although increasing vaccination uptake is the most direct effect of Ohio’s program, ul-
timately the objective is to reduce COVID-19 infections, hospitalizations, and deaths. We
show the first of these downstream effects of Ohio’s increased vaccination rate in Figure 3.
Given that COVID-19 vaccines take approximately 14 days to demonstrate partial efficacy,
one would not anticipate to see declining infection rates until at least the end of May (Dagan
et al., 2021). Furthermore, due to the exponential nature of viral transmission, any effect
that is observed should grow over time as each infection prevented then also prevents addi-
tional cases. This expected pattern matches the evidence shown in Figure 3. There is little
effect of Ohio’s program on COVID-19 cases until early June, but then the cumulative differ-
ence between Ohio and the control widens monotonically, becoming statistically significant
about a month after the lottery announcement.

A relatively small subset of COVID-19 cases require intensive hospital care and, reflecting
the overall decline in Ohio’s infection rates, we find that the vaccine incentive causes a
decrease in ICU utilization as well (Figure 4). Panel (a) shows the cumulative total COVID-
19-induced patient-days spent in hospital ICUs per 100,000 population by region and date.
Panel (b) plots the difference between Ohio and its synthetic counterfactual. As discussed
just above, because of the delay in immunity from the vaccine, any potential effect should
not be expected until early June. Moreover, we should also expect some additional delay
of a few days between disease onset and admission to a hospital ICU (Wang et al., 2020).
Given this mechanical lag, it is unsurprising to see no effect on ICU patient-days in Ohio
relative to counterfactual until the second week of June. However, ICU patient-days then
also begin to decrease monotonically over time compared to the control, reaching statistical
significance soon after.13

Figure 5 shows the robustness of our estimated vaccination effects to different specifica-
13To facilitate a more direct comparison of the timing and magnitude of these respective treatment effects,

Appendix Figure A2 plots the estimates over time for all three outcomes during the post-treatment period.
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tions. Similar plots for cases and ICU patient-days are provided in Appendix Figures A3 and
A4. Each row of the figure(s) plots point estimates and 95 percent confidence intervals from
a different model that varies either the specification or donor pool. The first row reproduces
the estimates shown above from our baseline model. In the second row, we show results
from the classic synthetic control model without covariates. As discussed in Section 2, the
classic SCM produces a somewhat worse pre-treatment fit of the Synthetic Ohio—supporting
our use of the ridge augmentation—but the estimates remain relatively close to the baseline
values. The next row shows results using residuals of the outcomes to the state covariates,
finding very similar results as the baseline model, although the estimates become somewhat
less precise. Finally, we vary the state donor pool to assess sensitivity, both by including all
50 states and (separately) by iteratively leaving out each potential donor state.14 On the
whole, this extensive set of robustness exercises provides compelling support for the causal
inference of our analysis.

The magnitudes of the estimated effects are shown in Table 3. In Panel [A], we detail the
evolution of the lottery’s effect on cumulative vaccination rates throughout the treatment
period. One week into the intervention, we estimate that there is a 0.31 percentage points
increase in vaccination rates in Ohio relative to the counterfactual. By the second week into
the program, the estimated rate of increased uptake is 0.6 percentage points. The estimated
effect then remains relatively stable over the remaining three and a half weeks, reaching
0.7 percentage points by the end of the incentive program. Given that the counterfactual
vaccination rate is 46.5 percent of population by the end of the treatment period, this end-line
effect size corresponds to a 1.5 percent increase in the vaccinated share of Ohio’s population.
We find a similar effect for adults age 18 and older. These effects shown in the table are all
statistically significant, with the lower bound of the 95 percent confidence interval at 0.15
percentage points after the first week and at 0.13 percentage points by the end of treatment.

Panel [B] presents estimates for the lottery’s effect on COVID-19 cases and ICU patient-
14Appendix Figure A5 presents inference using the cross-sectional permutation approach of Abadie et al.

