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ARTICLE

Translational Therapeutics

B cell-related gene signature and cancer immunotherapy
response
Arian Lundberg 1,2, Bailiang Li1 and Ruijiang Li 1✉

© The Author(s), under exclusive licence to Springer Nature Limited 2021

BACKGROUND: B lymphocytes have multifaceted functions in the tumour microenvironment, and their prognostic role in human
cancers is controversial. Here we aimed to identify tumour microenvironmental factors that influence the prognostic effects of
B cells.
METHODS: We conducted a gene expression analysis of 3585 patients for whom the clinical outcome information was available.
We further investigated the clinical relevance for predicting immunotherapy response.
RESULTS: We identified a novel B cell-related gene (BCR) signature consisting of nine cytokine signalling genes whose high
expression could diminish the beneficial impact of B cells on patient prognosis. In triple-negative breast cancer, higher B cell
abundance was associated with favourable survival only when the BCR signature was low (HR= 0.68, p= 0.0046). By contrast, B cell
abundance had no impact on prognosis when the BCR signature was high (HR= 0.93, p= 0.80). This pattern was consistently
observed across multiple cancer types including lung, colorectal, and melanoma. Further, the BCR signature predicted response to
immune checkpoint blockade in metastatic melanoma and compared favourably with the established markers.
CONCLUSIONS: The prognostic impact of tumour-infiltrating B cells depends on the status of cytokine signalling genes, which
together could predict response to cancer immunotherapy.

British Journal of Cancer (2022) 126:899–906; https://doi.org/10.1038/s41416-021-01674-6

INTRODUCTION
The biological and clinical relevance of T cells in antitumour
immune response and immunotherapy has been well established.
The role of tumour-infiltrating B cells, on the other hand, is
relatively less well characterised. Recent studies have begun to
reveal the multifaceted functions of B cells in the tumour
microenvironment (TME) [1]. In addition to secreting antibodies
and inflammatory cytokines, B cells also have the capability to
present tumour antigens and modulate both innate and adaptive
immune responses [2].
The prognostic role of B cells in human cancers is controversial,

with conflicting results across studies [3]. While a number of
studies showed a positive impact of B cells on prognosis, many
others reported no impact, and a small number of studies even
reported an adverse effect of B cells [3]. These differences may be
attributed to the fact that B cells are a heterogeneous population
with functionally distinct subsets [4], which can contribute to
either pro-tumour [5] or antitumour [6] immune response.
Ultimately clinical outcomes are influenced by the composition
and balance among these B cell subsets, which are in turn
determined by the TME milieu [7].
Several recent studies have revealed that B cells are associated

with improved response and outcomes after immunotherapy [8–10].
The predictive power is stronger if B cells, together with follicular

dendritic cells and T helper cells, are located in mature tertiary
lymphocyte structures (TLS), which promote B cell development and
function in the germinal centre [11].
Collectively, these data support the notion that the prognostic

and predictive role of tumour-infiltrating B cells is context-specific
and depends on the interactions with other immune cells or
factors. The purpose of this study is to systematically identify
genes that regulate the prognostic effects of B cells in human
cancers and investigate the clinical relevance for predicting
immunotherapy response.

MATERIALS AND METHODS
Study population and data collection
The discovery cohort consists of the 10 largest breast cancer gene
expression data sets that are linked with clinical outcome information.
Given that triple-negative breast cancer (TNBC) has the most immune cell
infiltration among all molecular subtypes, we included only TNBC samples
in our analysis (META-BRCA). Three meta cohorts were generated for
validation purposes, which are comprised of five non-small cell lung
carcinoma (META-NSCLC), four colorectal carcinoma (META-CRC) and four
melanoma (META-SKCM) data sets, respectively.
Gene expression data and clinical follow-up information were

downloaded from The Cancer Genome Atlas (TCGA) [12], GEO [13]
and METABRIC [14] databases. The expression value of each gene was
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normalised by subtracting the mean value across all the samples in
each meta cohort. Overall survival was defined as the period from the
date of diagnosis or treatment initiation to the date of death or last
follow-up.

