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Abstract—This  paper considers channel estimation and has been shown ir [8] that the power penalty due to one-
achievable rates for the uplink of a massive multiple-input pijt quantization is approximately equal to onty2 (1.96dB)

multiple-output (MIMO) system where the base station is 4 |0y SNR. However, at high SNRs, one-bit quantization

equipped with one-bit analog-to-digital converters (ADC$. By ; £ .
rewriting the nonlinear one-bit quantization using a linear @1 produce a large capacity loss [9]. In either case, the

expression, we first derive a simple and insightful expressn availability of accurate receiver-side CSl is indisperedbr
for the linear minimum mean-square-error (LMMSE) channel  exploiting the full potential of massive MIMO systems, and
estimator. Then employing this channel estimator, we derig a an important open question is how to reliably estimate the
closed-form expression for the lower bound of the achievablrate  channe| and decode the data symbols when one-bit output
for the maximum ratio combiner (MRC) receiver. Numerical o
results are presented to verify our analysis and show that quantlzatlon 1S gmployed. There hf"‘s be_en relatgd Work_ on
our proposed LMMSE channel estimator outperforms the near Channel estimation and da.ta deteCtlon W|th One'b|t quaﬂtlz
maximum likelihood (nML) estimator proposed previously. tion in massive MIMO systems_[10]-[13]. However, these
methods rely on either the maximum-likelihood algorithm
[11] or on iterative algorithms with high-complexity [12].
Massive multiple-input multiple-output (MIMO) commu-Moreover, the channel estimators and the achievable rate
nication systems are currently attracting significant aese expressions obtained with these methods do not yield simple
interest. Channel state information (CSI) plays an essentand insightful expressions.
role in these systems, and it has been shown that, with CSln this paper, we consider the uplink of a massive MIMO
known at the base station (BS), simple signal processisgstem with one-bit ADCs on each receive antenna, and we
techniques such as maximum-ratio combining (MRC) can lnevestigate the problem of channel estimation and detengin
employed at the BS to reduce noise and interference amahg approximate achievable uplink rate. In particular, we
the terminals, and hence to significantly improve the spéctprovide a simple and insightful expression for the linear
efficiency [1], [2]. minimum mean-square-error (LMMSE) channel estimator
Most previous work has assumed that each antenna elemfentone-bit massive MIMO systems. Using this estimator
and corresponding radio frequency (RF) chain is equippadd assuming an MRC receiver, we then obtain a simple
with a high-resolution analog-to-digital converter (ADC)closed-form lower bound for the achievable rate. Numerical
However, the power consumption of the ADCs grows exesults show that our proposed channel estimator outpasfor
ponentially with the number of quantization bits| [3], andhe least squares (LS) and near maximum-likelihood (nML)
power also grows with increased bandwidth and samplimtpannel estimators proposed in [10], [[11].
rate requirements, as proposed in next generation syskems.
massive MIMO configurations employing many antennas and
ADCs, the cost and power consumption will be prohibitive, We consider a single-cell one-bit massive MIMO system
and alternative approaches are needed. with K single-antenna terminals and aw-antenna base
The use of low-cost one-bit ADCs is a potential solution tgtation (BS). For uplink data transmission, the receivgdaii
this problem. One-bit ADCs consist of a simple comparatcf the BS is given by
they do not require automatic gain control or highly linear _
amplifiers, and hence they can be implemented with very y = VpaHs+n, @)
low cost and power consumptian [4]][5]. The authors of [6where H is the channel matrix between the BS and fkie
[7] showed that for one-bit ADCs, the capacity maximizingisers (with entries modeled as zero-mean unit-variance com
transmit signals for SISO channels are discrete, which péex Gaussian variables)/pgs € CK*1 represents the data
different from the infinite-resolution case where a Gaussigymbols simultaneously transmitted from the users, with
codebook is optimal. They also showed that the capacity Bf|s;|?} = 1 so thatp, represents the average transmitted
massive MIMO systems is not severely reduced by the coapaver of each user. The term~ CN(0,I) € CM*1 denotes
guantization at low signal-to-noise ratio (SNR). In fadt, iadditive white Gaussian noise.