(2010) by estimating “placebo effects” for untreated units—comparing the ratio of the post-treatment root
mean squared prediction error (RMSPE) and pre-treatment RMSPE of each of these estimates to that for
the treated unit. We find strong support for Ohio’s candidacy as an outlier among placebo-treated states.
Including placebo estimates for all states in the donor pool, the permutation based p-value for Ohio is
0.059 (2/34). Restricting the pool of placebo estimates to states with a pre-treatment root mean square
prediction error that is no larger than five times that of Ohio’s, the permutation based p-value for Ohio is
0.042 (1/24). Appendix Figure A6 shows the distribution of synthetic control placebo estimates for the share
of state population with any COVID-19 vaccination as of two weeks following Ohio’s CCL announcement,
along with 95 percent confidence intervals calculated using conformal inference. Again, the exercise supports
causal inference about Ohio’s estimated treatment effect.
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days, both at the end of treatment (June 20) and at the end of the data four weeks later
(July 18). We find statistically significant estimates for both of these outcomes by the time
the treatment period ends, with the effect sizes increasing in magnitude until (at least) the
end of the analysis period. By end of sample, Ohio has 125.4 fewer total recorded COVID-
19 cases per 100,000 population (a 1.3 percent reduction relative to the counterfactual)
and 41.4 fewer COVID-19-induced ICU patient-days per 100,000 population (2.6 percent
of the counterfactual). At a glance, it may seem implausible that a 1.5 percent increase
in vaccination rates could reduce COVID-19 outcomes by these magnitudes; however, this
underscores the importance of accounting for the exponential nature of communicable disease
transmission. Ohio’s incentive program essentially serves as a shock, producing a surge in
vaccinations in the state over a fairly short window of time. In turn, this reduction in the
infection-vulnerable population abates transmission to unvaccinated people to yield further
reductions in infections, effectively “bending the curve” for exponential growth of COVID-19
within the state. In addition, the type of person who is persuaded to vaccinate by a financial
lottery-based incentive might be especially valuable in curtailing the spread of the disease.

Using these estimates from Table 3 along with data for Ohio, Table 4 shows calculated
aggregate effect sizes and characteristics by time period. By aggregating the per-capita
effects that we observe over the post-treatment period using state population, we are able to
compute the total number of compliers, COVID-19 cases prevented, and ICU patient-days
averted due to Ohio’s intervention. The first column of the table shows calculated values
for the latest 40 days of the pre-treatment period (April 2 through May 11, 2021), and the
remaining three columns show various time windows during the (post-) treatment period. In
the third column, we observe that about 690,000 Ohioans in total received their first/only
vaccine dose during the 40 day span of the Vax-A-Million program. Using the estimates from
Table 3, we calculate that 82,000 (12%) of these people did so only because of the treatment,
i.e. they are treatment compliers.

Among the compliers, 86 percent chose to get vaccinated within the first two weeks of
the lottery, thus making them eligible for all of the five prize drawings. Comparing first dose
vaccinations across vaccine manufacturers, Janssen (Johnson & Johnson) retained about 12-
13 percent market share both before and during the lottery initiative, while Moderna’s market
share in Ohio shrunk from 33 to 26 percent and Pfizer’s grew from 55 to 62 percent. Appendix
Figure A7 shows daily time series of manufacturers’ market shares in Ohio and the United
States during our study period. On the whole, there is little evidence that Ohio’s treatment
compliers systematically selected a different vaccine mix than the vaccinated population
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at large. The table also explores vaccination series follow-up. Although only first dose
vaccinations were required for lottery eligibility, the evidence supports that compliers exhibit
typical second dose follow-up rates. In the 40 days leading into treatment, 87 percent of
people who start a Pfizer or Moderna vaccine series also obtain a second dose (using 21
and 28 day lagged windows, respectively, for counts of Pfizer and Moderna second dose
vaccinations). During Ohio’s program, this rate is 88 percent.15

Turning to the final column of Table 4, we find that Ohio’s program substantially affects
total COVID-19 cases and ICU utilization. By four weeks after the lottery’s completion, we
estimate that the program led to nearly 15,000 fewer cases and almost 5,000 fewer days spent
in the ICU than would have occurred absent the lottery. Based on Di Fusco et al.’s (2021)
values for COVID-19 ICU hospitalization, this amounts to about 335 fewer patients in the
ICU for COVID-19-related complications. To reiterate, these aggregate effects only include
reductions during our sample window, and the exponential nature of disease transmission
implies that prevention of additional cases and ICU patients is likely as well.