Estimation for B and T lymphocytes
We used the B cell lineage abundance score (B.cell) generated by the
Microenvironment Cell Populations–counter (MCP-Counter) algorithm [15]
as a surrogate biomarker for B lymphocytes. The MCP-Counter uses gene
expression data of the bulk tumour to calculate a score for each sample,
representing an estimation of the absolute abundance of 8 immune cells
and 2 non-immune stromal cell populations in the TME. Compared with
other algorithms that generate a relative score for the proportions of cell
populations within each sample [16], MCP-Counter could provide mean-
ingful comparisons across different samples. We also used the T
lymphocytes module (T.cell) from MCP-Counter to estimate the abundance
of T lymphocytes in the TME.

A statistical model to identify genes interacting with B
lymphocytes
We employed the multivariable Cox proportional hazards (Cox-PH) analyses
to identify genes that interact with B lymphocytes. Specifically, we fit the
following statistical model by using the coxph function of the survival
package in R statistical software [17]: hazard ¼ α ´ Bþ β ´Gþ γ ´ B ´G,
where the variable B represents the B cell abundance score for each sample
and the variable G denotes the expression of a certain gene, while γ shows
the coefficient value for the interaction effect between each gene and B
cells. If the coefficient for the interaction term is statistically significant, it
indicates that the corresponding gene may interact with B lymphocytes by
modulating its effect on prognosis [18].
The statistical significance of the interaction was calculated using the

Wald Test for each of the discovery cohorts included in META-BRCA [18].
Since the sample size of the cohorts in META-BRCA data set varied
considerably, we employed Stouffer’s method to generate meta p values.
Depending on the sample size, each data set can have a higher or lower
contribution in the final results, and that is reflected as weights in
Stouffer’s method [19]. Additionally, the meta p values were corrected for
multiple comparisons using the Benjamini and Hochberg method (false
discovery rate (FDR)) [20]. We selected the genes with FDR < 0.1 in the
interaction test as our candidate genes.

Development of a B cell-related gene (BCR) signature
We aimed to define a gene expression signature that could regulate the
prognostic effects of B cells, i.e. B cell-related gene (BCR) signature. In
developing this signature, we employed several approaches to minimise
false discovery rate and overfitting: i) limiting candidate genes to cytokine
signalling pathways, ii) correcting for multiple testing, and iii) using
correlation analysis to remove redundancy and inconsistency.
Given their important role in regulating cellular differentiation and

functions, we focused our interaction analyses on the genes that are
involved in cytokine signalling pathways. Here, we used a list of genes
annotated in the nCounter® Human Immunology Panel Ver 2.0 (Nano-
String Technology, Seattle, WA). Out of the 258 genes in the panel, 163
genes were shared among all gene expression platforms and used in our
analysis (Supplemental Table 1).
To remove redundancy and improve consistency, we assessed the

pairwise Pearson’s correlation among the candidate genes to generate a
correlation matrix. Here, we conducted a meta-analysis on correlation
coefficients by using rma function of metafor package in R statistical
software. rma calculates effect sizes of the individual cohorts by applying
weights to each cohort and converting them to a common metric [21]. The
genes that maintained a large strength of association (65% correlation or
above) with at least two other genes and clustered together were chosen
as our final B cell interaction genes.
We defined a BCR signature by taking the average expression values of

the final genes on an individual tumour basis. We used the Kaplan–Meier
curves to demonstrate the effects of B cells on patient survival at different
levels of the BCR signature. Patients were divided into B cell abundance
high vs. low groups, with the median value as the cut-point. For the BCR
signature, the value that corresponds to the largest difference in hazard
ratios (HR) between the B cell subgroups was chosen as the threshold. In
order to avoid extreme cut-points, we constrained the range of our
analyses so that at least 10% of the patients were included in each group.

We tested the interaction effects of the BCR signature in independent
validation cohorts for three cancer types (META-NSCLC, META-CRC, META-
SKCM). In addition, we assessed the effects of B cells on patient survival at
different levels of the BCR signature using cut-points defined in the same
way as for the discovery cohort.