|. INTRODUCTION

Il. SYSTEM MODEL


http://arxiv.org/abs/1608.05467v1

The quantized signals obtained after the one-bit ADCs arg, € CM™*M7 is a certain square matrix, arg, € CM7*1
represented as is the quantization noise.

r=Q(y), (2) According to [6), we can readily see that the quantizer

where Q(.) represents the one-bit quantization operatioR0iS€q, is related to the matrixA,,. A particularly meaning-
which is applied separately to the real and imaginary pafftd choice forA, is the one that minimizes the power of the
of the signal. The outcome of the one-bit quantization thigglantizer noisey, or, equivalently, that yieldg, uncorrelated
lies in the setR = 1/v/2{1+ 14,1 — 15, -1+ 1j, -1 — 15}, with y,, as in [16]. This value oA, is the result of

which includes without loss of generality a scaling factors . ., . E 2V _ aromin E{|lr. — A 2 7
that the power of each quantized signal is one. Altho@gh & Ulapll>} = arg Ap Ul = Apwsllal, (1)

is obviously a nonlinear operation, we can express whose solution is is given by
r = Ay + q, (3) Ap — C){Iprp C;plypa (8)

where A € CM** andq € C'*! is the quantization whereC, , denotes the cross-correlation matrix between the
noise. There are an infinite number ways of definfigndq  received signaly, and the quantized signal,, and Cy,y,

for (3) to hold; in the next section we will present a coOmmoRenotes the auto-correlation matrix of the received signal
approach based on the Bussgang decompositidn [14].  For one-bit quantization and Gaussian sign@ls, ., is given

[1l. CHANNEL ESTIMATION IN ONE-BIT MASSIVE MIMO by [14][17, Ch. 10]

The authors in[[10]+[13] have proposed various methods C _ \/?C diag(C -3 9
for channel estimation, relying on either the maximum- yrir T Y 8(Cym) % ®)
likelihood algorithm or iterative techniques. Howevere thywherediag (X) is a diagonal matrix formed from the diagonal
channel estimators obtained by these methods do not yigidments ofX.
much insight into the problem. In what follows, we will use I .
the linear expression if](3) to derive a simple expressionSlJbStItutIng [B) into[(B), we have
for the linear minimum mean-square-error (LMMSE) channel 2 . _
estimator. Ay = Wdlag (Cy,y.)

(NIE

=

A. Channel Estimation

In a practical system, the chanridlhas to be estimated at
the BS, and it is used to detect the data symbols transmitted _ 21 _ 10

. A = Iyk = aplyk. (10)
from the K users. In the uplink transmission phase, we T 1+ Kpp
assume that the channel cohergqce interval is divided Ir}i?:cording to [18, Ch. 12], the LMMSE channel estimate of
two parts: one dedicated to training and the other to daﬁa. .
h’is thus given by

transmission.

=/ =diag((®®" @ p,Inr) +Iux)

™

N

In the training stage, all' users simultaneously transmit hLM = Chr, C. L rp, (11)
their pilot sequences of symbols each to the BS, which ) ] ]
yields whereCy,,, is the cross-correlation matrix betwekrandr,,,
Y, = /o H®T + N, (4) andC,,,, is the auto-correlation matrix af,.

. . . . : Note that since the elements gf are uncorrelated with
MxT
whereY, € C is the received signah, is the transmit Cy.y, = (K py+1)1, then according to the Bussgang theorem

i XK i
power of each pllqt SymbOL and € C is the matrix of [14], the elements of, are also uncorrelated and their auto-
pilot symbols. To simplify the analysis, we assume orthajon

. X . . 2" correlation matrix isC = I k. Infact, settin = ol
pilot sequences withr = K, i.e., ®7®* = 7I. While this rorp — MK A, = ay

. . ) according to the Bussgang theorem, the quantization rpise
choice has been shown to be optimal for full-resolution ADC 9 gang q =y

. : X i not only uncorrelated with the received sigiyal but also
[15]. We recognize this may not be true for one-bit ADCs afe channeh. Therefore, the LMMSE channel estimator can
leave this problem for future work.