5 Conclusions

At the time of this writing, projections show that more than thirteen million people will have
died from COVID-19 worldwide by March 2022 (IHME, 2021). Of course, the realized extent
of this death toll greatly depends on how many people are vaccinated. Safe and effective
COVID-19 vaccines are freely available in many countries, including the United States,
but this widespread vaccine availability is inadequate if a large portion of the population
remains unwilling to vaccinate. A vaccine mandate could be used to increase vaccination
rates (Abrevaya and Mulligan, 2011; Lawler, 2017), but making COVID-19 vaccinations
mandatory is both publicly unpopular and politically tangled (Largent et al., 2020; Ivory
et al., 2021). Ultimately, vaccination is a choice that depends on a person’s beliefs about
the benefits of being vaccinated (Auld, 2003).

To increase the perceived benefits of vaccination, a growing number of governments have
implemented conditional cash lotteries (CCLs) that offer opportunities to win large prizes

15Follow-up rate is determined by summing total second doses of Pfizer and Moderna with 21 and 28 day
lags, respectively, and then dividing this value by the sum of the total first doses of each. For all dates t
within each period/column of the table, this formula is:

Follow-up rate =
∑

t Pfizer(2nd dose)t+21 + Moderna(2nd dose)t+28∑
t Pfizer(1st dose)t + Moderna(1st dose)t
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only available to vaccinated individuals. A CCL incentive is promising in this context be-
cause of its targeted nature: people with a greater propensity to decline vaccination are
also more likely to assign a higher expected value to a lottery, a behavioral phenomenon
known as probability neglect. Our paper evaluates the first CCL for COVID-19 vaccina-
tions, which Ohio implemented during May and June of 2021. We find that Ohio’s initiative
significantly increases vaccinations—successfully encouraging more than 82,000 Ohioans who
would otherwise not be vaccinated, an increase of 1.5 percent. Furthermore, we estimate that
this surge in vaccinations then decreases COVID-19 prevalence within the state, reducing
infections and ICU utilization by at least 1.3 percent and 2.6 percent, respectively.

These estimates allow us to assess the cost-effectiveness of the program. In a large study
of COVID-19 patients, Di Fusco et al. (2021) find that the average hospital bill per day in
the ICU is around 13,500 dollars. Using our estimate of the number of ICU patient-days
averted, we calculate that the total benefit from avoiding these charges is approximately 66
million dollars. Additionally, there are substantial other social benefits from the 15,000 (or
more) cases prevented, such as quality of life enrichment—especially for those who avoid
cases of “long-haul COVID,” where symptoms persist for months or longer—and potentially
lives saved. Given that the total cost of Ohio’s Vax-A-Million incentive scheme is 5.6 million
dollars, the benefits of the CCL unquestionably exceed the program’s cost.

Hesitancy towards vaccines has been rising globally in recent years, creating a significant
challenge for policymakers. In lieu of mandates, governments are increasingly turning to
other instruments to improve vaccination rates. Our evidence from Ohio’s program illustrates
that financial incentives—and conditional cash lotteries more specifically—are an effective
means to increase vaccine uptake in areas plagued by vaccine hesitancy. And while this
group may be larger in a state like Ohio, it is far from an outlier in this regard. Although
a CCL is certainly not a panacea, we show that it can be a cost-effective component of a
broader policy mix to increase vaccine uptake, with compelling potential to support other
public health objectives as well.
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Figures and tables

Figure 1: Surveyed COVID-19 vaccination hesitancy by state

COVID−19 vaccine
 hesitancy rate (%)

7.3 − 9.9

10.0 − 14.9

15.0 − 19.9

20.0 − 31.6

Notes: Data plotted in this map use an average of the Census Bureau’s Household Pulse Survey responses
during Weeks 25-29 (February 17 to May 10, 2021). Vaccination hesitancy includes responses of “definitely
not” and “probably not” as survey respondents’ stated willingness to be vaccinated for COVID-19.