Assessment of predictive capability of BCR for immune
checkpoint blockade (ICB) response
Patients of two cohorts included in META-SKCM received anti-programmed
cell death protein 1 (anti-PD1) [22] and/or anti-cytotoxic T lymphocyte
associated protein 4 (anti-CTLA4) [23] ICB therapies. These cohorts have
publicly available gene expression profiles for 121 and 40 pre-treatment
tumours with complete clinical information [22, 23]. The patient’s response
was assessed according to Response Evaluation Criteria in Solid Tumours
(RECIST) [24]. Anti-PD1-treated patients who achieved complete response
or partial responsewere grouped as responders, whereas patients whose
disease progressed after the treatmentwere categorized as progressors.
Patients with a mixed response (n= 2) or stable disease (n= 16) were
excluded from the analyses. Anti-CTLA4-treated patients including long
survival and responders, were grouped as responders, and the rest of the
patients (non-responders) as progressors.
The difference between responders and progressors and their association

with the BCR signature were calculated using a two-sided Student’s t-test.
We used the receiver operating characteristic (ROC) and the area under the
ROC curve (AUC) to evaluate the predictive performance of the BCR
signature. Furthermore, we compared the performance of BCR with several
established markers of ICB response, including T.cell, a number of non-
synonymous mutations in the tumours (MUT) and CD8 gene expression
level [25–29]. A complete list of signatures included in this comparison is
shown in Supplemental Table 2.
Lastly, we evaluated the association between BCR signature and the

survival outcome of the patients who have undergone ICB treatments
(anti-PD1 and/or anti-CTLA4).

Heterogeneity of B cell abundance and BCR signature across
cancer types
We further investigated the heterogeneity of B cell abundance and the BCR
signature among different cancer types from TCGA data by utilising the
t-distributed Stochastic Neighbour Embedding (tSNE) map using the tSNE
package [30] in R statistical software.

RESULTS
Patient cohorts and baseline characteristics
We collected the gene expression data and associated clinical out-
come information from 23 independent studies of 4 different
cancer types, leading to 4 meta cohorts. CONSORT diagrams with
the exclusion criteria for this study are shown in Supplemental
Fig. 1. The discovery cohort (META-BRCA) consists of 766 TNBC
patients. The validation cohorts include 3 data sets (META-NSCLC,
META-CRC and META-SKCM) with 1247, 1247 and 325 patients,
respectively. Clinicopathological characteristics of the discovery
and validation cohorts are shown in Supplemental Tables 3 and 4,
respectively. A complete list of the individual patient cohorts is
shown in Supplemental Table 5.

Relation between B and T lymphocytes
Given the important role of T cells in antitumour immunity, we
first explored the relation between B and T lymphocytes. In META-
BRCA, B cell abundance score (B.cell) and T lymphocytes module
(T.cell) exhibited a relatively high correlation level (Fig. 1a,
Pearson’s correlation r= 0.793). In univariate analyses, both B.cell
and T.cell were associated with a favourable prognosis in
the META-BRCA cohort (Fig. 1b, HR= 0.81 and HR= 0.75, p <
0.001, respectively). However, in multivariate analyses, neither of
them remained statistically significant (Fig. 1b, B.cell and T.cell,
respectively HR= 0.90, p= 0.30; HR= 0.83, p= 0.16).
To further explore this, we stratified patients into four

subgroups depending on the B cells and T cells and assessed
their joint effects on prognosis, in which patients with higher
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levels of both T.cell and B.cell were associated with the best
survival outcome while patients with lower levels of both T.cell
and B.cell showed the worst survival (Fig. 1c, p < 0.001); a similar
trend has been observed in the validation cohorts (Supple-
mental Fig. 2). However, when we focussed on patient
subgroups as defined by T.cell, we found that higher B.cell
was associated with a better outcome only within the T.cell-low
subgroup (Supplemental Fig. 3A, HR= 0.69, p= 0.036), while B.
cell had no impact on prognosis within the T.cell-high subgroup
(HR= 1.00, p= 0.99). This suggests that the prognostic effect of
B cells may be context-specific and, in this case, is dependent
on the level of T cells.