Vectorizing the received signal yields be obtained as
vedY,) =y, = (2 pplu) h+ny,  (5)

whereh = veqH) andn, = veqN,). After the one-bit B- MSE of the Channel Estimate at High SNR
ADCs and using[{3), the quantized signal can be expressed

as - . The normalized mean-squared error (MSE) of a given
r, = Q(yp) = Ph+ 1y, (6) channel estimat& can be expressed as

' = &y, (12)

where theith element ofr,, takes values from the s&, d = B . 2 9
Ap ((I>®\/%IM) EC]\fTXMT,ﬁp:Apnp+qp€(CMTXl, M—E{Hh_h"2/|h|2} (13)



For the LMMSE channel estimate {12), we have the transmitted and received symbals [4],1[10], this apphoa
i o does not result in easily computable or insightful exp@ssi
M= =tr (IMK - ® CI’) /MK To overcome this drawback, in this section we provide a
1 2K p, (14) closed-form expression for a lower bound of the achievable
- TKp,+ 7 rate.
Thus, for high SNRp, — oo, we have While quantization noise is not_Gaussian distributed in
general, a lower bound for the achievable rate can be found
lim M=1— 2 (15) by modeling the quantization noise as Gaussian, since the
Pp 700 ™ Gaussian case corresponds to the worst case additive noise
From [I5) we see that, due to the effect of the quantizatidhat minimizes the input-output mutual information [15} |
the accuracy of the channel estimate cannot be reducedpasticular, the lower bound of the achievable rate can be

zero by increasing the training power without limit. obtained by modeling the quantization noige as white

Gaussian noise with the same covariance matrix:
IV. ACHIEVABLE RATE ANALYSIS IN ONE-BIT MASSIVE

MIMO SYSTEMS Cquaqy = Cryry — AdCy,y, AL (19)

A. MRC Receiver Thus, the ergodic achievable rate of the uplink transmissio
In the data transmission stage, we assume thakthesers in one-bit massive MIMO systems is lower bounded by (20),
simultaneously transmit their data symbols, represented shown on the next page [15]. In order to obtain a closed-form
vectors, to the BS. After the one-bit quantization, the signaéxpression for the achievable rate, we first rewfifd (18) as a
at the BS can be expressed as constant gain (which only depends on the channel distohuti
ry = O(ya) = O(Hs + ny) instead of the instantaneous channel) times the desiredaym

plus an effective noise:
= /paAsHs + Agng + qq, (16)

~ CH ~
where the same definitions as in previous sections apply, but =B {\/p_‘ihk Adhk} Sk N ks (1)
with the subscriptp replaced withd. Following the same wherefi, ;, is the effective noise given by
reasoning as i {7)=(10), in order to minimize the quaniizat . A
noise (or equivalently, to make it uncorrelated with), A, gk = (\/p_dthdhk —E {\/P_dthAdhk}) Sk
is chosen adA; = ayl, with ag = \/2/7(Kpg + 1). K
Next, we assume that the BS employs the MRC receiver + \/ﬁTdﬁkH ZAdhiSi + flkHAdnd + Bqud. (22)
to detect the data symbols transmitted by fieisers. Using ik
a channel estimath, the quantized signal is separated into ) ] )
K streams by multiplying it with a matri¥l — vec‘l(h): . Lemma 1: In a massive MIMQ system Wth one-bit quan-
A tization, A, = a4I, and the achievable rate is lower bounded
§= HHI‘d by
_ T H & YH YH 9
vpdH AgHs+Es)+H " Ayng+H"qq, (17) pdaz ‘E{flthkH

where€ = H — H denotes the channel estimation error. The R = log, [ 1+

kth element of is used to decode the signal transmitted from pacgVar (hfhk) + Ul + AQN,
the kth user: (23)
K where K
= Pl Adhysy +/pabil 3 Adhis: Ul = pdaﬁzE{‘fI?h' 2} (24)
~—_——— y % 3
Desired Signal 7k i#k
User Interference 9
K ) A AQNk_(a§+1—2/7r)E{HﬁkHH } (25)
+pawp Y Ageisi+ hff Amg + hffqs , (18)
i=1 AWGN Noise  Quant. Noise and Va(z) denotes the variance
Estimate Eror Using Lemma 1, we can provide a lower bound for

whereh, ande, are thekth columns ofH and £, respec- the achievable rate with MRC processing in the following
tively. Note that for a fixed number of usef§, A, and A, theorem.
are different only ifp, # pa. Theorem 1: For MRC detection based on the LMMSE
) . channel estimator, a lower bound for the achievable rate of a