Table 1: Largest five unit weights for Synthetic Ohio using ridge augmented synthetic
control for an outcome of the share of state population with any COVID-19 vaccination

State Unit weight

Wisconsin 0.321

Kansas 0.281

Michigan 0.191

Idaho 0.181

North Dakota 0.126

Notes: Appendix Table A2 shows the full
set of unit weights for Synthetic Ohio.
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Table 2: Summary statistics for the United States, Ohio, and Synthetic Ohio

State average Ohio Synthetic Ohio

Panel [A] Outcome variables in the pre-treatment period

Share of population with any vaccination by April 2, 2021 (%) 30.21 30.04 30.18

Share of population with any vaccination by May 12, 2021 (%) 45.63 41.90 41.82

Total COVID-19 cases per 100k population by May 12, 2021 9,576 9,214 9,213

Total COVID-19 ICU patient-days per 100k pop. by May 12 1,430 1,450 1,449

Panel [B] Covariates in the pre-treatment period

Share of population of age 12 to 17 (%) 7.47 7.54 8.16

Share of population of age 18 or older (%) 77.06 77.22 74.46

Population density in 2020 (people per square mile) 423.64 288.80 240.56

Gross domestic product per capita in 2020 ($) 61,791 57,209 57,905

Republican presidential vote share in 2020 (%) 49.12 53.27 53.53

Influenza vaccination rate in 2019 (%) 47.41 50.00 49.99

Community Mobility Report index for retail/recreation -7.66 -5.59 -5.63

Community Mobility Report index for grocery/pharmacy -1.22 -1.65 -1.56

Community Mobility Report index for parks 31.04 70.58 70.16

Community Mobility Report index for transit stations -15.77 -8.59 -8.41

Community Mobility Report index for workplaces -23.30 -20.99 -21.02

Community Mobility Report index for residences 6.13 5.30 5.32

Median distance of pop. to closest vaccination site (miles) 1.10 0.91 0.91

95th percentile distance to closest vaccination site (miles) 11.08 7.01 6.99

Notes: Table 2 presents summary statistics for the United States, Ohio, and Synthetic Ohio. Ohio’s Vax-A-Million
incentive program was announced on May 12, 2021 and lottery entry ended on June 20, 2021. Panel [A] shows values
for the dependent variables during the pre-treatment time period(s) indicated. These outcomes are: the share of
population with at least a first dose of any COVID-19 vaccination, the cumulative total COVID-19 cases per 100,000
population, and the cumulative total COVID-19 hospital ICU patient-days per 100,000 population. Panel [B] shows
values for state covariates during 2019 or 2020, as indicated, or during the pre-treatment analysis period of February
19 through May 11, 2021. Each Community Mobility Report index can take values ranging from −100 to 100. Google
defines these using movement of people’s cell phones to different places, with the baseline zero-value for each index
set during January 3 through February 6, 2020. We compute the distance measures of state population to vaccination
sites using Census Block Group population centers and the locations of all vaccination sites in the United States.



Figure 2: Share of population with any COVID-19 vaccination over time
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(b) Estimated difference between Ohio and Synthetic Ohio

Notes: Panel (a) of Figure 2 shows time series graphs for the share of population that had received at least
a first dose of any COVID-19 vaccination by region and date. Panel (b) shows the estimated difference
between Ohio and the synthetic control. The grey shading indicates 95 percent confidence intervals for
each post-treatment date, calculated using conformal inference.
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Figure 3: Cumulative total COVID-19 cases recorded per 100,000 population over time
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(b) Estimated difference between Ohio and Synthetic Ohio

Notes: Panel (a) of Figure 3 shows time series graphs for the cumulative total number of COVID-19
cases (positive COVID-19 tests) recorded per 100,000 population by region and date. Panel (b) shows
the estimated difference between Ohio and the synthetic control. The grey shading indicates 95 percent
confidence intervals for each post-treatment date, calculated using conformal inference.
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Figure 4: Cumulative total COVID-19 ICU patient-days per 100,000 population over time
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(b) Estimated difference between Ohio and Synthetic Ohio