Statistical interaction analyses identify genes affecting B cells
In order to identify additional genes that may regulate the
prognostic effects of B cells, we selected 163 genes involved in
cytokine signalling pathways and performed statistical interaction
analyses between these genes and B cell abundance in the META-
BRCA discovery cohort (Supplemental Table 1). In total, we found
15 genes that had a significant interaction effect (FDR < 0.1) with B
cell abundance, meaning that the prognostic effect of B cells on
survival outcome may be dependent on these genes (Table 1). The
coefficient values derived from the interaction analyses indicate a
synergistic (negative coefficient) or an antagonistic effect (positive
coefficient) of these genes on B cells.
We divided the candidate genes based on their coefficient

values and explored their correlation within each subgroup. The
correlation matrix for the genes with an antagonistic effect and a
synergistic effect on B cells were generated separately. However,
the genes in the latter group showed poor consistency with a very
weak correlation (Supplemental Fig. 4). Among the 11 genes with
an antagonistic effect on B cells, 9 genes clustered together and
maintained a relatively high level of pairwise correlation (Fig. 2a).
Finally, we generated a BCR signature by taking the average

expression values of the 9 final genes to derive a single score for
each sample.

BCR signature impacts the prognostic effect of B cells
We first examined the impact of BCR signature as a continuous
variable on B cells and confirmed a significant interaction effect
(HR= 1.123, p= 0.038, Fig. 2b). We also explored the prognostic

B.cell

B.cell 0.81 –0.22 < 0.001

0

0

334
43
119
259

143 63
10
31
62

26
62

140

p = 0.00086

Patient groups

B.cell Low/T.cell Low
B.cell Low/T.cell High
B.cell High/T.cell Low
B.cell High/T.cell High

0.00

0.25

0.50

0.75

1.00

5
Time (years)

O
ve

ra
ll 

su
rv

iv
al

10

P
at

ie
nt

 g
ro

up
s

5
Time (years)

Number at risk

10

< 0.001–0.28
[0.71–0.915]
[0.64–0.880]0.75

0.90 –0.11 0.30
0.16

0.6 0.8 1 1.2 1.4

–0.18
[0.74–1.100]
[0.65–1.100]0.83T.cell

T.cell
Multivariate

Univariate
HR

–2

–2

–1

0

1

2

r = 0.793

p. < 0.001

–1 0

T.cell

B
 c

el
l l

in
ea

g
e 

ab
u

n
d

an
ce

 s
co

re
 (

B
.c

el
l)

1 2

95% Cl Coefficient
Hazard ratio

p.

b

ca

Fig. 1 Relation between B cell lineage abundance score (B.cell) and T lymphocytes module (T.cell). a Scatter plot showing the Pearson’s
correlation between B.cell and T.cell. b Forest plot of the univariate and multivariate analyses of B.cell and T.cell. c Kaplan–Meier curve
representing the survival outcome of the patients with different B.cell and T.cell levels. p value refers to long-rank test. Red colour shows
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T.cell; grey colour shows patients with high B.cell and low T.cell.

Table 1. Cytokine signalling genes interacted with B cell lineage.

Gene Symbols ENTREZID Coeff p. Adjusted p.

TRAF2 7186 0.247 0.002 0.041

TNFRSF4 7293 0.212 0.005 0.070

TNFRSF8 943 0.200 0.002 0.041

IL2RG 3561 0.198 0.006 0.070

LCK 3932 0.181 0.003 0.049

BATF 10538 0.140 0.002 0.041

TNFRSF14 8764 0.107 0.003 0.049

CXCL13 10563 0.089 0.001 0.041

IL18RAP 8807 0.045 0.002 0.041

PSMB10 5699 0.041 0.001 0.041

CXCR6 10663 0.035 0.002 0.041

IL23A 51561 −0.012 0.007 0.076

PTPN6 5777 −0.029 0.002 0.041

APP 351 −0.157 0.006 0.070

NOD1 10392 −0.174 0.006 0.070

Coeff correlation coefficient, p. p value based on Stouffer’s method, Adjusted
p. p value corrected for multiple comparisons using Benjamini and
Hochberg method (FDR).
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effect of B cells depending on the BCR signature as a binary
variable. Consistently, higher B cell abundance score (B.cell) was
associated with a favourable survival outcome only when the BCR
signature was low (Fig. 2c, HR= 0.68, p= 0.0046). By contrast, B.
cell was not prognostic when the BCR signature was high (Fig. 2d,
HR= 0.93, p= 0.80). Similar results were observed for individual
genes in the BCR signature (Supplemental Fig. 5).
In order to validate our findings, we chose three common