B. Achievable Rate Analysis massive MIMO system with one-bit ADCs is given by

Although a number of previous papers have obtained ex- 5 9
pressions for the mutual information or the achievableofte  piv _ 1o, (1 4 pacgq, K pp M (26)
one-bit systems by using the joint probability distributiof ? paciK + o2 + (1 —2/7)




R, =E log,

1+

pd ‘ﬁkHAdﬁk

‘ 2

Pd Zf;k ‘flkHAde

S 0K B A e,
pa iy |hy Aaei

2 ~ 2 R ~
+ Bl A+ B Caa, b

(20)

= %= LS proposed in [10]
= = = +nML proposed in [11]
O LMMSE of Eq.(12)

30

-

—— Lower Bound

= Monte-Carlo Simulation

25
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Fig. 1. MSE of different channel estimators versus SNR with= 128,

K = 8. The Least Squares (LS) estimator is from[10] and the near

Maximum Likelihood (nML) estimator is from _[11].

\ \
0 10 15 20
SNR (dB)

Fig. 2. Sum Rate versus SNR wifi = 8 and p, = pg = SNR.

VI. CONCLUSIONS

Proof: The proof is omitted due to lack of space. B Thjs paper has investigated channel estimation and achiev-
The lower bounds in[(23) and_(26) are obtained by appble rates for massive MIMO systems with one-bit quanti-
proximating the effective noisé, , as Gaussian. Since thezation. By rewriting the one-bit quantizer input-outpulare
effective noise is a sum of many terms (and especially f@bnship using a linear decomposition based on the Bussgang
massive MIMO systems, where a large number of individugecomposition, we have derived a simple and insightful
noise components form part 6f (22)), the central limit ti@or | MMSE channel estimator. Numerical results have shown
provides confidence that this is a good approximation. In thigat the proposed LMMSE channel estimator outperforms
next Section, we will show that the relative performance gq:pEViOUSh/ derived |east-squares and the near maximum-
between [(20) and the achievable rate lower bound given|iRelihood channel estimators proposed in the literatWireen,
Theorem 1 is small, which implies that the expressiofin (2@ksing the proposed channel estimator, we have derived a
is an excellent predictor of the system performance. closed-form expression for a lower bound on the achievable
rate assuming the base station employs an MRC receiver. The
gap between the lower bound and the ergodic achievable rate,

which can be computed only numerically, is very small, and

For the simulations, we consider a massive MIMO systefence we can use our simplified result to accurately predict
with one-bit ADCs,M = 128 BS antennas anfl’ = 8 Users. the system performance.

Fig.[d compares the MSE of our proposed LMMSE channel
estimator with the LS[[10] and the nML estimator [11]. The
line "Analytical Result” is obtained usind_(IL4). We can see

that our proposed LMMSE estimator outperforms the other The research was supported in part by the National 863
two estimators along the entire SNR range. In addition, tiRroject Granted No. 2014AA01A706, the Beijing Nova Pro-
MSE of the LMMSE estimator is aligned with our analyticagramme (No. xx2016023), Beijing Natural Science Foun-
results, which implies that our analysis is accurate. dation project Grant No. 2016023 and N0.4152043, the
Next, we compare the closed-form lower bound of thHSFC project under grant No. 61471027, the Research Fund
achievable rate given if_(R6) with the one given [n](20pf National Mobile Communications Research Laboratory,
Fig.[2 shows the sum rate versus SNR with different numbessutheast University No. 2014D05. A. Swindlehurst was
of receive antennas/ = {32, 64, 128}. This result confirms supported by the National Science Foundation under Grant
that the analytical expression given in Theorem 1 provigees 8CCS-1547155, and by the Technische Universitat Miinchen
excellent approximation to the known expression (20), Whidnstitute for Advanced Study, funded by the German Excel-
has to be evaluated numerically. Note that the agreementdace Initiative and the European Union Seventh Framework
especially tight for low SNRs, which is the expected operati Programme under grant agreement No. 291763, and by the
region in massive MIMO. European Union under the Marie Curie COFUND Program.
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