Notes: Panel (a) of Figure 4 shows time series graphs for the cumulative total COVID-19 hospital ICU
patient-days per 100,000 population by region and date. Panel (b) shows the estimated difference between
Ohio and the synthetic control. The grey shading indicates 95 percent confidence intervals for each post-
treatment date, calculated using conformal inference.
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Figure 5: Robustness checks of the synthetic control estimates for the share of population
with any COVID-19 vaccination by the end date, using different samples and specifications
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Notes: Figure 5 shows estimated differences between Ohio and the synthetic control for the share of pop-
ulation that had received at least a first dose of any COVID-19 vaccination by June 20, 2021. Each row
depicts results from a separate model using the data sample and/or specification denoted. The grey error
bars indicate the respective 95 percent confidence intervals, which are calculated using conformal inference.



Table 3: Estimation results for Ohio compared to the synthetic control

Outcome Date Estimate 95 pct. conf. interval Cf. value

Low bd. Up. bd.

Panel [A] COVID-19 vaccinations during the Vax-A-Million treatment period

Population vaccinated (%) May 18 0.3098 0.1520 0.4676 42.6

Population vaccinated (%) May 25 0.5959 0.3930 0.7988 43.9

Population vaccinated (%) June 01 0.5415 0.2034 0.8797 45.0

Population vaccinated (%) June 08 0.5815 0.1531 0.9647 45.6

Population vaccinated (%) June 15 0.6531 0.1797 1.081 46.1

Population vaccinated (%) June 20 0.6970 0.1334 1.170 46.5

Pop. vaccinated 18-older (%) June 20 0.7761 0.2953 1.257 57.8

Panel [B] COVID-19 infections during the treatment period and post-treatment

Cases per 100k population June 20 -24.06 -41.19 -6.932 9,422

Cases per 100k population July 18 -125.3 -161.4 -92.90 9,593

ICU patient-days per 100k pop. June 20 -7.540 -13.17 -0.6617 1,542

ICU patient-days per 100k pop. July 18 -40.56 -53.70 -9.927 1,601

Notes: Table 3 shows results from ridge augmented synthetic control estimations for Ohio’s Vax-A-Million incentive
program, which was announced on May 12, 2021. Lottery entry ended on June 20, 2021. The outcomes in rows are
the share of population with any COVID-19 vaccination, the cumulative total number of COVID-19 cases recorded
per 100,000 population, and the cumulative total COVID-19 hospital ICU patient-days per 100,000 population. The
95 percent confidence intervals are calculated using conformal inference. The final column shows the counterfactual
values from Synthetic Ohio.
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Table 4: Aggregate estimated effects and characteristics for Ohio by time period

Vax-A-Million treatment period

Pre-treatment First two weeks Full period Post-treatment

Date range included April 2 - May 11 May 12 - May 25 May 12 - June 20 May 12 - July 18

Number of days 40 14 40 68

Ohio population 11,799,448 11,799,448 11,799,448 11,799,448

Vax-A-Million program cost ($) 5,600,000 5,600,000 5,600,000

Total first dose vaccinations 1,488,978 339,226 690,135

First dose compliers 70,315 (21%) 82,239 (12%)

First dose always-takers 268,911 (79%) 607,896 (88%)

First dose of Janssen 174,651 (12%) 40,186 (12%) 87,648 (13%)

First dose of Moderna 491,329 (33%) 92,300 (27%) 176,943 (26%)

First dose of Pfizer 822,998 (55%) 206,740 (61%) 425,544 (62%)

Program cost per complier ($) 80 68

2nd dose Moderna in 28 days 403,991 80,568 142,786

Moderna follow-up rate 82% 87% 81%

2nd dose Pfizer in 21 days 736,942 168,624 388,493

Pfizer follow-up rate 90% 82% 91%

Overall follow-up rate 87% 83% 88%

COVID-19 cases prevented 14,779

ICU patient-days prevented 4,786

Notes: Table 4 uses data for Ohio and estimates from Table 3 to calculate aggregate effect sizes and characteristics for Ohio
by time period. All dates included are in 2021. The row for second doses of Moderna uses a time period shifted forward
by 28 days, e.g. using second doses during June 9 - July 18 for the full treatment period of May 12 - June 20 column.
Similarly, the Pfizer second dose row uses a time period shifted by 21 days. The second dose follow-up rates are calculated
by dividing the total Moderna and/or Pfizer second dose values by the total Moderna and/or Pfizer first dose values.
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A Appendix tables and figures