cancer types that have a high level of tumour infiltrating
lymphocytes including non-small cell lung carcinoma (META-
NSCLC), colorectal carcinoma (META-CRC) and melanoma (META-
SKCM). Similar to the discovery META-BRCA cohort, a moderate to
high correlation was observed among the 9 genes in the BCR
signatures in the validation cohorts (Fig. 3a, c, e, respectively).
To further investigate whether BCR captures additional biolo-

gical information over T.cell, we compared both scores in the
discovery and validation cohorts. Although there were some
agreements between T.cell and BCR (continuous variable), this was
not the case in 25.3% of META-BRCA, 24.4% of META-NSCLC,
29.3% in META-CRC and 28.9% of META-SKCM samples, respec-
tively (data not shown).
We explored the impact of the BCR signature and B cells on

patients survival. Consistent with results in the discovery cohort,
higher B.cell was associated with a favourable survival outcome
only within the BCR-low group but not within the BCR-high group
(Fig. 3b, d, f, respectively). We then examined the prognostic
impact of the BCR signature as a continuous variable on B cells,
adjusted for clinical variables whenever available. Again, the BCR
signature was associated with a decreased beneficial prognostic
effect of B cells in META-NSCLC (HR= 1.048, p= 0.020), META-CRC
(HR= 1.144, p= 0.007) and META-SKCM (HR= 1.001, p= 0.021) as
shown in Fig. 3g. Overall, these results suggest that the prognostic
effect of B cells across several cancers could be altered by the BCR
genes and signature.

BCR signature predicts ICB response
Because overexpression of the BCR genes reduces the positive
prognostic impact of B cells, with a negative effect on the
antitumour immune response, we investigated whether they
could predict clinical response to immunotherapies that might
revert this process. For this purpose, two melanoma cohorts
treated with anti-PD1 [22] and anti-CTLA4 [23] were selected, with
publicly available data on tumour gene expression and patients’
clinical outcomes. In both cohorts, a higher BCR signature was
associated with clinical response to ICB (Fig. 4a–d). The association
between the BCR signature and original RECIST categories for both
cohorts are shown in Supplemental Fig. 6.
Further, we evaluated the performance of BCR signature

for predicting ICB response. Compared with previous signatures
[25–29] (Table 2 and Supplemental Table 2), the BCR signature had
a better performance in terms of AUC for patients who received
anti-PD1 treatment (Fig. 4e and Table 2, All patients, AUC= 0.610).
In fact, BCR was the only signature in which the number of
responders was significantly higher in the BCR-high relative to the
BCR-low group as opposed to the other signatures (Table 2, all
patients, p= 0.038). Although none of the signatures could select
patients with better response when they received anti-PD1
treatment as first-line treatment (Ipi-naive), BCR signature was
found to have the best performance in patients who received
Ipilimumab prior to anti-PD1 treatment (Table 2, Ipi-treated, p=
0.005, AUC= 0.755). Similar results were found in the anti-CTLA4-
treated cohort where the BCR signature performed better than the
other signatures (Fig. 4f and Supplemental Table 2, p= 0.024,
AUC= 0.732).
Next, we examined the association of BCR signature in

patients who treated either with anti-PD1 (Supplemental Fig. 6,
BCR:Low HR= 0.39, p= 0.035) or with anti-CTLA4 ICB treatment with
the beneficial prognosis effect of B cells, (Supplemental Fig. 6, BCR:
Low, HR= 0.40, p= 0.042) and indeed, BCR diminished the effect.
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Lastly, a higher BCR signature level was shown to be associated
with longer survival in patients who have undergone anti-PD1
and/or anti-CTLA4 treatment (Fig. 4g—p= 0.021, Fig. 4h—p=
0.012, respectively).