Table A1: State COVID-19 vaccination initiatives using conditional cash lottery incentives

Announcement State Program Eligible Registration Largest Total prize value Exclusive Drawing

date (in 2021) name vaccinations process prize ($) (approximate $) prizes frequency

May 12 Ohio Vax-A-Million All Opt-in 1,000,000 5,600,000 Yes Weekly

May 20 Maryland VaxCash All Auto 400,000 2,000,000 Yes Daily

May 20 New York Vax And Scratch New Opt-in 5,000,000 Unknown No Instant

May 21 Oregon Take Your Shot All Auto 1,000,000 1,500,000 Yes Once

May 24 Delaware DEWins New/All Auto 302,000 5,000,000 Yes Semi-weekly

May 25 Arkansas Not named New Opt-in 1,000,000 2,000,000 No Instant

May 25 Colorado Comeback Cash All Auto 1,000,000 6,250,000 Yes Weekly

May 27 California Vax For The Win New/All Auto/Opt-in 1,500,000 116,500,000 Yes Weekly

May 27 West Virginia Do It For Babydog All Opt-in 1,588,000 10,000,000 Yes Weekly

June 01 New Mexico Vax 2 The Max All Opt-in 5,000,000 10,000,000 Yes Weekly

June 03 Washington Shot Of A Lifetime All Auto 1,000,000 2,400,000 Yes Weekly

June 04 Kentucky Shot At A Million All Opt-in 1,000,000 4,200,000 Yes Monthly

June 10 North Carolina Summer Cash New/All Auto 1,000,000 4,500,000 Yes Bi-weekly

June 15 Massachusetts VaxMillions All Opt-in 1,000,000 5,500,000 Yes Weekly

June 17 Illinois All In For The Win All Auto 1,000,000 10,000,000 Yes Weekly

June 17 Louisiana Shot At A Million All Opt-in 1,000,000 2,300,000 Yes Weekly

June 17 Maine Don’t Miss Your Shot All Opt-in 896,809 896,809 Yes Once

June 18 Nevada Vax Nevada Days All Auto 1,000,000 5,000,000 Yes Weekly

July 01 Michigan Shot To Win All Opt-in 2,000,000 5,495,000 Yes Bi-weekly

July 21 Missouri MO VIP All Opt-in 10,000 9,000,000 Yes Bi-weekly

Notes: Table A1 lists all state-run conditional cash lottery incentive schemes for COVID-19 vaccinations in the United
States. Ohio’s Vax-A-Million incentive program was the first and was announced on May 12, 2021 and lottery entry ended
on June 20, 2021. The eligible vaccinations column indicates whether people who were vaccinated prior to the program’s
announcement could win prizes in the CCL. The registration process column indicates whether any action is required to be
considered for prizes (typically filling out a form on the state’s website). The total prize value column includes monetary and
nonmonetary prizes, such as college tuition scholarships. The exclusive prizes column indicates whether the CCL prizes are
exclusively available to vaccinated individuals, compared to non-exclusive prizes like free scratch-off tickets for state lotteries.
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Table A2: State unit weights for the ridge augmented synthetic control models