BCR heterogeneity among human cancers
We conducted tSNE analyses on 9680 tumours from TCGA to
estimate the heterogeneity of B.cell and BCR signature in different
cancer types. We found that tumours with a higher presence of
TLS such as lung adenocarcinomas show a higher level of B.cell
and BCR signature, while tumours such as lower-grade glioma
manifest the lowest expression of BCR signature (Supplemental
Fig. 7).

DISCUSSION
B cells are increasingly being recognised as an important cell
population in the TME. However, there have been inconsistent
and even contradictory reports regarding the prognostic role of
tumour-infiltrating B cells in human cancers. These differences are
not attributable to cancer type, clinicopathologic factors, or
technical approaches, suggesting that other biologic factors may
be at play. In order to resolve these conflicting results, we aimed
to identify tumour microenvironmental factors that influence the
prognostic effects of B cells. In meta-analyses of 3585 patients
across multiple cancers, we defined a novel signature consisting of
9 cytokine signalling genes whose expression in the TME correlate
with a diminished beneficial prognostic impact of B cells.
The strengths of our study include the use of large patient

data sets for the discovery and validation of the BCR signature. To
our knowledge, no larger studies have been conducted on
molecular features that specifically affect the prognostic capacity
of B lymphocytes in human cancers. We employed a statistical

interaction methodology to investigate the dual role of B cells in
the TME. Jiang et al. used a similar strategy to identify gene
signatures of T cell dysfunction [25] while our study gave a deeper
insight into the biological processes that influence the prognostic
effect of B cells.
Focusing on the genes incorporated in the BCR signature revealed

their complex functions in relation to the immune cells. BATF and
TNFRSF14 may be both positively and negatively associated with
cancer progression. BATF expression is required for differentiation of
B cells and regulating CD8+ T cells [31]; on the other hand, it reduces
expression of activation-induced cytidine deaminase that is essential
for B cell diversification [31, 32]. TNFRSF14 gene has been shown
to contribute to lymphomagenesis by interacting with B cells [33]
as well as inhibition of cytokine production and proliferation of
CD8+ T cells [34]. Conversely, TNFRSF14 has also been shown to
suppress tumour growth with a direct impact on cancer cell
apoptosis [35, 36].
Previous studies have shown that the presence of tumour-

infiltrating B cells and T cells correlates with a better prognosis,
suggesting the synergistic effects between the two [11, 37, 38].
Our study confirms these results, and further extends these
studies by showing a context-dependent impact of B cells on
prognosis. Specifically, B cells appear to play a more important
role when the amount of T cells is lower, whereas B cells have no
impact on survival if a larger amount of T cells is present. This
result is intriguing and highlights the importance of stimulating
B-cell mediated humoral immune response in order to induce an
optimal adaptive antitumour immune response.
We showed that the BCR signature has the capability to predict

response and outcomes in melanoma patients treated with anti-
PD1 and/or anti-CTLA4 immunotherapies. The predictive perfor-
mance in terms of AUC compared favourably with previously
established markers. Interestingly, one of the genes in the BCR
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signature (CXCL13) has been shown to predict response to ICB in
urothelial cancer [39].
We explored the inter-tumour heterogeneity of BCR and B cell

infiltration in the pan-cancer setting. In tSNE analyses, testicular
germ cell tumours exhibited a high level of B cells supporting
a previous study by Torres et al. [40]. Interestingly, pancreatic
adenocarcinoma showed a low level of B cells, likely due to the
higher fibrotic stroma which may restrict the development of TLS
[41]. Overall, this analysis revealed the heterogeneity of B cell
infiltration and its regulator, BCR signature both within and among
different cancer types.
The limitations of our study are as follows. First, our analysis is

retrospective in nature. Second, we only focused on gene
expression data of the bulk tumour; single-cell RNA-seq may
reveal different B cell subsets with functional relevance. Third, we
were not able to adjust our multivariate analyses in all meta
cohorts due to the lack of clinical information in the public data
sets; however, we did control for confounding factors whenever
available. Finally, the genes identified in this study should be
interpreted as hypothesis-generating. Future experimental studies
are required to confirm their mechanistic role in regulating B cell
functions in the TME.
In summary, we showed that the prognostic effect of tumour-

infiltrating B lymphocytes is correlated with the status of nine
cytokine signalling genes, which together could predict response
to cancer immunotherapy.
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