State Unit weights for model

Vaccinations Cases ICU days

Alabama -0.065 -0.000 -0.000

Alaska -0.021 -0.000 -0.000

Arizona 0.008 -0.000 -0.000

Connecticut -0.058 -0.000 0.000

District of Columbia 0.009 0.000 -0.000

Florida -0.067 -0.000 -0.000

Georgia 0.107 -0.000 0.000

Hawaii -0.045 -0.000 -0.001

Idaho 0.181 0.000 0.000

Indiana 0.001 0.136 0.419

Iowa -0.066 0.000 0.000

Kansas 0.281 0.304 0.082

Michigan 0.191 0.033 0.078

Minnesota 0.015 0.000 0.000

Mississippi 0.040 -0.000 -0.000

Missouri -0.038 0.000 0.197

Montana -0.119 -0.000 -0.000

Nebraska 0.115 0.000 0.000

New Hampshire -0.044 0.000 -0.000

New Jersey 0.079 -0.000 0.060

North Dakota 0.126 0.000 0.000

Oklahoma -0.007 0.000 0.000

Pennsylvania -0.057 0.000 0.000

Rhode Island 0.024 0.109 0.165

South Carolina 0.043 -0.000 -0.000

South Dakota -0.024 -0.000 0.000

Tennessee 0.049 0.000 0.000

Texas -0.056 -0.000 0.000

Utah 0.091 0.141 0.000

Vermont 0.026 -0.000 -0.000

Virginia 0.031 0.000 0.000

Wisconsin 0.321 0.277 0.000

Wyoming -0.067 -0.000 -0.000

Notes: States not listed are not in the donor pool. For outcomes in column titles:
Vaccinations = Share of population with any COVID-19 vaccination (at least a first dose).
Cases = Cumulative total COVID-19 cases recorded per 100,000 population.
ICU days = Cumulative total COVID-19 hospital ICU patient-days per 100,000 population.
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Figure A1: Share of population 18-older with any COVID-19 vaccination over time
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Notes: Panel (a) of Figure A1 shows time series graphs for the share of population of age 18 or older
that had received at least a first dose of any COVID-19 vaccination by region and date. Panel (b) shows
the estimated difference between Ohio and the synthetic control. The grey shading indicates 95 percent
confidence intervals for each post-treatment date, calculated using conformal inference.
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Figure A2: Estimated effects for transformations of each outcome into a common scale
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Notes: Figure A2 shows estimated differences between Ohio and the synthetic control for the three
outcomes examined in this study, transformed to use a common scale. These transformations are: (1)
The fraction of population with any COVID-19 vaccination – multiplied by 100,000. (2) The cumulative
total COVID-19 cases recorded per 100,000 population – multiplied by negative one. (3) The cumulative
total COVID-19 ICU patient-days per 100,000 population – multiplied by negative one. These effects
are plotted by day following Ohio’s Vax-A-Million lottery announcement. The shapes are solid if the 95
percent confidence interval does not overlap with zero, as calculated using conformal inference.
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Figure A3: Robustness checks of the synthetic control estimates for the cumulative total
COVID-19 cases recorded per 100,000 population, using different samples and specifications
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Notes: Figure A3 shows estimated differences between Ohio and the synthetic control for the cumulative
total COVID-19 cases recorded per 100,000 population by July 18, 2021. Each row depicts results from
a separate model using the data sample and/or specification denoted. The grey error bars indicate the
respective 95 percent confidence intervals, which are calculated using conformal inference.



Figure A4: Robustness checks of the synthetic control estimates for the total COVID-19
ICU patient-days per 100,000 population, using different samples and specifications
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Notes: Figure A4 shows estimated differences between Ohio and the synthetic control for the cumulative
total COVID-19 ICU patient-days per 100,000 population by July 18, 2021. Each row depicts results from
a separate model using the data sample and/or specification denoted. The grey error bars indicate the
respective 95 percent confidence intervals, which are calculated using conformal inference.



Figure A5: Synthetic control placebo effects and rankings for other states
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Notes: States not listed are not in the donor pool. The outcome is the share of population with any
COVID-19 vaccination (at least a first dose). Post-treatment RMSPE are computed using the full treat-
ment period, starting with Ohio’s Vax-A-Million announcement on May 12, 2021 and ending with the
lottery entry end-date on June 20, 2021. Pre-treatment RMSPE are computed using the full pre-treatment
period in the data, starting on February 19, 2021 and ending on May 11, 2021.



Figure A6: Synthetic control placebo estimates for other states
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Notes: States not listed are not in the donor pool. The outcome is the share of population with
any COVID-19 vaccination (at least a first dose) as of May 26, 2021. Pre-treatment RMSPE are
computed using the full pre-treatment period in the data, starting on February 19, 2021 and ending
on May 11, 2021. The grey error bars indicate the respective 95 percent confidence intervals, which
are calculated using conformal inference.



Figure A7: Manufacturers’ daily market shares of first dose vaccinations over time
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